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 Historically, disturbances shaped prairie ecosystems both directly through events 

like fire and soil moving by animals, as well as indirectly through dynamic rainfall 

patterns and periodic flux in seed availabilities. We hypothesized that the implementation 

of several distinct disturbance events in Nebraska Sandhills upland prairie would have 

measurable effects on plant community composition. We implemented mid-spring fire, 

soil disturbance in the form of disking, seed addition of native forbs on disked plots, as 

well as early summer supplemental watering (to mimic minor rainfall events during 

abnormally dry periods) during 2016 and 2017. Plant community response during the 

first and second growing season post-disturbance was quantified through measurements 

of June forb density as well as August percentage cover and herbage mass. In the first 

season, fire increased the cover of warm-season rhizomatous grasses as well as perennial 

forbs, such as western ragweed (Ambrosia psilostachya DC.), and reduced the cover of 

annual forbs and species richness. Fire had positive interactive effects on the cover of 

warm-season grasses in both seasons and on forb density in the second season. Perennial 

forb seedling establishment from spring seed addition was poor, possibly due to species-

specific dormancy and abnormally dry June conditions. Seed availability did play a minor 



role on cover of seeded leguminous species, although temporary and year-dependent. 

Water addition (two 0.64-cm events) and burning, however, improved seeded forb 

establishment. Disking had generally negative effects on plant cover. Minor water 

additions had both positive and negative interactive effects on various species, with the 

underlying drivers of this often unknown. We documented ecological interactions 

between disturbance events, as fire mediated the negative effect of disking on warm-

season grasses and water mediated its negative effect on grasses as a whole. Overall, 

distinct disturbance events significantly altered plant composition of Sandhills prairie 

over two growing seasons. 
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CHAPTER 1  

LITERATURE REVIEW 

 

Great Plains Prairie Ecosystems 

 The North American Great Plains region is a collection of diverse ecosystems 

spanning a vast territory from central Canada southward through the United States and 

into Mexico (Lauenroth et al. 1999). Many of these ecosystems have smooth transitions 

from one vegetative community to the next due to gradual shifts in precipitation and 

temperature regimes (Lauenroth et al. 1999). Within the Great Plains region, broad 

vegetation types of short- to mixed-grass to tallgrass prairies exist. Along the eastward 

increasing precipitation gradient, there is also a general increase vegetative biomass 

production (Dalgleish and Hartnett 2006). Broad partitioning of vegetative types also 

exists north to south through a transition from northern mixed-grass prairie, with a greater 

proportion of cool-season species (commonly employing the C3 photosynthetic pathway)  

to southern mixed-grass prairie, with a greater proportion of warm-season species 

(commonly employing the C4 photosynthetic pathway)  (Lauenroth et al. 1999). Across 

the temperature and precipitation gradients, localized soil texture and topography play 

crucial roles in further determining species composition due to their effect on soil 

moisture dynamics (Barnes and Harrison 1982; Singh et al. 1998). As a result of these 

factors, unique ecological regions exist such as the Nebraska Sandhills prairie, which is a 

vast mixed-grass system including varying abundances of both tallgrass and short-grass 

prairie plant species (Keeler et al. 1980). 
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 It is widely concluded, that prior to the subsequent rise of modern prairie 

communities, grassland communities occurred in central North America for at least the 

last 10,000 years (Axelrod 1985; Lauenroth et al. 1999). Prairie taxa evolved under 

varied historical regimes commonly involving fire (Howe 1994). According to Theodore 

Roosevelt (1889), the term ‘prairie’originally was derived from the French word for 

meadow and came into use after European settlement of central North America. During 

the period of rapid European settlement, the keystone species American Bison (Bison 

bison), was nearly extirpated and cropland replaced large tracts of prairie, resulting in a 

reduction of tallgrass prairie ecosystems to < 1% of their original range in many states 

(Knapp et. al. 1999; Samson and Knopf 1994). In areas of remaining and re-established 

Great Plains prairie, a key challenge to biologists is a deeper understanding of the role 

and species-specific effects of disturbances under which prairie ecosystems were 

historically formed (Palmer et al. 1997). 

Population Dynamics 

 Prairie plants propagate year after year by both vegetative growth and recruitment 

from the seed bank. The relative importance of vegetative (clonal) and seed reproduction 

to prairie plant populations has been debated; however, perennial species dominate most 

Great Plains prairie plant communities (Benson and Hartnett 2006; Hartnett and Keeler 

1995; Schacht et al. 2000). Throughout their life history, they reproduce asexually by 

vegetative growth in the form of new tillers (e.g. ramets in forbs), rhizomes, stolons, and 

other modified stem structures (Hartnett and Keeler 1995). Upon reaching maturity these 

perennial grasses, forbs, and shrubs reproduce sexually by flowering and success of 
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sexual reproduction in these ecosystems is variable from species to species. In contrast to 

perennials and biennials, annual plants rely solely on sexual reproduction in order to 

propagate.  

 Although perennial species may be long lived, various factors such as disease, 

herbivory, competition, desiccation, and burning and their interactions can eventually 

cause mortality (Hartnett and Keeler 1995). Competition for water, nutrients, and light 

are often very important factors affecting plant community dynamics and relative 

contribution of both clonal and seed reproduction in prairies (Briske and Butler 1989; 

Hartnett and Bazzaz 1985). These stresses are especially great for prairie plants during 

recruitment from seed, and mortality rates of seedlings are often high (Hartnett and 

Keeler 1995). Additionally, competitive dynamics with neighboring plants are often 

different when comparing established bunchgrass tillers in a tighter clump to laterally 

spreading rhizomatous grasses or forb species (Hartnett and Keeler 1995). Consequently, 

response to disturbance can vary based on plant growth habit (Hartnett and Keeler 1995). 

Prairie communities are often home to nitrogen-fixing legume species such as purple 

prairieclover (Dalea purpurea Vent.) and roundhead lespedeza (Lespedeza capitata 

Michx.) (Ledgard 2001; Tlusty et al. 2004). These plants utilize effective strains of 

symbiotic rhizobia to provide a source of nitrogen, which invariably affects resource 

availability among species (Ledgard 2001; Tlusty et al. 2004). In addition, varying 

mycorrhizal associations on roots of different prairie species strongly influences 

competition (Hartnett et al. 1993; Hetrick et al. 1989; Marler et al. 1999). There is still 

much to learn, however, concerning the dynamics of mycorrhizal fungi in prairie 

ecosystems (Hartnett and Keeler 1995). It is likely that direct effects of certain 
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disturbances can be attributed, in part, to the indirect manipulation of mycorrhizal 

populations belowground (Hartnett and Keeler 1995).    

  Prairie plant population dynamics are strongly affected by disturbance or the lack 

thereof. While disturbances often directly affect the vegetative growth of dominant 

perennial species, they also influence dynamics of reproduction by seed. Certain 

disturbances have been documented to directly affect seed production as seed output of 

dominant warm-season grasses was shown to increase by annual burning when compared 

to no burning (Knapp and Hulbert 1986). Gibson (1989) found that plant community 

characteristics and type of disturbance are key to predicting plant response. Small-scale 

disturbances, such as localized soil disturbance by animals, and large-scale disturbances 

such as prescribed burns, intensive grazing, abnormal seed rain, drought, or excess 

precipitation can have significant impacts on plant growth pattern and reproduction, as 

well as on invasion of species into prairies (Hartnett and Keeler 1995; Hobbs and 

Huenneke 1992).  

Disturbances and their Interactions 

 Disturbances shape Great Plains plant populations in many ways. Fire, soil 

disturbance, seed addition, and supplemental water can all interact in various ways.They 

also have unique individual roles in shaping plant community response at various spatial 

and temporal scales in prairie. Ecosystems as we know them today were formed under 

interacting disturbance regimes occurring across long periods and are in many ways a 

direct product of these distinct regimes (Denslow 1980). Some debate exists concerning 

the definition of ‘natural’ disturbances; however, in prairie ecosystems reinstating 
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completely natural disturbance regimes is often not possible (Baker 1992). Since these 

ecosystems developed under disturbances of varied scale, frequency, and intensity it is 

important imitate the range of historical disturbances as closely as possible when 

conducting landscape restoration (Baker 1992).  

 Definitions of a disturbance vary from narrow to quite broad. Narrow definitions 

often limit disturbance to the concept of immediate and physical biomass manipulation 

(Grime 1979). A more general definition of disturbance, however, includes "any 

relatively discrete event in time that disrupts eco-system, community or population 

structure and changes resources, substrate availability, or the physical environment” 

(White and Pickett 1985). Hobbs and Huenneke (1992) define disturbance to “include 

both direct disturbances (those affecting the survivorship of individuals directly) and 

indirect disturbance (those affecting resource levels or other conditions that then 

influence individuals in the patch).” Given this context, fire and soil disturbance would 

directly affect “survivorship” and thereby be direct disturbances (Hobbs and Huenneke 

1992). Abnormal seed rain and supplemental watering or lack thereof, would be indirect 

disturbances as they involve a changing of “resource levels or other conditions” (Hobbs 

and Huenneke 1992). It should be noted, however, that many prairie studies seldom refer 

to water and seed regime alteration using the term disturbance.  

 According to Connell (1978) and Grime (1973), disturbances result in greatest 

species diversity when exhibited at intermediate frequencies and intensities; however, 

equilibrium in species composition is rarely attained. The hypothesis is that with reduced 

intensity and frequency of a disturbance, competitive exclusion and other factors can lead 

to a loss of diversity (Connell 1978; Grime 1973). Under high levels of disturbance a 
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lesser number of quickly maturing, colonizing species predominate at the expense of 

overall diversity, specifically that of species with different life histories (Connell 1978; 

Grime 1973). Field studies in the mixed-grass prairie of Oklahoma support this general 

hypothesis (Collins and Barber 1986).  

 Type and level of disturbance also have specific effects on colonization of 

grasslands by introduced or invasive species. Low level or absence of disturbance can 

increase invasibility. A 15-year study in Kansas tallgrass prairie, showed that annual 

burning reduced exotic cool-season species compared to the absence of burning (Smith 

and Knapp 1999). The application of supplemental water in the presence of spring fire 

reduced smooth bromegrass (Bromus inermis Leyss.) invasion in South Dakota tallgrass 

prairie, partly due to enhanced growth of competitive warm-season grasses (Blankespoor 

and Larson 1994). Some studies, however, have documented an increase in the invasion 

of native ecosystems due to increasing levels of disturbance (Hobbs and Huenneke 1992). 

Wet Wisconsin prairie has been shown susceptible to greater levels reed canarygrass 

(Phalaris arundinacea L.) invasion under greater intensities of flooding and sediment 

deposition and these disturbance effects were additive (Kercher and Zedler 2004). 

Vegetative composition is also important as a study in mixed-grass prairie demonstrated 

the effect of plant community type on degree of susceptibility to invasion; as riparian and 

more mesic communities experienced greater invasion by species such as leafy spurge 

(Euphorbia esula L.) and Kentucky bluegrass (Poa pratensis L.) (Larson et al. 2001). 

Additionally, anthropogenic soil disturbances, such as wheel tracks and firebreaks, have 

accelerated leafy spurge invasion in mixed-grass prairie and decreased native plant 

richness (Belcher and Wilson 1989). 
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 Evaluation of disturbances in prairie ecosystems should consider the effects of 

scale. The degree of scale used commonly affects community heterogeneity, which is 

defined as “dissimilarity in species composition between samples” (Glenn et al. 1992). In 

the Konza tallgrass prairie of northeastern Kansas, grazing resulted in greater 

heterogeneity when viewed at a larger spatial scale, while burning caused greater 

heterogeneity when viewed at a smaller scale (Glenn et al. 1992). An additional study at 

Konza found that at a small-scale (10 square m) and in the presence of grazing, annual 

burning as opposed to longer fire return intervals resulted in increased spatial 

heterogeneity (Collins and Smith 2006). According to Fuhlendorf et al. (2010) this 

concept of fire and grazing interaction at small spatial scales, or patches, across the 

landscape has been termed ‘pyric-herbivory’ and cited as an evolutionary model that 

resulted in a “shifting mosaic of vegetation patterns across the landscape.” Heterogeneity 

over time, or temporal heterogeneity, is also important to consider. Increasing fire 

frequency resulted in a decreased temporal heterogeneity (Collins and Smith 2006). 

Spring fire and soil disturbance from simulated plains pocket gopher (Geomys bursarius) 

activity generated complex interactive effects that were more evident at larger temporal 

and spatial scales (Rogers and Hartnett 2001b). In addition to the scale of measurement, 

the scale of the disturbance applied over space and time is also of importance. In short-

grass prairie, blue grama (Bouteloua gracilis (Kunth) Lag. ex Griffiths) recovery from 

disturbance was highest under small patch disturbances compared to larger spatial 

disturbances (Coffin and Lauenroth 1988). Over a 4-year period, a reduced frequency of 

rainfall events while keeping total rainfall constant resulted in increased diversity but 
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reduced above ground net primary productivity (ANPP) in tallgrass prairie (Knapp et al. 

2002).  

 Interactions of disturbances commonly have additive effects (the subsequent 

response is equal to the sum of the individual disturbance effects combined) and 

synergistic effects (the subsequent response is greater than the sum of the individual 

disturbances effects combined) (Hobbs and Huenneke 1992). Grazing and fire have been 

shown to have partially additive effects on tallgrass prairie species diversity, with the 

greatest plant diversity being found on burned and grazed areas (Collins 1987). A study 

in mixed-grass prairie of Oklahoma revealed highest species diversity under the 

synergistic effects of multiple natural disturbances occurring at an intermediate frequency 

and intensity (Collins and Barber 1986). They examined various combinations of grazing, 

fire, and soil disturbance from buffalo wallowing and prairie dogs (Cynomys spp.). The 

highest species diversity was found under grazing and wallowing as well as grazing, 

wallowing, and fire (Collins and Barber 1986).  

 Disturbances often interact to affect prairie ecosystems and the nature of these 

interactions can be quite complex. Some evidence shows the historical connection of fire 

and soil disturbance, and it has been found that prairie dog colony expansion was greater 

in adjacent burned instead of unburned prairie (Augustine et al. 2007). There was likely 

an additional interaction of rainfall on this effect, and in wetter years expansion may have 

been reduced (Augustine et al. 2007). One study examined the effects of spring fire on 

individual buffalo wallows and found that species richness increased within wallows due 

to burning (Collins and Uno 1983). An additional study found significant interactions on 

graminoid and forb biomass production between various intensities of pocket gopher 
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burrowing with and without fire (Rogers and Hartnett 2001b). Fire also has variable 

effects on plant community composition depending on type of soil disturbance present 

and on surrounding vegetation type (Gibson 1989). In tallgrass prairie, fire can alter 

canopy water dynamics and this may affect species production (Knapp 1984). Leaf 

surface temperature and water potential were less in unburned prairie early in the 

growing season, a likely effect of standing dead vegetation slowing wind speeds through 

the plant canopy (Knapp 1984). Interaction of disturbances invariably affects species 

competition. In eastern Kansas, a study documented the interaction of spring fire 

followed by mid-summer water stress and emphasized the slight dominance of big 

bluestem (Andropogon gerardii Vitman) over switchgrass (Panicum virgatum L.) due to 

its increased maintenance of photosynthetic activity over varying temperature and low 

osmotic potential following these conditions (Knapp 1985).   

 Effects on plant community composition from interactions between seed addition 

and soil disturbance under varying water availability or burning are also evident in the 

literature. Fall sod interseeding followed by raking (to increase seed-soil contact) at an 

Illinois Prairie Restoration, resulted in increased establishment of two out of four seeded 

species over a 10-year period under occasional fall or spring burning (Packard and 

Masters 2008). Purple prairieclover and prairie dropseed (Sporobolus heterolepis (A. 

Gray) A. Gray) densities were three-fold greater under raking compared to without 

(Packard and Masters 2008). An additional study documented the increased 

establishment of interseeded legumes due to supplemental water application (Groya and 

Sheaffer 1981). Soil disturbance can improve establishment of seeded grasses through a 

reduction in competition and increase in water availability in Sandhills lowlands (Potvin 
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1984). A study in Oregon upland prairie incorporated fall fire followed by a broadcast 

seed addition and documented increased seedling establishment of native species, likely 

due to removal of plant litter (Maret and Wilson 2005). Additionally, an Iowa study in 

predominately cool-season grass roadsides documented an increase in certain broadcast 

native prairie species on burned versus unburned areas (Christiansen 1994). Greater 

grazing pressure combined with effects of increased water availability in topsoil (due to 

higher organic matter contents) have contributed to the dominance of introduced 

Kentucky bluegrass in Sandhills interdunal positions when compared to the adjacent 

uplands (Schacht et al. 2000). Ultimately, the combination of disturbance type, intensity, 

spatial extent, and frequency affects plant communities in unique ways. In Oklahoma for 

example, small-scale, high intensity, annual, bison wallowing increased landscape 

vegetative heterogeneity while other combinations of disturbance components resulted in 

different results (Collins and Barber 1986). 

 Interactions of several direct and indirect disturbance regimes over time including 

those of fire, soil movement, seed flux, and variable water regimes, often in the presence 

of grazing, helped to shape prairie ecosystems. With the recent disruption of many of 

these regimes across North American, the introduction of invasive species, and 

fragmentation of prairie habitats the re-implementation of disturbances can have large 

restorative effects in prairie ecosystems (Hobbs and Huenneke 1992). Disturbance type, 

frequency, intensity, and scale are all important factors in a discussion concerning the 

main and interactive effects of disturbances in a prairie environment. 
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Direct Disturbance 

 According to a broader definition of ecosystem disturbance, direct disturbances 

are “those affecting the survivorship of individuals directly” (Hobbs and Huenneke 

1992). Direct disturbances commonly damage or remove existing vegetation immediately 

and include events such as burning, logging, flooding, mowing, tilling, and trampling 

(Blair et al. 2010; Hobbs and Huenneke 1992; Mayor et al. 2015; Petraitis et al. 1989; 

Smith et al. 2016; Van Klink et al. 2015; Weladji and Forbes 2002). Direct disturbances, 

however, inevitably result in both direct and indirect effects on plant communities as they 

directly and physically affect vegetation while indirectly affecting resource levels and 

competition (McIntyre et al. 1999). 

 Throughout the literature, there are multiple references to fire and soil disturbance 

as direct disturbances in perennial systems. Although both fire and appreciable soil 

disturbance do impact competition in communities, they directly damage or remove 

existing vegetation and thus can be classified accordingly. Fire is referenced as a direct 

disturbance with immediate effects on plant communities (Hobbs and Huenneke 1992; 

Lamb 2008; Weladji and Forbes 2002). In addition, soil-disturbing processes are 

ultimately referenced as direct disturbances through immediate vegetative effects (Mayor 

et al. 2015; Smith et al. 2016; Van Klink et al. 2015). Overall, fire and soil disturbance 

have unique roles in prairie plant communities (Gibson 1989).  

Fire 

 Numerous peer-reviewed studies have addressed the effects of fire in prairie 

ecosystems. Although results of these studies are variable, depending on a host of factors, 
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there are several immediate and consistent effects of fire. Fire frequency, intensity, and 

seasonality are important factors in predicting vegetative response, which then depends 

on plant functional group (such as warm-season grasses, cool-season grasses, and forbs) 

or individual plant species (unique life history or growth habit). In addition, studies 

examining spring, summer, and fall fires in the Nebraska Sandhills have revealed 

interesting results on overall plant community response. 

 Historic fire regimes played a key role in driving community composition of 

prairie. Before European settlement of North America, fire return intervals of 1 to 6 years 

were common across much of the Great Plains (Frost 1998). Although substantial 

variability existed, an historic fire return interval of 4 to 8 years was likely in the 

Nebraska Sandhills (Guyette et al. 2012). Historically, the two major sources of fire 

ignition were lightning strikes and Native American activities (Frost 1998). Lightning 

strikes were most common in July and August across much of the northern Great Plains 

(Higgins 1984). Native Americans started fires throughout the year, but ignitions peaked 

in April and October (Higgins 1986). These fires, in a large part, were used to manipulate 

prairie vegetation to assist in hunting of bison herds (Higgins 1986). The presence of 

regular prairie fire, undoubtedly aided the suppression of woody plant invaders such as 

eastern redcedar (Juniperus virginiana L.) (Blewett 1986; Brigg et al. 2002; Petranka and 

McPherson 1979).  

Certain immediate effects of fire do exist and trends in biomass production have 

been documented, often depending on prairie type. Directly following burning, prairie 

ecosystems typically exhibit a greater exposure of bare ground and reduction in litter 

(Curtis and Partch 1948; Hulbert 1969; Knapp and Seastedt 1986; Wilson and Shay 
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1990). The majority of studies on the effects of North American prairie fire were 

conducted in tallgrass prairie ecosystems, and many of these at the Konza Prairie in 

Kansas. In these ecosystems, dormant season burning increased early season growth rates 

of warm-season grasses (Ehrenreich and Aikman 1963; Hulbert 1969). An increased soil 

temperature and light incidence, hence an altered spring microclimate, have been 

attributed to causation for this earlier growth (Hulbert 1988, 1969; Knapp 1984; Peet et 

al. 1975; Rice and Parenti 1978). An immediate increase in available nitrogen following 

fire also may contribute to increased, rapid growth (Hulbert 1988; Ojima et al. 1994); 

long term effects of frequent fires, however, actually lead to a lower available nitrogen 

regime (Ojima et al. 1994; Risser and Parton 1982; Seastedt et al. 1991). In tallgrass 

prairie, fire can often stimulate greater biomass production (Adams and Anderson 1978; 

Hadley and Kieckhefer 1963; Kucera and Ehrenreich 1962; Rice and Parenti 1978; 

Schacht et al. 1998). This increase has been attributed, in part, to removal of thick 

standing vegetation and litter as well as stimulation of grass tiller production (Hubert 

1969), but many factors are likely contributing. In review work by Oesterheld et al. 

(1999), 23 out of 25 studies in tallgrass prairie documented an increase in aboveground 

biomass due to burning. In cases where production is not increased, seasonality (Towne 

and Owensby 1984) and frequency of burning (Hulbert and Wilson 1983) are potential 

causes. In the semiarid short- and mixed-grass prairie, the majority of studies show a 

decrease in production due to fire (Dix 1960; Oesterheld et al. 1999). This may be due to 

increased water stress following burning from litter removal, increased runoff, and soil 

water evaporation (Anderson 1976). Production response, however, in these semiarid 

regions is highly variable and may increase at times or remain unchanged (Oesterheld et 
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al. 1999; Schacht and Stubbendieck 1985; Steuter 1987), depending on a host of factors 

(Schacht and Stubbendieck 1985; Scheintaub et al. 2009). 

Fire frequency in prairie is an important factor helping to predict subsequent plant 

community response. In tallgrass prairie, annual burning when compared to longer fire 

return intervals promotes the growth of perennial warm-season grasses and suppresses 

perennial forb growth (Benson et al. 2004; Dalgleish and Hartnett 2009; Kucera and 

Koelling 1964; Seastedt et al. 1991). This trend is primarily attributed to a shift in 

belowground bud banks from a forb to grass component (Benson et al. 2004; Dalgleish 

and Hartnett 2009). Additionally, a lower available nitrogen regime due to long term 

annual burning favors more competitive warm-season grass species over forbs (Seastedt 

et al. 1991). Annually burned prairie also reduces growth and reproductive effort of forbs 

such as perennial prairie coneflower (Ratibida columnifera (Nutt.) Woot. & Standl.) 

compared to infrequently burned prairie (Hartnett 1991). Specific warm-season grasses, 

such as Indiangrass (Sorghastrum nutans (L.) Nash), seem more dependent on frequent 

burning intervals than other species, such as big bluestem (Hulbert and Wilson 1983). 

Annual burning regimes select for decreased spatial heterogeneity in plant species 

composition when compared to longer fire return intervals (Collins 1992), but plant 

species diversity may increase under annual burning in the presence of bison grazing 

(Hartnett et al. 1996).  

In comparison to fire frequency, seemingly fewer studies have examined the 

effects of fire intensity on plant communities. According to Heward et al. (2013), “direct 

measurements of radiative energy released by the fire” define fire intensity while fire 

severity is more associated with the subsequent ecosystem response. At larger spatial 
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scales, fire intensity is a reasonable predictor of fire severity (Heward et al. 2013). One 

study from north-central Oklahoma, revealed that spring burned plots with higher 

intensity headfires resulted in greater production of tallgrasses and lesser production of 

forbs when compared to lower intensity backfires (Bidwell et al. 1990). On the Edwards 

Plateau of Texas, the quantity of fine fuel load available directly increased the degree of 

woody species suppression, and in dry conditions, a smaller quantity of fine fuel was 

needed to achieve the same level of tree scorch (Twidwell et al. 2009). High intensity 

fires can also be studied under dryer than normal conditions, and one study in Texas 

coastal prairie documented an increase in native forb richness compared to unburned 

areas after June fire in extreme drought conditions (Twidwell et al. 2012). Ultimately, 

further research will provide a more robust understanding of the effects of varying fire 

intensity on plant community response in prairie.  

 Seasonality of fire is also an important factor affecting prairie community 

dynamics. Typically, late-spring burns coinciding with rapid cool-season grass growth 

and the beginning of warm-season grass growth favor warm-season grass production over 

that of cool-season grasses; and the interplay of cool-season apical meristem elevation, 

carbohydrate reserve level, and soil moisture retention contribute to this trend (Anderson 

et al. 1970; Hover and Bragg 1981; Mitchell et al. 1996; Owensby and Anderson 1967; 

Schacht and Stubbendieck 1985; Steuter 1987; Towne and Owensby 1984; Willson and 

Stubbendieck 1995).  Across a 54-year study period, annual late-spring burning (around 1 

May) in Konza tallgrass prairie resulted in greater biomass production when compared to 

annual winter, early, and mid-spring burning (Towne and Owensby 1984). Dominant 

warm-season grasses such as big bluestem and Indiangrass also experienced greatest 
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recovery and subsequent production from late-spring burns (Anderson et al. 1970; 

Owensby and Anderson 1967; Towne and Owensby 1984). The cool-season, Kentucky 

bluegrass, was suppressed on all dates by fire, while sedges (Carex spp.) were suppressed 

by late-spring fires but increased under earlier burning dates (Towne and Owensby 

1984). Perennial forb and prairie junegrass (Koeleria macrantha (Ledeb.) Schult.) 

production was favored by winter and early-spring burning, but perennial forbs declined 

with late-spring burning and overall were most abundant in unburned areas (Towne and 

Owensby 1984). Early to mid-spring burning favored little bluestem (Schizachyrium 

scoparium (Michx.) Nash), while late-spring or winter burning had adverse effects 

(Towne and Owensby 1984). Overall, early-spring burning maximized species richness 

while total biomass was relatively less at all burning dates before late-spring (Towne and 

Owensby 1984), likely due to early season soil moisture reductions (Anderson 1965; 

Willson and Stubbendieck 1995). Another study documented increases in Indiangrass, 

little bluestem, and pitcher sage (Salvia azurea Michx. ex Lam.),  decreases in prairie 

dropseed, Kentucky bluegrass, cudweed sagewort (Artemisia ludoviciana Nutt.), western 

ragweed (Ambrosia psilostachya DC.),  heath aster, and no effect on switchgrass, big 

bluestem, or leadplant (Amorpha canescens Pursh) due to annual mid-spring fire in 

Kansas tallgrass prairie uplands (Abrams and Hulbert 1987) Additionally, mid and late-

spring burning has been shown to maximize forage production under grazed conditions 

(Owensby and Anderson 1967).  From an economic standpoint, a Flint Hills study by 

Launchbaugh and Owensby (1978) demonstrated that late-spring burned prairie improved 

steer grazing distribution and daily gains when compared to unburned areas given season-

long continuous stocking. In contrast, however, a review paper by Engle and Bidwell 
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(2001) showed that a majority of studies taking place in Oklahoma experienced highest 

herbage production following early dormant season fire instead of late-spring fire, likely 

due to an increased growing season length from soil and thermal related differences. 

Additional studies examining the effects of prairie fire timing have documented a marked 

suppression in cool-season grass growth by late-spring burning (Anderson et al. 1970; 

Hover and Bragg 1981; Mitchell et al. 1996). Cover of certain dominant warm-season 

grasses is commonly increased by spring burning (Anderson et al. 1970; Hover and 

Bragg 1981; Howe 2011; Mitchell et al. 1996). Little bluestem, although, is affected 

variously by spring burning (Anderson et al. 1970; Pfeiffer and Steuter 1990; Towne and 

Owensby 1984). Studies involving mid and late growing season fires often show 

decreases in total warm-season bunchgrass cover, especially that of little bluestem cover 

due to its susceptibility to high intensity burns (Engle et al. 1993; Ewing and Engle 1988; 

Pfeiffer and Steuter 1990; Volesky and Connot 2000). Reductions in cool-season 

bunchgrasses, however, such as needleandthread (Hesperostipa comata (Trin. & Rupr.) 

Barkworth) have also been documented (Vermeire et al. 2011). Late growing season fires 

often lead to increases in annual forb populations (Pfieffer and Steuter 1990; Towne and 

Kemp 2008; Volesky and Connot 2000). When seed is available, cool-season annual 

grasses may increase production due to late-summer fires (Ewing and Engle 1988). 

Biondini et al. (1989) examined seasonality of fire and its direct effects on forb 

abundance and diversity in northern mixed-grass prairie. Annual burning over a 3-year 

period showed that summer burned and unburned treatments had the highest forb species 

diversity (Biondini et al. 1989). In contrast, overall forb abundance was greatest on spring 

and fall burns with nine dominant species, eight of which were perennials, responsible for 
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82% of forb density (Biondini et al. 1989). Cudweed sagewort and western ragweed 

showed the greatest positive response to fall fire, while stiff sunflower (Helianthus 

pauciflorus Nutt.) showed the largest increase from spring fire (Biondini et al. 1989). 

Generally, however, summer fires have beneficial effects on forb populations (Engle et 

al. 1993; Pfeiffer and Steuter 1990). Effects of fire on forb populations, however, are 

variable among studies and undoubtedly prone to the interactive roles of “fire frequency, 

fire-return interval, grazing history, herbicide use, successional stage, weather pattern, 

edaphic features, and topography” (Engle and Bidwell 2001). 

 A select few studies have aimed at quantifying the effects of wild and prescribed 

fire on plant communities in Nebraska Sandhills upland ecological sites. In these studies, 

vegetative response is often recorded from spring, late growing season, and fall fires. 

Although substantial variability in results does exist, certain key trends can be inferred 

from the literature. 

Spring fires in the Nebraska Sandhills have immediate effects on current growing 

season vegetation. A reduction in ground cover and light interception as well as a rise in 

soil potassium levels are some immediate, documented effects of spring burning (Bragg 

1998; Wolfe 1973). Additionally, a shift in growing season vegetative growth has been 

consistently documented (Bragg 1998, 1978; Pfeiffer and Steuter, 1994; Wolfe 1973). 

The occurrence of grazing after spring burning may affect same-year production, as one 

study examining early May prescribed burns highlighted an increase in standing crop of 

grass in the absence of grazing and a decrease in grass under grazing (Pfeiffer and Steuter 

1994). Individual species response to May burning is varied (Bragg 1998; Pfeiffer and 

Steuter 1994; Wolfe 1973). An overall reduction in the number of forb species present 
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was also documented across topographic positions (Wolfe 1973). These spring fires can 

cause direct mortality of forb species, such as early growing species, that do not recover 

during the same growing season (Pfeiffer and Steuter 1994). In a study by Pfeiffer and 

Steuter (1994), same-year total forb cover remained constant in response to spring fire 

but there was a shift in forb species composition. Initial growing season response of 

western ragweed was unchanged by spring fire in a study by Wolfe (1973), but it was 

generally viewed as a fire-negative species in a study by Bragg (1998). At certain slope 

positions, silky prairieclover (Dalea villosa (Nutt.) Spreng.) increases during the year of 

spring burning (Bragg 1978; Wolfe 1973). Stiff sunflower seems to either increase or 

remain unchanged following spring fire in the Sandhills (Bragg 1998; Wolfe 1973).  

The effect of spring burns in the Sandhills in subsequent years is varied. Overall, 

effects of spring burning seem less pronounced in years following the burn (Bragg 1998, 

1978; Pfeiffer and Steuter 1994). In the second growing season post-fire, total herbage 

and forb production remained unchanged from spring burning in the absence of grazing 

(Pfeiffer and Steuter 1994). Significant shifts in rhizomatous grasses such as sand 

bluestem (Andropogon hallii Hack.), prairie sandreed (Calamovilfa longifolia (Hook.) 

Hack. ex Scribn. & Southw.), and switchgrass as well as bunchgrasses, such as little 

bluestem and needleandthread, in early years following fire have been documented; 

however results are not well defined (Bragg 1998; Pfeiffer and Steuter 1994). Some 

evidence exists, however, showing reductions in little bluestem and increases in sand 

bluestem and prairie sandreed (Bragg 1998; Pfeiffer and Steuter 1994) at certain slope 

positions in sands range sites. Spring burning tended to suppress the cool-season prairie 

Junegrass, but seemed to have little effect on the abundance of sedges (Bragg 1998). 
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Relative reductions in western ragweed and increases in stiff sunflower on most slope 

positions have also been documented in subsequent years following spring fire (Bragg 

1998).  

 The effect of summer and late growing season fires on Sandhills rangeland has 

been shown to immediately reduce the total plant, grass, forb, and shrub cover during the 

current growing season (Bragg 1998). In addition, soil temperatures remain greater in the 

subsequent year (Volesky and Connot 2000). One study found a reduction in grass 

production but an increase in total forb production in the year after fire (Pfeiffer and 

Steuter 1995). An increase in forb production was also documented by Volesky and 

Connot (2000) in response to a late growing season wildfire. A reduction in certain 

bunchgrasses, such as little bluestem (Volesky and Connot 2000), and a marked reduction 

in certain “dominant rhizomatous” species, such as western ragweed, has been 

documented as well (Bragg 1998; Pfeiffer and Steuter 1994). Increases in certain 

rhizomatous grasses, such as prairie sandreed, as well as certain “annual and perennial 

taprooted” forbs, such as prairie spurge (Euphorbia missurica Raf.), have also been seen 

(Bragg 1998; Pfeiffer and Steuter 1995; Volesky and Connot 2000).  

Fall burning in the Nebraska Sandhills has received minimal study. An early 

study by Morrison et al. (1986) found an initial increase in grass biomass during the June 

following an October wildfire. Fall fire, however, typically reduces total end of season 

plant and grass production (Bragg 1998; Morrison et al. 1986). Effects on forb production 

are contradicting (Bragg 1998; Morrison et al. 1986). Fall burning, when compared to 

other seasons of burning, seemed to have the longest lasting effects on plant diversity but 

these changes were not significant (Bragg 1998).  
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Ultimately, fire effects on prairie vegetation are diverse regionally. Studies 

specific to the Nebraska Sandhills show certain trends, but additional research will 

provide a broader understanding of fire in this context. Seasonality of fire has a large 

effect on plant response, as functional groups respond differently depending on life 

history traits (Biondini et al. 1989; Engle et al. 1993; Engle and Bidwell 2001; Owensby 

and Anderson 1967; Pfeiffer and Steuter 1990; Towne and Owensby 1984). Intensity 

(Bidwell et al. 1990; Heward et al. 2013; Twidwell et al. 2012, 2009) and frequency 

(Benson et al. 2004; Collins 1992; Dalgleish and Hartnett 2009; Hulbert and Wilson 

1983; Kucera and Koelling 1964; Seastedt et al. 1991) of prairie fire have also been 

shown to predict production and suppression of plant species and functional groups. Fire 

has distinct in-season impacts on soil temperature, bare ground, and litter (Curtis and 

Partch 1948; Hulbert 1988, 1969; Knapp 1984; Knapp and Seastedt 1986; Peet et al. 

1975; Rice and Parenti 1978; Wilson and Shay 1990). Total growing season biomass 

production after fire has been roughly correlated with prairie moisture regime (Oesterheld 

et al. 1999). Fire regimes have a long history of shaping North American prairie 

ecosystems and have gained recognition as a key direct disturbance “affecting the 

survivorship of individuals directly” (Hobbs and Huenneke 1992). 

Soil Disturbance 

Prairie plant communities are variably impacted by soil disturbance. Soil 

movement often displaces actively growing plants and can create spaces for new growth 

to occur through vegetative expansion of existing species or colonization from seed. 

Literature may incorporate the term ‘patch dynamics’ in reference to species colonization 
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into newly made space for growth (Hobbs 1989). Grassland soil disturbances provide 

microsites for establishment of both native and invasive plant species (Hobbs and 

Huenneke 1992). Primary hypotheses for this increase in establishment are an ephemeral 

nutrient and resource flux as well as a decrease in competitive constraints; and these two 

hypotheses typically interact to varying degrees in different prairie ecosystems (Hobbs 

and Huenneke 1992). Both historical disturbance regimes and human caused soil 

disturbances have unique effects on plant species richness and abundances across prairie 

ecosystems, including the Nebraska Sandhills.   

Soil disturbance is not a new phenomenon in prairie ecosystems. According to 

Benedict et al. (1996), the most influential drivers of soil disturbance were prairie dogs, 

pocket gophers, and bison. As keystone species, bison (Knapp et al. 1999) and prairie 

dogs (Kotliar 1999) have especially critical roles to play in plant community diversity 

(Benedict et al. 1996). Historically the plains pocket gopher and black-tailed prairie dog 

(Cynomys ludovicianus) were responsible for much of the soil disturbance across the 

Great Plains region, but other animals such as badgers (Taxidea taxus) also created 

unique microhabitats through their burrowing activity (Benedict et al. 1996). Macro-

invertebrates also have unique soil mixing roles, and historic frequent fire regimes have 

been linked to support the prevalence of native earthworm species over those introduced 

from Europe (Aporrectodea spp. and Octolasion spp.) (Callaham et al. 2003). 

Additionally, the distribution of bison and pocket gopher soil moving activities was likely 

influential in maintaining a diverse Sandhills prairie landscape (Steuter et al. 1995).  

Prairie dog activities typically result in a vegetative shift from perennial mid-

height grasses to annual forbs and short-grasses (Archer et al. 1987; Coppock et al. 1983; 
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Winter et al. 2002). Prairie dog selective grazing and mound building resulted in reduced 

grass cover relative to forb cover inside of prairie dog towns when compared to outside 

(Bonham and Lerwick 1976). Some species of annual forbs thrive under prairie dog 

mound building activities and are not directly consumed (Bonham and Lerwick 1976; 

Koford 1958). This increase in certain annual forb species has been attributed to the 

effects of soil disturbance, as these species grow directly on mounds (Bonham and 

Lerwick 1976; Koford 1958). Historically, prairie dog colonies were restricted from 

much of Sandhills prairie due to the high sand content soils (Sidle et al. 2001).  

Bison cause significant and long-lasting soil disturbances through their wallowing 

activity. Historically, these wallows could be substantial in size (15 m in diameter) and 

formed depression like bowls on the landscape (Benedict et al. 1996). Wallows were 

often created by bull bison during the springtime mating season (Collins and Uno 1983), 

however wallowing activity has been documented to have both spring and fall peaks 

(McMillan et al. 2000). Active bison wallows have reduced cover of dominant perennial 

species and increased cover of annual species and exotics, resulting in a more 

heterogeneous prairie at larger spatial scales (Trager et al. 2004). Landscape level species 

diversity is also increased by wallowing (Collins and Barber 1986; Collins and Uno 

1983). In relic bison wallows over 100 years old, annual species are still more abundant 

than in nearby undisturbed prairie (Gibson 1989). In a Kansas tallgrass prairie, relic bison 

wallows exhibited a significantly reduced presence of Indiangrass, Scribner’s rosette 

grass (Dichanthelium oligosanthes (Schult.) Gould), white heath aster (Symphyotrichum 

ericoides (L.) G.L. Nesom), and cudweed sagewort; and had a significantly greater 

presence of common ragweed (Ambrosia artemisiifolia L.), heavy sedge (Carex gravida 
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L.H. Bailey), barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.), inland rush (Juncus 

interior Wiegand), and green foxtail (Setaria viridis (L.) P. Beauv.) (Gibson 1989). 

Plains pocket gophers significantly alter grassland ecosystems, especially by their 

mound building activities. Pocket gophers also consume plant matter, especially roots, 

and differentiating between soil moving and herbivory as the drivers of plant community 

shifts can be difficult (Foster and Stubbendieck 1980). Studies examining the effects of 

pocket gopher soil disturbances in tallgrass prairie generally document a decrease in 

species richness and a prevalence of perennial grass species on gopher mounds (Gibson 

1989; Rogers et al. 2001). This perennial grass prevalence on gopher mounds is likely 

due to vegetative regrowth of buried plants (Gibson 1989; Rogers and Hartnett 2001a). 

Mound activity also reduces plant biomass on mounds with mound size affecting the rate 

of recolonization by prairie plants (Rogers and Hartnett 2001a). Smaller mounds are 

recolonized more quickly than larger ones (Rogers and Hartnett 2001a). Two years after 

disturbance, however, inactive mounds are noted to be visually identical to surrounding 

tallgrass prairie (Rogers and Hartnett 2001a). Additionally, western yarrow (Achillea 

millefolium L.), Great Plains flatsedge (Cyperus lupulinus (Spreng.) Marcks), and 

Scribner’s rosette grass are negatively associated with pocket gopher mounds in tallgrass 

prairie (Gibson 1989). At larger spatial scales increased mound density leads to greater 

production of forbs and reduced production of graminoids, and over time species richness 

may decline (Rogers and Hartnett 2001b). According to the intermediate disturbance 

concept, intermediate levels of disturbance should result in greatest species richness. This 

idea is supported by Whicker and Detling’s (1988) work with prairie dog disturbance. In 

Arizona short-grass prairie, this concept was mostly supported as highest species richness 
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was found at pocket gopher disturbances of intermediate age (Martinsen et al. 1990). This 

study found that higher levels of disturbance resulted in reduced grass cover and greater 

forb cover (Martinsen et al. 1990). Intermediate pocket gopher disturbance levels have 

been defined by both high percentages of bare areas from disturbance (Martinsen et al. 

1990) and 1 to 2 years of mound building activity (Foster and Stubbendieck 1980). 

The plains pocket gopher has a long history of burrowing activity in the Nebraska 

Sandhills and semiarid prairie regions (Schmeisser 2009). A study from the Sandhills 

showed that although mounds were present throughout the study area, annual taprooted 

forb patches seemed to have relatively higher amounts of mound activity (Steuter et al. 

1995). An additional study in semiarid Nebraska prairie adjacent to the Sandhills, 

documented a decrease in plant biomass and increase in bare ground and litter due to 

gopher soil disturbance at larger spatial scales (Foster and Stubbendieck 1980). The study 

also found that perennial grass species were significantly reduced and perennial forbs, 

annual forbs, and annual grasses were generally increased compared to undisturbed 

prairie (Foster and Stubbendieck 1980). As mounds increased in age to 4 years, however, 

the proportion of perennial grasses to forbs and annual grasses increased (Foster and 

Stubbendieck 1980).  

Soil disturbance from cattle hoof action, badger and prairie vole (Microtus 

ochrogaster) digging, and ant (Formicidae) colony activity also have quantifiable effects 

on prairie communities. Certain plant populations, such as that of bractless blazingstar 

(Mentzelia nuda (Pursh) Torr. & A. Gray), are greatly reduced in the absence of soil 

disturbance from cattle grazing (Keeler 1987). Colonization of disturbed areas from 

badger activity was also shown to vary depending on life history strategies of various 
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forb species (Platt 1975). Work in the Konza tallgrass prairie revealed that annual species 

were very common on badger mounds (Gibson 1989). Additionally, this study found that 

western ragweed populations were negatively affected by ant hill disturbance (Gibson 

1989). Badger and prairie vole disturbances increased species richness when compared to 

undisturbed prairie (Gibson 1989). 

Human caused soil disturbance has been implemented in various research studies 

to examine effects on prairie plant composition. A study in western Oklahoma sandy 

mixed-grass prairie, showed that disking did not alter forb, grass, and woody production 

compared to no disking, which demonstrates the resilience of the system to disturbance 

(Peoples et al. 1994). An additional study from Oklahoma tallgrass prairie, documented a 

large increase in total plant biomass two growing seasons following a winter plowing 

compared to unplowed prairie (Rice and Penfound 1954). The authors noted tremendous 

regrowth from buried plant structures and posited the increase was due to increased plant 

available nitrogen from incorporation and decomposition of plant material (Rice and 

Penfound 1954). Disking of Mississippi relic tallgrass prairie buffers positively affected 

forb prevalence and richness (Dollar 2011). In Iowa riparian grasslands, disking 

increased forbs, bare ground, and species richness and decreased grasses, litter and 

standing dead material (Benson et al. 2007). Human-induced soil disturbance can also be 

important in the establishment of prairie species from seed. A mixed-grass prairie study 

by Wilson and Gerry (1995), found that higher intensity tilling enhanced seedling 

establishment of drill-seeded native species. A select few studies have examined effects 

of human-induced soil disturbance in Nebraska prairie. Rototilling directly increased soil 

moisture availability in Sandhills lowland sites by suppressing perennial grass growth 
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and enhancing grass seed establishment (Potvin 1984). A study in south-central Nebraska 

mixed-grass prairie examined the effects of an 8 to 10 cm deep spring disking (Hart et al. 

1985). Researchers documented a first-year decrease in vegetation cover and litter and an 

increase in bare ground and certain forbs, such as annual sunflower (Helianthus annuus 

L.) and western ragweed, when compared to the control (Hart et al. 1985). In the second 

year, there was no difference in total vegetation production due to disking (Hart et al. 

1985). 

Human-induced soil disturbance in prairie has had varied results but causes an 

immediate reduction in litter and increase in bare ground, and may facilitate seedling 

establishment (Benson et al. 2007; Hart et al. 1985; Potvin 1984; Wilson and Gerry 

1995). Effects on total biomass vary; however, forb richness and abundance are often 

increased as dominant perennial grasses are suppressed (Benson et al. 2007; Dollar 2011; 

Hart et al. 1985). Prairie soil disturbances from mammal species such as badgers and 

voles have been shown to increase plant species richness and abundance of annuals 

(Gibson 1989; Keeler 1987; Platt 1975). In semiarid Nebraska prairie and tallgrass prairie 

elsewhere, pocket gopher disturbances typically increase forbs at the expense of 

dominant perennial grasses, but these contrasts diminish with age of mound (Foster and 

Stubbendieck 1980; Rogers and Hartnett 2001a, 2001b; Steuter et al. 1995). Plant species 

richness and biomass are typically reduced, but perennial grass species rapidly recolonize 

vegetatively (Gibson 1989; Rogers et al. 2001; Rogers and Hartnett 2001a, 2001b). Bison 

wallows increase species diversity (Collins and Barber 1986; Collins and Uno 1983), 

while prairie dog mounds and colonies are typically conducive to forb and annual grass 

prevalence (Archer et al. 1987; Bonham and Lerwick 1976; Coppock et al. 1983; Winter 
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et al. 2002). Ultimately, historic soil disturbance regimes across various prairie 

ecosystems are influential in governing patch-dynamic processes, and human-induced 

disturbances can play similar roles. 

 

Indirect Disturbance 

 Indirect disturbances are “those affecting resource levels or other conditions that 

then influence individuals in the patch” and ultimately affect “resource levels and 

demographic processes” (Hobbs and Huenneke 1992). Examples of indirect disturbances 

documented in the literature include, but are not limited to, events such as nutrient inputs, 

certain erosion processes, alteration of sunlight or moisture levels, and occasionally 

propagule addition (Hobbs et al. 2006; Hobbs and Huenneke 1992; Mayor et al. 2015; 

Weladji and Forbes 2002). According to Petraitis et al. (1989), disturbances are classified 

as indirect when they “affect competitors, natural enemies and resource levels in ways 

that alter survival and fecundity” and do not result in direct death of individuals in a 

patch.  

 In comparison to direct disturbances, indirect disturbances are referred to less 

frequently as formal disturbance events, and often simply deemed induced fluxes in 

resource or propagule availability (Foster 2001; Knapp et al. 1993). According to Mayor 

et al. (2015), however, direct or indirect human alteration of ecosystem moisture 

conditions can be classified as a disturbance. Since such alteration results in changes to 

resource levels and often alters demographic processes and community structure in 

prairie, supplemental water can indeed be considered an indirect disturbance (Hobbs and 
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Huenneke 1992; White and Pickett 1985). Demographic processes and community 

structure can also be manipulated through seed addition, as conditions influencing 

individuals in a patch are affected by discrete addition events. Although prairie studies do 

not commonly classify seed addition as a formal disturbance, definitions from White and 

Pickett (1985) as well as Hobbs and Huenneke (1992), allow for such classification. 

Hobbs and Huenneke (1992) note that “some forms of disturbance may affect the 

availability of invasive propagules” and cite the example of grazers bringing “seed into 

an area either on their coats or in feces” as a form of disturbance. Thus, seed addition and 

supplemental water can often be viewed as indirect disturbance events and have 

influential roles in predicting prairie plant response (Fay et al. 2008; Newman and 

Redente 2001). 

Seed Addition 

 Seed addition in prairie ecosystems can be considered an indirect disturbance 

(Hobbs and Huenneke 1992). Seed rain in prairie ecosystems is dynamic and important 

ecologically. Various studies deal with the role of seed in prairie plant populations and 

investigate influential factors such as seed bank dynamics, seed dormancy, seedling 

establishment, and interseeding across prairie ecosystems, including the Nebraska 

Sandhills. 

 The role of seed in prairie plant communities, when compared to that of 

vegetative propagation, is quite variable. Vegetative reproduction commonly dominates 

in prairie ecosystems (Benson and Hartnett 2006; Hartnett and Keeler 1995; Schacht et 

al. 2000). Benson and Hartnett (2006) observed that at the end of the growing season 
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more than 99% of tallgrass prairie plant shoots present derived from vegetative means 

rather than from seed. Population genetic considerations also come into play, however, as 

reproduction from seed can improve genetic diversity in a population while clonal growth 

has mixed effects (Hartnett and Keeler 1995; Schaal and Leverich 1996). Additionally, 

studies on this topic reveal that successful establishment of perennial species by seed is 

less common than that of annual or biennial species (Coffin and Lauenroth 1989; Glenn-

Lewin et al. 1990). Vegetative reproduction is often more successful in perennial species 

due to the direct and continued supply of water and nutrients to the new modified shoot 

from the host plant, in contrast to the limited supply from the a seedling’s endosperm 

(Hartnett and Keeler 1995). The relative contribution of seed to annual regeneration of 

plant populations is hypothesized to vary across the gradient of drier to wetter prairie 

ecosystems. Annual seed production may be reduced in dry years and is typically less in 

mesic prairie ecosystems when compared to wetter tallgrass ecosystems (Hartnett and 

Keeler 1995, Knapp and Hulbert 1986; Potvin 1988, 1984; Rabinowitz and Rapp 1980). 

Due to this reduced seed output in short-grass, mixed-grass, and Sandhill prairies, it has 

been speculated that seed availability could limit the prevalence of certain species (Potvin 

1984).  

 The seed bank in prairie ecosystems is a dynamic entity, and its species 

composition is often much different from that of the aboveground plant community 

(Hartnett and Keeler 1995; Pérez et al. 1998). Prairie plant species vary in the viability of 

their seeds over time and in their proportional presence in the seed bank (Rice 1989). In 

addition, fluxes in seed bank composition are relatively common and are caused by 

various disturbances from either the environment or management practices (Coffin and 



31 
 

Lauenroth 1989; Lippert and Hopkins 1950). Seed banks are typically dominated by 

annual species as opposed to perennials, and as a functional group, forbs are often 

slightly more abundant than grasses (Pérez et al. 1998; Rice 1989). A seed bank study 

occurring in Sandhills prairie discovered the annual forb lambsquarters (Chenopodium 

album L.) and the annual or biennial forb annual eriogonum (Eriogonum annuum Nutt.) 

were the most dominant species; however they had low germination rates of < 6% (Pérez 

et al. 1998). Forb species with greater levels of germination were woolly plantain 

(Plantago patagonica Jacq.) and Canadian horseweed (Conyza canadensis (L.) 

Cronquist) (Pérez et al. 1998). The most abundant perennial grasses were sand dropseed 

(Sporobolus cryptandrus (Torr.) A. Gray) and sand lovegrass (Eragrostis trichodes 

(Nutt.) Alph. Wood), and together they had the highest germination rates of all species 

(Pérez et al. 1998). High amounts of rainfall likely contributed to increased total 

germination and seed rain in this study (Pérez et al. 1998). Seed number, species 

diversity, and germination rate were highest in the top 5 cm of soil and decreased with 

depth (Pérez et al. 1998). An additional study in tallgrass prairie, found the number of 

seeds germinating from the top 2 cm of soil to be twice of that collected from 2 to 10 cm 

of depth (Johnson and Anderson 1986). 

 An important factor directly affecting the recruitment of individuals from seed is 

species-specific seed dormancy. Many studies have examined effects of various 

stratification techniques on the germination of native prairie species. Most of these 

stratification techniques mimic natural processes that occur in prairie ecosystems. Not all 

species, however, seem to rely on stratification in the same way. According to Karssen 

(1980a), “temperature, absence of light or oxygen, presence of volatile or allelopathic 
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inhibitors and moisture conditions are among the factors which may contribute to 

inhibition of germination and thus to development of dormancy.” An additional study by 

Karssen (1980b) highlighted the importance of nitrate level and its effect on the 

germination of certain forb species. Cold-moist stratification also improves germination 

of many prairie species (Bratcher et al. 1993; Johnson and Anderson 1986). And a pre-

chilling treatment is important to the germination of many Sandhills prairie grass, 

grasslike, and forb species (Pérez et al. 1998). Germination response to cold treatment 

often varies by species due to specific temperature requirements, as was found in a study 

by Baskin et al. (1992). Stratification period and seed age also have varying effects when 

compared across different species of prairie penstemon (Penstemon spp.) (Lindgren and 

Schaaf 2004).  

 A study by Sorensen and Holden (1974), examined 23 species of tallgrass prairie 

forbs to see what factors could inhibit germination. Almost all species had very viable 

seed and nearly 70% germinated without any need to break dormancy (Sorensen and 

Holden 1974). Moist-cold stratification, however, was required for the germination of 

22% of the species tested, and resulted in both positive and negative germination effects 

(Sorensen and Holden 1974). A similar study by Voigt (1977) tested 20 species of prairie 

forbs and found that only three out of the 20 species tested were able to germinate 

without moist-cold treatment. This study documented no negative effects of cold moist 

stratification (Voigt 1977). Voigt (1977) also found that seeds typically germinated 6 to 

30 days, but on average about 2 weeks, after dormancy was broken by treatment. 

Sorensen and Holden (1974) as well as Voigt (1977) showed that physical scarification of 

the seed coat (waxy outer layer), was also important in breaking dormancy of certain 
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prairie forbs, especially for species in the legume family (Fabaceae). Certain species 

were found to benefit from a cold-moist treatment followed by scarification. A few 

species, such as blacksamson echinacea (Echinacea angustifolia DC.), experienced 

greater germination rates when the rough seed covering was eliminated altogether 

(Sorensen and Holden 1974). Additionally, both of these studies found that certain 

chemical treatments such as rootone, gibberellate spray, and triphenyl tetrazolium 

chloride could induce greater germination in certain species.  

 Seedling establishment is limited and improved by a multiple factors in prairie 

ecosystems. It is generally accepted that the vast majority of seeds produced never result 

in an established seedling. Factors responsible for this limited recruitment include seed 

viability, dormancy, winter kill, disease, competition, predation, and lack of proper 

microsite conditions for establishment (Glenn-Lewin et al. 1990; Gurevitch 1986; Potvin 

1984). Microsite conditions providing adequate water, nutrients, and light are often 

limiting in prairie ecosystems and can directly affect plant populations (Briske and Butler 

1989; Hartnett and Bazzaz 1985). The above-mentioned stresses can cause high mortality 

in seedlings, affecting annual recruitment from the seed bank (Hartnett and Keeler 1995). 

In addition, the role of mycorrhizal fungi in facilitating seedling establishment is of great 

importance and these fungi can positively affect seedling nutrient uptake as well as 

disease resistance (Hartnett and Keeler 1995; Koide and Schreiner 1992). Vegetative 

cover of tallgrass prairie seedlings has been shown to be greater with the inoculation of 

arbuscular mycorrhizal fungi at seeding when compared to non-inoculated plantings 

(Smith et al. 1998). These positive effects occur with a high degree of variability between 

the same and different species that grow in close proximity (Chiariello et al. 1982; 
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Newman et al. 1992). Populations of certain prairie species, such as Platte thistle 

(Cirsium canescens Nutt.), are severely limited by flower and seed predation as well as 

seedling competition with dominant grass species (Louda et al. 1990). In more water 

stressed prairie ecosystems, adequate soil moisture is a key factor limiting seedling 

establishment (Groya and Sheaffer 1981; Potvin 1984). Certain species of prairie plants 

have more prolific seed production than others and may germinate seed throughout the 

growing season (Hartnett and Keeler 1995). Although much of this germinated seed will 

not survive, a greater percentage of individuals are established due to appropriate timing 

with rainfall and microsite conditions (Hartnett and Keeler 1995). 

 Various studies have implemented seed addition in established prairie through 

interseeding. These studies often incorporate some sort of sod suppression technique 

prior to interseeding to enhance germination and establishment of the desired species. 

Common methods of sod suppression include disking, burning, and applying herbicide 

and often result in enhanced establishment of seeded species (Christiansen 1994; Dovel et 

al. 1990; Link et al. 2017; Maret and Wilson 2005; Mortensen et al. 2005). Additional 

methods can include grazing, mowing, or raking (Packard and Masters 2008; Rowe 

2010). Common methods of interseeding include seed addition by drill or broadcast 

application, and often incorporate diverse seed mixtures with local ecotype seed origin 

(Rowe 2010). Studies in Canadian prairie documented that broadcast seeding of native 

grasses resulted in similar initial, but greater long-term establishment when compared to 

drill seeding (Bakker et al. 2003; Wilson et al. 2004). Results, however, were highly 

variable due to weather conditions and establishment was reduced by drier summers 

(Bakker et al. 2003; Wilson et al. 2004). A 20-year study in northwestern Colorado, 
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documented no difference in plant community composition between broadcast and drill 

interseeding (Newman and Redente 2001). Interestingly enough, however, the study 

documented differences in plant community composition by functional group between 

seeded areas and undisturbed reference areas (Newman and Redente 2001). There are 

advantages to both methods given specific timing, as broadcasting during the dormant 

season can mimic natural seed rain and benefit some small seeded forb species that take 

advantage of freeze-thaw action (Rowe 2010). Spring drilling, however, has an advantage 

of direct seed-soil contact that benefits other species (Rowe 2010). Seedings that take 

place in late summer must allow for adequate development of seedlings prior to winter in 

order to avoid injury and winter kill (Suttie 2008). Seeding rate is also important to 

interseeding success, and species diversity can be reduced by including too high of rates 

of grass seed relative to forb seed (Dickson and Busby 2009; Rowe 2010). Seed quality, 

size, and germination rate are additional considerations in interseeding (Diboll 1997; 

Schramm 1990). Studies demonstrating successful interseeding into an established sod 

commonly use easily established forage legumes such as alfalfa, Illinois bundleflower 

(Desmanthus illinoensis (Michx.) MacMill. ex B.L. Rob. & Fernald), clovers (Trifolium 

spp.), and others (Dovel et al. 1990; Mortensen et al. 2005; Taylor et al. 1972). Native 

prairie grasses and forbs, however, can also be successfully established (Christiansen 

1994; Diboll 1997; Dickson and Busby 2009; Rowe 2010). Overall forb establishment 

can be enhanced by many methods, including seeding multiple species of forbs compared 

to a single species; which has been found increase establishment and long-term 

persistence of a stand (Sheley and Half 2006). 
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 Studies involving interseeding often utilize a form of sod suppression prior to 

seeding and a variety of other methods to improve establishment (Christiansen 1994; 

Dickson and Busby 2009; Dovel et al. 1990; Maret and Wilson 2005; Mortensen et al. 

2005; Packard and Masters 2008; Rowe 2010; Sheley and Half 2006). Successful 

establishment of seed is variable and depends heavily on appropriate microsite conditions 

(Briske and Butler 1989; Glenn-Lewin et al. 1990; Gurevitch 1986; Hartnett and Bazzaz 

1985; Hartnett and Keeler 1995; Potvin 1984). Various disturbances and environmental 

gradients can cause flux in prairie seed bank composition (Coffin and Lauenroth 1989; 

Lippert and Hopkins 1950; Rice 1989), and seed dormancy can inhibit germination of 

some species (Bratcher et al. 1993; Johnson and Anderson 1986; Karssen 1980a, 1980b; 

Pérez et al. 1998; Sorensen and Holden 1974; Voigt 1977). Seed availability may limit 

the presence of certain species, especially in semiarid prairie (Hartnett and Keeler 1995, 

Knapp and Hulbert 1986; Potvin 1988, 1984; Rabinowitz and Rapp 1980). Annual 

regeneration of prairie communities, however, is dominated by vegetative growth 

(Benson and Hartnett 2006; Hartnett and Keeler 1995; Schacht et al. 2000). Overall, 

multiple factors influence the role of seed addition as an indirect disturbance in prairie. 

Supplemental Water  

Plant communities in arid and semiarid regions of the world often experience 

water stress (Chabot and Mooney 1985). The shifting precipitation gradient eastward 

across the Great Plains from short-grass to mixed-grass to tallgrass prairie, results in an 

increasing underground bud bank density (Dalgleish and Hartnett 2006) which 

contributes to biomass production and canopy height in plant communities (Lane et al. 
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2000). Within regions of semiarid prairie, soil texture and topographic position greatly 

affect soil water availability and vegetative production (Barnes and Harrison 1982; Singh 

et al. 1998). A water addition study by Fay et al. (2008) highlighted the importance and 

interactions of three factors of growing season rainfall: “total quantity (Q), the interval 

between rainfall events (I), and individual event size (SE).” These factors are important 

to understanding the natural effects of precipitation in prairie, but most studies do not 

consider their interactive effects. Various studies, however, have investigated the effects 

of water stress and supplemental water on the diversity and productivity of prairie 

communities and one study directly examined effects of yearly precipitation variation on 

Sandhills vegetation. 

In a prairie ecosystem decreasing plant water potentials over a growing season  

has been shown to reduce plant biomass produced (Hake et al. 1984). In tallgrass prairie, 

belowground biomass was reduced, especially in the top 10 cm of soil, in a drought year 

when compared to a wet year (Hayes and Seastedt 1987). Although seasonal shortages in 

rainfall can reduce belowground production (Fiala et al. 2009), biomass partitioning 

strategies in certain climates remain constant; and the proportion of belowground to 

aboveground biomass in drier climates is generally greater (Hui and Jackson 2006). 

Additionally, prairie grass root to shoot ratios often increase as soil water content 

decreases in response to growing season water stress (Fay et al. 2003; Hunt et al. 1998). 

Under these conditions, some perennial grasses, such as prairie cordgrass (Spartina 

pectinata Link) and big bluestem, relocate nitrogen from shoots to underground 

structures (rhizomes and roots), while more drought tolerant species, such as little 

bluestem, do not (Heckathorn and DeLucia 1996, 1994). Increased rainfall variability and 
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reduced rainfall quantity in tallgrass prairie has been shown to reduce ANPP (Piper 

1995), and especially the production of subdominant warm-season grasses (Fay et al. 

2003). A 4-year study in tallgrass prairie examined long-term rainfall variability, and 

documented an increase in species diversity but decrease in ANPP in response to reduced 

frequency of rain events with total rainfall constant (Knapp et al. 2002). Plant species 

have varying abilities to adjust osmotically in response to drought (Knapp 1984). Grass 

and forb competition for limited water can be important to the abundance of certain forb 

species, and when grasses are suppressed through grazing, western ragweed and western 

ironweed (Vernonia baldwinii Torr.) have been shown to increase production 

(Fahnestock and Knapp 1993). In general, perennial C3 forbs when compared to perennial 

C4 grasses have a greater stomatal conductance and positive change in leaf water 

potential in response to rain events after drought (Martin et al. 1991). Both groups, 

however, are adapted to deal with incidence of occasional severe drought (Martin et al. 

1991). Competition for soil moisture on interdune soils in the Nebraska Sandhills has led 

to a high density of shallow rooted cool-season grasses that quickly utilize soil moisture 

from rainfall events and typically outcompete deep rooted warm-season-grasses, the latter 

which tend to dominate greater sand content dune soils (Barnes and Harrison 1982). 

Additionally, grass seedling growth is reduced under drought conditions, with mixed-

grass prairie and upland species usually showing greater resilience than tallgrass and 

lowland species (Mueller and Weaver 1942). Difficulties in drilled perennial grass and 

forb establishment in Idaho were found in response to drought when compared to wetter 

years (Ratzlaff and Anderson 1995). A study in the Nebraska Sandhills by Potvin (1984), 

demonstrated the importance of growing season soil moisture availability to seedling 
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establishment. Although water-holding capacity was greater on lowland sites, the 

available mid-summer soil moisture (to aid in seedling establishment) was greater on 

upland areas due to reduced transpiration rates from less total vegetative cover (Potvin 

1984). Overall, water stress typically restricts the growth of individual species with 

distinct impacts on plant community dynamics. 

 Water addition studies have been shown to markedly affect plant communities. 

One 5-year addition study in Colorado short-grass prairie found an increase in overall 

biomass and a community shift towards increasing warm-season grasses and forbs 

(especially legumes), as well as half-shrubs, and temporary increases in cool-season 

grasses and forbs, while succulents declined (Lauenroth et al. 1978). Despite an initial 

flush of cool-season annual species, perennial warm-season species dominated over time 

in this semiarid ecosystem (Lauenroth et al. 1978). Another study in semiarid Canada 

grassland found an increase in grass biomass after 1 year of increased water availability 

from watering; however, there was no effect on light penetration due to this increased 

cover (Köchy and Wilson 2004). An 8-year water addition study on the western edge of 

the tallgrass prairie found increases in vegetative production due to reduced water stress, 

and demonstrated that water availability limits production in most years (Knapp et. al. 

2001). In addition, this study documented a dominance of C4 warm-season grasses under 

water-limited conditions and a two-fold increase in C3 forb biomass from water additions 

over the course of the study (Knapp et al. 2001). One study documented an increase in 

root production due to supplemental water in a highland, grassland environment, but not 

in lowlands (Fiala et al. 2009). The effect of minor rainfall events on plant response in 

semiarid climates is also of interest, as it affects plant community dynamics in water-
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limited environments. One study recorded significant increases in blue grama leaf water 

potential and leaf water vapor conductance in response to a simulated 5 mm rainfall event 

in northeastern Colorado rangeland. (Sala and Lauenroth 1982). Supplemental water 

generally increases plant growth and biomass accumulation, but has differing effects 

depending on plant functional group.  

Long-term precipitation patterns and effects on Sandhills prairie vegetation were 

documented in a study by Guretzky et al. (2016). This 26-year study found that basal 

cover was most affected by late summer rainfall, despite the fact that peak rainfall 

typically occurred in early summer (Guretzky et al. 2016). A few species, including hairy 

grama (Bouteloua hirsuta Lag.), prairie sandreed, sand lovegrass, western ragweed, and 

needleandthread were negatively correlated with increasing precipitation (Guretzky et al. 

2016). Increasing precipitation was negatively correlated with forb and cool-season grass 

basal cover and positively correlated with warm-season grass cover, while sedge cover 

was unaffected (Guretzky et al. 2016). The study concluded that “S. scoparium and 

warm-season grass cover as a whole did not explain basal cover responses of most other 

species and functional groups, providing weak support for competition as a factor that 

regulates plant community composition in Sandhills prairie” (Guretzky et al. 2016). 

Overall, both water stress and abundance in prairies causes flux in plant species 

composition and productivity (Hartnett and Keeler 1995). Plant functional groups in the 

Sandhills are variably and strongly affected by precipitation regime (Guretzky et al. 

2016). Increased water availability has generally been shown to have positive impacts on 

forb production relative to certain grasses; however studies in Nebraska that include 

grazing have found evidence supporting an opposite trend (Fahnestock and Knapp 1993; 
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Guretzky et al. 2016; Knapp et al. 2001; Lauenroth et al. 1978). Minor rainfall events 

often have significant effects on plant response in dry prairie environments, and biomass 

production can be severely reduced by water stress (Hake et al. 1984; Sala and Lauenroth 

1982). In addition, partitioning of resources and biomass belowground at the expense of 

aboveground growth is a common prairie plant response to drought (Fay et al. 2003; 

Heckathorn and DeLucia 1996, 1994; Hui and Jackson 2006; Hunt et al. 1998). Growing 

season rainfall patterns and variation across the Great Plains are important factors 

predicting plant community composition (Barnes and Harrison 1982; Dalgleish and 

Hartnett 2006; Lane et al. 2000; Singh et al. 1997). Ultimately, supplemental water 

application, or the lack thereof, can act as an indirect disturbance “affecting resource 

levels or other conditions that then influence individuals in the patch” (Hobbs and 

Huenneke 1992). 
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CHAPTER 2 

PLANT COMMUNITY RESPONSE TO DISTURBANCES IN 

NEBRASKA SANDHILLS UPLAND PRAIRIE 

 

Introduction: 

 North American prairie communities were formed under the influence of periodic 

disturbance events (Howe 1994; Palmer et al. 1997). These disturbances shaped plant 

populations by altering growth patterns, reproductive potentials, and competitive 

dynamics (Hartnett and Keeler 1995; Hobbs and Huenneke 1992). White and Pickett 

(1985) defined a disturbance as "any relatively discrete event in time that disrupts eco-

system, community or population structure and changes resources, substrate availability, 

or the physical environment.” Hobbs and Huenneke (1992), further classified disturbance 

events into direct disturbances (“those affecting the survivorship of individuals directly”) 

and indirect disturbances (“those affecting resource levels or other conditions that then 

influence individuals in the patch”). In the Nebraska Sandhills, distinct disturbances have 

variable effects on upland plant composition (Bragg 1998, 1978; Foster and Stubbendieck 

1980; Guretzky et al. 2016; Morrison et al. 1986; Pfeiffer and Steuter, Potvin 1993; 1984; 

Schmeisser 2009; Steuter et al. 1995; Volesky and Connot 2000; Wolfe 1973). Direct 

disturbances such as spring fire and soil disturbance as well as indirect disturbances such 

as seed addition and supplemental water have unique roles, influencing plant community 

response in Sandhills prairie.  
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 Prior to European settlement, fires resulting from lightning strikes and Native 

American activities played a key role in maintaining prairie vegetation dynamics across 

the Great Plains and fire return intervals of 1 to 6 years were common (Blewett 1986; 

Briggs et al. 2002; Frost 1998; Higgins 1986, 1984; Petranka and McPherson 1979). 

Specific effects following fire vary geographically, but immediate reductions in litter 

cover and increases in bare ground have been documented (Curtis and Partch 1948; 

Hulbert 1969; Knapp and Seastedt 1986; Wilson and Shay 1990). This reduction in litter 

cover can have positive effects on seedling establishment (Christiansen 1994; Maret and 

Wilson 2005). Spring fire increases soil temperature, light incidence, and temporarily 

certain plant-available nutrients, which positively influences warm-season grasses (Bragg 

1998; Hulbert 1988, 1969; Knapp 1984; Peet et al. 1975; Rice and Parenti 1978, Ojima et 

al. 1994; Wolfe 1973). Timing of spring fire, however, is important as burns coinciding 

with active growth of susceptible cool-season species can reduce production of these 

species (Anderson 1976; Towne and Owensby 1984). In the Nebraska Sandhills, spring 

burning positively affects warm-season grasses, and reduces the cover of certain forbs 

(Bragg 1998; Pfeiffer and Steuter 1994). 

 Historically, prairie soil disturbance occurred through the soil moving activity of 

various animals and resulted in unique microhabitat formation that affected plant 

community response (Benedict et al. 1996; Knapp et al. 1999; Kotliar 1999; Hobbs 1989; 

Hobbs and Huenneke 1992). In the Nebraska Sandhills, American bison (Bison bison) 

wallows and plains pocket gopher (Geomys bursarius) mounds were important drivers of 

landscape diversity (Steuter et al. 1995). Various studies have also examined the effects 

of human-induced soil disturbance on prairie response. Disturbance of soil, from pocket 
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gopher mound building or disking with agricultural implements, immediately reduces 

production of various forb and grass species and exposes more bare ground (Benson et al. 

2007; Dollar 2011; Foster and Stubbendieck 1980; Hart et al. 1985; Steuter et al. 1995; 

Rogers and Hartnett 2001a, 2001b). Timing of soil disturbance also influences species 

response (Hobbs and Mooney 1985). Growth habit is important as bunchgrass species, 

for example, may be more susceptible to soil disturbance than rhizomatous or 

stoloniferous grasses that more vigorously recolonize disturbed areas (Hart et al. 1985). 

Recolonization of disturbed areas often occurs rapidly but is slower on larger disturbed 

regions, and forb recovery may exceed that of graminoids (Foster and Stubbendieck 

1980; Gibson 1989; Rogers et al. 2001; Rogers and Hartnett 2001a, 2001b; Steuter et al. 

1995). Additionally, soil disturbance variably affects competition for resources (Wilson 

and Shay 1990). Historically, there is also evidence for ecological interactions between 

soil disturbance and fire in prairie plant communities (Augustine et al. 2007; Collins and 

Uno 1983; Rogers and Hartnett 2001a).  

 Although vegetative reproduction dominates in prairie ecosystems (Benson and 

Hartnett 2006; Hartnett and Keeler 1995; Schacht et al. 2000), availability of seed could 

limit the abundance of certain species (Hartnett and Keeler 1995, Knapp and Hulbert 

1986; Potvin 1988, 1984; Rabinowitz and Rapp 1980). Historically, fluxes in seed bank 

composition occurred due to changing environmental conditions or seed introduction by 

grazing animals (Coffin and Lauenroth 1989; Lippert and Hopkins 1950; Hobbs and 

Huenneke 1992). Establishment of perennial forbs can be more difficult than annuals 

(Coffin and Lauenroth 1989; Glenn-Lewin et al. 1990), and species-specific seed 

dormancy often constrains germination (Heiser et al. 1969; Lindgren and Schaaf 2004; 
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Sorensen and Holden 1974; Voigt 1977). Additionally, low soil moisture can limit 

seedling establishment in semi-arid prairie systems such as the Nebraska Sandhills 

(Potvin 1993).  

 Growing season precipitation (Dalgleish and Hartnett 2006; Lane et al. 2000) and 

topographic position (Barnes and Harrison 1982; Singh et al. 1998) play key roles in 

regulating plant composition in North American prairies. Prairie species vary in their 

response to drought and water stress (Heckathorn and DeLucia 1996, 1994; Knapp 1984). 

They also differ in response to minor rainfall events (Sala and Lauenroth 1982) and the 

frequency of those events during dry conditions (Fay et al. 2003). Competition for soil 

water between species with major physiological and morphological differences often 

determines species prevalence (Blankespoor and Larson 1994), and this is true at various 

topographical locations in the Nebraska Sandhills (Barnes et al. 1984; Barnes and 

Harrison 1982; Keeler et al. 1980 Potvin 1993). Biomass and leaf water potential 

response to various timings and amounts of water addition differs based on 

photosynthetic pathway or rooting habit (Lauenroth et al. 1978; Martin et al. 1991; 

Nippert and Knapp 2007). Additionally, the application of supplemental water often 

enhances seedling establishment (Groya and Sheaffer 1981; Potvin 1993; 1984). The 

exact role and relative importance of water competition in predicting plant community 

structure in the Nebraska Sandhills, however, remains largely undetermined (Guretzky et 

al. 2016).  

 In light of these direct and indirect disturbance events and their general roles in 

shaping prairies, we designed a study to investigate the effects of several, one-time 

disturbance events on plant community composition in Nebraska Sandhills prairie. This is 
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a unique prairie system, in which the specific functions of these disturbances are not fully 

defined. Additionally, disturbance treatment interactions are often lacking in studies of 

prairie ecosystems. We hypothesized that the application and subsequent interactions of 

the disturbance events would alter prairie community composition. Mid-spring fire is a 

direct disturbance, mimicking historic Native American ignitions of prairie that peaked in 

spring and fall (Frost 1998; Higgins 1986), that we predicted would benefit perennial 

warm-season grasses and have mixed effects on forbs. Mid-spring disking is a direct 

disturbance, causing intense soil perturbation similar in some regards to pocket gopher 

spring mound building (Case and Jasch 1994; Hobbs and Huenneke 1992), that we 

predicted would have negative effects on perennial plant cover. Seed addition is a form of 

indirect disturbance, mimicking fluxes in seed bank composition (Coffin and Lauenroth 

1989; Lippert and Hopkins 1950) or seed introduction by grazing ruminants (Hobbs and 

Huenneke 1992). We predicted that seed availability limits abundance of specific prairie 

forbs (Hartnett and Keeler 1995, Knapp and Hulbert 1986; Potvin 1988, 1984; 

Rabinowitz and Rapp 1980) and addition should increase their cover. Early summer 

supplemental water applications can be a form of indirect disturbance, by mimicking 

minor rainfall events during abnormally dry periods, with the intention of provoking a 

plant community or species-specific response (Hobbs and Huenneke 1992; Sala and 

Lauenroth 1982). We predicted that these minor water additions would enhance forb 

seedling establishment without large effects on other species.  
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Materials and Methods 

Study Site 

 We conducted research during 2016 and 2017 at the University of Nebraska-

Lincoln Barta Brothers Ranch near Rose, NE (42° 13’ 32’’ N, 99° 38’ 09’’ W). Our study 

site was located in upland prairie within the Major Land Resource Area 65 on Nebraska 

Sandhills, sands ecological sites in the high precipitation zone (USDA-NRCS 2018). We 

selected dune slope (5-15%) topographical positions (Schacht et al. 2000) with south to 

southwest aspects. Soils consisted of Valentine fine sands (mixed, mesic Typic 

Ustipsamments), which are characteristic of Sandhills upland prairie sites (Zink et al. 

1985), with 1.1% organic matter content and 6.2 pH in the surface 15 cm. Climate is 

typical of semi-arid prairie with a characteristic rise and peak in precipitation nearly 

parallel to that of temperature during the growing season. Across the previous 16 years 

(2000-2015), the average annual precipitation was 542 mm with highest precipitation 

occurring during the month of June and lowest during January (HPRCC 2017; NOAA 

2017). During the growing season months of April through September, the area received 

an average of 412 mm of precipitation (HPRCC 2017; NOAA 2017). Average maximum 

temperatures reached 31.1°C in July with average minimum temperatures dropping to      

-10.6°C in January (HPRCC 2017). 

 Vegetation of the study site is typical of Nebraska Sandhills uplands and 

dominated by graminoid species. Grasses such as Scribner’s rosette grass (Dichanthelium 

oligosanthes (Schult.) Gould), little bluestem (Schizachyrium scoparium (Michx.) Nash), 

needlegrasses (Hesperostipa spp.), switchgrass (Panicum virgatum L.), and prairie 
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sandreed (Calamovilfa longifolia (Hook.) Hack. ex Scribn. & Southw.) are abundant 

(Schacht et al. 2000). Common forb species include western ragweed (Ambrosia 

psilostachya DC.), stiff sunflower (Helianthus pauciflorus Nutt.), and cudweed sagewort 

(Artemisia ludoviciana Nutt.) (Schacht et al. 2000). Sedges (Carex spp.), cacti (Opuntia 

spp.), and shrub species such as leadplant (Amorpha canescens Pursh) and prairie rose 

(Rosa arkansana Porter) are also common (Schacht et al. 2000). South-facing slopes 

typically experience greater light intensities and evapotranspiration rates, and generally 

have lesser densities of cool-season species and greater densities of warm-season species 

when compared to north-facing slopes (Schacht et al. 2000). 

Experimental Design 

 The study was conducted as a randomized complete block design with a 2 × 3 × 2 

factorial arrangement of fire (no fire and fire), soil disturbance (no soil disturbance, soil 

disturbance, and soil disturbance with seed addition), and water addition (no water and 

water) treatments. The study design required establishment of five, new blocks of these 

treatments in 2016 and in 2017. Our experimental units (plots) were 1.52 × 3.05 m 

individual plots oriented north to south, parallel to the downslope flow of water, with 

0.91 × 3.05 m buffers between (to the west and east of) each unit to mediate edge effects. 

All treatments occurred within a single established 54-ha pasture. Cattle were excluded 

from treatment areas at the onset of treatment initiation and this continued throughout the 

entire study. According to the definition of grazing pressure index described by Smart et 

al (2010), cumulative grazing pressure during the 2015 grazing season (18 June to 18 

August ) was 14.92 AUD/Mg in the areas where the treatments were applied in 2016. In 
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the 2017 treatment areas, cumulative grazing pressure was 22.38 AUD/Mg during the 

2016 grazing season (17 May to 1 September).  

 Mid-spring fire treatments were applied on 3 May 2016 and 27 April 2017. In 

both years, fire occurred two days after a rainfall event and the average air temperature, 

relative humidity, and wind speed during the burns were 20.7°C, 36.0%, and 9.0 mph in 

2016 and 15.6°C, 33.8%, and 7.4 mph in 2017, respectively. Fuel loads averaged 3572 

kg/ha in 2016 and 2815 kg/ha in 2017 on a dry matter basis. We used a meter high, 

rectangular, metal burn box without a top, as a safety precaution to contain fire within 

individual plots (Kral et al. 2015). Use of this box helped homogenize fire intensity by 

reducing the variable effect of wind speed. 

 Soil disturbance treatments, including a paired seed addition, were applied two 

days after mid-spring fire in both years. Mid-spring soil disturbance consisted of a light 

disking with a 3-m wide, single gang disk with eight notched, 0.41-m diameter disk 

blades (Worksaver, Inc., Litchfield, IL) pulled up-slope behind an all-terrain vehicle 

(ATV). Seed addition occurred immediately after disking and was only implemented on 

plots that had been disked in order to facilitate seed-soil contact for spring germination 

(Rowe 2010). We used a walk-behind, small plot cone seeder (Carter Manufacturing 

Company, Inc., Brookston, IN) to seed downhill a four-species, native, perennial, forb 

seed mix consisting of purple prairieclover (Dalea purpurea Vent.), roundhead lespedeza 

(Lespedeza capitata Michx.), largeflowered penstemon (Penstemon grandiflorus Nutt.), 

and stiff sunflower. Each species was seeded at a rate of 162 pure live seeds (PLS) m
-2

. 

Largeflowered penstemon and stiff sunflower seeds were of Nebraska Sandhills local 

ecotype origin. Purple prairieclover and roundhead lespedeza seeds were of plant 

https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=33912
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adaptation region origin (Vogel et al., 2005) suited for the appropriate USDA plant 

hardiness zone and ecoregion, and seeded with the correct species of inoculum.   

 Early summer supplemental water treatments depended on the frequency of 

precipitation event days, as they were applied according to a specific event interval 

criteria. From May through July of 2016 and 2017, 0.64 cm of water was applied if the 

number of days without precipitation exceeded the previous 16-year average number of 

days between precipitation events plus one standard deviation in the 16-year data for a 

given month. Precipitation amounts as small as 0.03 cm were included as valid 

precipitation events, and 0-day values between consecutive precipitation event days were 

excluded from the 16-year frequency data averages. According to the frequency of 

precipitation during the study, we applied supplemental water treatments on 8 June and 

25 June 2016, and on 14 June and 6 July 2017. Precipitation data were collected from the 

High Plains Regional Climate Center (HPRCC 2017) weather station located 

approximately 3 km northwest of the treatment areas.  

Vegetation Sampling 

 On 16 June 2016 and 15 June 2017, we used frequency grids (Vogel and Masters 

2001) to estimate June forb density of total forbs, of other selected forb species [western 

ragweed, Canadian horseweed (Conyza canadensis (L.) Cronquist), and cudweed 

sagewort], and on seeded plots only, of the four seeded species. Notably common 

perennial forbs, western ragweed and cudweed sagewort (Schacht et al. 2000), and a 

notably abundant and easily identifiable annual forb, Canadian horseweed (Pérez et al. 

1998), were selected to measure initial, mid-season forb response to disturbances. Each 
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frequency grid contained 25, 15 × 15 cm cells, and four frequency grids were sampled 

per plot for 100 cells. In each cell, we recorded presence or absence of the respective forb 

species. In the case of the four seeded species (on seeded plots only), however, we 

sampled presence or absence of immature plants (< 100 mm in height) during the first 

growing season post-disturbance and presence or absence of any size of plant during the 

second growing season in an effort to better estimate seedling establishment. Frequency 

of occurrence (number of squares with species present out of 100 total squares) 

multiplied by a factor of 0.4 provided a conservative estimate of plant density (plants/m
2
) 

as described by Vogel and Masters (2001).  

 From 10 to 11 August 2016 and 9 to 10 August 2017, we estimated percentage 

cover by species to determine first and second growing season post-disturbance effects on 

plant community composition. Cover of individual plant species was estimated on a 

nonoverlapping basis such that any cover present in the plot was counted regardless of 

vertical obstruction by other plant species. Cover of bare ground and litter was estimated 

on an overlapping basis such that only what cover was visible from a vertical view of the 

canopy was counted. We conducted cover sampling according to general methods 

outlined by Daubenmire (1959). Because of difficulty in field identification, various 

sedge species were not differentiated. Six sampling frames (20 × 50 cm) were sampled 

from the center of each plot for a total of 0.6 m
2
 sampling area per plot. We classed cover 

as: < 5%, 5-25%, 25-50%, 50-75%, 75-95%, or 95-100% for each species present and for 

bare ground and litter, and total values were not required to sum to 100%. We then 

computed species, bare ground, and litter averages using midpoint values of the above-

mentioned cover classes for each respective observation. 
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 On 15 August 2017, the 2016 treatment plots (n=60) were hand-clipped to 

determine second growing season-post disturbance herbage mass by the following 

functional groups: warm-season grass, cool-season grass, forb, shrub, sedge, cactus, 

standing dead, and litter. We did not clip the first growing season post-disturbance plots 

in 2016 or 2017, so as not to introduce additional disturbance before the second growing 

season post-disturbance data collection. For all categories other than standing dead and 

litter, current year production was clipped (e.g., new leaf and stem material for shrubs). 

We clipped two, 0.25 m
2 
quadrats at ground level in the south half of each plot. Herbage 

was sorted according to functional group and oven-dried at 60°C before weighing. We 

defined litter as non-living plant material that was no longer rooted in the soil, and 

standing dead as non-living plant material that was not produced that growing season yet 

remained rooted in soil.  

Data Analysis 

 Analysis of variance of forb density, percentage cover, and herbage mass of plant 

species or groups was conducted with a general linear mixed models procedure in SAS 

9.4 (SAS Institute Inc., Cary, NC). The effects of year and replication were considered 

random. We used an alpha level of 0.05 to determine the significance of treatment direct 

tests. To determine statistically significant differences between treatment combination 

means for two-, three-, and four-way interactions, the least significant difference (LSD) 

method was used. A subsequent examination of the simple effects was used for further 

investigation into the nature of interactions. Although significant main and interactive 

effects were included for all response variables, in the absence of a simple effects 
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analysis, a select few response variables had treatment combination means that did not 

differ significantly according to the conservative T-grouping LSD test. 

 In addition to cover by species, we summed cover values into following groups 

for analysis: graminoid, grass, warm-season grass, warm-season bunchgrass, warm-

season rhizomatous grass, cool-season grass, cool-season bunchgrass, cool-season 

rhizomatous grass, forb, annual forb, biennial forb, perennial forb, shrub, cactus, and 

standing cover (sum of all species cover without litter and bare ground values). In 

addition to herbage of clipped functional groups, we summed herbage values into the 

following broader groups for analysis: total live herbage, live grass, live graminoid, and 

total standing herbage mass (sum of all clipped functional group herbage values without 

litter). Plant community response was shown in the results as well as the tables and 

figures section, and statistically significant main and interactive effects were included. 

All species as well as above-mentioned plant groups not discussed in the results or tables 

and figures section were unaffected by treatment. 

 

Results 

Precipitation and Temperature 

 Highest average temperatures were reached during July 2016 and 2017, matching 

the previous 16-year average (Fig. 2-1). Average July temperatures, however, were lower 

by 95% of the average in 2016 and higher by 106% of the average in 2017 (Fig. 2-1). In 

2016, temperatures were notably above average during June and October, by 110% and 
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130%, respectively (Fig. 2-1). In 2017, temperatures were below average by 91% and 

90% during May and August, respectively (Fig. 2-1).  

 Monthly precipitation deviated widely from the 16-year average over the 2-year 

study. The 16-year average annual peak in precipitation during June was not experienced 

in 2016 or 2017 (Fig. 2-2). In June 2016, total rainfall accumulation was 43% of the 16-

year average, and in 2017, it was a mere 9%. During the 2017 growing season, this 

resulted in moderate drought throughout the region (U.S. Drought Monitor 2017). 

Additionally, 2016 precipitation amounts were above average during April, May, July, 

and September, and below average during August and October (Fig. 2-2). April and July 

2016 precipitation were 250% and 224% of the 16-year average, respectively, while 

August was 6% of the average. In 2017, precipitation was above average during May, 

July, August, September, and October (Fig. 2-2). May 2017 precipitation was 193% of 

the average, while July and August were 240% and 193% of the average, respectively. 

The frequency of rain events was relatively low during June of both years and exceeded 

the event interval criteria (for supplemental water application) for June of 7 days, twice in 

2016 and once in 2017. The frequency of rain events also was low in July 2017 and 

exceeded the event interval criteria for July of 9 days, once (HPRCC 2017).   

First Growing Season Post-Disturbance 

June Forb Density 

 June forb density sampling of total forbs, seedlings of seeded forb species on 

seeded plots, and selected forb species revealed several significant main and interactive 

effects. Fire and year had main effects on total forb plant density. Burned plots had a forb 
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density of 21.6 plants/m
2
 compared to 26.9 plants/m

2
 on unburned plots. Forb density 

was 31.9 plants/m
2
 in 2016 and 16.7 plants/m

2
 in 2017.  

 There was a two-way interaction between fire and early summer supplemental 

water on plant density of the perennial forb, western ragweed (Table 2-1). Burning 

increased western ragweed density, but this only occurred on plots that received 

supplemental water. Additionally, there was a three-way interaction between mid-spring 

fire, supplemental water, and soil disturbance on June density of the annual forb, 

Canadian horseweed (Table 2-2). Across all treatment combinations, fire reduced 

Canadian horseweed densities. In the absence of burning and disking, supplemental 

watering increased Canadian horseweed densities by 171% (Table 2-2). Disking and 

disking plus seeding decreased Canadian horseweed density on the unburned and watered 

treatment (Table 2-2). 

 Across disked plus seeded plots there were two significant two-way and a single 

significant three-way interaction on seeded perennial forb seedlings. Year and fire as well 

as year and water interacted on purple prairieclover seedling density (Table 2-3). Both 

fire and water increased density in 2016, and these densities were greater than in 2017 

(Table 2-3). Year, fire, and supplemental water all interacted to affect density of 

roundhead lespedeza seedlings (Table 2-4). Roundhead lespedeza seedling density on the 

burned treatment was greater in 2016 than 2017 (Table 2-4). In 2016, the application of 

fire and supplemental water together increased density (Table 2-4). Across seeded plots, 

few to no stiff sunflower or largeflowered penstemon seedlings were recorded during the 

first growing season post-disturbance. Average height of seedlings varied but was < 65 

mm at time of sampling. 
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August Cover 

Main Effects of Disturbances 

 August cover data from the first growing season post-disturbance revealed that 

total standing cover averaged 41% and was unaffected by treatment combination or year. 

Mid-spring fire had several significant effects on plant community composition. Relative 

to unburned prairie, burning reduced species richness from 17 to 15 species/0.6 m
2
. 

Burning increased warm-season rhizomatous grass and perennial forb cover and 

decreased sedge, forb, and annual forb cover (Fig. 2-3). Compared to unburned plots 

burning decreased the cover of the annual forbs: Canadian horseweed, woolly plantain 

(Plantago patagonica Jacq.), and pepperweed (Lepidium densiflorum Schrad.) from 3.0% 

to 0.4%, 1.0% to 0.1%, and 0.2% to < 0.1%, respectively. Fire increased the cover of 

western ragweed, and the warm-season bunchgrass, sand dropseed, (Sporobolus 

cryptandrus (Torr.) A. Gray) from 2.4% to 4.7%, and 1.2% to 2.0%, when comparing 

unburned plots to burned plots, respectively. The perennial forb, narrowleaf puccoon 

(Lithospermum incisum Lehm.), however, was reduced by fire and was 0.4% on 

unburned plots compared to 0.2% on burned plots. 

 First growing season post-disturbance data also showed significant main effects of 

early summer supplemental water and year on specific plant groupings and species. The 

addition of early summer supplemental water decreased cover of the warm-season 

bunchgrass, little bluestem, from 4.5% on unwatered plots to 2.7% on watered plots. 

Additionally, total forb and perennial forb cover was affected by year and was 10.7% and 

7.0% on 2016 plots compared to 7.9% and 4.5% on 2017 plots, respectively. Western 
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ragweed had a greater cover of 4.9% in 2016 compared to 2.3% in 2017, while 

narrowleaf puccoon had a reduced cover of 0.1% in 2016 compared to 0.4% in 2017. 

Cover of the warm-season bunchgrass, hairy grama (Bouteloua hirsuta Lag.), was also 

greater in 2016 than 2017 and decreased from 1.7% to 0.6%.  

Interactions of Disturbances 

 During the first growing season post-disturbance there were three significant two-

way interactions involving mid-spring fire, mid-spring soil disturbance, early summer 

supplemental water, and year. First, year interacted with fire on cover of litter (Table 2-

5). Within a given year, burned plots had less litter cover than unburned plots (Table 2-5). 

Litter cover was greater in 2017 than 2016 within a given fire treatment (Table 2-5). 

Second, water interacted with soil-disturbance on cover of warm-season bunchgrasses, 

fall rosette grass (Dichanthelium wilcoxianum (Vasey) Freckmann) (a cool-season 

bunchgrass), and clammy groundcherry (Physalis heterophylla Nees) (a perennial forb). 

On undisked plots, minor water addition had a negative effect on the cover of warm-

season bunchgrasses and fall rosette grass and a positive effect on clammy groundcherry 

(Table 2-6). On unwatered plots, disking reduced warm-season bunchgrasses, and on 

watered plots, it reduced clammy groundcherry (Table 2-6). Third, year interacted with 

soil disturbance on the warm-season rhizomatous grass, Indiangrass (Sorghastrum nutans 

(L.) Nash), and purple prairieclover cover. In 2016, the disked and disked plus seeded 

treatments seemingly reduced Indiangrass cover when compared to the undisked 

treatment; but in 2017, to a lesser extent an opposite trend was observed. Indiangrass 

treatment combination means ranged from 0.7% to 2.8% cover. Although a significant 
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two-way interaction was present, treatment means of Indiangrass did not differ 

significantly according to the conservative T-grouping LSD test. Purple prairieclover 

cover was statistically greatest in 2016 on the disked plus seeded plots at a cover of 0.2%, 

and the remaining treatment means did not differ statistically. The other soil disturbance 

treatments had cover values of < 0.05%, and in 2017, purple prairieclover was absent 

altogether.  

 Four, significant three-way interactions were documented involving mid-spring 

fire, mid-spring soil disturbance, early summer supplemental water, and year. First, fire 

interacted with water and soil disturbance to affect cover of bare ground, prairie 

sandreed, cactus, brittle cactus (Opuntia fragilis (Nutt.) Haw.) (Table 2-7), and 

skeletonplant (Lygodesmia juncea (Pursh) D. Don ex Hook.). Fire increased bare ground 

cover across all treatment combinations, except on the unwatered and disked plus seeded 

treatment (Table 2-7). Disking and disking plus seeding tended to increase bare ground 

cover in the presence of supplemental water on both burned and unburned plots, while 

supplemental water led to an increase only on the burned and disked plus seeded 

treatment (Table 2-7). Disking and disking plus seeding decreased cover of the 

rhizomatous grass, prairie sandreed, on the unburned and watered treatment, while 

burning increased cover of prairie sandreed on the watered and disked plus seeded and 

the unwatered and disked treatments (Table 2-7). Fire reduced total cactus and brittle 

cactus cover on both the unwatered and undisked treatment as well as the watered and 

disked plus seeded treatment (Table 2-7). Skeletonplant treatment combination means 

ranged from 0.0% to 0.2% cover. Early summer supplemental water seems to have 

increased cover of the perennial forb, skeletonplant, on the unburned and disked plus 
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seeded treatment. Although a significant three-way interaction was present, in the 

absence of a simple effects analysis means of skeletonplant cover did not differ 

significantly according to the conservative T-grouping LSD test. Second, year interacted 

with water and fire on the percentage of bare ground cover (Table 2-8). Burning 

increased bare ground regardless of year or addition of supplemental water, and 

supplemental water increased bare ground on burned plots in 2017 (Table 2-8). Third, 

year interacted with fire and soil disturbance on cover of warm-season grasses, the warm-

season rhizomatous grass, sand bluestem (Andropogon hallii Hack.) (Table 2-9), and the 

annual forb, rough false pennyroyal (Hedeoma hispida Pursh). Burning increased cover 

of warm-season grasses in 2017 on undisked plots (Table 2-9). Disking and disking plus 

seeding decreased the cover of sand bluestem on burned plots in 2017, but disking plus 

seeding increased its cover on burned plots in 2016 (Table 2-9). Burning increased sand 

bluestem cover in 2017 on undisked plots, and overall, sand bluestem cover was greater 

in 2017 than 2016 on the burned and undisked treatment (Table 2-9). Rough false 

pennyroyal cover was statistically greatest in 2016 on the unburned and disked plus 

seeded treatment at a cover of 0.8%, and the other treatment means did not differ 

statistically. Cover was 0.0% on the unburned and undisked treatment in 2017 and ranged 

from 0.1% to 0.3% on the other unburned treatment combinations. Rough false 

pennyroyal was absent on burned plots. Fourth, year interacted with water and soil 

disturbance on cover of cactus and brittle cactus. Both cactus and brittle cactus treatment 

combination means ranged from 0.3% to 1.3% cover. Water addition seemed to decrease 

cactus and brittle cactus cover in 2017 on undisked plots, but treatment means did not 

differ significantly according to the conservative T-grouping LSD test.  
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 A single four-way interaction was documented between year, mid-spring fire, 

early summer supplemental water, and mid-spring soil-disturbance on the cover of cool-

season bunchgrasses, Scribner’s rosette grass (a cool-season bunchgrass) (Table 2-10), 

and roundhead lespedeza. Fire increased cover of cool-season bunchgrasses and 

Scribner’s rosette grass in 2017 on the watered and disked plus seeded treatment, and 

decreased cover of the cool-season bunchgrasses in 2016 on the unwatered and disked 

treatment (Table 2-10). Disking plus seeding decreased cover of cool-season 

bunchgrasses and Scribner’s rosette grass in 2017 on the unburned and watered 

treatment, and disking decreased cool-season bunchgrasses in 2017 on the unburned and 

unwatered treatment (Table 2-10). Water increased cool-season bunchgrasses and 

Scribner’s rosette grass in 2017 on the unburned and disked treatment (Table 2-10). 

Scribner’s rosette grass cover was greater in 2017 than 2016 on the unburned, unwatered, 

and disked treatment. Roundhead lespedeza cover was statistically greatest in 2016 on the 

burned, watered and disked plus seeded treatment at 0.3%, and it was absent from all 

other treatment combinations. 

Second Growing Season Post-Disturbance 

June Forb Density 

 June forb density sampling revealed no main effects and a significant two-way 

interaction of fire and soil disturbance on density of forbs (Table 2-11). Burned plots had 

a greater total forb density than unburned plots across both undisked and disked 

treatments (Table 2-11). In addition, disking plus seeding increased forb density on 

unburned plots (Table 2-11). On disked plus seeded plots, all four seeded species were 
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present in varying abundances and immature plants were observed. Average densities 

(plants/m
2
), however, of 0.1, 0.3, 0.3, and 1.0 for roundhead lespedeza, purple 

prairieclover, largeflowered penstemon, and stiff sunflower, respectively, indicated few 

seedlings emerged in the second growing season post-disturbance  

August Cover and Herbage Mass 

Main Effects of Disturbances 

 August cover and herbage data from the second growing season post-disturbance 

revealed that total standing cover averaged 41% and total standing herbage mass 

averaged 1900 kg/ha. Neither was affected by treatment. A cumulative of 68 species were 

identified across the first and second growing season post-disturbance plots. Species 

richness, however, was unaffected by treatments in the second season. Mid-spring fire 

had significant main effects on bare ground, litter, and sedge. Fire increased cover of bare 

ground from 13.9% on unburned plots to 26.7% on burned plots. Fire decreased cover of 

litter from 37.1% on unburned plots to 21.0% on burned plots. Herbage mass of litter and 

sedge was significantly greater on unburned compared to burned prairie. Fire decreased 

herbage mass of litter from 65.0 to 19.6 g/0.5m
2
 and herbage mass of sedge from 5.6 to 

2.1 g/0.5m
2
 on unburned compared to burned plots, respectively.  

 Second growing season post-disturbance data also showed a significant increase 

in 2017 shrub herbage mass due to 2016 mid-spring soil disturbance (Fig. 2-4). Herbage 

mass of shrubs was substantially greater on disked plots when compared to both undisked 

and disked plus seeded plots (Fig. 2-4). 
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Interactions of Disturbances 

 Two significant, two-way interactions were found involving the effects of mid-

spring fire, mid-spring soil disturbance, and early summer supplemental water on various 

components of the plant community during the second growing season post-disturbance. 

First, fire interacted with soil disturbance to affect cover of warm-season grasses and 

warm-season bunchgrasses (Table 2-12). Disking and disking plus seeding decreased 

cover of warm-season grasses and warm-season bunchgrasses in the absence of fire, 

while fire increased warm-season grasses on disked plus seeded plots (Table 2-12). 

Second, soil disturbance and supplemental water interacted to affect the cover of grasses, 

warm-season grasses, warm-season bunchgrasses, hairy grama, and sand bluestem (Table 

2-13). Disking decreased grasses, warm-season grasses, warm-season bunchgrasses, and 

hairy grama in the absence of supplemental water (Table 2-13). Disking plus seeding also 

decreased hairy grama cover in the absence of water (Table 2-13). Supplemental water 

decreased cover of warm-season grasses, warm-season bunchgrasses, and hairy grama on 

undisked plots and increased hairy grama on disked plots (Table 2-13). Sand bluestem 

cover was increased by disking plus seeding on unwatered plots and decreased by 

supplemental water on disked plus seeded plots (Table 2-13).  

 There was a significant three-way interaction between mid-spring fire, early 

summer supplemental water, and mid-spring soil disturbance on herbage mass of cool-

season grasses and cover of clammy groundcherry (Table 2-14). Early summer 

supplemental water decreased mass of cool-season grasses on unburned and undisked 

plots (Table 2-14). Additionally, supplemental water increased clammy groundcherry 
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cover on the unburned and disked plus seeded treatment (Table 2-14). Disking plus 

seeding increased clammy groundcherry on the unburned and watered treatment, while 

fire decreased its cover on the watered and disked plus seeded treatment.  

 

Discussion 

First Growing Season Post-Disturbance 

June Forb Density 

  The negative effect of spring fire on June density of forbs was consistent with 

long-term late spring burning data from Konza prairie in northeastern Kansas (Towne and 

Owensby 1984). Much of the reduction was attributable to a marked suppression of the 

dominant annual forb, Canadian horseweed, as fire reduced its density through direct 

mortality of early season rosettes. The positive interactive effect of fire, however, on 

western ragweed density when supplemented with water agreed with a documented 

increase associated with spring burning (Hopkins et al. 1948) and could be due to the  

late season growth habit, rhizomatous nature, and efficient use of soil moisture by this 

species. The positive interactive effect of fire on density of purple prairieclover and 

roundhead lespedeza seedlings in 2016, though small, was attributable to the removal of 

the restrictive litter layer, allowing increased light incidence and improved microsite 

conditions that enhanced germination (Maret and Wilson 2005).  

 Year of sampling had significant effects on various forb species densities, and 

much of this could be related to weather patterns. Greater total forb density in 2016 

compared to 2017 could have been caused by weather during the months of April, May, 
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and June; which was several degrees warmer on average and may have benefited early 

season forb species (Fig. 2-1). Additionally, greater precipitation during April and June 

2016 would have aided this effect, though rainfall was less in May (Fig. 2-2). Increased 

June establishment of the two leguminous, seeded species in 2016 compared to 2017, 

may be due to slightly warmer spring temperatures and greater June rainfall in 2016. 

Slightly reduced seed viability, however, could have played a role as the same seed stock 

was used in both years. Scarification prior to seeding might have improved legume 

seedling densities (Sorensen and Holden 1974; Voigt 1977), but well-below average June 

rainfall in both years caused mortality of germinated seedlings and contributed to reduced 

August cover values. 

 In both 2016 and 2017, June was much drier than the 16-year average (Fig. 2-2) 

and forb species likely underwent appreciable water stress. Despite the fact that in both 

years only one of two watering events were applied prior to density sampling, 

responsiveness to minor rain events was observed as significant results were recorded. 

The positive interactive response of western ragweed and Canadian horseweed to the 

recent 0.64-cm water application is consistent with documented forb responsiveness to 

moisture after water stress conditions (Knapp et al. 2001; Martin et al. 1991). The benefit 

of supplemental water on the seeded leguminous species agrees with our prediction of an 

enhancement in seedling establishment. Potvin (1993) also observed benefits from 

supplemental water in combination with disking on establishment of grass seedlings in 

Sandhills uplands. The negative interactive effect of disking and disking plus seeding on 

Canadian horseweed density indicates that where it was not markedly suppressed by fire, 

soil disturbance played a similar but less severe role, causing direct mortality to rosettes.  
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August Cover 

Fire 

 In the first growing season after disturbance, mid-spring fire played the largest 

role of all disturbance treatments in altering August plant community structure. The 

reduction in species richness after the first season post-disturbance was mainly 

attributable to a reduction in specific forb species. This observation is supported by 

literature in the northern mixed-grass prairie, as studies by Biondini et al (1989) and 

Wolfe (1973) documented reductions in forb species richness, and Bragg (1998), a slight 

reduction in total species richness from spring fire. The overall positive effect of fire on 

bare ground and negative effect on litter are expected and well documented in the 

literature (Curtis and Partch 1948; Hulbert 1969; Knapp and Seastedt 1986; Wilson and 

Shay 1990). The rise in bare ground mostly represents a shift from higher litter cover, as 

total standing cover of species was unchanged by burning.  

 The effects of mid-spring fire on cover of graminoid species were generally 

positive. The positive effect of spring fire on warm-season rhizomatous grass and sand 

dropseed cover, as well as positive interactive effects on the cover of warm-season 

grasses, prairie sandreed, and sand bluestem agrees with documented increases in warm-

season grass species after burning that has been previously documented in the Nebraska 

Sandhills (Bragg 1998; Pfeiffer and Steuter 1994). These findings support our predicted 

beneficial effects of fire on warm-season grass cover. An early-season increase in soil 

temperature, light incidence, and temporary flux in nutrients such as available nitrogen 

and potassium all coincide with initiation of warm-season grass tiller growth and are 
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potential drivers (Bragg 1998; Hulbert 1988, 1969; Knapp 1984; Peet et al. 1975; Rice 

and Parenti 1978, Ojima et al. 1994; Wolfe 1973). Reduced cover of sedges in response 

to fire may be due to onset of sedge growth in late April and early May coinciding with 

burn timing (Towne and Owensby 1984); results that contradict the fire positive 

classification of sedges according to Bragg (1998). The positive interaction on cool-

season bunchgrasses and Scribner’s rosette grass may be attributable to the interactive 

role of supplemental water in addition to warmer soil temperatures during a month where 

nightly lows were well below C3 growth optimums, as well as to the aforementioned 

increase in nutrients and light incidence. The negative interaction on cool-season 

bunchgrasses in the absence of water, however, may have stemmed from increased water 

stress associated with litter removal and soil water evaporation post-fire (Anderson 

1976), a time when these C3 species were actively growing. 

 Studies show variable support for our documented effects of mid-spring fire on 

non-graminoid populations. Varied effects on forb populations agrees with our initial 

prediction concerning the overall effect of fire. The reduction in total forb cover is 

consistent with spring fire literature from the Konza prairie, as many cool-season forb 

species have begun growth and are vulnerable to direct mortality from fire (Towne and 

Owensby 1984). Annual species that had formed rosettes at this time were susceptible to 

season-long suppression. The reduction in annual forb species (including Canadian 

horseweed, woolly plantain, pepperweed, skeletonplant, and rough false pennyroyal) 

from spring burning is partially supported by Pfeiffer and Steuter (1994) who found a 

similar reduction in interstitial Sandhills forb species (which included annual forbs). Our 

documented increase in perennial forbs was primarily driven by western ragweed, which 
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accounted for 62% of total perennial forb cover across all treatments. This result is not 

wholly supported in Sandhills fire literature as western ragweed was classified as a fire 

negative species by Bragg (1998) or was generally unchanged in response to spring fire 

(Pfeiffer and Steuter 1994; Wolfe 1973). The increase, however, may be due to the 

warm-season nature of western ragweed that matches well with improved light and 

nutrient conditions upon initiation of active growth in late May and early June. A positive 

western ragweed response to fall fire was documented in a mixed-grass prairie study by 

Biondini et al. (1989). Reductions in narrow-leaved puccoon were expected as it was 

actively growing at the time of fire, and this result was also observed by Bragg (1998). In 

2016, the positive interactive effects of burning and watering followed by seeding on 

roundhead lespedeza (a seeded species) was likely due to a removal of the litter layer and 

an increase in light incidence enhancing germination and persistence. The benefit of 

burning prior to seeding on establishment of prairie species has also been documented in 

the literature (Christiansen 1994; Maret and Wilson 2005). Negative effects on cactus can 

be attributed to direct mortality from burning and subsequently slow regrowth. 

Soil Disturbance 

 Mid-spring soil disturbance in the form of disking did not have any positive 

interactions on individual species or functional groups, and this supports our prediction of 

immediate effects of disking on perennial plant cover. Disking and disking plus seeding, 

however, had some positive interactive effects on bare ground cover due to the exposure 

of soil by disk blade action. Studies examining pocket gopher soil disturbances (Foster 

and Stubbendieck 1980) and disking support this finding (Benson et al. 2007; Dollar 
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2011; Hart et al. 1985). The negative interactive effect of disking on cover of warm-

season bunchgrasses, cool-season bunchgrasses, prairie sandreed, and sand bluestem has 

been well documented in literature on overall perennial grass response to human-induced 

(Benson et al. 2007; Dollar 2011; Hart et al. 1985) and pocket gopher (Foster and 

Stubbendieck 1980; Rogers and Hartnett 2001a , 2001b; Steuter et al. 1995) soil 

disturbance. Bunchgrasses, specifically, are usually more susceptible to suppression than 

are vigorously tillering species that can rapidly recolonize exposed ground. This result 

was documented in a Nebraska mixed-grass prairie study where production of the 

bunchgrass, blue grama (Bouteloua gracilis (Kunth) Lag. ex Griffiths), was reduced from 

disking while production of the stoloniferous, buffalograss (Bouteloua dactyloides (Nutt.) 

Columbus), was not (Hart et al. 1985). Suppression of clammy groundcherry was 

partially attributable to direct mortality from disk blade action. 

 Disking plus seeding allowed for some additional soil disturbance as well as 

smoothing and packing of soil through the action of the seven large disc-blade openers 

followed by five press wheels, a drag chain, and foot traffic behind this walk-behind unit. 

The abundance of rough false pennyroyal and the seeded purple prairieclover and 

roundhead lespedeza on disked plus seeded plots is attributable to increased seedling 

establishment due to microsite creation (Briske and Butler 1989; Hartnett and Bazzaz 

1985; Hartnett and Keeler 1995; Hobbs and Huenneke 1992). Seed-soil contact through 

soil disturbance is important to establishment of native legumes such as purple 

prairieclover (Packard and Masters 2008). This result supports our prediction of seed 

availability limiting abundance of two of the four seeded forb species, however, cover of 

these species was low (< 0.5%) and only increased in 2016. In contrast to disking, 
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disking plus seeding did not negatively affect warm-season bunchgrasses; and we posit 

that firming of soil post-disking allowed the dormant, displaced root and crown material 

to be covered and essentially re-planted in soil. This also may have been responsible for 

varied positive and negative effects on other warm-season rhizomatous grasses, such as 

prairie sandreed and sand bluestem, when compared to disked plots alone. In contrast, 

cool-season bunchgrasses, including Scribner’s rosette grass, experienced damage to 

actively growing leaf and crown material to such a degree that the covering and 

replanting in soil could not mediate. A study in tallgrass prairie also documented 

decreases in Scribner’s rosette grass from soil disturbances, specifically, bison wallows 

and pocket gopher mounds (Gibson 1989).  

Supplemental Water 

 The negative effect of early summer supplemental water on little bluestem cover 

was unexpected and contrary to our initial predictions. Little bluestem is a warm-season 

species that can experience crown damage from high intensity burns (Engle et al. 1993; 

Ewing and Engle 1988; Pfeiffer and Steuter 1990; Towne and Owensby 1984; Volesky 

and Connot 2000). Species that experience appreciable fire injury followed by mid-

season water application may be suppressed through competition with more fire-positive 

species; as in the case of smooth bromegrass (Bromus inermis Leyss.) suppression by 

competition with warm-season dominants due to fire followed by water addition 

(Blankespoor and Larson 1994). In contrast to other perennial grasses, however, 

additional research has shown little bluestem does not reallocate nitrogen from above- to 

below-ground structures under water stress, and this should lead to increased 
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responsiveness to water additions after drought (Heckathorn and DeLucia 1996, 1994). 

The well-below average June rainfall in 2016 and moderate drought conditions in 2017 

caused appreciable water stress in many species. Although fire did not suppress little 

bluestem, any slight damage caused as well as damage documented from disking may 

have allowed for increased competition in the presence of water application. Although we 

did not see an interactive effect on little bluestem, competition is one potential driver for 

the reduction documented, and the notable increase in Canadian horseweed density on 

watered plots may be a specific example (Table 2-2). Negative interactive effects of 

supplemental watering on warm-season bunchgrasses and fall rosette grass occurred only 

on undisked plots and also may have been influenced by competition with nearby species 

that began vigorous rhizomatous regrowth in June. Sedge, switchgrass, Indiangrass, blue 

grama, porcupine grass (Hesperostipa spartea (Trin.) Barkworth), needleandthread 

(Hesperostipa comata (Trin. & Rupr.) Barkworth), leadplant, prairie rose, pepperweed, 

rough false pennyroyal, Canadian horseweed, annual eriogonum (Eriogonum annuum 

Nutt.), woolly white hymenopapus (Hymenopappus tenuifolius Pursh), Missouri 

goldenrod (Solidago missouriensis Nutt.), cudweed sagewort, cut-leaf ironplant 

(Xanthisma spinulosum (Pursh) D.R. Morgan & R.L. Hartm.), upright prairie coneflower 

(Ratibida columnifera (Nutt.) Woot. & Standl.), prairie spurge (Euphorbia missurica 

Raf.), as well as other forb species increased across treatments in response to water 

addition although these increases were not statistically significant.   

 The positive interactive effect of water on cool-season bunchgrasses and 

Scribner’s rosette grass is consistent with a temporary increase in cool-season grass cover 

documented in Colorado short-grass prairie in response to season long water additions 
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(Lauenroth et al. 1978). Positive interactions on clammy groundcherry, skeletonplant, and 

roundhead lespedeza are supported by some literature documenting a greater 

responsiveness of C3 forb species than C4 grasses to rainfall events following water stress 

(Martin et al. 1991), and greater biomass production in response to water additions 

(Knapp et al. 2001). Appreciable responsiveness of a wide variety of forb species, 

however, has been documented due to water addition in prairie (Lauenroth et al. 1978). 

Other literature shows the importance of supplemental water to the establishment of 

interseeded legumes (Groya and Sheaffer 1981) and interseeded Sandhills grass seedlings 

(Potvin 1984). Our results partially support our predicted role of water to enhance 

seedling establishment, although as previously noted, overall cover was low. We 

documented, however, various significant effects on other species contrary to our initial 

prediction. Our recorded negative effects on cacti from supplemental water were also 

seen in Colorado short-grass prairie (Lauenroth et al. 1978) and could be due to increased 

insect predation caused by early June watering (Houston 1963). The increase of bare 

ground from supplemental water and its interactions with with burning and disking plus 

seeding was supported by our visual observations. On burned plots the drill drag chain 

notably removed ash and plant material, and this may have allowed water addition that 

coincided with low June rainfall to increase decomposition rates of the remaining ash, 

resulting in greater bare ground detected in August. Lastly, the role of competition in 

Nebraska Sandhills ecosystems remains largely unresolved as work by Guretzky et al. 

(2016) revealed competition may not play a strong role in plant community dynamics 

over the long-term, potentially due to differing moisture uptake habits between grass and 

forb species (Nippert and Knapp 2007). Nevertheless, other research suggests that 
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competition for soil water is influential in determining species composition at various 

Sandhills topographic positions (Barnes et al. 1984; Barnes and Harrison 1982; Keeler et 

al. 1980 Potvin 1993). Thus, the primary drivers behind cover decreases related to minor 

water addition in this study remain uncertain.  

Year 

 In the first growing season after disturbance, year of sampling affected species 

and functional group prevalence. With the exception of narrowleaf puccoon, reduced 

cover of forbs (total forbs, rough false pennyroyal, perennial forbs, western ragweed) in 

2017 may have been caused by drought in June and slightly cooler temperatures in April, 

May, and June (Fig. 2-1).The drivers behind generally greater litter cover in 2017 may be 

a greater cumulative, cattle grazing pressure and increased forage trampling during the 

previous growing season. 

 Potvin and Harrison (1984) showed that May precipitation was the strongest 

predictor of Sandhills C3 grass production but April and June were also important. 

Although May precipitation was greater in 2017, greater 2016 precipitation in April and 

(233% of that in 2017) and June (466% of that in 2017) likely contributed to greater 

cover of the C3 grass, Scribner’s rosette grass, on a certain 2016 treatment combination. 

In 2017, the study site received slightly greater July and substantially greater August 

precipitation than 2016 and this may have contributed to greater cover the C4 grass, sand 

bluestem, which was actively growing at that time. In contrast to deeper rooting C4 

species, shallower-rooting Bouteloua species respond positively to April through August 

precipitation in Sandhills ecosystems (Potvin and Harrison 1984). From April through 
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mid-August sampling, 2017 had only received 87% of the precipitation received in 2016, 

and this likely contributed to reductions in hairy grama cover. 

Second Growing Season Post-Disturbance 

June Forb Density 

 Positive interactive effects of fire on second season, June forb density seemed to 

be driven by non-significant increases in Canadian horseweed (2.6 plants/m
2
 on unburned 

compared to 6.3 plants/m
2
 on burned plots) and western ragweed (2.4 plants/m

2
 on 

unburned compared to 5.7 plants/m
2
 on burned plots). A study in South Dakota mixed-

grass prairie also documented an increase in total forb density following spring fire, 

except the study was conducted on annually burned prairie without second-season post 

disturbance values (Biondini et al. 1989). Meanwhile, the increase in forb density from 

disking plus seeding on unburned plots agrees with an ephemeral flush in forb cover 

documented on > 1-year old pocket gopher mounds in the Sandhills, though this increase 

was less evident in subsequent years (Foster and Stubbendieck 1980). 

 The general lack of stiff sunflower and largeflowered penstemon germination in 

the first growing season compared to the presence of those species in the second growing 

season could be attributable to lack of cold-moist stratification and subsequent seed 

dormancy issues (Heiser et al. 1969; Lindgren and Schaaf 2004). Broadcast seeding 

during the dormant season instead of spring drilling may help overcome seed dormancy 

problems (Larson et al. 2011). Low establishment of seeded species on disked plus 

seeded plots, supports the concept that establishment of perennial species in the Sandhills 

by seeding following disking is difficult without average or above-average precipitation 
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(Potvin 1993), especially during the month of June. Furthermore, an observed reduction 

in mean plant density of roundhead lespedeza and purple prairieclover in the second 

compared to the first growing season, suggests that seedlings emerging during the first 

growing season had inadequate seedling development to persist overwinter (Barnes et al. 

2007). 

August Cover and Herbage Mass 

Fire 

 By the end of the second growing season post-disturbance, treatments still played 

a large role influencing plant community composition; however, there were fewer main 

and interactive effects. Fire did not significantly alter total standing herbage mass and this 

is consistent with results found by Pfeiffer and Steuter (1994). Fire no longer influenced 

species richness as the spring suppression of certain annual forb species did not occur in 

the second season. As in the first year, though, fire positively affected bare ground and 

negatively affected litter cover. Bragg (1998) also documented this specific continued 

effect of fire into a second year.  

 Fire had continued positive effects on graminoid species into the second year. The 

decreased sedge herbage mass, however, is likely a lasting effect from early season 

suppression the previous year. Warm-season grasses and bunchgrasses were positively 

affected by fire as predicted, although through an interaction with soil disturbance. On 

disked plus seeded plots fire increased cover of warm-season grasses, and since litter and 

bare ground trends continued into the second growing season it is likely that increased 

light incidence and spring soil temperatures also persisted and contributed to this 
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increase. Fire interacted with soil disturbance to mediate the negative effects of disking 

and disking plus seeding on warm-season grasses and bunchgrasses. In a Konza prairie 

study, negative effects of simulated pocket gopher disturbances on graminoid biomass 

were also mediated by burning (Rogers and Hartnett 2001a), showing evidence for an 

ecological interaction. Although fire interacted with other treatments to affect herbage 

mass of cool-season grasses, it was not significant in a simple effects analysis. 

Soil Disturbance  

 Biotic and abiotic drivers of the increase in shrub herbage mass on disked plots 

remain largely unresolved. One such driver, however, could be the ability of woody 

species to withstand disking and outcompete nearby, suppressed graminoid species for 

water, nutrients and light. A study in northern mixed-grass prairie documented the 

importance of competition with neighboring species as the elimination of nearby plants, 

within a 30-cm radius, mediated the negative effects of competition (Wilson and Shay 

1990). Although this study examined grass species, the same principles might apply to 

shrub competition with suppressed nearby herbaceous plants. Soil texture could also 

affect response, as an additional study documented relatively increased regrowth of 

shrubs following soil perturbation on higher sand content soils (Wonkka et al. 2016). The 

increase in shrub cover, however, does not agree with our predicted cover reductions due 

to disking.  

 Negative interactive effects of disking on the cover of grasses, warm-season 

grasses, warm-season bunchgrasses, and hairy grama support our prediction of negative 

effects of soil disturbance on perennial plant cover. This reduction seems to be a 
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continuation, and to some degree intensification, of the negative effects inflicted in the 

first growing season post-disturbance. Reductions would likely not have been as severe 

had initial disturbance events been reduced in spatial scale (Rogers and Hartnett 2001b). 

The decrease in grasses, however, did not occur in the presence of watering and these 

events were important in mediating the reduction from disking. In the case of warm-

season grasses and bunchgrasses, the reduction not seen on burned plots indicates that the 

beneficial effects of fire extending into the second year were sufficient to counteract the 

negative effects of soil disturbance. These trends provide evidence for ecological 

interactions between soil disturbance and minor rainfall events as well as with fire.  

 The drivers behind the negative interactive effects of disking and disking plus 

seeding on the cover of warm-season grasses, warm-season bunchgrasses, and hairy 

grama are likely direct damage and burying from disk blades. Declines in warm-season 

grasses and bunchgrasses on disked plus seeded plots, however, were not as severe and 

may be due to improved soil water uptake from partial replanting of crown material. The 

positive interactive response of the rhizomatous grass, sand bluestem, to disking plus 

seeding is consistent with the general concept of a graminoid recolonization via 

vegetative structures in the years following disturbance (Gibson 1989; Rogers et al. 2001; 

Rogers and Hartnett 2001a, 2001b). Due to the large spatial extent of disturbance, 

however, this process is slowed and the expected ephemeral increase in forb, cover such 

as that of clammy groundcherry, was observed during the second growing season. It is 

expected that these contrasts will diminish over time, however, as graminoid re-

colonization continues (Foster and Stubbendieck 1980; Rogers and Hartnett 2001a, 

2001b; Steuter et al. 1995). Although soil disturbance interacted with other treatments to 
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affect herbage mass of cool-season grasses, soil disturbance alone did not have a 

significant simple effect. Seed availability did not limit the cover of seeded forb species 

in the second season, providing weak support for our seed addition prediction during the 

second year.  

Supplemental Water 

 The negative interactive effect of minor water additions on cover of warm-season 

grasses and bunchgrasses on undisked plots was likely driven by a continued reduction of 

little bluestem from the first growing season (41% reduction in the second season on 

watered plots, although not statistically significant). Competition with forbs, cool-season 

bunchgrasses, and warm-season rhizomatous grasses was also a potential factor in the 

second year as these functional groups had slightly increased cover on watered plots, 

although not statistically significant. In the case of total grass cover, reductions due to 

disking were not seen in the presence of minor water application. This provides evidence 

for the mediating effects of early summer supplemental water on grasses in general after 

undergoing stress from disking. Negative interactive effects on cool-season grass herbage 

mass could be due to greater litter cover on watered, undisked, and unburned plots. This 

litter may have suppressed early season growth through possible reductions in light 

interception and soil temperature. Varied interactive effects on hairy grama and a positive 

interactive effect on clammy groundcherry are supported by the concept of 

responsiveness of Bouteloua species in semi-arid prairie (Barnes and Harrison 1982; 

Brown and Trlica 1977; Detling 1979) and C3 forb species (Martin et al. 1991) to minor 

rain events; potentially through more efficient use of surface soil moisture. Overall, 
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contrary to our prediction, minor rainfall events occurring the year prior (two 0.64-cm 

events) did not affect second season, seeded forb persistence and had continued 

significant effects on species cover. 
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Conclusions 

 We observed both positive and negative impacts of disturbance events on plant 

species and groups in Sandhills prairie. Although years varied in environmental 

conditions and affected abundance of some species, we can make certain key inferences. 

This study showed that mid-spring fire can be a beneficial tool in the first season post-

disturbance establishment of perennial, spring-drilled legume species, however, 

establishment may be limited by June water stress. Minor precipitation events during dry 

periods in early summer were important to seedling establishment and the abundance of 

certain forb species. From a grazing perspective, the first season increase in good forage 

value, warm-season rhizomatous grasses, interactive increases in warm-season grasses 

during both seasons, and suppression of annual forbs without a reduction in total standing 

cover are benefits of fire. First season perennial forb (largely western ragweed) and 

second season forb density increases as well as decrease in sedges due to burning, 

however, may not be as desirable. From an ecological perspective, seed availability did 

play a role on cover of seeded leguminous species but effects were minimal, short-lived, 

year-dependent, and possibly dormancy-constrained. Additionally, the interaction 

between fire and soil disturbance on warm-season grasses in the second year shows the 

mediating effects of fire that may have occurred historically on Sandhills pocket gopher 

mounds. Furthermore, the negative role of disking on second year cover of grasses was 

mediated by supplemental water, providing yet more evidence for interactions between 

disturbance events in Sandhills prairie. Soil disturbance in the form of disking alone had 

mostly negative effects on species cover. The difference in species response to disking 
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compared to disking followed by the seed drill, however, demonstrates the importance of 

specific soil disturbance methods. Total standing cover was unaffected regardless of 

treatment in both seasons showing the resilience of this ecosystem even to intense soil 

perturbation. Ultimately, Sandhills prairie uplands were formed under the interactions of 

various disturbance events, and the restoration of certain distinct disturbances has unique 

effects on species response with both grazing management and ecological implications. 
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Tables and Figures 

Table 2-1. Two-way interaction of mid-spring fire and early summer supplemental water 

on estimated June density (plants/m
2
) of western ragweed in the first growing season 

post-disturbance in Nebraska Sandhills prairie. 

 Water 

Fire Unwatered Watered 

 ‒‒‒‒‒‒‒‒‒‒ Western Ragweed, plants/m
2
 ‒‒‒‒‒‒‒‒‒‒ 

Unburned 15.7ab
1
 14.3b 

Burned 15.6ab 17.6a 
1
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means. 
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Table 2-2. Three-way interaction of mid-spring fire, early summer supplemental water, 

and mid-spring soil disturbance on estimated June density (plants/m
2
) of Canadian 

horseweed in the first growing season post-disturbance in Nebraska Sandhills prairie. 

  Soil Disturbance 

Fire Water Undisked Disked Disked plus seeded
1
 

  ‒‒‒‒‒‒‒‒‒‒ Canadian Horseweed, plants/m
2
 ‒‒‒‒‒‒‒‒‒‒ 

Unburned Unwatered 9.6b
2
 9.8b 12.6ab 

 Watered 16.4a 10.4b 12.0b 

Burned Unwatered 3.1c 0.8c 2.1c 

 Watered 3.9c 3.1c 2.6c 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means. 
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Table 2-3. Two-way interactions between year and mid-spring fire and between year and 

early summer supplemental water on estimated June density (plants/m
2
) of purple 

prairieclover seedlings in the first growing season post-disturbance in Nebraska Sandhills 

prairie. 

 Fire   Water 

Year Unburned Burned Unwatered Watered 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒ Purple Prairieclover Seedlings, plants m
2
 ‒‒‒‒‒‒‒‒‒‒‒‒‒ 

2016 1.4b
1
 5.2a 1.9b

1
 4.7a 

2017 0.1c 0.4bc 0.2c 0.2c 
1
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective interaction. 
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Table 2-4. Three-way interaction of year, mid-spring fire, and early summer 

supplemental water on estimated June density (plants/m
2
) of roundhead lespedeza 

seedlings in the first growing season post-disturbance in Nebraska Sandhills prairie. 

            Water 

Year Fire Unwatered Watered 

  ‒‒‒‒ Roundhead Lespedeza Seedlings, plants m
2
 ‒‒‒‒ 

2016 Unburned 0.3bc
1
 0.4bc 

 Burned 1.2b 3.0a 

2017 Unburned 0.0c 0.2c 

 Burned 0.1c 0.1c 
1
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means. 
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Table 2-5. Two-way interaction of year and mid-spring fire on percentage cover of litter 

in the first growing season post-disturbance in Nebraska Sandhills prairie. 

 Fire 

Year Unburned Burned 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Litter, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

2016 12.8b
1
 6.2c 

2017 36.2a 15.7b 
1
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means. 
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Table 2-6. Two-way interaction of early summer supplemental water and mid-spring 

 soil disturbance on percentage cover of warm-season (WS) bunchgrasses, fall rosette 

grass, and clammy groundcherry in the first growing season post-disturbance in Nebraska 

Sandhills prairie. 

 Soil Disturbance 

Water Undisked Disked Disked plus seeded
1
 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ WS Bunchgrasses, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 10.3a
2
 6.7b 7.9ab 

Watered 4.9b 6.5b 7.3ab 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Fall Rosette Grass, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 1.4a
2
 0.5ab 0.8ab 

Watered 0.3b 1.1ab 0.8ab 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Clammy Groundcherry, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 0.1b
2
 0.9ab 0.3ab 

Watered 1.0a 0.1b 0.4ab 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective interaction. 
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Table 2-7. Three-way interaction of mid-spring fire, early summer supplemental water, 

and mid-spring soil disturbance on percentage cover of bare ground, prairie sandreed, 

cactus, and brittle cactus in the first growing season post-disturbance in Nebraska 

Sandhills prairie. 

  Soil Disturbance 

Fire Water Undisked Disked Disked plus seeded
1
 

  ‒‒‒‒‒‒‒‒‒‒‒‒‒ Bare Ground, % ‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unburned Unwatered 11.3ef
2
 11.6ef 17.4efd 

 Watered 7.0f 20.5cde 16.9ef 

Burned Unwatered 28.9bc 38.1ab 27.8bcd 

 Watered 28.9bc 34.5ab 41.2a 

  ‒‒‒‒‒‒‒‒‒‒‒‒ Prairie Sandreed, % ‒‒‒‒‒‒‒‒‒‒‒‒ 

Unburned Unwatered 0.9abc
2
 0.5c 1.0abc 

 Watered 1.7a 0.8bc 0.6c 

Burned Unwatered 1.2abc 1.5ab 1.3abc 

 Watered 1.0abc 0.7bc 1.6a 

  ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Cactus, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unburned Unwatered 1.5ab
2
 0.8abc 0.7abc 

 Watered 0.8abc 1.2abc 1.6a 

Burned Unwatered 0.4c 0.5c 1.0abc 

 Watered 0.6bc 0.3c 0.3c 

  ‒‒‒‒‒‒‒‒‒‒‒‒‒ Brittle Cactus, % ‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unburned Unwatered 1.5ab
2
 0.8abc 0.7abc 

 Watered 0.8abc 1.2abc 1.6a 

Burned Unwatered 0.4c 0.5c 1.0abc 

 Watered 0.6bc 0.3c 0.3c 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective interaction. 
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Table 2-8. Three-way interaction of year, early summer supplemental water, and mid-

spring fire on percentage cover of bare ground in the first growing season post-

disturbance in Nebraska Sandhills prairie. 

  Fire 

Year Water Unburned Burned 

  ‒‒‒‒‒‒‒‒‒‒‒‒‒ Bare Ground, % ‒‒‒‒‒‒‒‒‒‒‒‒‒ 

2016 Unwatered 7.6c
1
 32.1ab 

 Watered 15.8c 28.6ab 

2017 Unwatered 19.3bc 31.1ab 

 Watered 13.9c 41.1a 
1
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means. 
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Table 2-9. Three-way interaction of year, mid-spring fire, and mid-spring soil 

disturbance on percentage cover of warm-season (WS) grasses and sand bluestem in the 

first growing season post-disturbance in Nebraska Sandhills prairie. 

  Soil Disturbance 

Year Fire Undisked Disked Disked plus seeded
1
 

  ‒‒‒‒‒‒‒‒‒‒‒‒‒‒ WS Grasses, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

2016 Unburned 16.8ab
2
 11.0b 13.8ab 

 Burned 13.8ab 14.4ab 17.0ab 

2017 Unburned 12.2b 17.0ab 16.6ab 

 Burned 20.1a 18.2ab 16.3ab 

  ‒‒‒‒‒‒‒‒‒‒‒‒‒ Sand Bluestem, % ‒‒‒‒‒‒‒‒‒‒‒‒‒ 

2016 Unburned 1.0bc
2
 0.9bc 1.3bc 

 Burned 0.8c 1.5bc 3.1ab 

2017 Unburned 1.7bc 2.0abc 2.4abc 

 Burned 4.0a 1.3bc 1.1bc 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective interaction. 
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Table 2-10. Four-way interaction of year, mid-spring fire, early summer supplemental 

water, and mid-spring soil disturbance on percentage cover of cool-season (CS) 

bunchgrasses and Scribner’s rosette grass in the first growing season post-disturbance in 

Nebraska Sandhills prairie. 

   Soil Disturbance 

Year Fire Water Undisked Disked 
Disked plus 

seeded
1
 

   ‒‒‒‒‒‒‒‒‒‒ CS Bunchgrasses, % ‒‒‒‒‒‒‒‒‒‒ 

2016 Unburned Unwatered 9.4abc
2
 13.8ab 9.7abc 

  Watered 11.4abc 9.5abc 8.3abc 

 Burned Unwatered 10.3abc 7.6abc 10.5abc 

  Watered 8.2abc 9.4abc 8.1abc 

2017 Unburned Unwatered 12.8ab 7.1bc 6.9c 

  Watered 10.8abc 14.1a 6.1c 

 Burned Unwatered 11.3abc 9.5abc 10.8abc 

  Watered 8.2abc 9.8abc 13.1a 

   ‒‒‒‒‒‒‒ Scribner’s Rosette Grass, % ‒‒‒‒‒‒‒ 

2016 Unburned Unwatered 6.5abc
2
 11.4a 7.8abc 

  Watered 9.8abc 6.6abc 5.1bc 

 Burned Unwatered 5.3bc 6.3abc 7.8abc 

  Watered 6.1abc 7.4abc 6.4abc 

2017 Unburned Unwatered 9.7abc 4.8bc 5.3bc 

  Watered 7.7abc 11.3a 4.2c 

 Burned Unwatered 8.8abc 7.6abc 9.3abc 

  Watered 6.3abc 7.0abc 10.3ab 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective two-way interaction. 
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Table 2-11. Two-way interaction of mid-spring fire and mid-spring soil disturbance on 

estimated June density (plants/m
2
) of forbs in the second growing season post-

disturbance in Nebraska Sandhills prairie. 

 Soil Disturbance 

Fire Undisked Disked Disked plus seeded
1
 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Forbs, plants/m
2
 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unburned 15.0d
2
 18.4cd 20.2bc 

Burned 26.0a 27.5a 24.0ab 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means. 
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Table 2-12. Two-way interaction of mid-spring fire and mid-spring soil disturbance on 

percentage cover of warm-season (WS) grasses and bunchgrasses in the second growing 

season post-disturbance in Nebraska Sandhills prairie. 

 Soil Disturbance 

Fire Undisked Disked Disked plus seeded
1
 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ WS Grasses, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unburned 19.3a
2
 12.3b 12.5b 

Burned 17.5ab 16.9ab 19.8a 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ WS Bunchgrasses, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unburned 11.4a
2
 6.1b 6.3b 

Burned 9.0ab 10.4ab 10.9ab 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective interaction. 
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Table 2-13. Two-way interaction of early summer supplemental water and mid-spring 

soil disturbance on percentage cover of grasses, warm-season (WS) grasses and 

bunchgrasses, hairy grama, and sand bluestem in the second growing season post-

disturbance in Nebraska Sandhills prairie. 

 Soil Disturbance 

Water Undisked Disked Disked plus seeded
1
 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Grasses, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 33.9a
2
 20.5b 26.3ab 

Watered 26.5ab 26.3ab 26.5ab 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ WS Grasses, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 21.3a
2
 12.6b 17.3ab 

Watered 15.5b 16.5ab 15.0b 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ WS Bunchgrasses, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 13.5a
2
 7.0b 9.0ab 

Watered 7.0b 9.6ab 8.2b 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Hairy Grama, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 4.1a
2
 0.9c 1.6bc 

Watered 1.5bc 3.0ab 1.3bc 

 ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ Sand Bluestem, % ‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒ 

Unwatered 1.1b
2
 0.7b 3.3a 

Watered 1.5b 1.3b 1.3b 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective interaction. 
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Table 2-14. Three-way interaction of mid-spring fire, early summer supplemental 

 water, and mid-spring soil disturbance on herbage mass (g / 0.5m
2
) of cool-season (CS) 

grasses and percentage cover of clammy groundcherry in the second growing season 

post-disturbance in Nebraska Sandhills prairie. 

  Soil Disturbance 

Fire Water Undisked Disked Disked plus seeded
1
 

  ‒‒‒‒‒‒‒‒‒‒ CS Grasses, g / 0.5m
2
 ‒‒‒‒‒‒‒‒‒‒ 

Unburned Unwatered 24.7a
2
 18.6ab 16.8ab 

 Watered 10.5b 18.3ab 23.6ab 

Burned Unwatered 14.2ab 14.8ab 19.4ab 

 Watered 19.6ab 13.3ab 14.0ab 

  ‒‒‒‒‒‒‒‒‒ Clammy Groundcherry, % ‒‒‒‒‒‒‒‒‒ 

Unburned Unwatered 0.5b
2
 0.2b 0.0b 

 Watered 0.0b 0.0b 3.8a 

Burned Unwatered 0.0b 0.3b 0.0b 

 Watered 0.3b 0.0b 0.0b 
1
Disked plus seeded treatments were mid-spring drill-seeded with a perennial forb mix 

(purple prairieclover, roundhead lespedeza, stiff sunflower, largeflowered penstemon) 

following disking.  
2
Similar letters indicate no significant difference (P > 0.05) between treatment 

combination means within a respective interaction. 
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Figure 2-1. Monthly average temperature (degrees Celsius) from April through October 

for 2016, 2017, and the 16-year average at the University of Nebraska-Lincoln Barta 

Brothers Ranch in the eastern Nebraska Sandhills. 
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Figure 2-2. Monthly precipitation (mm) from April through October for 2016, 2017, and 

the 16-year average at the University of Nebraska-Lincoln Barta Brothers Ranch in the 

eastern Nebraska Sandhills. 
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Figure 2-3. Significant (P < 0.05) main effects of mid-spring fire on percentage cover of 

plant groups in the first growing season post-disturbance in Nebraska Sandhills prairie. 

Standard error bars shown. 
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Figure 2-4. Significant (P < 0.05) main effect of mid-spring soil disturbance on shrub 

herbage mass (g / 0.5m
2
) in the second growing season post-disturbance in Nebraska 

Sandhills prairie. Standard error bars shown. Disked plus seeded treatments were mid-

spring drill-seeded with a perennial forb mix (purple prairieclover, roundhead lespedeza, 

stiff sunflower, largeflowered penstemon) following disking.  
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