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Abstract 
The cytochrome P450 (CYP) 2J2 arachidonic acid epoxygenase gene was down-regulated at a pre-

translational level in human hepatoma-derived HepG2 cells incubated in a hypoxic environment; 

under these conditions, the expression of c-Jun and c-Fos mRNA and protein was increased. The 5′-

upstream region of the CYP2J2 gene was isolated by amplification of a 2341 bp fragment and putative 

regulatory elements that resembled activator protein-1 (AP-1)-like sequences were identified. From 

transient transfection analysis, c-Jun was found to strongly activate a CYP2J2–luciferase reporter 

construct, but co-transfection with plasmids encoding c-Fos or c-Fos-related antigens, Fra-1 and -2, 

abrogated reporter activity. Using a series of deletion-reporter constructs, a c-Jun-responsive module 

was identified between bp −152 and −50 in CYP2J2: this region contained an AP-1-like element be-

tween bp −56 and −63. The capacity of this element to interact directly with c-Jun, but not c-Fos, was 

confirmed by electromobility-shift assay analysis. Mutagenesis of the −56/−63 element abolished 

most, but not all, of the activation of CYP2J2 by c-Jun, thus implicating an additional site within the 

c- Jun-responsive region. The present results establish an important role for c-Jun in the control of 

CYP2J2 expression in liver cells. Activation of c-Fos expression by hypoxia promotes the formation 

of c-Jun/c-Fos heterodimers, which decrease the binding of c-Jun to the CYP2J2 upstream region, 

leading to gene down-regulation. 
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Abbreviations used: ANP, atrial natriuretic peptide; AP-1, activator protein-1; CYP, cytochrome 

P450; DMEM, Dulbecco’s modified Eagle’s medium; DTT, dithiothreitol; EET, epoxyeicosatrienoic 

acid; EMSA, electrophoretic mobility-shift assay; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

2H-tetrazolium bromide; RT-PCR, reverse transcription-PCR 

 

Introduction 

 

The cytochrome P450 (CYP) superfamily of enzymes catalyzes the oxidative metabolism 

of lipophilic xenobiotics and endogenous compounds, such as fatty acids, vitamins, and 

steroids [1]. The recently described CYP2J2 enzyme is highly expressed in the human heart 

and vasculature [2,3], and is also expressed in the lung and other organs [2,4–6]. CYP2J2 

catalyzes the oxidative conversion of arachidonic acid into epoxyeicosatrienoic acids 

(EETs) [2], which have a range of physiological actions, including the relaxation of vascular 

smooth muscle [7] and anti-inflammatory effects [3]. The cytoprotective role of CYP2J2-

derived EETs was established in recent studies that demonstrated that CYP2J2 protein lev-

els are decreased in vascular endothelial cells subjected to hypoxia [8]. Restitution of 

CYP2J2 function by transfection of the cDNA into cells before exposure to an oxygen-deficient 

environment enhanced cell survival [8]. The anti-apoptotic actions of EETs have been 

linked to their capacity to activate a phosphoinositide 3-kinase/Akt signaling pathway [9]. 

Activator protein-1 (AP-1) is a multiprotein transcription factor complex consisting of 

leucine-zipper proteins from the Jun (c-Jun, JunB, and JunD) and Fos (c-Fos, FosB, Fra-1, 

and Fra-2) families [10,11]. The AP-1 complex binds to the consensus sequence TGA(G/C) 

TCA, also termed the PMA response element, to activate target gene transcription [12]. 

Apart from phorbol esters, AP-1 activity is also induced by stimuli such as hypoxia [13–

15], cytokines, growth factors, carcinogens, and UV irradiation [10,16,17]. Thus AP-1 trans-

duces signals that modulate cell survival and apoptosis in the acute-phase response to a 

range of stress stimuli. 

The present study tested the hypothesis that the redox-responsive AP-1 participates in 

the regulation of CYP2J2 gene expression in HepG2 human hepatoma-derived cells. Con-

sistent with results in hypoxic endothelial cells, CYP2J2 was down-regulated in HepG2 

cells during culture at 1% O2. Increased expression of the major AP-1 proteins c-Fos and 

c-Jun occurred in HepG2 cells cultured under these conditions. 

To understand the molecular regulation of the CYP2J2 gene, the 5′ flanking region was 

cloned and its transactivation by AP-1 gene products was studied by transient transfection 

analysis. CYP2J2 reporter constructs were strongly activated by c-Jun, but not by c-Fos or 

the combination of c-Fos and c-Jun. A c-Jun-responsive module was identified between 

−152 and −50 bp upstream from the translation start site, and an AP-1-like element (nt 

−56/−63) within this module was important in c-Jun binding and transactivation of CYP2J2. 

Up-regulation of c-Fos in hypoxic HepG2 cells decreased c-Jun binding to the element. 

These results implicate c-Jun in the maintenance of CYP2J2 expression in cells and suggest 

that the appearance of c-Fos/c-Jun heterodimers during hypoxia mediates the decrease in 

CYP2J2 expression. 
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Experimental 

 

Plasmids and reagents for molecular biology 

The pGL3 reporter, pCMV-β galactosidase and pGEM-T easy vectors, recombinant human 

c-Jun protein, RiboMAX RNA production kit, Steady-Glo Luciferase kit, and β-galactosidase 

Reporter Lysis assay system were purchased from Promega Corp. (Annandale, NSW, Aus-

tralia). The Epicentre MasterPure Complete DNA and RNA Purification Kit was obtained 

from Astral Scientific (Gymea, NSW, Australia). The Clontech Human GenomeWalker Kit 

was purchased from Progen Industries (Darra, Qld., Australia). FuGENE 6 transfection 

reagent was purchased from Roche Diagnostics (Castle Hill, NSW, Australia). The ABI 

Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit and [32P]dCTP were ob-

tained from PerkinElmer (Rowville, Vic., Australia). Plasmid Midi kit, QIAquick Gel Ex-

traction kit, and the OneStep RT-PCR (reverse transcription-PCR) kit were obtained from 

Qiagen (Clifton Hill, Vic., Australia). The Stratagene QuikChange Site-Directed Mutagen-

esis Kit was purchased from Integrated Sciences (Willoughby, NSW, Australia). Expres-

sion plasmids formurine c-Fos and c-Jun were kindly provided by Dr. K. Imakawa 

(University of Tokyo, Japan). Expression plasmids for human JunB, JunD, Fra-1, and Fra-

2 were provided by Dr. M. Karin (University of California, San Diego, CA, USA). All oli-

gonucleotides were from Geneworks (Adelaide, SA, Australia). The Megaprime DNA La-

belling System and ProbeQuant G-50 Micro Columns were from Amersham Biosciences 

(Castle Hill, NSW, Australia). Enzymes were purchased from Roche Diagnostics unless 

otherwise specified. 

 

Reagents for electrophoresis and immunoblotting 

Rabbit anti-(rat CYP2J4) IgG, which is cross-reactive with human CYP2J2, was generously 

provided by Dr. Qing-Yu Zhang (Wadsworth Centre, New York State Department of 

Health, New York, NY, USA). Primary antibodies directed against c-Fos and c-Jun were 

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA) and secondary an-

tibodies were purchased from Sigma–Aldrich (Castle Hill, NSW, Australia). Tween 20, re-

agents for detection of proteins on immunoblots by enhanced chemiluminescence detection 

and Hyperfilm-MP for autoradiography were from Amersham Biosciences. Schleicher and 

Schuell Protran nitrocellulose transfer membrane was purchased from Medos Co. (Waverly, 

Vic., Australia). 

 

Reagents for cell culture 

HepG2 cells were purchased from American Type Culture Collection (ATCC; Manassas, 

VA, USA). Cell-culture media, antibiotics, and fetal calf serum were obtained from Ther-

motrace (Noble Park, Vic., Australia). Protease inhibitors were from Sigma-Aldrich. Thia-

zolyl Blue [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; MTT] and 

DMSO were also from Sigma-Aldrich. 

 

Cloning of the human CYP2J2 promoter and construction of reporter plasmids 

A 2.4 kb fragment of the 5′-flanking region of the CYP2J2 gene was isolated from a human 

genomic library using the Human GenomeWalker kit and was subcloned into the pGL3 
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basic luciferase reporter vector (p2J2A; bp −2341/+98). The 5′-truncated constructs p2J2B 

(−1894/+98), p2J2C (−1228/+98), p2J2D (−574/+98), p2J2E (−152/+98) and p2J2G (−49/+98) 

were generated from p2J2A by restriction-enzyme digestion and religation using EcoRV 

(to obtain p2J2B), PvuII (p2J2C), NheI (p2J2D), and SmaI (p2J2E and p2J2G) (see fig. 1). The 

constructs p2J2F and p2J2H, which contain internal mutations of the putative AP-1-like 

elements spanning −7 to +1 bp (CTGAGCCA) and −56 to −63 bp (CGACGGTC) respec-

tively, were generated from p2J2E (−152/+98) using the QuikChange Site-Directed Muta-

genesis Kit and appropriate oligonucleotides (table 1). All constructs were sequenced (ABI 

Prism Big Dye), and plasmid DNAs were prepared for transfection using a Qiagen Mi-

diprep kit. 

 

 
 

Figure 1. Nucleotide sequence of the 5′ flanking region of the human CYP2J2 gene 

Potential transcription factor binding sites, including AP-1, identified by the Genomatix 

MatInspector software are labeled and underlined. The major transcription start site [24] 

is marked with an asterisk and the translation start site (+1) is emboldened. The restriction 

enzyme sites used to create the CYP2J2 5′-flank luciferase deletion constructs are under-

lined. 
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Table 1. Sequences of double-stranded oligonucleotides used in EMSA analysis 

Oligonucleotide Sequence (5′→3′) 

AP-1 consensus (sense)* CTAGTGATGAGTCAGCCGGATC 

AP-1 consensus (antisense) GATCGATCCGGCTGACTCATCA 

2J2-(− 56/−63) (sense)† CGGGGCGGGGACCGTCGCCTGCTGGG 

2J2-(− 56/−63) (antisense) CCCAGCAGGCGACGGTCCCCGCCCCG 

2J2-mt-(− 56/−63) (sense)‡ CGGGGCGGGAAAAAAAACCTGCTGGG 

2J2-mt-(− 56/−63) (antisense) CCCAGCAGGTTTTTTTTCCCGCCCCG 

Stat5 β-casein promoter (sense) GGACTTCTTGGAATTAAGGGA 

Stat5 β-casein promoter (antisense)§ GTCCCTTAATTCCAAGAAGTCC 

* The sense probe has a 5′-CTAG overhang and the antisense probe has a 5′-GATC overhang; the AP-1-like 

   binding element is emboldened. 

† AP-1-like element on the antisense strand is emboldened. 

‡ Mutagenized bases are underlined. 

§ STAT5 element emboldened; the antisense probe has a 5′-G overhang for labeling purposes. 

 

Cell culture 

The HepG2 human hepatoma cell line was cultured in Dulbecco’s modified Eagle’s me-

dium (DMEM) supplemented with 10% heat-inactivated fetal calf serum, 1% L-glutamine, 

1% penicillin/streptomycin antibiotic mix, 26 mM sodium hydrogen bicarbonate, and 20 

mMHepes. Cells were cultured at 37°C using a mixture of air/CO2 (19:1) and were pas-

saged twice weekly. Cells at passage 4 were used for all experiments. 

Cells were seeded in 75 cm3 flasks at a density of 2 × 105/ml for 48 h before hypoxic 

exposure. For hypoxic incubations, flasks were transferred to an oxygen-regulated incuba-

tor containing a mixture of N2/CO2/O2 (94:5:1) for 16 h. Control (normoxic) flasks were cul-

tured for the same time period in 21% O2 (air/CO2, 19:1). For reoxygenation, flasks were 

removed from 1% O2 and returned to 21% O2 for a further 30 min. After treatments, cells 

were harvested and RNA, total cell lysates, and nuclear protein fractions were prepared. 

 

MTT assay to assess cell viability 

HepG2 cells were seeded (in triplicate) at 2 × 105/ml in six-well plates and incubated at 21% 

O2 for 48 h before exposure to 1% O2 for 16 h; normoxic controls were incubated at 21% O2 

for 16 h. At the end of this time, MTT (625 μg/250 μl) was added, and cells were incubated 

for 2 h at 37°C. The media was aspirated, DMSO (1 ml) was added to each well, plates were 

shaken at room temperature for 30 min, and the absorbance at 540 nm was measured. The 

absorbance of cells cultured in normoxia (21% O2) was taken to represent 100% viability. 

Viability was also determined after a longer period of hypoxia (40 h) and at several times 

after return to normoxic conditions. 

 

Preparation of a recombinant CYP2J2 RNA internal standard 

A 254 bp product spanning nt 724–749 and 953–978 was amplified by PCR from CYP2J2 

cDNA using the forward and reverse primers shown in table 2, and was then cloned into 

the pGEM-T Easy vector [(2J2-254)-pGEM]. Two HindIII sites separated by 57 bp were cre-
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ated within (2J2-254)-pGEM by site-directed mutagenesis (using the QuikChange kit). Af-

ter digestion with HindIII, the larger CYP2J2-plasmid fragment was purified by gel elec-

trophoresis and religated with T4 DNA ligase to generate (2J2-197)-pGEM. Recombinant 

(2J2-197)-RNA was produced by in vitro transcription of (2J2-197)-pGEM using the Ribo-

MAXTM Large Scale RNA Production System and T7 polymerase. (2J2-197)-RNA was sub-

sequently treated with RQ1 RNase-free DNase for 10 min at 37°C, extracted using the 

MasterPure Complete DNA and RNA purification kit, and quantified. 

 

Table 2. Primer sequences for gene amplification 

Oligonucleotide Sequence (5′→3′) 

CYP2J2 forward GGACCCCACCAAACTCTCTTCAGCAA 

CYP2J2 reverse ATAAAGCAGAGCCCATCGCAGAGTTG 

c-Fos forward ATGTTCTCGGGCTTCAACGCAGA 

c-Fos reverse CAGTGACCGTGGGAATGAAGTTGG 

c-Jun forward CATGAGGAACCGCATTGCCGC 

c-Jun reverse TAGCATGAGTTGGCACCCACTG 

β-actin forward ACGGGGTCACCCACACTGTGC 

β-actin reverse CTAGAAGCATTTGCGGTGGAC 

 

RNA extraction and RT-PCR 

Total RNA was extracted using the acid guanidinium thiocyanate/ phenol method of 

Chomczynski and Sacchi [18]. RNA samples were quantified by spectrophotometry and 

electrophoresed on a 1% denaturing agarose gel to confirm integrity. For quantification of 

CYP2J2 mRNA, various amounts (0.1–100 pg) of (2J2-197)-RNA were added to a fixed 

quantity (0.5 μg) of RNA extracted from HepG2 cells that had been cultured as described 

above. Competitive RT-PCR for the quantification of CYP2J2 mRNA was performed with 

CYP2J2 forward and reverse primers (table 2). Following treatment with RQ1 RNasefree 

DNase for 10 min at 37°C, RT-PCR was performed in a thermal cycler (GeneAmp PCR 

system 2400; PerkinElmer) using the Qiagen OneStep RT-PCR kit. Optimized cycling con-

ditions were: 30 min at 50°C, 15 min at 95°C and then 28 cycles of denaturation (20 s at 

94°C), annealing (20 s at 55°C) and extension (30 s at 72°C), followed by a final extension 

for 10 min at 72°C. RT-negative and template-negative controls were included. PCR prod-

ucts were electrophoresed on 2.5% agarose gels in TBE buffer (90 mM Tris/HCl/90 mM 

boric acid/2.5 mM EDTA) containing 1 μg/μl ethidium bromide, and visualized on a trans-

illuminator (Gel Doc 2000; BioRad). The intensities of CYP2J2 competitor and target were 

determined densitometrically (Multi Analyst software; BioRad). 

Semi-quantitative RT-PCR was performed by co-amplification of c-Fos or c-Jun with 

β-actin (control gene) using the primers shown in table 2. c-Fos-forward and -reverse pri-

mers corresponded to nt 4–26 and 173–196 respectively (193 bp product). c-Jun-forward 

and -reverse primers are on the basis of those reported previously [19], and correspond to 

nt 777–797 and 951–972 respectively (196 bp product). The β-actin-forward and -reverse 

primers were reported previously [20], and correspond to nt 511–531 and 1149–1169 re-

spectively (659 bp product). RT-PCR was performed in a single tube using the Qiagen 

OneStep RT-PCR kit as described by the manufacturer with an initial DNase treatment 
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using RQ1 RNase-free DNase (Promega) for 10 min at 37°C. RT-PCRs were allowed to 

proceed as follows in a thermal cycler: 30 min at 50°C, 15 min at 95°C and then cycles of 

denaturation (20 s at 94°C), annealing (20 s at the temperatures specified below) and ex-

tension (30 s at 72°C), followed by a final extension for 10 min at 72°C. Conditions were 

optimized for annealing temperature, primer concentration and cycle number to ensure 

that reactions were within the exponential phase of amplification. For co-amplification of 

c-Fos and β-actin, annealing temperature was 58°C, primer concentrations were 1 μM and 

0.2 μM for c-Fos and β-actin primers respectively, and 26 cycles of amplification were used. 

For c-Jun and β-actin co-amplification, the annealing temperature was 58°C, primer con-

centrations were 1 μM and 0.2 μM for c-Jun and β-actin primers respectively, and 25 cycles 

of amplification were used. RT-negative and template-negative controls were routinely in-

cluded. PCR products were electrophoresed on 2% agarose gels in TBE buffer, as described 

above, containing 1 μg/μl ethidium bromide, and were then visualized on a transillumina-

tor. The intensities of the c-Fos and c-Jun products were determined densitometrically, and 

were normalized to the β-actin signal. 

 

Transient transfections and luciferase and β-galactosidase assays 

HepG2 cells were seeded at a density of 6 × 105 cells/well in six-well plates 24 h before 

transfection. Transfections were performed using the FuGENE 6 transfection reagent at a 

ratio of FuGENE 6:total DNA of 3:2. Briefly, cells were co-transfected with 1 μg/well 

CYP2J2 promoter constructs, and 0.5 μg/well pCMV–β-galactosidase expression plasmid 

to control for transfection efficiency. Expression plasmids encoding AP-1 proteins were 

added at 0.5 μg/well. The plasmid DNA mixture was incubated with FuGENE 6 (diluted 

to 100 μl with serum-free DMEM) for 20 min at room temperature and then added to each 

well. After 24 h, the medium was replaced with fresh DMEM, and the cells were incubated 

for a further 48 h before harvesting. Luciferase activity was measured in a scintillation coun-

ter (1900 TR; Packard) using the Steady-Glo Luciferase Assay System and β-galactosidase 

activity was assayed at 420 nm in a Cary 300 BioSpectrophotometer. All transfections were 

performed in duplicate, and each experiment was conducted on at least three separate oc-

casions. 

 

Isolation of total cell lysates and Western blotting 

Following treatment, cells were treated with trypsin and washed twice with ice-cold PBS. 

Cells were pelleted by centrifugation for 3 min at 4°C at 15800 g and resuspended in 300 μl 

of sample buffer [400 mM Tris/HCl/3% (w/v) SDS/10% (v/v) 2-mercaptoethanol/20% (v/v) 

glycerol/0.002% Bromophenol Blue]. The suspension was passed through a 23G needle 10 

times and heated at 100°C for 5min. After centrifugation for 3 min at 15800 g, the superna-

tant (total cellular lysate) was separated into aliquots and stored at −20°C. Equal volumes 

of protein samples were resolved by SDS/PAGE (10% gels) and transferred to nitrocellu-

lose at 100 V for 1 h (25 mM Tris/192 mM glycine/20% methanol). Membranes were blocked 

for 1 h at room temperature in 5% (w/v) non-fat dried milk in Tris-buffered saline [50 mM 

Tris-HCl (pH 7.4)/200 mM NaCl/0.05% (v/v) Tween-20], and then incubated for 2 h at room 

temperature with primary antibodies diluted in blocking solution. Membranes were incu-

bated with polyclonal anti-(rat CYP2J4) (16 μg/ml), antic-Fos (Santa Cruz sc-7202; 0.75 
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μg/ml) or anti-c-Jun (sc-45; 0.4 μg/ml), washed in Tris-buffered saline and incubated for 1 h 

at room temperature in secondary anti-(rabbit IgG) antibody conjugated with horseradish 

peroxidase. The secondary antibody was diluted in 5%blocking solution at 1:1000, 1:1500, 

and 1:2000 dilutions for CYP2J2, c-Fos and c-Jun blots respectively. After incubation with 

secondary antibody, the membranes were washed five times in Tris-buffered saline and 

visualized by enhanced chemiluminescence (Amersham Biosciences). Positive controls 

were included in Western blots as follows: CYP2J2, bacterial expressed CYP2J2 (Escherichia 

coli DH5α cells); c-Jun, recombinant human c-Jun protein (Promega); and c-Fos, nuclear 

extract from phorbol-ester-treated Jurkat cells (Santa Cruz). 

 

Preparation of nuclear extracts 

Nuclear extracts were prepared at 4°C from untransfected HepG2 cells or cells that had 

been transfected (24 h)with c-Jun expression plasmid (0.5 μg/6 × 105 cells) as described by 

Schreiber et al. [21]. Nuclear extracts were also prepared from HepG2 cells subjected to 

normoxia (16 h at 21% O2) or hypoxia (1% O2). Cells were harvested, washed in 10 ml of 

PBS and pelleted for 15 s at 15800 g. The pellet was resuspended in 400 μl of buffer con-

taining 10 mM Hepes, pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM dithio-

threitol (DTT), 0.5 mM PMSF, 0.4 mM Na3VO4, 1mM NaF, 0.15 mM spermine, 0.5 mM 

spermidine, 2 μg/ml aprotinin, 1 μg/ml pepstatin and 1 μg/ml leupeptin, and allowed to 

swell on ice for 15 min. After the addition of 0.6% (v/v) Nonidet P40, tubes were vortex-

mixed and centrifuged at 15800 g for 30 s. Nuclear pellets were resuspended in 50 μl of 

buffer containing 20 mM Hepes, pH 7.9, 0.4M NaCl, 1mM EDTA, 1 mM EGTA, 1 mM DTT, 

1 mM PMSF, 0.4 mM Na3VO4, 1mM NaF, 4μg/ml aprotinin, 1 μg/ml pepstatin, and 10 

μg/ml leupeptin. The tubes were rocked at 4°C for 15 min and then centrifuged for 5 min 

at 15800 g. The nuclear extract was separated into aliquots, frozen in liquid N2 and stored 

at −80°C until used in electrophoretic mobility-shift assays (EMSAs). Protein was deter-

mined by the Lowry method using BSA as the standard [22]. 

 

EMSAs 

Oligonucleotides used as probes or competitors in gel-shift assays are shown in table 1. 

Complementary oligonucleotides were annealed and end-labeled with [32P]dCTP using 

the Megaprime DNA labeling system, and purified through ProbeQuantTM G-50 micro 

columns according to the manufacturer’s instructions. A larger double-stranded probe 

consisting of 167 bp of the CYP2J2 promoter (nt −152 to +15) was used in some gel-shift 

assays. This fragment (2J2/167) was prepared by digestion of p2J2E with NheI and BanII, 

and was separated by electrophoresis on 2% agarose. The fragment was excised from aga-

rose and purified (QIAquick kit). Binding reactions containing 10–50 fmol of the end-

labeled probes and 5–30 μg of nuclear protein fractions (or 0.6 μg of c-Jun recombinant 

protein) were incubated for 20 min at room temperature and 10 min at 4°C in a buffer 

containing 50 mM NaCl, 10 mM Tris/HCl, pH 7.5, 1 mM MgCl2, 0.5mM EDTA, pH 8.0, 0.5 

mMDTT, 4% glycerol, and 1 μg of poly(dI-dC), with the exception of reactions with c-Jun 

recombinant protein, which contained 0.2 μg of poly(dI-dC). Loading dye (2 μl) was added 

to the reactions, and protein-DNA complexes were resolved by electrophoresis with 5% 

PAGE in TBE buffer at 100 V for 1.5–2.5 h at 4°C. In competition experiments, 200-fold 
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excess unlabeled probe was included in binding reactions; the STAT5 consensus sequence 

from the β-casein promoter [23] was used as a negative control. In supershift experiments, 

nuclear protein was incubated with rabbit polyclonal c-Jun or c-Fos antibodies (2 μg) for 1 

h at 4°C before the binding reaction; an anti-ubiquitin antibody (Santa Cruz) was used as 

a negative control. Following electrophoresis, gels were dried and autoradiographed. 

 

Statistical analysis 

Results are expressed as means ± S.E.M. throughout. Differences between experimental 

groups were detected using Student’s t test. P < 0.05 was considered to be statistically sig-

nificant. All data were derived at least in duplicate from at least three separate experi-

ments. 

 

Results 

 

Isolation of the 5′-flanking region of the human CYP2J2 gene and identification of multiple 

potential AP-1 binding sites 

Expression of the CYP2J2 gene in endothelial cells is impaired in a low-oxygen environ-

ment [8], but the underlying molecular mechanism is unclear. To address this point, we 

cloned and sequenced a 2.4 kb fragment of the 5′-flanking region of the human CYP2J2 

gene from a human genomic library, corresponding to nt −2341 to +98 relative to the trans-

lation start site [24] (GenBank accession no. AF039089). This fragment contained the major 

transcription start site 26 bp upstream of the translation start site ([24]; Genbank accession 

no. AF272142). The Genomatix MatInspector Professional consensus sequence identifica-

tion program [25] was used to identify potential transcription-factor binding sites within 

this 2.4 kb CYP2J2 upstream region. High- and low-stringency searching revealed a num-

ber of regions that resembled binding motifs for AP-1, as well as a potential CCAAT box 

and GC-rich regions, which bind the transcription factor Sp1 (fig. 1). 

 

Regulation of human CYP2J2, c-Fos and c-Jun in HepG2 cells during hypoxia and 

reoxygenation 

The regulation of CYP2J2 by the redox-responsive transcription factor AP-1 was investi-

gated in HepG2 cells that were cultured in a low-oxygen environment. Preliminary studies 

found that the viability of HepG2 cells (as determined by the MTT assay) was slightly de-

creased (to 80% of normoxic control) following 16 h of hypoxia, and that viability was fully 

restored by 24 h of reoxygenation. In contrast, 40 h of hypoxia, which was not used in any 

of the present experiments, decreased viability to 40% of control. Thus cell viability was 

relatively unimpaired by the short-term hypoxia used in the present studies. 

Using a competitive RT-PCR assay, CYP2J2 mRNA was down-regulated in hypoxic 

HepG2 cells (1% O2; 16 h) to 25% of normoxic control [0.26 ± 0.02 as compared with 1.06 ± 

0.07 pg/0.5 μg of total RNA (P < 0.0001); fig. 2]; an effect similar to that reported previously 

in hypoxic endothelial cells [8]. In contrast, CYP2J2 mRNA levels in HepG2 cells were rap-

idly restored to control levels when the 16 h culture period at 1% O2 was followed by a 30 

min period of reoxygenation (fig. 3). Parallel measurement of c-Fos and c-Jun mRNA by 
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semi-quantitative RT-PCR indicated that both genes were upregulated several-fold in hy-

poxia (fig. 4A and 4B). The 30 min reoxygenation period restored c-Jun and c-Fos mRNA 

expression to control levels (fig. 4C). 

 

 
 

Figure 2. Competitive RT-PCR assay for CYP2J2 mRNA in hypoxic HepG2 cells 

(A) RNA was isolated from HepG2 cells that had been cultured for 16 h in normoxia (21% 

O2; upper panel) or hypoxia (1% O2; lower panel). Known quantities of (2J2-197)-RNA, 

prepared as described in the Experimental section, were added to 0.5 μg of cellular RNA, 

and competitive RT-PCR was performed. (B) Typical relationship between relative inten-

sities for CYP2J2 target (254 bp) and 2J2-197 standard (197 bp) are shown. (C) Effect of 

hypoxia on CYP2J2 mRNA expression in HepG2 cells (means ± S.E.M., n =3). 
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Figure 3. Effect of hypoxia-reoxygenation on CYP2J2 mRNA expression by competitive 

RT-PCR 

(A) RNA was isolated from HepG2 cells that had been cultured for 16.5 h in normoxia 

(21% O2; upper panel) or 16 h of hypoxia (1% O2), followed by 0.5 h normoxia (lower 

panel). Competitive RT-PCR was performed as described in the legend to figure 2. 

(B) Typical relationship between relative intensities for CYP2J2 target (254 bp) and 2J2–

197 standard (197 bp). (C) Effect of hypoxia-reoxygenation on CYP2J2 mRNA expression 

in HepG2 cells (means ± S.E.M., n =3). 
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Figure 4. Effect of hypoxia and hypoxia-reoxygenation on c-Fos and c-Jun mRNA expres-

sion in HepG2 cells 

(A) Amplification of c-Fos, c-Jun mRNA, and β-actin levels in HepG2 cells cultured for 16 

h in normoxia (21% O2) or hypoxia (1% O2). (B) Densitometric analysis of semi-quantita-

tive RT-PCR of relative c-Fos and c-Jun mRNA expression (means ± S.E.M., n = 3 separate 

experiments). (C) Amplification of c-Fos, c-Jun mRNA, and β-actin levels in HepG2 cells 

cultured for 16.5 h in normoxia (21% O2) or hypoxia (16 h at 1% O2), followed by 30 min 

reoxygenation (21% O2). 
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Results from the immunoblot analysis of total-cell lysates were consistent with mRNA 

measurements. Thus, compared with normoxia, hypoxia decreased CYP2J2-immunoreactive 

protein and increased c-Jun protein levels to approximately 3-fold those of the control; 

c-Fos protein was essentially undetectable in normoxic cell lysates, but was up-regulated 

strongly in hypoxic HepG2 cells (fig. 5A). Hypoxia–reoxygenation restored c-Fos and 

c-Jun protein expression to control levels, but CYP2J2 remained suppressed (fig. 5B). 

 

 
 

Figure 5. Effect of hypoxia and hypoxia-reoxygenation on CYP2J2, c-Fos and c-Jun protein 

in HepG2 cells 

(A) Western blot analysis of CYP2J2, c-Fos and c-Jun expression in lysates from HepG2 

cells cultured for 16 h in normoxia (21% O2) or hypoxia (1% O2). (B) CYP2J2, c-Fos and 

c-Jun protein in lysates from HepG2 cells cultured for 16.5 h in normoxia (21% O2) or 

hypoxia (16 h at 1% O2), followed by 30 min reoxygenation (21% O2). Control lanes con-

tain: CYP2J2, lysate from E. coli cells containing CYP2J2; c-Fos, lysate from phorbol-ester-

treated Jurkat cells; and c-Jun, recombinant human c-Jun. 

 

Differential activation of the CYP2J2 promoter in HepG2 cells by AP-1 proteins 

The apparent association between the relative expression of CYP2J2 and AP-1 in hypoxia 

and hypoxia-reoxygenation prompted a more extensive molecular assessment. The func-

tional importance of AP-1-like elements in the CYP2J2 promoter was evaluated by transi-

ent transfection analysis. 

Co-transfection studies were performed in HepG2 cells with the luciferase reporter con-

struct p2J2A (−2341/+98; fig. 6) and combinations of expression plasmids encoding mem-

bers of the AP-1 complex. c-Jun strongly activated p2J2A (to approx. 7-fold that of the 

untransfected control), and the related proteins JunB and JunD elicited small increases 

in reporter activity. In contrast, as shown in figure 6, co-transfection of Fos family genes 

(c-fos, fra-1, and fra-2) did not stimulate the activity of p2J2A.Moreover, with the exception 

of the combination of JunB and Fra-1, Fos proteins abolished the activation of the CYP2J2 

5′-flank/reporter constructs produced by Jun proteins. 
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Figure 6. Activation of CYP2J2 by c-Jun 

HepG2 cells were co-transfected with the CYP2J2-luciferase construct p2J2A (1 μg/well) 

and combinations of expression plasmids encoding AP-1 proteins (0.5 μg/well). A pCMV–

β-galactosidase expression plasmid was included in each well to control for transfection 

efficiency (0.5 μg/well). Luciferase activity was normalized to β-galactosidase activity; re-

sults shown are means ± S.E.M. for at least three independent experiments. 

 

Identification of a functional c-Jun binding element in the upstream region of CYP2J2 

A series of deletion constructs was prepared by 5′-truncation of p2J2A and used in trans-

fection studies to identify the c-Jun-responsive region of the CYP2J2 gene. Consistent with 

earlier results, p2J2A was strongly activated by c-Jun [to 8.2 ± 2.7-fold of control (P < 

0.0001); fig. 7]; c-Fos did not enhance reporter activity (1.2 ± 0.7-fold of control) and abol-

ished induction by c-Jun (1.1 ± 0.8-fold of control). A similar pattern of transactivation was 

seen with the deletion constructs p2J2B–p2J2E, which all exhibited c-Jun responsiveness 

(the relative activity of construct p2J2E in the presence of c-Jun was 4.1 ± 0.6-fold that of 

control; fig. 7). The role of two AP-1-like elements in CYP2J2 transactivation was tested. As 

shown in figure 8(A), p2J2E contained site A at −7 to +1 bp on the positive strand (CTGAGC 

CA) and site B at −56 to −63 bp on the negative strand (CGACGGTC). 
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Figure 7. Location of a c-Jun-responsive region in the CYP2J2 gene 

Identification of a c-Jun-responsive region in CYP2J2 using p2J2A and the deletion con-

structs p2J2B–p2J2E and p2J2G. The constructs p2J2F and p2J2H were prepared by muta-

genesis of the AP-1-like elements at site A and site B respectively. HepG2 cells were co-

transfected with reporter constructs, expression plasmids and a β-galactosidase expres-

sion plasmid, as described in the legend to figure 6. Luciferase activity was normalized to 

β-galactosidase activity; data are means ± S.E.M. for at least three independent experi-

ments. 

 

 
 

Figure 8. Sequences of the putative AP-1-like elements at sites A and B 

(A) Sequences of sites A (positive strand) and site B (negative strand) and their relatedness 

to the AP-1 consensus sequence (B). 

 

Site A more closely resembled the AP-1 consensus sequence TGA(G/C)TCA (fig. 8B). 

p2J2Fwas produced by mutagenesis of site A, but this construct retained c-Jun responsive-

ness when co-transfected into HepG2 cells (fig. 7). Although site B was detected only by 

low-stringency searching, construct p2J2G (−49/+98), which was prepared by 5′ truncation 

of p2J2E and retained site A, was not inducible by c-Jun (fig. 7). To test further the apparent 

functional importance of site B, the AP-1-like sequence was mutagenized from the native 

sequence in p2J2E (p2J2H; fig. 7). The inducibility by c-Jun was retained in p2J2H but was 

markedly lower than that of p2J2E (2.2 ± 0.1 fold over control compared with 4.1 ± 0.6-fold 

for p2J2E). 
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Binding of c-Jun to the human CYP2J2 promoter 

The binding of c-Jun to an upstream region in CYP2J2 was evaluated in a series of EMSA 

studies. A 167 bp double-stranded fragment (2J2/167) corresponding to nt −152 to +15 of 

the CYP2J2 promoter was generated from p2J2E by digestion with NheI and BanII, and 

exhibited retarded complexes with nuclear protein fractions from untransfected HepG2 

cells (fig. 9). Binding was competed by a 200-fold excess of unlabeled 2J2/167 probe, but 

not by a probe corresponding to the β-casein promoter STAT5 element (fig. 9A, lanes 3 and 

4). Antibodies directed against c-Jun, but not ubiquitin, enhanced the apparent amount of 

a supershifted complex (lanes 5 and 6). The signal was more intense in nuclear extracts 

from c-Jun-transfected HepG2 cells (fig. 9B, lane 3), and was also strongly supershifted by 

an anti-c- Jun antibody (fig. 9B, lane 4). To confirm that c-Jun binds directly to CYP2J2, 

EMSAs were also performed using 2J2/167 and recombinant human c-Jun protein: a prom-

inent shift was readily detected (fig. 9C, lane 2). This complex was competed successfully 

by excess unlabeled AP-1 consensus probe (lane 3). 

 

 
 

Figure 9. EMSA of the binding of c-Jun to the CYP2J2 promoter 

The 32P-labeled CYP2J2/167 double-stranded probe (bp −152 to +15 from the translation 

start site) was used in EMSA analysis with nuclear protein fractions (NP) from (A, B) un-

transfected (UT) and c-Jun-transfected (JT) HepG2 cells and with (C) recombinant c-Jun 

protein. Binding reactions allowed to proceed in the presence of antibodies to c-Jun and 

ubiquitin (Ub) are indicated. Reactions were also conducted in the presence of excess un-

labeled CYP2J2/167 (self), STAT (STAT5 element from the β-casein promoter) and AP-1 

consensus oligonucleotide. Retarded and supershifted complexes are indicated by ar-

rows. The autoradiographs are representative of results from at least three separate ex-

periments. 

 

Further EMSA studies tested the interaction between c-Jun and the AP-1-like elements 

at sites A and B. Transfection analysis had eliminated a role for site A in c-Jun-dependent 

transactivation, despite results from EMSA analysis that indicated its capacity to interact 

with c-Jun protein (results not shown). EMSAs were performed using labeled probes con-

taining the site B element [2J2-(−56/−63) probe; fig. 10]. The signal observed in nuclear frac-

tions from untransfected HepG2 cells (fig. 10A, lane 2) was more intense in nuclear extracts 
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from c-Jun-transfected cells (fig. 10A, lane 3), and was competed by excess 2J2-(−56/−63) 

probe, but not the STAT5 element probe (lanes 4 and 5), thus confirming specificity. The 

signal was also block-shifted by an anti-c-Jun antibody, but not by anti-c-Fos or anti-ubiq-

uitin antibodies (fig. 10A, lanes 6–8). Binding of c-Jun to the probe sequence was confirmed 

by the use of human recombinant c-Jun protein (fig. 10B, lane 2). Furthermore, mutagenesis 

of the AP-1-like sequence to produce 2J2-mt-(−56/−63) resulted in no interaction with re-

combinant c-Jun protein (fig. 10B, lane 3), and very weak interactions with nuclear extracts 

from untransfected and c-Jun-transfected HepG2 cells (results not shown). 

 

 
 

Figure 10. EMSA of the binding of c-Jun to an AP-1-like element in the CYP2J2 upstream 

region 

A 32P-labeled double-stranded probe corresponding to the AP-1-like element at −56 to −63 

of the upstream region of CYP2J2 (2J2 −56/−63) and a mutant probe (2J2-mt −56/−63) were 

used in EMSA analysis with (A) nuclear protein fractions (NP) from untransfected (UT) 

and c-Jun-transfected (JT) HepG2 cells, and with (B) recombinant c-Jun protein. (C) A 32P-

labeled double-stranded AP-1 consensus probe was used in comparative binding studies 

in fractions from UT and JT HepG2 cells. Some reactions contained antibodies to c-Jun, c-
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Fos, or ubiquitin (Ub), as indicated. Other reactions contained excess unlabeled CYP2J2-

(−56/−63) probe (self) or STAT probe (STAT5 element from the β-casein promoter). Re-

tarded and supershifted complexes are indicated by arrows. The autoradiographs are rep-

resentative of results from at least three separate experiments. 

 

Analogous experiments were conducted with an AP-1 consensus probe (fig. 10C). The 

major shifted complex exhibited a very similar mobility in nuclear protein fractions to that 

seen with the 2J2-(−56/−63) probe (fig. 10A). The signal in nuclear fractions from untrans-

fected HepG2 cells (fig. 10C, lane 2), was increased in fractions from c-Jun-transfected cells 

(lane 3). Binding was competed by excess unlabeled AP-1 probe (lane 4), but not by an 

excess of the unlabeled STAT5 element probe (lane 5). Incubation with a c-Jun antibody, 

but not the antiubiquitin antibody, supershifted the complex (fig. 10C, lanes 6 and 7). 

EMSA assays were also conducted in nuclear protein fractions from HepG2 cells cul-

tured under hypoxic and normoxic conditions. The shift observed with the 2J2-(−56/−63) 

probe in nuclear protein fractions from normoxic cells (fig. 11A, lane 2) was effectively 

competed by a 200-fold excess of the unlabeled probe (lane 3), but not by a similar excess 

of the probe corresponding to the STAT5 element from the β-casein upstream region (lane 

4). The retarded complex was also block-shifted by an anti-c-Jun antibody (lane 6) but not 

by anti-c-Fos or antiubiquitin antibodies (lanes 5 and 7). In hypoxia, the intensity of the 

probe shift was markedly decreased (lane 8) and was apparently unaffected by either of 

the antibodies directed against c-Fos or c-Jun (fig. 11A, lanes 9 and 10). These results indi-

cate that binding of c-Jun to the −56/−63 element was decreased in fractions from hypoxic 

cells. 
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Figure 11. EMSA of the differential binding of c-Jun to the CYP2J2 AP-1-like element and 

an AP-1 consensus probe 
32P-labeled double-stranded probes corresponding to (A) the AP-1-like element at −56 to 

−63 of the upstream region of CYP2J2 (2J2 −56/−63) and (B) the AP-1 consensus sequence 

were used in EMSA analysis with nuclear protein fractions (NP) from HepG2 cells cul-

tured for 16 h in normoxia (21% O2; N) or hypoxia (1% O2; H). Some reactions were per-

formed in the presence of antibodies against c-Jun, c-Fos, or ubiquitin (Ub), or excess 

unlabeled 2J2- (−56/−63) probe (self) or STAT probe (STAT5 element from the β-casein 

promoter). Retarded and supershifted complexes are indicated by arrows. The autoradi-

ographs are representative of results from at least three separate experiments. 
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Comparative studies evaluated the binding of the AP-1 consensus probe to fractions 

from differently cultured HepG2 cells (fig. 11B). In nuclear protein fractions from normoxic 

cells, the intensity of the retarded complex was diminished by an anti-c-Jun antibody (lane 

2), but not by anti-c-Fos or anti-ubiquitin antibodies (lanes 3 and 4). In contrast with the 

results with the 2J2-(−56/−63) probe, the intensity of the shift produced by theAP-1 consen-

sus probe was more pronounced in nuclear protein fractions from hypoxic cells (lane 5); 

antibodies against c-Jun and c-Fos (lanes 6 and 7), but not ubiquitin (lane 8), supershifted 

the complex. 

 

Discussion 

 

The widespread distribution of CYP2J2 in tissues [2,4–6] and the diverse cellular effects of 

EETs suggest that this CYP is important in cellular physiology and pathophysiology. The 

present study implicates AP-1 proteins in the transcriptional regulation of CYP2J2 and has 

identified a c-Jun-responsive region in the upstream region of the CYP2J2 gene. Whereas 

c-Jun homodimers strongly activated CYP2J2 expression, heterodimers formed between 

c-Fos and c-Jun were inactive. Thus the down-regulation of CYP2J2 in hypoxia is associ-

ated with c-Fos induction. These results are compatible with the recent study of Yang et al. 

[8], in which CYP2J2 protein was decreased in vascular endothelial cells cultured under 

hypoxic conditions. 

Several redox-responsive transcription factors are modulated in hypoxia, including 

hypoxia-inducible factor-1 (“HIF-1”) [26,27], nuclear factor-κB (“NF-κB”) [28] and AP-1 

[13–15]. Owing to the presence of AP-1-like response elements within the 5′-flanking re-

gion of the CYP2J2 gene, we investigated the possibility that AP-1 has a direct role in the 

transcriptional regulation of CYP2J2 in hypoxia. Down-regulation of CYP2J2 in hypoxic 

HepG2 cells was inversely related to increased expression of c-Jun and c-Fos mRNA and 

protein. 

It is well established that c-Jun is expressed constitutively in cells and activates AP-1-

dependent genes via homodimer formation [29–31]. AP-1-regulated genes are also acti-

vated in response to a range of stimuli that promote heterodimer formation between Jun 

and Fos proteins (e.g., c-Fos/c-Jun) [32].Unlike c-Jun, c-Fos is either absent or expressed at 

only very low levels in resting cells but is rapidly up-regulated in response to a range of 

exogenous stimuli: this enables a change in the composition of AP-1 complexes from c-Jun 

homodimers to c-Jun/c-Fos heterodimers [29,31]. These reports are in accordance with the 

present results of the differential role of c-Jun and c-Fos in CYP2J2 expression in HepG2 

cells cultured in normoxia and hypoxia. 

The literature clearly demonstrates the activation of AP-1 in hypoxia, but the effect of 

hypoxia followed by a period of reoxygenation on AP-1 activity is controversial. There are 

reports that AP-1 activity remains elevated following reoxygenation [33], while others 

have found that mRNAs corresponding to certain AP-1 subunits are increased in hypoxia 

and decreased by reoxygenation [34]. Similarly, AP-1 has been reported to be activated in 

ischaemia-reperfusion [35,36] or to be activated in ischaemia, normalized during the early 

reoxygenation phase, and then elevated by prolonged reoxygenation [37]. In the present 

study, c-Fos and c-Jun expression in HepG2 cells was not significantly altered from that of 
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the control by hypoxia-reoxygenation, consistent with rapid restitution of both the mRNA 

and the protein of these genes that control the acute-phase response to external stresses. 

Consistent with the apparent relationship toAP-1 subunit expression, CYP2J2 mRNA lev-

els in HepG2 cells returned to control levels after hypoxia-reoxygenation, but CYP2J2 pro-

tein levels remained suppressed. This observation is consistent with the results of Yang et 

al. [8], who also demonstrated the down-regulation of CYP2J protein in hypoxia followed 

by 4 h reoxygenation. A number of studies have documented rapid increases in CYP 

mRNAs, but delayed synthesis of the corresponding proteins following in vivo exposure 

to foreign compounds [38,39]. Thus the time required for the restoration of CYP2J protein 

is likely to be longer than that required for normalization of the mRNA. 

Transactivation of the CYP2J2 promoter by AP-1 proteins was examined in transient 

transfection studies. Activation by c-Jun and, to a lesser extent, JunB was observed. In con-

trast, c-Fos and the related proteins Fra-1 and Fra-2 abolished the pronounced induction 

of CYP2J2 promoter activity elicited by c-Jun alone. It is possible that Fra-1 and Fra-2, 

which are expressed in liver cells [40,41], may also contribute to CYP2J2 suppression in 

response to external stress stimuli. Taken together, these results suggest that c-Jun is in-

volved in the maintenance of CYP2J2 protein levels in normoxic cells, and that down-

regulation of CYP2J2 occurs in hypoxia largely because of c-Fos up-regulation. Indeed, in 

recent studies we have found that treatment of HepG2 cells with the nitric-oxide-releasing 

agent sodium nitroprusside also increases c-Fos expression and down-regulates CYP2J2 

(V. Anggono, N. Y. Marden, and M. Murray, unpublished work). Thus external stimuli 

that up-regulate c-Fos may well exert a generalized down-regulatory effect on CYP2J2 ex-

pression in hepatocytes. 

Antagonism of c-Jun-dependent gene activation by c-Fos has been reported previously. 

Kovacic-Milivojevic and Gardner [42] described the activation of the human atrial natriu-

retic peptide (ANP) promoter by c-Jun and its inhibition by overexpressed c-Fos. Thus it 

appears that the human ANP and CYP2J2 genes are regulated similarly by AP-1. Interest-

ingly, this study also found that inhibition of c-Jun-dependent ANP promoter activity by 

c-Fos was cell-specific, with the inhibition by c-Fos being observed in atrial and ventricular 

cardiomyocytes but not in cardiac mesenchymal or GC cells [42]. It remains to be investi-

gated whether CYP2J2 expression exhibits similar tissue-related regulation by c-Fos. 

A region within 152 bp of the start of the CYP2J2 coding region was identified as being 

important for transactivation by c-Jun, and direct binding of c-Jun within this region was 

confirmed by EMSA. Of the two AP-1-like sites in this region of the gene, site A (−7 to +1 

bp relative to the translation start site) was found from transient transfection studies not 

to contribute to c-Jun-mediated CYP2J2 activation, despite its capacity to bind c-Jun pro-

tein in EMSA analyses. Site B (−56 to −63 bp on the negative strand) was functional, and 

contributed to c-Jun-dependent activation of the CYP2J2 promoter. EMSA analysis corrob-

orated these results and established that c-Jun bound directly to this element. Formation 

of c-Jun/c-Fos heterodimers diminished the binding of c-Jun to site B, as seen in nuclear-

protein fractions from hypoxic HepG2 cells. In this regard, it is of interest that different 

combinations of leucine-zipper proteins have been shown to bind differently to AP-1 sites 

in genes. The promoter context is also important, because of potential steric effects of DNA-

protein interactions on binding of c-Jun to site B. Considerations of this type may impede 
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the binding of c-Jun/c-Fos heterodimers to site B in hypoxia, and cause down-regulation 

of CYP2J2. 

Although mutation of site B significantly inhibited activation by c-Jun, induction was 

not abolished completely. Thus another, as-yet-unidentified element may also contribute 

to the activation of the CYP2J2 gene promoter by c-Jun. This additional element also lies 

between nt −152 to −50 but does not resemble the AP-1 consensus sequence and was not 

identified by sequence analysis. It is possible that c-Jun mediates this effect by binding to 

an atypical or cryptic AP-1 site, which differs considerably from the consensus sequence. 

Alternatively, c-Jun may modulate the expression of another regulatory protein that binds 

within the −152 to −50 region of CYP2J2 to initiate transcription. c-Jun may enhance tran-

scription of the CYP2J2 gene by functional interaction with other transcription factors. In 

this regard, it is of considerable interest that c-Jun has been reported to activate transcrip-

tion of target genes through functional interactions with Sp1 [43], PU.1 [44], GATA-2 [45], 

and GATA-4 [46]. We are currently evaluating these possibilities. 

 
Note – The nucleotide sequence data reported will appear in DDBJ, EMBL, GenBank, and GSDB 

Nucleotide Sequence Databases under the accession number AF039089. 
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