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Fertilizer nitrogen use efficiency (NUE) in maize (Zea mays L.) production is historically 

inefficient, presenting significant environmental and economic challenges. Low NUE can 

be attributed to poor synchrony between soil N supply and crop demand, applying uniform 

rates of N fertilizer to spatially variable landscapes, and failure to account for temporal 

variability in crop response to N. Innovative N management strategies, including crop 

canopy sensing and management zones (MZ), are tools that have proven useful in 

increasing NUE. Several researchers have proposed that the integration of these two 

approaches may result in further improvements in NUE and in profitability by synthesizing 

both crop- and soil-based information for more robust N management. The objectives of 

this research were to identify soil and topographic variables that could be used to delineate 

MZ that appropriately characterize areas with differential crop response to N fertilizer and 

then to test a sensor-based N application algorithm and evaluate the potential of an 

integrated MZ- and sensor-based approach compared to uniform N management and to 

sensor-based N management alone. Management zones delineated with a field-specific 

approach were able to appropriately characterize the spatial variability in in-season crop 

response to N in all eight fields and in yield response to N in three of six fields. Sensor-

based application resulted in significantly increased NUE compared to uniform N 



 

management in six of eight fields, and marginal net return was significantly increased in 

four of eight fields.  Delineated MZ appropriately classified areas of differing NUE in six 

of eight fields. Results from these studies indicate that integrating field-specific MZ and 

sensor-based N application has potential to increase NUE and profitability compared to 

sensor-based or MZ-based N management approaches alone. Additional research is needed 

to explore how to best incorporate static soil information into a sensor-based algorithm that 

can be generalized for a variety of soil, climatic, and managerial factors. 
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CHAPTER 1: A REVIEW OF CURRENT LITERATURE 

Introduction 

Nitrogen (N) is an essential for plant growth and is the nutrient that most often 

limits crop production (Lahda et al., 2005). Maize (Zea mays L.) requires high amounts 

of N, and consequently, applications of N fertilizer are generally required to achieve 

optimal yields. In 2015, worldwide demand for N fertilizer was over 110 million Mg 

(FAO, 2017). 

Maize is the most widely grown crop in the US, with an estimated 36.8 million ha 

planted in 2017 (USDA NASS, 2017). It is also the largest user of N, accounting for 

around 40% of N fertilizer consumption in the US (Ribaudo et al., 2012). For this reason, 

maize is often the target of environmental impact policies where N is concerned (Snyder, 

2012). 

 Crop fertilizer N use is historically inefficient. Estimates of maize N use 

efficiency (NUE) range from 35 to 75% (Morris et al., 2018). Applied N fertilizer that is 

not taken up by the crop or that is immobilized by soil microbes is subject to numerous 

loss mechanisms, including denitrification, volatilization, and leaching (Cassman et al., 

2002). Nitrogen can also be lost from the plant as ammonia (NH3) (Francis et al., 1993). 

Low NUE over time has resulted in severe environmental consequences. Nitrogen 

loading from agricultural activity in the Mississippi-Atchafalaya River Basin has 

contributed to a continually expanding hypoxic zone in the Gulf of Mexico (Goolsby et 

al., 2001; Rabalais et al., 2001; Ribaudo et al., 2011). Increased loadings of N and 

phosphorus (P) have substantially altered the estuarine ecosystem of Chesapeake Bay 
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(Boesch et al., 2001). Surplus above-ground N also dramatically increases emissions of 

nitrous oxide (N2O), a potent greenhouse gas (van Groenigen et al., 2010). 

Closer to the source of maize production, over-application of N fertilizer has 

resulted in nitrate (NO3
-) contamination of groundwater (Schepers et al., 1991; Ferguson, 

2015). Many areas in the US have surpassed the maximum NO3
- contaminant level of 10 

mg·L-1 set by the US Environmental Protection Agency (Compton et al., 2011). 

Groundwater contaminated with NO3
- poses a number of health risks, including Blue 

Baby syndrome in infants (Rubin et al., 2016). One source estimates that US $0.16·kg N-1 

would be required to treat NO3
--contaminated drinking water (Compton et al., 2011).  

Causes of Low NUE 

 One of the major causes of low NUE in maize production is poor synchrony 

between soil N supply and crop demand (Shanahan et al., 2008). Cassman et al. (2002) 

estimated that around 75% of N fertilizer is applied prior to planting, including during the 

previous fall. This results in high levels of inorganic N in the soil profile, well before the 

stage of rapid crop uptake, and presents increased opportunity for N losses. In-season 

applications of N fertilizer coincide with the period of rapid uptake and therefore have 

great potential to increase NUE (Fageria and Baligar, 2005).  

 Another factor contributing to low NUE is failure to account for spatial variability 

by applying uniform rates of fertilizer N to spatially variable landscapes. Numerous field 

studies have shown that N supply within a field can be highly spatially variable (Reuss et 

al., 1977; Scharf et al., 2005; Shahandeh et al., 2005). Nitrogen mineralization of soil 

organic matter (SOM) can vary according to differences in soil temperature, water 
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availability, and local topography (Mahmoudjafari et al., 1997; Timlin et al., 1998). This 

results in spatial differences in the economic optimum N rate (EONR) within fields 

(Mamo et al., 2003). Scharf et al. (2005) found high within-field variability in EONR in a 

study of eight maize fields. Among the fields, median EONR varied between 63 and 208 

kg·ha-1, with an average standard deviation of 58 kg·ha-1. In addition, EONR ranged from 

0 to 280 kg·ha-1, the complete range of N rates, in five of eight fields. Soil texture also 

has a great influence on spatial variability in EONR (Shahandeh et al., 2011). Roberts et 

al. (2010) found that greater variability in EONR was measured in alluvial and loess soils 

than in claypan soils.  

Producers typically apply enough N to meet the crop requirements of the most N-

limiting areas of a field, resulting in frequent over-application of N fertilizer (Scharf et 

al., 2005). As such, there is a greater risk for N loss in areas of the field requiring less N 

(Shanahan et al., 2008). Variable-rate technology allows for site-specific management of 

N fertilizer, and has great potential to increase NUE. Mamo et al. (2003) found that 

variable-rate N applications would have resulted in 75 kg·ha-1 less N being applied than 

by applying a uniform rate, resulting in an economic benefit of $23·ha-1 compared to the 

uniform rate. 

Further adding to the complexity, N requirement varies not only spatially, but also 

among years. Climate and management interactions result in high temporal variability in 

EONR and in crop yields (Cassman et al, 2002; Tremblay et al., 2012). Temporal 

variability in response to N has been documented in several studies (Mamo et al., 2003; 

Lambert et al., 2006; Dhital and Raun, 2016). Nitrogen is more susceptible than other 
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plant nutrients to hydrologic conditions, which are affected by annual precipitation and 

topography interactions. This subsequently affects mineralization of SOM, 

denitrification, and water availability. Sogbedji et al. (2001) found strong year-to-year 

variation in maize response to N. Annual field-averaged EONRs had a range of 65   

kg·ha-1, with lower rates being highly associated with low early-season precipitation. 

Collectively, both spatial and temporal variability make accurate estimation of EONR 

difficult for many fields. 

Management Zones 

 One method of accounting for within-field variability in crop N requirement is the 

practice of delineating management zones (MZ). Doerge (1999) defined MZ as “sub-

regions of a field that express a homogeneous combination of yield-limiting factors for 

which a single crop input is appropriate to attain maximum efficiency of farm inputs”. 

The concept of “farming by soil” (Larson and Robert, 1991) began during the mid-1980s 

by promoting the management of farm inputs by soil mapping unit (Mulla and Miao, 

2016). However, researchers soon realized that considerable variability was present at 

scales finer than soil mapping units (Mulla et al., 1992; Franzen et al., 2002). 

 Myriad approaches to MZ delineation have been developed in the last 25 years. 

Khosla et al. (2010) reported that 162 delineation methods using 42 unique properties 

were used, either individually or in combination, in over 100 refereed publications 

published between 1992 and 2008. The most common approach to MZ delineation is the 

use of proximal soil sensing to measure soil apparent electrical conductivity (ECa) 

(Khosla et al., 2010).  
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Several researchers have reported success in relating soil ECa to variation in crop 

production (Kitchen et al., 1999; Corwin and Lesch, 2003; Bronson et al., 2005; Moral et 

al., 2010). Fleming et al. (2004) used soil ECa alone for MZ delineation and found that it 

consistently identified areas of differing productivity across a field. When used in 

conjunction with other soil and crop properties, even greater prediction of variation in 

productivity is possible (Khosla et al., 2010). On-the-go sensors for mapping of soil ECa 

use either electrical resistivity or electromagnetic induction methods, and several sensing 

systems are commercially available (Veris Technologies, Salina, KS; Geonics, 

Mississauga, ON, Canada; Dualem, Milton, ON, Canada). Mapping soil ECa is an 

attractive method because it provides continuous, high-resolution data in real-time to map 

spatial patterns in field productivity (Mulla, 2013). 

 Measures of landscape attributes are also commonly used for MZ delineation. 

Topography is one of the five soil-forming factors (Jenny, 1941) and is often the only 

factor to vary significantly within many fields (Franzen et al., 2002). Topography affects 

crop yield by influencing the redistribution of soil particles, SOM, and soil nutrients 

through erosion and/or deposition (Kravchenko and Bullock, 2000). It also affects water 

availability both vertically and horizontally on the landscape. Hanna et al. (1982) found a 

significant effect of landscape position on water availability. Elevation and its 

derivatives, including slope and curvature, have commonly been used in conjunction with 

soil ECa maps for MZ delineation (Fraisse et al., 2001; Schepers et al., 2004; Derby et al., 

2007) or to enhance soil survey map units (Bobryk et al., 2016). 
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 Soil organic matter has a large impact on soil N supply and is therefore another 

potential attribute for MZ classification. However, SOM can vary widely within fields, 

and often obtaining enough samples to accurately characterize field variability through 

traditional soil sampling and laboratory analysis is laborious cost prohibitive (Adamchuk 

et al., 2011). Historically, researchers have used bare soil imagery obtained from satellite 

or aerial remote sensing platforms to characterize soil variability by soil color, or 

reflectance in the visible region of the electromagnetic spectrum (Adamchuk et al., 2004). 

These have been used as predictors of SOM to delineate management zones with some 

success (Varvel et al., 1999; Chen et al., 2000; Stewart and McBratney, 2001; Schepers et 

al., 2004). However, bare soil imagery is becoming difficult to obtain given the increase 

in conversion to conservation tillage systems. Of the 112.8 million cropland hectares in 

the US, 62.1% use conservation tillage (USDA NASS, 2012).  

 Soil organic matter content, among other soil properties, is known to have a 

strong influence on soil reflectance, particularly in the visible (400-700 nm) and near-

infrared (NIR) (750-1400 nm) regions of the electromagnetic spectrum (Baumgardner et 

al., 1985). An optical sensor developed by Veris Technologies (Salina, KS) provides an 

on-the-go measurement of SOM content using near infrared reflectance spectroscopy 

(NIRS). This technique measures diffusely scattered light from an illuminated sample 

(Christy, 2008). As SOM content increases, soil reflectance decreases throughout the 

visible and NIR spectrum (Baumgardner et al., 1985). The spectral response of the soil at 

a depth of ~5 cm is recorded in two wavelengths, one in the visible red region and one in 
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the NIR. This spectral data is then calibrated to estimate SOM using soil samples 

collected from representative areas in the field (Christy, 2008). 

Numerous also are the statistical methods used to classify MZ. These include the 

ISODATA method (Fraisse et al., 2001; Guastaferro et al., 2010), non-parametric 

approaches (Aggelopooulou et al., 2013), a hierarchical approach (Fleming et al., 2000), 

and the fuzzy c-means (or k-means) method (Minasny and McBratney, 2002; Fridgen et 

al., 2004). Management Zone Analyst (MZA) (University of Missouri, USDA-ARS, 

Columbia, MO) is a free software program that uses a fuzzy c-means algorithm for 

clustering. In addition to ease of use, MZA has the advantage of providing results for a 

range of clusters so that the user can evaluate how many MZ should be used (Fridgen et 

al., 2004). 

Managing N through the use of MZ often improves efficiency compared to 

uniform field management by helping to characterize the spatial variability in soil 

physical and chemical properties. However, MZ are often inconsistent in characterizing 

the spatial variability in crop N requirement because of the effect of temporal variability 

on crop N response (Shanahan et al., 2008). In a five-year study in Nebraska, Schepers et 

al. (2004) found temporal variability to greatly affect MZ, and the use of MZ to direct 

variable N application would have been appropriate in only three of five years. They 

concluded that a static, soil-based MZ approach alone is likely inadequate for directing 

variable applications of N due to the inability to account for temporal variability. 
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Crop Canopy Sensing 

One tool with the potential to manage all three factors influencing low NUE is 

crop canopy sensing. This strategy is known as a reactive approach to N fertilizer 

management because the sensors can identify and correct N stress that has already 

occurred during the growing season (Ping et al., 2008; Shanahan et al., 2008). Rather 

than using indirect measures of growing condition from the soil or from atmospheric 

conditions, canopy sensors use the crop itself as a bio-indicator to assess crop N status 

and direct real-time, variable-rate, in-season applications of N fertilizer (Adamchuk et al., 

2011). Sensor-based N management is better able to account for spatial and temporal 

variability and also helps to achieve greater synchrony between N supply and crop N 

demand, as the majority of N fertilizer is applied in-season during the period of rapid N 

uptake. Canopy sensors have been used successfully to direct in-season variable-rate N 

fertilizer applications in several crops, including maize (Scharf and Lory, 2009; Holland 

and Schepers, 2010), wheat (Triticum aestivum L.) (Raun et al., 2005; Solie et al., 2012), 

cotton (Gossypium hirsutum L.) (Oliveira et al., 2013; Raper and Varco, 2015), rice 

(Oryza sativa L.) (Tubaña et al., 2012; Xue et al., 2014), and sugarcane (Saccharum spp.) 

(Amaral et al., 2015).  

Crop canopy sensors make use of the relationship between leaf and canopy 

reflectance to crop response to make quantitative estimates of in-season N requirement 

(Hatfield et al., 2008). As electromagnetic radiation is incident upon a plant, much of that 

radiation is absorbed for photosynthesis, especially in the visible region. Radiation not 

absorbed by the plant is reflected, and this reflectance can be measured by optical 



9 
 

sensors. In the visible region, reflectance is strongly correlated to plant pigments, 

primarily chlorophyll. As leaf chlorophyll content increases, reflectance in the visible 

wavelengths decreases, especially in the visible blue (400-500 nm) and visible red (600-

700 nm) regions (Hatfield et al., 2008). Very little incident radiation in the NIR region is 

absorbed by crop leaves due to scattering by the leaf mesophyll cells (Walter-Shea et al., 

1991). As such, NIR reflectance tends to increase with increased biomass and crop vigor. 

Given that N affects these properties, N sufficiency is strongly related to canopy 

reflectance, especially in the visible red (600-700 nm) and NIR regions (Walburg et al., 

1982). 

Many commercially-available canopy sensing systems use active sensor 

technology. Active sensors work by emitting modulated light in two or more wavelengths 

in the visible and NIR regions. This polychromatic light source simultaneously emits 

light from each wavelength, and photodetectors within the sensor then measure the 

reflectance from the crop canopy. Using a single light source reduces errors associated 

with drift in irradiance (Holland et al., 2004), and using the modulated light source as 

opposed to a passive sensor system allows the sensor to differentiate between natural 

background light and the sensor-emitted light (Barker and Sawyer, 2013). 

To make use of canopy reflectance information, a number of vegetation indices 

(VIs) have been developed that combine reflectance in two or more regions of the 

electromagnetic spectrum. One of the first and most widely used VIs is the Normalized 

Difference Vegetation Index (NDVI), which has the following equation (Rouse et al., 

1973): 
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𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅−𝑅𝑅𝐸𝐷

𝑅𝑁𝐼𝑅+𝑅𝑅𝐸𝐷
                         [1.1]  

where 

 𝑅𝑁𝐼𝑅 = near-infrared reflectance 

 𝑅𝑅𝐸𝐷 = red reflectance 

 

NDVI has been used to direct in-season variable-rate N fertilizer applications with 

some success (Raun et al., 2005; Samborski et al., 2009; Kitchen et al., 2010). However, 

under high-biomass conditions, reflectance in the red region becomes saturated, and 

further increases in chlorophyll content do not affect reflectance (Gitelson and Merzlyak, 

1996). The red-edge (700-740 nm) region does not suffer this saturation effect, and thus 

has been found to be a better predictor of chlorophyll content and canopy N status (Li et 

al., 2014; Holland and Schepers, 2010). The Normalized Difference Red Edge (NDRE) 

VI replaces red reflectance from NDVI with reflectance in the red-edge region (Gitelson 

and Merzlyak, 1994): 

   𝑁𝐷𝑅𝐸 =
𝑅𝑁𝐼𝑅−𝑅𝑅𝐸

𝑅𝑁𝐼𝑅+𝑅𝑅𝐸
      [1.2]              

where 

 𝑅𝑁𝐼𝑅 = NIR reflectance 

 𝑅𝑅𝐸 = red-edge reflectance 
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In order to assess crop N status, canopy reflectance of plants yet to be fertilized is 

compared to reflectance from plants receiving an adequate amount of N fertilizer such 

that N is not a limiting factor (Schepers et al., 1992; Shanahan et al., 2008). This N-

sufficient reference is used to calculate a Sufficiency Index (SI) with the following 

equation (Peterson et al., 1993; Varvel et al., 1997): 

      𝑆𝐼 =
𝑉𝐼𝑇𝑎𝑟𝑔𝑒𝑡

𝑉𝐼𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
      [1.3]    

              

where 

 0 ≤ 𝑆𝐼 ≤ 1 

 𝑉𝐼𝑇𝑎𝑟𝑔𝑒𝑡 = vegetation index of target crop 

 𝑉𝐼𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = vegetation index of high-N reference 

 

Essentially, lower SI values signify that unfertilized plants are more deficient, and so will 

require more N fertilizer to achieve their yield potential (Shanahan et al., 2008).  

Establishing a high-N reference area in the field can be problematic. The 

reference area must be moved to a new area of the field each year in order to accurately 

represent the nutrient status of the rest of the field each year (Holland and Schepers, 

2013). In addition, applying high amounts of N fertilizer is restricted in some countries or 

situations (Holland and Schepers, 2013). Furthermore, this approach can cause a nutrient 

imbalance between N and sulfur (S) and increase the severity of S deficiency in maize, 

resulting in artificially low VI values and correspondingly low fertilizer N 

recommendations (Franzen et al., 2016b). One alternative to the high-N reference method 
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is the use of a statistical approach, known as a virtual reference, to identify adequately 

fertilized plants without the need for applying high amounts of N fertilizer in an area the 

field (Holland and Schepers, 2013). This procedure involves sensing a portion of the 

field, observing a wide range of plant vigor and N status. The 95th percentile value is 

selected from a histogram of VI values, and this value is used as VIReference to generate SI 

in equation 1.3. 

 Numerous algorithms have been developed to convert sensor reflectance data into 

an in-season N fertilizer application rate (Solari et al., 2010; Scharf et al., 2011; Solie et 

al., 2012; Franzen et al., 2014). Holland and Schepers (2010) developed a generalized N 

application algorithm for use with crop canopy sensors. They describe the plant growth 

function as a typical N rate by yield response function (quadratic or quadratic plateau) 

(Franzen et al., 2016a). The algorithm uses an estimated optimum N rate (NOPT) along 

with the calculated SI to control the model. It also allows for incorporating economics 

into the NOPT term and accounts for fertilizer N already applied as well as any N credits. 

The final form of the algorithm is as follows (Holland and Schepers, 2010): 

𝑁𝐴𝑃𝑃 = (𝑀𝑍𝑖 ∙ 𝑁𝑂𝑃𝑇 − 𝑁𝑃𝑟𝑒𝐹𝑒𝑟𝑡 − 𝑁𝐶𝑅𝐷 + 𝑁𝐶𝑂𝑀𝑃) ∙ √
(1−𝑆𝐼)

∆𝑆𝐼
        [1.4]   

where 

 𝑁𝐴𝑃𝑃 = nitrogen application rate 

 𝑀𝑍𝑖 = MZ scalar; 𝑖 ∈ {1,2,3, . . , 𝑛} zones and 0 ≤ 𝑀𝑍𝑖 ≤ 2 

 𝑁𝑂𝑃𝑇 = EONR or the maximum N rate prescribed by producers  

 𝑁𝑃𝑟𝑒𝐹𝑒𝑟𝑡 = Total fertilizer N applied before sensor-based N application 

𝑁𝐶𝑅𝐷 = N credit for previous crop, NO3
- in irrigation water, manure, etc. 
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𝑁𝐶𝑂𝑀𝑃 = N in excess of 𝑁𝑂𝑃𝑇  required by the crop under soil-limiting conditions 

at a given growth stage 

𝑆𝐼 = Sufficiency Index of target crop 

∆𝑆𝐼 = 1 − 𝑆𝐼(0); the difference between 𝑆𝐼 = 1 and the y-intercept of the N 

response curve 

 

There are several commercially-available active crop canopy sensing systems, 

including GreenSeeker (NTech Industries, Ukiah, CA), OptRx (Ag Leader Technology, 

Ames, IA), CropSpec (Topcon Positioning Systems, Olathe, KS), and N-Sensor ALS 

(Yara, Oslo, Norway). 

The use of these systems to direct variable-rate, in-season N fertilizer applications 

in cereal cropping systems has resulted in positive environmental and economic returns 

(Kitchen et al., 2010; Roberts et al., 2010). Raun et al. (2002) experimented with sensor-

based N application in wheat and found that, averaged over locations, NUE was 

improved by >15% when compared with traditional uniform practices. The savings in 

fertilizer N with similar grain yield had a value of >$25·ha-1. Scharf et al. (2011) 

conducted fifty-five replicated on-farm experiments in maize comparing sensor-based 

variable-rate N application to uniform producer-selected rates. Relative to the uniform 

rate, sensor-based management increased partial profit by $42·ha-1, and applied N was 

reduced by 16 kg·ha-1. Li et al. (2016) modeled the long-term environmental benefits of 

sensor-based N fertilization and found that, when compared with uniform application, 

sensor-based management can significantly decrease both gaseous and aqueous N losses. 
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Total N fertilizer use was reduced by 11% with no significant reduction in grain yield. 

Variable-rate fertilization mitigated soil N2O emissions, volatilized NH3 loss, and NO3
- 

leaching by 10, 23, and 16%, respectively. When considering emissions associated with 

farm input production, variable-rate N management resulted in 10% less global warming 

potential (GWP), 22% less acidification potential, and 16% less eutrophication potential 

than the producer-chosen uniform rate. 

Integrated Soil-Based MZ and Canopy Sensing Approach 

Crop canopy sensors and their corresponding algorithms are not without their 

limitations. With no direct knowledge of the soil and topographic characteristics 

underneath the growing crop, the sensor cannot accurately predict how spatial variability 

may affect future N mineralization or losses that are not expressed in the crop at the time 

of sensing. Areas of the field appearing to be highly N-deficient at the time of sensing 

receive correspondingly high in-season N rates, but often this excess N is not utilized, as 

these areas may simply have lower yield potential due to soil and topographic factors. 

This lack of soil-based information has resulted in poor algorithm performance in certain 

subfield regions due to local spatial variability (Ferguson, unpublished data, 2015). 

Researchers agree that refinements are needed in order to account for additional soil, 

climatic, and managerial factors (Shanahan et al., 2008; Stevens, 2014; Bean, 2016), 

combining both anticipatory and reactive decision-making (Ping et al., 2008). Schepers et 

al. (2004) and others (Holland and Schepers, 2010; Solari et al., 2008) have suggested 

combining MZ and in-season crop canopy sensing to better predict EONR throughout the 

field and achieve greater NUE. 
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 Roberts et al. (2012) experimented with an integrated MZ and canopy sensor 

approach on six irrigated fields in Nebraska, USA. They found potential for this 

integrated approach to increase NUE and economic return over current management 

practices, particularly in silt loam fields with eroded slopes. However, they believed 

additional research was needed to further refine current algorithms and explore how to 

best integrate the two N management strategies. Furthermore, they advocated for 

additional similar field studies to establish a consistent set of variables for use in MZ 

delineation. 
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Research Objectives 

 The objectives of this master’s research were to: 

1. Identify soil and topographic variables that are related to in-season canopy 

reflectance and yield for soil-based MZ delineation. 

2. Determine if delineated MZ can identify areas with differential crop response to N 

fertilizer. 

3. Test a sensor-based N application algorithm compared to uniform N management 

in a variety of soil conditions. 

4. Evaluate the potential of an integrated MZ- and sensor-based N management 

approach to sensor-based N management alone.  
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CHAPTER 2: EVALUATING RELATIONSHIPS BETWEEN MANAGEMENT 

ZONES AND ACTIVE CROP CANOPY SENSING FOR IMPROVED 

NITROGEN MANAGEMENT IN MAIZE 

 

ABSTRACT 

Active crop canopy sensors and management zones (MZ) are two methods of directing 

variable-rate, in-season nitrogen (N) fertilizer applications in maize (Zea mays L.). 

Researchers have suggested that integrating these two approaches may result in improved 

performance of sensor-based N application algorithms through increased N use efficiency 

(NUE) and profitability. The objectives of this research study were to (1) identify soil and 

topographic variables that are related to in-season canopy reflectance and yield for soil-

based MZ delineation and (2) determine if delineated MZ can identify areas with 

differential crop response to N fertilizer. Nitrogen ramp blocks containing six randomized 

N rates (0 to 280 kg·ha-1, in 56 kg·ha-1 increments) were placed end-to-end in field-length 

strips at eight irrigated maize fields in east central Nebraska in 2016 and 2017. Soil and 

topographic variables that were evaluated for MZ delineation in each field included soil 

apparent electrical conductivity (ECa), soil optical reflectance, soil organic matter (SOM), 

relative elevation, and slope. Maize response to N was evaluated with in-season canopy 

reflectance measurements (normalized difference red edge; NDRE) and grain yield. 

Relationships between maize response variables and measured soil and topographic 

attributes were evaluated and used to delineate MZ. Yield response to N rate was highly 

variable both among and within fields. Soil ECa had the highest correlations to crop 
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response overall and was used as a clustering variable in five of eight fields. Crop response 

was correlated to SOM in fields with high variability in SOM and was used as a clustering 

variable in three of eight fields. Economic analysis showed a potential advantage by using 

soil-based MZ compared to producer-chosen uniform N rates in five of eight fields. 

Delineated MZ were able to identify areas with differential soil chemical properties and 

crop response to N fertilizer. Zone 1 properly identified areas with significantly higher 

NDRE values in all eight fields and with significantly different yield response in three of 

six fields. Integrating soil-based MZ and sensor-based N management has potential to 

achieve further economic benefits. 

 

Abbreviations: ECa, apparent electrical conductivity; EONR, economic optimum nitrogen 

rate; MZ, management zones; NDRE, normalized difference red edge; NIR, near-infrared; 

NUE, nitrogen use efficiency; RE, red edge; RMSE, root mean square error; SI, sufficiency 

index; SOM, soil organic matter.  
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INTRODUCTION 

Maize is the most widely grown crop in the US, and it is also the largest user of 

nitrogen (N) fertilizer (Morris et al, 2018). For this reason, maize is often the target of 

environmental impact policies where N is concerned (Snyder, 2012). Fertilizer N use in 

cereal production is historically inefficient, with estimates of maize N use efficiency 

(NUE) ranging from 35 to 75% (Morris et al., 2018). Applied N fertilizer that is not taken 

up by the crop is subject to numerous loss mechanisms, including denitrification, 

volatilization, and leaching (Cassman et al., 2002). Low NUE over time has resulted in 

severe environmental consequences in several regions of the US.  

Three major factors contributing to low NUE in maize production include: (1) 

poor synchrony between soil N supply and crop demand (Shanahan et al., 2008), (2) 

applying uniform rates of fertilizer N to spatially variable landscapes, and (3) failure to 

account for temporal variability in crop response to N. High levels of inorganic N in the 

soil profile resulting from large pre-plant applications of fertilizer N increases the 

potential for N losses. In-season applications of N fertilizer coincide with the period of 

rapid crop uptake and therefore have great potential to increase NUE (Fageria and 

Baligar, 2005). Numerous field studies have shown that N supply within a field can be 

highly spatially variable (Scharf et al., 2005; Shahandeh et al., 2005). This variability is 

caused by differences in soil temperature, soil organic matter (SOM) mineralization, soil 

texture, water availability, and local topography. As producers typically apply enough N 

fertilizer to meet the crop requirements of the most N-limiting areas of a field, N fertilizer 

is frequently over-applied, increasing the risk for N loss in areas of the field requiring less 
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N. Climate and management interactions also result in high temporal variability in the 

economic optimum nitrogen rate (EONR) and in crop yields (Tremblay et al., 2012). 

Collectively, these three factors make accurate estimation of EONR difficult for many 

fields. Innovative N management strategies that can account for these factors are needed 

to increase NUE and mitigate detrimental environmental impacts. 

Delineating fields into management zones (MZ) is one method for managing 

within-field variability to increase NUE. Management zones are regions of a field with 

homogenous soil and landscape attributes, resulting in similar yield-limiting factors and 

corresponding uniform levels of crop inputs (Doerge, 1999). Myriad approaches to MZ 

delineation have been developed in the last 25 years (Khosla et al., 2010). Some common 

attributes that have been used—either individually or in combination—for MZ 

delineation include soil apparent electrical conductivity (ECa) (Kitchen et al., 1999; 

Fleming et al., 2004), yield maps (Flowers et al., 2005), imagery (Schepers et al., 2004), 

topography (Fraisse et al., 2001), and soil survey maps (Franzen et al., 2002). 

The statistical methods used to classify MZ are diverse. These include the 

ISODATA method, non-parametric approaches, a hierarchical approach, and the fuzzy c-

means (or k-means) method. Management Zone Analyst (MZA) (University of Missouri, 

USDA-ARS, Columbia, MO) is a free software program that uses a fuzzy c-means 

algorithm for clustering. In addition to ease of use, MZA has the advantage of providing 

results for a range of clusters so that the user can evaluate how many MZ should be used 

(Fridgen et al., 2004). 
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While managing N through the use of MZ often improves efficiency compared to 

uniform field management by helping to characterize the spatial variability in soil 

physical and chemical properties, MZ are often inconsistent in characterizing the spatial 

variability in crop N requirement because of the effect of temporal variability on crop N 

response (Shanahan et al., 2008). In a five-year study in Nebraska, Schepers et al. (2004) 

found temporal variability to greatly affect MZ, and the use of MZ to direct variable-rate 

N fertilizer application would have been appropriate in only three of five years. They 

concluded that a static, soil-based MZ approach alone is likely inadequate for directing 

spatially variable applications of N fertilizer due to the inability to account for temporal 

variability. 

One tool with the potential to manage all three factors causing low NUE is crop 

canopy sensing. This strategy is known as a reactive approach to N fertilizer management 

because the sensors can identify and correct N stress that has already occurred during the 

growing season (Ping et al., 2008). Rather than using indirect measures of growing 

condition from the soil or from atmospheric conditions, canopy sensors use the crop itself 

as a bio-indicator to assess crop N status and direct real-time, variable-rate, in-season 

applications of N fertilizer (Adamchuk et al., 2011). Sensor-based N management is 

better able to account for spatial and temporal variability and also helps to achieve greater 

synchrony between N supply and crop N demand, as the majority of N fertilizer is 

applied in-season during the period of rapid N uptake. Canopy sensors have been used 

successfully to direct in-season variable-rate N fertilizer applications in several crops, 
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including maize (Holland and Schepers, 2010), wheat (Solie et al., 2012), cotton 

(Oliveira et al., 2013), rice (Tubaña et al., 2012), and sugarcane (Amaral et al., 2015). 

Crop canopy sensors make use of the relationship between leaf and canopy 

reflectance to crop response to make quantitative estimates of in-season N status 

(Hatfield et al., 2008). Active crop canopy sensors emit modulated light in two or more 

wavelengths in the visible (400-700 nm) and near-infrared (NIR) (750-1400 nm) regions 

of the electromagnetic spectrum, and measure the reflectance from the crop canopy with 

photodetectors. Reflectance in these wavelengths is combined into vegetation indices, 

which are correlated with chlorophyll content and N sufficiency (Walburg et al., 1982). 

In order to assess crop N status, canopy reflectance of plants yet to be fertilized is 

compared to reflectance from plants receiving an adequate amount of N fertilizer such 

that N is not a limiting factor (Shanahan et al., 2008). This N-sufficient reference is used 

to calculate a Sufficiency Index (SI) with the following equation (Peterson et al., 1993): 

 𝑆𝐼 =
𝑉𝐼𝑇𝑎𝑟𝑔𝑒𝑡

𝑉𝐼𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
      [2.1] 

where 

 0 ≤ 𝑆𝐼 ≤ 1 

 𝑉𝐼𝑇𝑎𝑟𝑔𝑒𝑡 = vegetation index of target crop 

 𝑉𝐼𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = vegetation index of high-N reference 

Essentially, lower SI values signify that unfertilized plants are more deficient, and so will 

require more N fertilizer to achieve their yield potential (Shanahan et al., 2008).  

Numerous algorithms have been developed to convert sensor reflectance data into 

an in-season N fertilizer application rate (Scharf et al., 2011; Solie et al., 2012; Franzen et 



37 
 

al., 2014). Holland and Schepers (2010) developed a generalized N application algorithm 

for use with crop canopy sensors. They describe the plant growth function as a typical N 

rate by yield response function (quadratic or quadratic plateau) (Franzen et al., 2016). 

The algorithm uses an estimated optimum N rate (NOPT) along with the calculated SI to 

control the model. It also allows for incorporating economics into the NOPT term and 

accounts for fertilizer N already applied as well as any N credits.  

The use of these systems to direct variable-rate, in-season N fertilizer applications 

in cereal cropping systems has resulted in positive environmental and economic returns 

(Kitchen et al., 2010; Roberts et al., 2010). Raun et al. (2002) experimented with sensor-

based N application in wheat and found that, averaged over locations, NUE was 

improved by >15% when compared with traditional uniform practices. The savings in 

fertilizer N with similar grain yield had a value of >$25·ha-1. Scharf et al. (2011) 

conducted 55 replicated on-farm experiments in maize comparing sensor-based variable-

rate N application to uniform producer-selected rates. Relative to the uniform rate, 

sensor-based management increased partial profit by $42·ha-1, and applied N was reduced 

by 16 kg·ha-1.  

Crop canopy sensors and their corresponding algorithms are not without their 

limitations. With no direct knowledge of the soil and topographic characteristics 

underneath the growing crop, the sensor cannot accurately predict how spatial variability 

may affect future N mineralization or losses that are not expressed in the crop at the time 

of sensing. This lack of soil-based information has resulted in poor algorithm 

performance in certain subfield regions due to local spatial variability (Ferguson, 
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unpublished data, 2015). Researchers agree that refinements are needed in order to 

account for additional management, soil, and climatic factors (Shanahan et al., 2008), 

combining both anticipatory and reactive decision-making (Ping et al., 2008). Schepers et 

al. (2004) and others (Holland and Schepers, 2010; Solari et al., 2008) have suggested 

combining MZ and in-season crop canopy sensing to better predict EONR throughout the 

field and achieve greater NUE. 

 Roberts et al. (2012) experimented with an integrated MZ and canopy sensor 

approach on six irrigated fields in Nebraska, USA and found potential for this integrated 

approach to increase NUE and economic return over current management practices, 

particularly in silt loam fields with eroded slopes. However, they believed further 

research was needed to refine current algorithms and explore how to best integrate the 

two N management strategies. Furthermore, they advocated for additional similar field 

studies to establish a consistent set of variables for use in MZ delineation. Therefore, the 

objectives of this research study were to (1) identify soil and topographic variables that 

are related to in-season canopy reflectance and yield for soil-based MZ delineation and 

(2) determine if delineated MZ can identify areas with differential crop response to N 

fertilizer.  
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MATERIALS AND METHODS 

Research Fields 

Experiments were conducted on eight maize fields, all center-pivot irrigated, 

during the 2016 (Fields AR16, CA16, HU16, and KR16) and 2017 (Fields AR17, HU17, 

JA17, and KR17) growing seasons.  Fields were located in east central Nebraska, USA 

(Fig. 2.1). Fields AR16, KR16, AR17, HU17, and KR17 were relatively flat (< 5 m of 

relief), while there were substantial differences in elevation (~7-20 m) and topography for 

Fields CA16, HU16, and JA17. The sites were grouped into four classifications based on 

soil texture and topography: sandy loam, relatively level (KR16 and KR17), silt loam, 

relatively level (AR16, AR17, HU17), silt loam, eroded slopes (CA16 and HU16), and 

sandy loam, eroded slopes (JA17). One to four soil series were represented at each site 

(Table 2.1). 

Experimental Treatments 

Tillage practices, crop rotation, hybrid selection, planting date, seeding rate, 

irrigation, and other field management decisions and operations were managed by 

individual producers (Table 2.2). Plots were arranged in a 2 x 3 randomized complete 

block design (RCBD) (Fig. 2.2). Plots were 6, 8, or 12 rows (0.76-m row spacing) in 

width, depending on producer equipment (Table 2.3). Plot length was 15.2 m with 0.6 m 

buffers in 2016, and 12.2 m with 3.6 m buffers in 2017 (Fig. 2.2). Blocks were placed 

end-to-end in a field length strip, with the number of blocks per field varying from 10 to 

16 (Table 2.3). Treatment layout maps for all fields can be found in Appendix 1.   
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Nitrogen treatments consisted of six rates ranging from 0 to 280 kg·ha-1 in 56 

kg·ha-1 increments. Field AR16 had 84 kg·ha-1 applied before planting, so rates on that 

site ranged from 84 to 308 kg·ha-1, in 45 kg·ha-1 increments. Field JA17 received a pre-

emergence N fertilizer application of 39 kg·ha-1. Field KR17 received an N application of 

23 kg·ha-1 as ammonium sulfate (21-0-0-24) at the V4 growth stage to correct a sulfur 

deficiency. A base N fertilizer rate of 56 kg·ha-1 was applied to all but the check plots 

between the V2 and V5 growth stages (Table 2.3). Field JA17 had a decreased base rate 

of 17 kg·ha-1 to account for the pre-emergence N application. The remaining N fertilizer 

was applied between the V9 and VT growth stages (Table 2.3). The N fertilizer source 

for all treatments was either 28 or 32% urea ammonium nitrate (UAN) solution (Table 

2.3). Nitrogen fertilizer was applied with a high-clearance applicator (Hagie DTS 10, 

Hagie Manufacturing Co., Clarion, IA), and the fertilizer was applied through a straight 

stream nozzle between each row. Flow rate was controlled with a pulse-width modulation 

spray rate controller (PinPoint, Capstan Ag Systems, Topeka, KS). Fertilizer application 

data were collected with a flowmeter at a rate of 1 Hz and were filtered to exclude 

erroneous data points. 

Field Data Collection 

Soil Data 

Spatial soil data collected for each field included soil apparent electrical 

conductivity (ECa) and soil optical reflectance (red and NIR bands). These attributes were 

collected for each field prior to planting (except for Field HU17, for which data were 

collected following harvest) using a Veris MSP3 on-the-go soil sensing platform (Veris 
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Technologies, Inc., Salina, KS). The MSP3 instrument uses two arrays of coulter-

electrode pairs to measure soil ECa at depths of 0 to 0.3 m (shallow ECa—ECs) and 0 to 

0.9 m (deep ECa—ECd) simultaneously. The MSP3 also measures soil optical reflectance 

with an active optical sensor located ~5 cm deep in the soil measuring in red and near-

infrared (NIR) wavelengths. The simple ratio (SRsoil) (
𝑁𝐼𝑅

𝑅𝑒𝑑
) was calculated from the 

reflectance readings. 25 soil samples were collected to a depth of 20 cm across the range 

of ECs and reflectance values for the field, and results were used by Veris Technologies 

to calibrate the optical reflectance readings to estimate soil organic matter (SOM). A 

global positioning system (GPS) receiver was mounted on the MSP3 sensor to log 

geographic coordinates as the instrument made parallel passes ~18 m apart throughout 

the field. 

 Elevation for each field as 2-m Digital Elevation Model (DEM) grids was 

retrieved from the Nebraska Department of Natural Resources (NeDNR) LiDAR 

Repository (NeDNR, 2010). Elevation data for the experimental sites was collected in 

2009 (Fields CA16, HU16, and HU17) and 2010 (Fields AR16, KR16, AR17, JA17, and 

KR17). Relative elevation (Elevrel) was calculated for each field by subtracting all grids 

by the minimum elevation within the field. Slope was calculated with the same grid size 

as the DEMs using the Spatial Analyst package in ArcMap 10.4 (ESRI, Redlands, CA). 

Summary statistics for the spatial data can be found in Appendix 1. 

All spatial data were projected into the Universal Transverse Mercator (UTM) 

Zone 14N (NAD83 Datum) projection. To obtain values of each data layer for each plot, 

ordinary kriging was used to interpolate each layer (ECs, ECd, SRsoil, SOM, Elevrel, and 
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Slope). Interpolation was conducted using the Geostatistical Analyst package in ArcMap 

10.4. Plots were buffered by one row (0.76 m) on each side and by 2 m at each edge to 

reduce the possibility of any potential buffer effect between plot N applications. As an 

additional precaution, pivot tracks were buffered by 1 m. Buffered plots measured 11.2 m 

in length in 2016 and 9.0 m in 2017, with width varying according to plot row width. 

Data were extracted from this rectangular area-of-interest (AOI) using zonal statistics or 

join in ArcMap 10.4. 

Crop Response Data 

Canopy reflectance was measured at the time of the in-season N application (V9 

to VT growth stage) for each plot using an OptRx active canopy sensor (Ag Leader 

Technology, Ames, IA) (Table 2.3). Canopy reflectance in the red-edge (RE) (730 nm) 

and NIR (780 nm) wavelengths was used to calculate the normalized difference red edge 

(NDRE) vegetation index using the following equation (Gitelson and Merzlyak, 1994): 

   𝑁𝐷𝑅𝐸 =
𝑅𝑁𝐼𝑅−𝑅𝑅𝐸

𝑅𝑁𝐼𝑅+𝑅𝑅𝐸
      [2.2]              

where 

 𝑅𝑁𝐼𝑅 = NIR reflectance 

 𝑅𝑅𝐸 = red-edge reflectance 

The sensor was mounted to the front of the high-clearance applicator approximately 0.3-

0.6 m above the crop canopy. The sensor was positioned over either of the center two 

rows of each plot in the nadir view. Differential GPS location and reflectance data were 

logged with a GeoSCOUT X data logger (Holland Scientific, Lincoln, NE). Canopy 

reflectance measurements were collected at a rate of 1 Hz while the vehicle traveled at a 
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speed of ~1.5 m·sec-1, resulting in raw data points ~1.5 m apart. Sensor readings were 

extracted for each plot AOI using zonal statistics in ArcMap 10.4. Sensor readings within 

the plots were buffered in the same manner as the soils and elevation data. 

Yield Data 

The entirety of the center two rows of each plot was harvested at physiological 

maturity with a two-row combine. Due to an improper calibration, Field JA17 was 

harvested a second time, using rows adjacent to the center two. A Gleaner K combine 

(AGCO Corp., Duluth, GA) was used for 2016 sites, and the 2017 sites were harvested 

with a Kincaid 8-XP plot combine (Kincaid Equipment Manufacturing, Haven, KS). Both 

combines were equipped with a HarvestMaster HM800 GrainGage (Juniper Systems, 

Logan, UT) for measurement of plot weight, moisture, and test weight. Harvested weight 

was adjusted to a moisture of 155 g kg-1. Yield was further cleaned by adjusting plot area 

due to pivot tracks, lodging, and poor stand. 

Yield response to N rate models were fit to each treatment block using a 

quadratic-plateau function. This function has been found to best describe maize yield 

response to N in previous research by Cerrato and Blackmer (1990) and Scharf et al. 

(2005). PROC NLIN in SAS 9.4 (SAS Institute Inc., Cary, NC) was used to compute the 

quadratic-plateau function for each block (Table 2.4). Two parameters, the coefficient of 

determination (R2) and root mean square error (RMSE), were calculated for each model 

and used to evaluate goodness of fit using the following equations: 

𝑅2 = 1 −
𝐸𝑆𝑆

𝑇𝑆𝑆
        [2.3] 
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     𝑅𝑀𝑆𝐸 = √
𝐸𝑆𝑆

(𝑛−2)
       [2.4] 

where 

𝐸𝑆𝑆 = model error sum of squares 

𝑇𝑆𝑆 = total sum of squares 

𝑛 = number of observations 

Each of the 109 response functions was plotted along with the observations it 

described and visually inspected for fit. In a few cases, it appeared that the initial NLIN 

procedure may not have found the best function, so the NLIN procedure was run again 

with different starting parameters. This resulted in improved fit of the quadratic-plateau 

function in a few instances. Additionally, one outlier observation was removed from a 

small number of blocks when negative yield response to N occurred in order to improve 

model fit.  

Parameters (a, b, and c) from the quadratic model: 

    𝑌𝑖𝑒𝑙𝑑 = 𝑎 + 𝑏(𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑁) + 𝑐(𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑁)2     [2.5] 

were evaluated using a process described by Scharf et al. (2005). When the linear (b) 

coefficient of the quadratic-plateau model was negative (i.e. yield decreased with the first 

increment of N fertilizer), yield was modeled as unresponsive to N. When the quadratic 

(c) coefficient of the quadratic model was positive, or when PROC NLIN in SAS failed 

to converge, a linear function was fit to the data, using PROC REG in SAS 9.4. Yield 

was modeled as a linear function when p < 0.10 and the slope of the line was significantly 

greater than zero. Otherwise, yield was modeled as unresponsive to N. Unresponsive 

treatment blocks were excluded from further analysis.  
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Parameters b and c from the quadratic-plateau models were used to calculate 

EONR for each treatment block (Table 2.4). EONR was determined with a maize grain 

price of $120.07·Mg-1 ($3.05·bu-1) and a N fertilizer cost of $0.99·kg-1 ($0.45·lb-1). 

EONR was calculated based on the equation: 

   𝐸𝑂𝑁𝑅 =
($0.99 $120.07⁄ −𝑏)

2𝑐
       [2.6] 

where b and c were the linear and quadratic coefficients of the quadratic-plateau function, 

and b > 0 and c < 0 (Scharf et al., 2005). EONR was constrained to never exceed the 

highest N rate for each field. 

 

Management Zone Delineation 

In order to explore relationships between the measured soil and crop variables, a 

Pearson correlation analysis was conducted using PROC CORR in SAS 9.4. The first 

analysis explored relationships between check plot yield and NDRE for all check plots. A 

second analysis utilized all but the check plots, which at the time of sensing had received 

the same rate of N fertilizer. NDRE was the only crop variable used in the second 

analysis. Yield for all plots was not explored due to the confounding treatment effect of N 

on the measured variables. 

Using Global (all fields combined) and Field-Specific approaches, the two 

variables with the highest significant correlation (p < 0.05 and R > 0.50) to either NDRE 

or check yield for each field were selected as input variables for clustering in 

Management Zone Analyst (MZA) 1.0.1 (USDA-ARS and University of Missouri, 

Columbia, MO) (Fridgen et al., 2004). To increase the number of observations for 



46 
 

clustering and to increase the overall spatial area of the MZ, all soil and landscape data 

collected from the plots as well as adjacent to them were used as inputs into MZA, 

resulting in a total area of 12-30 ha. In the software, Mahalanobis distance was selected 

as the measure of similarity except when variables with identical units were used. In 

these instances Euclidean distance was chosen.  

Two indices are calculated by MZA to help determine the optimum number of 

classes. The Normalized Classification Entropy (NCE) quantifies the disorganization 

created by dividing data into classes (Lark and Stafford, 1997). The Fuzziness 

Performance Index (FPI) determines the amount of membership sharing (fuzziness) 

among classes (Odeh et al., 1992). Class number is optimized when both NCE and FPI 

are minimized, meaning a low degree of membership sharing and low disorganization 

from the clustering process (Fridgen et al., 2004). 

Management Zone Validation 

 Following MZ delineation for each field, zones were evaluated to determine if 

there were differences between MZ in terms of response to N. For an initial exploration 

of MZ, differences in four soil chemical properties—pH, Mehlich-III phosphorus (P), 

SOM, and cation-exchange capacity (CEC)—were tested. To do this, sample points were 

grouped by MZ and an F-test was performed to determine if these properties differed 

between MZ.  

Canopy reflectance (expressed as NDRE) is one input in the Holland-Schepers 

sensor-based N recommendation algorithm (Holland and Schepers, 2010) and 

consequently was used as one variable to test zonal differences within each field. To 
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accomplish this, treatment blocks were disregarded and plots were placed into two 

groups—those that had received no N fertilizer and those that had received a base rate of 

56 kg·ha-1. Because the remaining N fertilizer was applied simultaneously with canopy 

reflectance sensing, all non-check plots had received the same amount of N at the time of 

sensing. NDRE values were averaged within each plot and an F-test was used to evaluate 

zonal differences. 

 In order to evaluate MZ delineation using yield response to N rate, treatment 

blocks within each field were disregarded, and plots were grouped according to target N 

rate within each zone. Only plots located in a block that successfully fit a quadratic-

plateau function were used. Plot yields and as-applied N fertilizer rates were averaged for 

each target N rate within each zone. A quadratic-plateau model with six observations was 

fitted using procedures identical to those outlined previously. Statistical differences 

between the two models for each field were tested by combining the data for the two 

zones and re-fitting a quadratic-plateau model to the combined data set (Roberts et al., 

2012). With the resulting models for Zone 1, Zone 2, and the combined model, a Chow 

F-test was performed to determine whether the models for each zone were statistically 

different (Chow, 1960): 

                              𝐹𝑘,𝑛1+𝑛2−2𝑘 =
(𝑆𝑆𝐸𝐶−(𝑆𝑆𝐸1+𝑆𝑆𝐸2))/𝑘

(𝑆𝑆𝐸1+𝑆𝑆𝐸2)/(𝑛1+𝑛2−2𝑘)
               [2.7] 

where SSEC, SSE1, and SSE2 are equal to the residual sum of squares from the combined, 

Zone 1, and Zone 2 models, respectively; n1 and n2 are the number of observations in 

Zone 1 and Zone 2, respectively; and k is equal to the total number of model parameters. 
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RESULTS AND DISCUSSION 

Yield Response to Nitrogen 

 The average yield at EONR for all eight sites was 14.2 Mg·ha-1, indicating 

favorable growing conditions and production practices for these experiments (Table 2.3). 

Out of 109 total blocks, yield response to N was described using a quadratic-plateau 

function in 62 blocks, a linear function in 23 blocks, and a nonresponsive function in 24 

blocks (Table 2.4). Plots for each individual block can be found in Appendix 1. The 

average R2 for the 85 responsive plots was 0.88, and median R2 was 0.91. A cumulative 

distribution function for R2 values is shown in Fig. 2.3. Sixty percent of all responsive 

functions had R2 ≥ 0.90. 

 Only 57% of blocks were able to be described by a quadratic-plateau function for 

yield response to N. This is much lower than the results of the study by Scharf et al. 

(2005), in which 93% of their blocks were described using a quadratic-plateau function. 

Just two fields (AR16 and JA17) were responsible for nearly half of the 47 blocks for 

which a quadratic-plateau function could not be fit. Field AR16 did not have a proper 

check plot, and the lowest N rate was 84 kg·ha-1. Combined with soybean as a previous 

crop and >3% SOM levels throughout the field, most of the blocks showed no yield 

response to N. Field JA17 was highly variable in topography. In one area, elevation 

ranged 3.3 m in the 43-m length of one block. This highly localized variability did not 

provide equal growing conditions for the entire block area and likely affected water and 

nutrient availability as well as crop stand. This resulted in little or sometimes even 

negative yield response to N in many of the blocks of this field. 
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 EONR varied greatly both among and within the eight fields in this study. Median 

EONR ranged from to 110 to 198 kg·ha-1 between fields (Fig. 2.4). Yield at EONR was 

not significantly related to EONR (p = 0.42). Yield level explained on average only 1% 

of the variability in EONR (R2 = 0.01). This is similar to the results found by Scharf et al. 

(2006), who found yield to be a very weak predictor of EONR. They concluded that 

spatial variability in EONR was due mainly to variations in soil N supply and N uptake 

efficiency, rather than to variations in crop demand for N. These findings may have 

negative implications for traditional yield-based N fertilizer recommendations derived 

from a mass balance approach (Lory and Scharf, 2003). 

Within-field variability in EONR was also high, with a range of 80 kg·ha-1 or 

more for six of eight fields (Fig. 2.4). The level of between-field and within-field spatial 

variability in EONR confirms the value of variable-rate N fertilizer application provided 

that EONR can be accurately predicted across the field. 

Selection of Soil Variables for Management Zone Delineation 

The first objective of this research was to determine which soil and landscape 

variables could identify areas with differential crop response to N and could therefore be 

used to delineate MZ. To accomplish this, measured soil and landscape variables, 

including ECa at two depths (ECs and ECd), soil optical reflectance (SRsoil), SOM, 

elevation (Elevrel), and slope were evaluated to determine their relationship to check plot 

yield and in-season canopy reflectance (NDRE) (Table 2.5).  

Results from this analysis of all sites combined (Global Approach) indicated that 

no variable was significantly correlated to check yield (p < 0.10). Relative elevation and 
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slope were significantly correlated to NDRE (p < 0.05), but the correlation was weak (R 

= -0.21, -0.25). Check yield and NDRE were significantly correlated to each other (p < 

0.001; R = 0.67). Most of the soil and topographic variables were significantly correlated 

to one another, with the highest correlation occurring between ECs and ECd (R = 0.94). 

Shallow ECa was significantly correlated (p < 0.001) to every other soil and topography 

variable. Soil organic matter was moderately correlated to both ECs and ECd (R = 0.65, 

0.71), which has also been reported by Serrano et al. (2014). 

To remove confounding N treatment effects on the correlation between crop and 

soil variables, a second analysis looked at correlations to in-season NDRE for all but the 

check plots, which at the time of sensing had an equal rate of N fertilizer applied (Table 

2.6). Four variables—SOM, SRsoil, Slope, and Elevrel—were significantly correlated to 

NDRE at p < 0.05, though weakly (R = 0.17, -0.14, -0.14, -0.11). With no significant 

correlation to check yield and only weak correlations to NDRE, no variable was chosen 

to cluster MZ in an approach with all fields combined (Global Approach). The eight 

fields chosen varied widely in soil texture, SOM levels, and topography, making it 

difficult to explain crop response accurately for all of them using the same one or two soil 

properties. Correlations were subsequently evaluated on a field-by-field basis (Field-

Specific Approach). 

Next, correlation analyses between soil and topographic variables, NDRE, and 

check yield were evaluated for each individual site (Table 2.7, see also Appendix 1). The 

two variables with the highest significant correlation (p < 0.05 and R > 0.5) to either 

NDRE or check yield for each field were selected as clustering variables in MZA, except 
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for Fields CA16 and JA17, where only one variable was used. Shallow ECa was chosen 

as a clustering variable in five of eight fields, and ECd was chosen as a clustering variable 

in four of eight fields. Soil organic matter was chosen in three of eight fields, and Elevrel 

was selected in two of eight fields.  

There did not appear to be a pattern between the four field classification groups 

and the variables chosen for MZ delineation. However, for the four sites where ECs had a 

significant (p < 0.05) correlation to both check yield and NDRE, the correlations were 

positive for sites with coarse-textured soils (KR16 and KR17) and negative for sites with 

fine-textured soils (HU16 and HU17). For the sandy fields, areas with higher soil ECs had 

higher clay content, water-holding capacity, and SOM, resulting in improved crop 

growth. For the silt loam fields, increased ECs corresponded to areas with higher slopes 

or with increased clay content and poorer drainage where conditions are less suitable for 

optimal crop growth in most growing seasons. 

Interestingly, SRsoil and SOM were not significantly correlated at p < 0.10 for 

either approach that used all sites (Global Approach). A proprietary calibration procedure 

by Veris Technologies related soil optical reflectance to SOM using directed soil samples 

and laboratory analysis. However, SOM calibrations for the eight sites were rated by 

Veris Technologies as high quality (two sites), average (three sites), and questionable 

(two sites), with one site being unable to be calibrated (data not shown). 

When evaluated with a Field-Specific approach, there were significant (p < 0.10) 

correlations between SRsoil and SOM when both check and non-check plots were used for 

five of eight fields. However, correlations were negative for four of the five fields and 
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positive for the remaining field. This may explain the lack of significant correlation when 

using all fields combined. 

Soil organic matter content for all sites ranged from 0.6 to 5.0% (Table 2.1). 

Baumgardner et al. (1969) found that SOM content plays a dominant role in bestowing 

spectral properties to soils when SOM exceeds 2%. As SOM content drops below 2%, it 

becomes less effective in masking the effects on reflectance of other soil constituents. 

This may explain why Field KR16 was unable to be calibrated, as it had a range in SOM 

of 0.6 to 1.7%. Other factors causing varying degrees of correlation between soil optical 

reflectance and SOM levels include the level of wear on the sapphire window through 

which the sensor views the soil, the level of crop residue present during sensing, and 

varying soil moisture caused by local topographic variability in each field. 

Management Zone Delineation 

 Results from MZA were evaluated using two indices calculated by MZA—NCE 

and FPI. Class number is optimized when both NCE and FPI are minimized (Fridgen et 

al., 2004). The FPI indicated that optimal clustering occurred with five MZ in two fields, 

with three MZ in two fields, and with two MZ in four fields (Fig. 2.5). For NCE, optimal 

clustering occurred with two MZ for all eight fields (Fig. 2.5). To simplify analysis, each 

field was clustered into two MZ. 

 A map of delineated MZ for Field HU17 is presented in Fig. 2.6. Classification 

maps for all fields are included in Appendix 1. For all sites, Zone 1 consisted of more 

productive soils with higher SOM content while Zone 2 classified the less productive 

areas of the field. For the sandy level fields (KR16 and KR17), Zone 1 contained soils 
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with higher soil ECa and corresponding higher SOM content. The fields with eroded 

slopes (CA16, HU16, JA17) had more productive areas in the level, upland positions of 

the landscape, while Zone 2 areas were associated with steep slopes and drainage areas, 

and lower SOM, with conditions less suitable for growth. Silt loam level fields (AR16, 

AR17, HU17) had more productive Zone 1 areas associated with lower soil ECa in slight 

depressions.  

Management Zone Validation 

Soil Chemical Properties 

Management zones were first evaluated to see if there were any differences 

between MZ in soil chemical properties, including pH, Mehlich-III P, SOM, and CEC 

(Table 2.8). The property that showed significant (p < 0.05) between-zone differences 

most often was CEC, occurring in five of eight fields. It is interesting to note that CEC 

was significantly greater in Zone 1 for the fields with coarse-textured soils (KR16 and 

JA17) and significantly greater in Zone 2 for the fields with fine-textured soils (AR16, 

HU16, HU17). This increased CEC for the Zone 1 soils in sandy fields is likely related to 

increased clay content in these areas given the fact that these fields had positive 

correlations between crop growth and soil ECa, while the opposite was true for the silt 

loam fields (Table 2.7). Measured SOM recorded significant differences between MZ in 

three of eight fields. Phosphorus and pH did not prove to be valuable indicators of zonal 

differences, each returning a significant difference in only one of eight fields.  
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Normalized Difference Red Edge Index 

The second objective of this study was to determine if delineated MZ can identify 

areas with differential crop response to N fertilizer. In order for MZ to be used together 

with canopy sensor-based N management, MZ should be able to properly identify areas 

within a field with differing levels of N sufficiency. Researchers have found NDRE to be 

a good measure of in-season crop N status (Li et al., 2014), and it was consequently used 

for MZ validation. 

 For six of seven fields, Zone 1 properly identified areas with significantly higher 

NDRE values and potentially greater N sufficiency than Zone 2 when using the check 

plots (p < 0.05; Fig. 2.7). When all other plots were analyzed, Zone 1 identified areas 

with higher NDRE values in six of eight fields. When considering both groups (check 

plots and all other plots), there was a significant difference in NDRE between zones for at 

least one of the groups for all eight fields. These results indicate that using appropriate 

soil and topographic variables to delineate field-specific MZ can characterize in-season 

variability in NDRE and subsequently, N status. This is in contrast to results concluded 

by Inman et al. (2008). However, their study used a different vegetation index, the 

Normalized Difference Vegetation Index (NDVI), which, under high-biomass conditions, 

can become saturated and fail to accurately reflect chlorophyll content (Gitelson and 

Merzlyak, 1996). They also collected reflectance data using a passive sensor in an aircraft 

rather than with a ground-based active sensor.  
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Yield  

Yield response to N rate was another crop response variable used to test whether 

MZ statistically differed within each field. Yield response to N rate models in Zones 1 

and 2 were significantly different (p < 0.05) for Fields KR16, HU17, and KR17 (Table 

2.9; Fig. 2.8). They were not significantly different for Fields AR16, CA16, and AR17, 

and comparisons could not be made in Fields HU16 and JA17. For these two fields 

(HU16 and JA17), all blocks showing a quadratic-plateau response were located in one 

zone. Fields AR16 and AR17 had very little variability, and each field contained highly 

productive soils across both zones. This resulted in very small differences between zones 

in optimal yield (0.61 and 0.01 Mg·ha-1, respectively) and EONR (23 and 11 kg·ha-1, 

respectively) (Table 2.9). The models for Zones 1 and 2 in Field CA16 were very close to 

being significantly different (p = 0.058), and zonal EONR varied by 96 kg·ha-1, the 

greatest range of any of the fields studied. 

Maximum yield difference between zones was greatest in Field KR16 (3.46 

Mg·ha-1) and Field KR17 (2.39 Mg·ha-1). Though these fields had a very great difference 

in optimum yield, there were minimal differences in EONR between zones (11 and 28 

kg·ha-1 for Fields KR16 and KR17, respectively). Zone 1 for both of these fields 

contained areas with more productive soil, resulting in significantly increased yields 

compared to Zone 2. However, because the soil was likely supplying more N in these 

favorable conditions, less N was required from N fertilizer additions (Morris et al., 2018). 

This can also be confirmed in the fact that, for 4 of 6 fields in this study, Zone 2 EONR 

was greater than EONR for Zone 1. The results from this study indicate that soil-based 
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MZ delineated using field-specific variables are able to appropriately classify areas with 

differing yield response to N rate in fields with medium to high spatial variability. 

Accounting for this within-field variability through the use of soil-based MZ has potential 

to increase the performance of sensor-based N recommendation algorithms. 

Economic Considerations 

 An economic analysis compared current producer N fertilizer application rates for 

each field (Table 2.2) to applying a zone-based uniform N rate based on the calculated 

EONR for each zone (Table 2.9). This analysis was performed for the six fields for which 

quadratic-plateau functions for yield response to N were fitted by zone. The study areas 

in Fields AR16, CA16, KR16, AR17, HU17, and KR17 were 29.6, 12.8, 14.8, 18.7, 24.2, 

and 16.4 ha, respectively. Assuming an N fertilizer cost of $0.99·kg-1 ($0.45·lb-1), the 

potential savings or loss resulting from zone-based application was determined. There 

was a total savings/loss of $16·ha-1, $117·ha-1, -$11·ha-1, $95·ha-1, $137·ha-1, and  

$92·ha-1 for Fields AR16, CA16, KR16, AR17, HU17, and KR17, respectively. 

Extrapolating this savings to a typical center pivot in Nebraska with an area of ~60 ha, 

the savings/loss is $982, $6991, -$681, $5674, $8244, and $5505 for these fields. The 

loss on Field KR16 is due to the EONR for both zones being greater than the producer’s 

uniform N rate. The substantial economic benefit measured in five of six fields suggests a 

potential benefit to applying N fertilizer according to delineated MZ.  
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CONCLUSIONS 

Economic optimum N rate varied greatly both among and within fields in this 

study. Within-field EONR ranged 80 kg N·ha-1 or more for six of eight fields. The high 

level of spatial variability in EONR confirms the value of variable-rate N fertilizer 

application if EONR can be accurately predicted across the field. 

No soil or topographic variable was significantly correlated to crop response in an 

approach using all sites combined. When evaluated on a field-specific basis, soil ECa had 

the highest correlations to crop response overall and was used as a clustering variable in 

five of eight fields. Crop response was correlated to SOM in fields with high variability 

in SOM and was used as a clustering variable in three of eight fields. 

Field-specific MZ were delineated using a combination of ECa, SOM, and 

elevation layers. These MZ identified significantly different areas of in-season crop 

response (NDRE) in all eight fields and different areas of yield response to N rate in three 

of six fields. Results from this study indicate that soil and topographic properties can be 

used to delineate field-specific MZ that properly identify spatial variability in crop 

response to N measured both in-season (NDRE) and by grain yield. 

An economic analysis showed a potential benefit to variable-rate N fertilizer 

applications using soil-based MZ compared to a uniform rate in five of six fields 

analyzed. Further economic benefits may be achieved by integrating MZ and sensor-

based N management.  
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Fig 2.1. Study site locations within the state of Nebraska. SSURGO surface soil texture also shown. 
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Fig 2.2. Small plot RCBD treatment layouts for 2016 and 2017. Example N rates in kg·ha-1.
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Fig 2.3.  Cumulative distribution function for the coefficient of determination (R2) for all 

85 plots modeled as responsive to N (24 plots were modeled as unresponsive). 60% of the 

models fit the yield data with R2 ≥ 0.90. 
 

 
Fig. 2.4. Box-and-whiskers plot of economic optimum N rate (EONR) distributions for 

all eight sites. The upper and lower limits of each box signify the 75th and 25th percentiles 

for EONR, the horizontal line in the center of the box indicates the median, and the 

whiskers represent the full range of EONR observed.   
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Fig 2.5.  FPI and NCE values calculated in MZA for all fields.  
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Fig. 2.6. Management zone delineation for Field HU17 using ECs and SOM.  
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Fig. 2.7. In-season canopy reflectance (NDRE) by N rate by zone for each field. Bars with the same letter are not significantly 

different. Error bars represent standard error for each treatment.  
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Fig. 2.8. Yield response to N rate by zone within each field. Zone 1 and 2 EONR is 

designated on the x-axis with the corresponding zone symbol.   
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Table 2.1. Field location, soil series, and soil classification for all fields. 
 

Field 

ID Year Legal Description Soil Series Soil Great Group Slope 

SOM 

Range† 

AR16 2016 T.14N-R.9E., Sec 

19, NW ¼, N ½  

Filbert silt loam Vertic Argialbolls 0-1% 2.9-5.0% 

Tomek silt loam Pachic Argiudolls 0-2%  

Yutan silty clay loam Mollic Hapludalfs 2-6%, eroded  

CA16 2016 T.9N-R.2E., Sec 19, 

NW ¼, W ½, S ½  

Deroin silty clay loam Mollic Hapludalfs 6-11%, severely eroded 1.9-3.6% 

Hastings silty clay loam Udic Argiustolls 3-7%, eroded  

Deroin silty clay loam Mollic Hapludalfs 11-30%, severely eroded  

HU16 2016 T.9N-R.7W., Sec 4, 

SW ¼, E ½  

Hastings silt loam Udic Argiustolls 0-1% 1.9-3.8% 

Crete silt loam Udertic Argiustolls 0-1%  

Hastings silty clay loam Udic Argiustolls 7-11%, eroded  

Hastings silty clay loam Udic Argiustolls 3-7%, eroded  

KR16 2016 T.16N-R.1E., Sec 

21, NW ¼, S ½  

Brocksburg sandy loam Pachic Argiustolls 0-2% 0.6-1.7% 

AR17 2017 T.14N-R.9E., Sec 

20, SW ¼, W ½  

Yutan silty clay loam Mollic Hapludalfs 2-6%, eroded 1.9-4.7% 

Filbert silt loam Vertic Argialbolls 0-1%  

Tomek silt loam Pachic Argiudolls 0-2%  

HU17 2017 T.9N-R.8W, Sec 1, 

NE ¼, N ½  

Hastings silt loam Udic Argiustolls 0-1% 2.2-4.4% 

Hastings silt loam Udic Argiustolls 1-3%  

JA17 2017 T.16N-R.4W, Sec 7, 

SE ¼, S ½  

Thurman loamy fine sand Udorthentic Haplustolls 2-6% 0.9-3.1% 

Loretto-Thurman 

complex 

Udic Argiustolls 1-3%  

Thurman loamy fine sand Udorthentic Haplustolls 2-6%, eroded  

KR17 2017 T.16N-R.1E., Sec 

16, SW ¼, S ½  

Thurman loamy fine sand Udorthentic Haplustolls 2-6% 0.7-2.0% 

Brocksburg sandy loam Pachic Argiustolls 0-2%  

† Soil organic matter content (%). 25 soil samples per site at 20-cm depth. 
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Table 2.2. Producer management practices for all fields. 
 

Field 

ID Tillage† 

Previous 

Crop 

Planting 

Date Hybrid 

Seeding 

Rate 

Producer 

Field N 

Rate 

Harvest 

Date 

     seeds·ha-1 kg·ha-1  

AR16 NT Soybean 5/5/16 Pioneer 1197AM 76,600 195 10/15/16 

CA16 NT Maize 5/19/16 Golden Harvest 

G07B39-311A 

74,130 245 10/20/16 

HU16 ST Maize 5/6/16 Pioneer 1105AM 81,540 245 10/11/16 

KR16 NT Soybean 4/24/16 Pioneer 33D53AM 79,070 188 10/15/16 

AR17 NT Soybean 4/25/17 DeKalb 62-98 81,510 202 10/16/17 

HU17 ST Maize 4/25/17 Pioneer 1306WHR 83,030 235 10/18/17 

JA17 NT Soybean 5/5/17 Pioneer 1690 74,100 163 10/17/17 

KR17 NT Soybean 4/23/17 Pioneer 1498 80,560 244 10/17/17 

† NT: no-till; ST: strip-till 
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Table 2.3. Nitrogen management practices, plot design information, and field characteristics for all fields. 
 

Field 

ID 

Base N Application In-Season N Application 

Elevation 

Difference 

(m) 

Plot 

Width 

(m) 

Number of 

Treatment 

Blocks 

Mean 

yield at 

EONR⸹ Date 

Crop 

Growth 

Stage† Source‡ Date 

Crop 

Growth 

Stage† Source‡ 

AR16 3/17/16 
Pre-

plant 

Anhydrous 

ammonia 
6/24/16 V9 28% UAN 4.4 6.1 10 14.5 

CA16 6/6/16 V2 28% UAN 7/19/16 VT 28% UAN 20.0 6.1 13 11.3 

HU16 6/17/16 V5 28% UAN 7/11/16 V13 28% UAN 8.5 9.1 15 15.0 

KR16 6/7/16 V5 32% UAN 6/24/16 V10 32% UAN 4.8 6.1 16 12.8 

AR17 6/1/17 V4 28% UAN 6/23/17 V11 28% UAN 4.0 6.1 12 14.3 

HU17 6/8/17 V4 28% UAN 7/5/17 V13 28% UAN 5.1 4.6 14 16.4 

JA17 6/2/17 V3 30% UAN 6/28/17 V11 32% UAN 7.0 6.1 16 17.9 

KR17 6/2/17 V4 32% UAN 6/29/17 V11 32% UAN 2.9 6.1 16 14.0 

† Number of collared leaves 

‡ UAN = urea-ammonium nitrate solution 

⸹ EONR = economic optimum nitrogen rate 
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Table 2.4. Yield response to N rate models for all treatment blocks. 
 

Field Rep Quadratic Model 

N Rate at 

Maximum 

Yield 

Maximum 

Yield EONR 

Yield 

at 

EONR ESS TSS RMSE r2 

  a b c kg·ha-1 Mg·ha-1 kg·ha-1 Mg·ha-1   Mg·ha-1  

AR16 1 . . . . 14.64 . . . . . . 

 2 . . . . 15.47 . . . . . . 

 3 7.62 0.0708 -0.000190 186 14.22 165 14.13 0.8437 4.1215 0.46 0.80 

 4 . . . . 15.65 . . . . . . 

 5 . . . . 15.37 . . . . . . 

 6 12.36 0.0060 . . 14.71 . . 0.5938 2.1356 0.39 0.72 

 7 . . . . 16.12 . . . . . . 

 8 7.75 0.0663 -0.000150 221 15.08 193 14.96 0.4014 6.0149 0.32 0.93 

 9 10.80 0.0142 . . 15.13 . . 1.8721 8.9568 0.68 0.79 

 10 11.66 0.0108 . . 15.26 . . 2.6992 6.6448 0.82 0.59 

CA16 1 4.68 0.0534 -0.000090 297 12.60 251 12.41 0.3526 43.7206 0.30 0.99 

 2 5.93 0.0784 -0.000310 126 10.89 113 10.83 2.3703 22.1658 0.77 0.89 

 3 . . . . 11.81 . . . . . . 

 4 8.08 0.0247 -0.000040 309 11.89 205 11.47 2.0394 12.7057 0.71 0.84 

 5 7.16 0.0539 -0.000180 150 11.20 127 11.10 1.9798 16.0279 0.70 0.88 

 6 9.07 0.0342 -0.000140 122 11.16 93 11.04 0.013 3.5955 0.06 1.00 

 7 8.96 0.0087 . . 11.77 . . 3.1934 7.3633 0.89 0.57 

 8 4.46 0.0811 -0.000250 162 11.04 146 10.97 0.8628 34.7939 0.46 0.98 

 9* 6.03 0.0402 -0.000077 262 11.31 208 11.08 0.61762 19.9682 0.45 0.97 

 10 8.16 0.1613 -0.002000 40 11.41 38 11.41 1.7113 10.5345 0.76 0.84 

 11 7.47 0.1788 -0.002000 45 11.47 43 11.46 0.8806 14.1845 0.54 0.94 

 12* 7.94 0.0215 . . 12.16 . . 1.1609 15.7735 0.62 0.93 

 13* . . . . 12.36 . . . . . . 
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Field Rep Quadratic Model 

N Rate at 

Maximum 

Yield 

Maximum 

Yield EONR 

Yield 

at 

EONR ESS TSS RMSE r2 

  a b c kg·ha-1 Mg·ha-1 kg·ha-1 Mg·ha-1   Mg·ha-1  

HU16 1 . . . . 15.41 . . . . . . 

 2* . . . . 16.37 . . . . . . 

 3 10.69 0.0853 -0.000400 107 15.24 96 15.19 0.9345 17.5419 0.48 0.95 

 4 9.61 0.2064 -0.002000 52 14.94 50 14.93 4.1492 27.7987 1.18 0.85 

 5 . . . . 16.36 . . . . . . 

 6 8.75 0.0680 -0.000240 142 13.57 124 13.50 0.6612 19.1305 0.41 0.97 

 7 6.95 0.1042 -0.000390 134 13.91 123 13.87 4.6773 43.4414 1.08 0.89 

 8 . . . . 16.80 . . . . . . 

 9 . . . . 16.08 . . . . . . 

 10 . . . . 16.75 . . . . . . 

 11 13.64 0.0069 . . 15.43 . . 0.6615 3.2831 0.41 0.80 

 12 . . . . 16.15 . . . . . . 

 13 . . . . 17.25 . . . . . . 

 14 8.92 0.1268 -0.000550 115 16.23 108 16.20 1.0734 43.4645 0.52 0.98 

 15 11.02 0.0437 -0.000090 243 16.32 197 16.14 3.6349 26.3294 0.95 0.86 

KR16 1 10.79 0.0438 -0.000093 235 15.94 191 15.75 0.7916 21.6562 0.51 0.96 

 2* 9.55 0.0725 -0.000261 139 14.58 123 14.51 0.9382 20.2023 0.56 0.95 

 3 7.91 0.0260 . . 14.84 . . 3.4606 42.3802 0.93 0.92 

 4* 6.63 0.0479 -0.000115 208 11.60 172 11.45 1.4561 20.0069 0.70 0.93 

 5 6.85 0.0625 -0.000130 240 14.36 209 14.23 1.2979 44.4320 0.57 0.97 

 6* 8.64 0.0210 . . 15.94 . . 3.3670 27.6042 1.06 0.88 

 7* 7.77 0.0614 -0.000126 244 15.27 211 15.14 0.2056 43.4994 0.26 1.00 

 8 4.75 0.0783 -0.000170 230 13.77 206 13.67 8.2636 70.4994 1.44 0.88 

 9 5.75 0.0259 . . 12.60 . . 3.5806 38.3504 0.95 0.91 

 10 4.51 0.0610 -0.000120 254 12.26 220 12.12 4.2810 51.7127 1.03 0.92 
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Field Rep Quadratic Model 

N Rate at 

Maximum 

Yield 

Maximum 

Yield EONR 

Yield 

at 

EONR ESS TSS RMSE r2 

  a b c kg·ha-1 Mg·ha-1 kg·ha-1 Mg·ha-1   Mg·ha-1  

 11* 5.54 0.0425 -0.000079 268 11.23 216 11.01 1.5708 23.4229 0.72 0.93 

 12 4.82 0.0676 -0.000190 178 10.83 156 10.74 0.3797 27.7944 0.31 0.99 

 13 4.87 0.0370 -0.000080 231 9.15 180 8.93 0.1627 16.8716 0.20 0.99 

 14 4.11 0.0803 -0.000220 183 11.44 164 11.36 0.6818 44.9332 0.41 0.98 

 15 5.94 0.0706 -0.000200 177 12.17 156 12.09 1.9986 32.0714 0.71 0.94 

 16 7.89 0.0540 -0.000090 300 15.99 254 15.80 1.1970 52.8749 0.55 0.98 

AR17 1 No  Data          

 2 No Data          

 3 No  Data          

 4 12.37 0.0199 . . 19.20 . . 8.0707 28.5921 1.42 0.72 

 5 10.45 0.0178 . . 15.86 . . 11.0927 29.2539 1.67 0.62 

 6* 11.72 0.0294 -0.000078 189 14.50 136 14.28 0.6216 6.7372 0.46 0.91 

 7 9.94 0.0965 -0.000530 91 14.33 83 14.30 0.6183 16.233 0.39 0.96 

 8 13.43 0.0089 . . 16.46 . . 1.7349 5.4478 0.66 0.68 

 9* 14.92 0.0057 . . 18.55 . . 0.8814 2.7174 0.54 0.68 

 10 9.78 0.0631 -0.000200 158 14.76 137 14.67 1.4802 20.435 0.61 0.93 

 11* 10.43 0.1169 -0.000954 61 14.01 57 13.99 0.0180 10.2597 0.08 1.00 

 12* 11.33 0.0143 . . 16.14 . . 2.3382 11.0691 0.88 0.79 

HU17 1 12.12 0.0641 -0.000220 146 16.79 127 16.71 1.8507 18.8236 0.68 0.90 

 2 11.18 0.2247 -0.002113 53 17.15 51 17.14 1.4497 31.1586 0.70 0.95 

 3 12.44 0.1829 -0.002000 46 16.63 44 16.62 0.1657 14.7368 0.24 0.99 

 4 11.52 0.0728 -0.000230 158 17.28 140 17.21 1.6951 27.5593 0.65 0.94 

 5 12.44 0.0567 -0.000160 177 17.46 151 17.36 0.4600 20.6385 0.34 0.98 

 6 10.82 0.1594 -0.000993 80 17.22 76 17.20 0.5260 33.5889 0.42 0.98 

 7* 12.70 0.0739 -0.000379 98 16.30 87 16.26 1.0516 10.8076 0.59 0.90 
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Field Rep Quadratic Model 

N Rate at 

Maximum 

Yield 

Maximum 

Yield EONR 

Yield 

at 

EONR ESS TSS RMSE r2 

  a b c kg·ha-1 Mg·ha-1 kg·ha-1 Mg·ha-1   Mg·ha-1  

 8 12.04 0.1615 -0.002000 40 15.30 38 15.29 0.9157 9.7751 0.55 0.91 

 9 8.28 0.1617 -0.000870 93 15.79 88 15.77 1.7769 49.2821 0.67 0.96 

 10 11.83 0.0414 -0.000120 173 15.40 138 15.26 1.6166 13.0564 0.64 0.88 

 11* 7.24 0.0943 -0.000260 181 15.78 165 15.71 0.7276 53.3193 0.49 0.99 

 12 12.32 0.0588 -0.000200 147 16.64 126 16.56 0.1457 15.2115 0.19 0.99 

 13* 13.57 0.0532 -0.000242 110 16.49 93 16.42 0.4287 6.8331 0.38 0.94 

 14 8.14 0.1029 -0.000330 156 16.16 143 16.11 2.0891 54.9824 0.72 0.96 

JA17 1 14.12 0.0134 . . 17.91 . . 3.8036 11.5934 0.98 0.67 

 2 13.42 0.0239 . . 21.47 . . 6.2859 31.6302 1.25 0.80 

 3 . . . . 18.19 . . . . . . 

 4 14.92 0.0310 . . 24.01 . . 1.2394 45.2830 0.56 0.97 

 5 . . . . 18.72 . . . . . . 

 6 . . . . 18.87 . . . . . . 

 7 15.75 0.0181 . . 20.88 . . 11.2172 26.6296 1.67 0.58 

 8 . . . . 21.44 . . . . . . 

 9 . . . . 20.95 . . . . . . 

 10 12.02 0.0243 . . 18.19 . . 10.5658 37.4477 1.63 0.72 

 11 9.25 0.0688 -0.000148 233 17.27 205 17.15 2.7426 31.6184 0.96 0.91 

 12 11.68 0.0653 -0.000150 218 18.79 190 18.67 0.9702 20.8846 0.49 0.95 

 13 . . . . 18.43 . . . . . . 

 14* . . . . 21.39 . . . . . . 

 15 14.69 0.0151 . . 18.47 . . 3.4298 13.4622 0.93 0.75 

 16 10.53 0.0155 . . 14.79 . . 3.5929 14.1226 0.95 0.75 

KR17 1 8.51 0.0560 -0.000140 200 14.11 170 13.99 1.6953 16.5799 0.65 0.90 

 2 7.32 0.1072 -0.000370 145 15.08 134 15.04 3.7628 27.4803 0.97 0.86 
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Field Rep Quadratic Model 

N Rate at 

Maximum 

Yield 

Maximum 

Yield EONR 

Yield 

at 

EONR ESS TSS RMSE r2 

 3 7.31 0.0722 -0.000210 172 13.52 152 13.43 0.4683 17.2993 0.34 0.97 

 4 5.94 0.0956 -0.000320 149 13.08 136 13.03 0.9839 20.9229 0.50 0.95 

 5 8.36 0.0549 -0.000160 172 13.07 146 12.96 1.0600 10.3011 0.51 0.90 

 6 6.16 0.1105 -0.000430 128 13.26 119 13.22 0.9852 19.1401 0.50 0.95 

 7 6.16 0.0878 -0.000280 157 13.04 142 12.98 1.8028 21.2045 0.67 0.91 

 8 10.83 0.0126 . . 14.55 . . 2.4176 10.6158 0.78 0.77 

 9 8.26 0.0424 -0.000090 236 13.25 190 13.06 1.2454 12.6892 0.56 0.90 

 10 11.88 0.0150 . . 16.31 . . 4.3697 17.2803 1.05 0.75 

 11 9.84 0.0646 -0.000160 202 16.36 176 16.25 4.3923 26.0778 1.05 0.83 

 12 12.66 0.0338 -0.000060 282 17.42 213 17.14 1.0193 11.8296 0.50 0.91 

 13 8.95 0.0561 -0.000160 175 13.87 149 13.76 1.2012 12.5816 0.55 0.90 

 14 10.19 0.0159 . . 14.95 . . 3.0219 16.4045 0.87 0.82 

 15 . . . . 11.77 . . . . . . 

 16 8.40 0.0638 -0.000230 139 12.82 121 12.75 1.2089 8.8998 0.55 0.86 

*One outlier observation removed 
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Table 2.5. Pearson correlation coefficients of soil and topographic variables to check plot 

yield and in-season NDRE measurements across all fields (Global Approach)  

(n = 108; for SOM n = 92). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.67*** 1       

ECs -0.01 -0.09 1      

ECd 0.03 -0.13 0.94*** 1     

SRsoil -0.10 -0.14 -0.34*** -0.30** 1    

SOM -0.04 0.04 0.65*** 0.71*** -0.04 1   

Elevrel -0.17 -0.21* 0.52*** 0.45*** -0.31** 0.22* 1  

Slope -0.19 -0.25* 0.45*** 0.33*** -0.38*** -0.07 0.65*** 1 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table 2.6. Pearson correlation coefficients of soil and topographic variables to in-season 

NDRE measurements for all nonzero plots across all fields (Global Approach)  

(n = 552; for SOM n = 472). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs -0.03 1      

ECd -0.05 0.95*** 1     

SRsoil -0.14*** -0.33*** -0.25*** 1    

SOM 0.17*** 0.64*** 0.72*** 0.00 1   

Elevrel -0.11* 0.58*** 0.50*** -0.29*** 0.24*** 1  

Slope -0.14** 0.46*** 0.35*** -0.35*** -0.06 0.63*** 1 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table 2.7. Pearson correlation coefficients of soil and topographic variables to check plot yield and NDRE for all site-years (Field-

Specific Approach). Bold data indicate select variables used in management zone delineation. 

Field 

Crop 

Parameter 

N Rate 

kg·ha-1 n 

Electrical Conductivity Soil Optical Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 
AR16 NDRE 84 60 -0.66*** -0.61*** 0.25 0.43** -0.56*** -0.34** 

 Yield 84 10 0.46 0.41 -0.30 -0.40 0.28 0.21 

CA16 NDRE 56 65 0.07 -0.06 0.01 0.06 0.23 -0.15 

 NDRE 0 13 0.55 0.41 -0.20 0.36 0.60* -0.32 

 Yield 0 13 0.43 0.41 0.30 -0.12 0.43 -0.18 

HU16 NDRE 56 75 -0.60*** -0.57*** 0.38*** 0.41*** 0.35** -0.35** 

 NDRE 0 12 -0.63* -0.78** 0.44 0.52 0.51 -0.52 

 Yield 0 12 -0.64* -0.80** 0.42 0.51 0.46 -0.44 

KR16 NDRE 56 80 0.69*** 0.66*** -0.55*** - 0.14 0.05 

 NDRE 0 16 0.83*** 0.67** -0.65** - 0.15 -0.17 

 Yield 0 16 0.91*** 0.72** -0.74** - 0.22 -0.08 

AR17 NDRE 56 52 -0.22 -0.18 -0.08 0.16 -0.12 0.14 

 NDRE 0 11 -0.40 -0.27 0.44 0.30 -0.77** -0.23 

 Yield 0 11 -0.55 -0.35 -0.24 0.62* -0.36 -0.36 

HU17 NDRE 56 70 -0.57*** -0.34** 0.12 0.68*** -0.39** -0.63*** 

 NDRE 0 14 -0.79*** -0.62* -0.07 0.73** -0.40 -0.56* 

 Yield 0 14 -0.79*** -0.56* 0.07 0.73** -0.21 -0.64* 

JA17 NDRE 56 80 0.35** 0.18 -0.49*** 0.50*** -0.14 -0.18 

 NDRE 39 16 0.40 0.31 -0.47 0.47 -0.30 -0.45 

 Yield 39 16 0.19 0.27 0.07 -0.02 -0.20 -0.15 

KR17 NDRE 80 80 0.45*** 0.26* -0.30** 0.44*** 0.12 -0.36** 

 NDRE 24 16 0.53* 0.46 -0.52* 0.50* -0.14 -0.54* 

 Yield 24 16 0.85*** 0.84*** -0.08 -0.03 0.42 0.22 

 * Statistical significance at P < 0.05. 

 ** Statistical significance at P < 0.01. 

 *** Statistical significance at P < 0.001. 
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Table 2.8. Soil chemical properties for delineated MZ. Soil samples were collected from the 0 to 20 cm depth. Statistically different 

MZ are indicated with the appropriate significance level indicator. 

Field MZ n pH Mehlich-III P SOM CEC 

    mg·kg-1 g·g-1 cmolc·kg-1 

AR16 1 14 6.01 67.6* 3.99 16.7** 

 2 11 6.08 29.9* 3.84 20.8** 

CA16 1 15 5.94 24.4 3.10 20.5 

 2 10 5.98 22.7 2.81 18.4 

HU16 1 11 5.79* 46.9 3.17** 14.6** 

 2 14 6.07* 55.1 2.69** 18.2** 

KR16 1 4 5.98 155.0 1.40** 7.3** 

 2 14 5.59 65.6 0.81** 4.4** 

AR17 1 19 6.47 14.8 3.05 18.9 

 2 6 6.62 7.7 2.78 21.4 

HU17 1 15 6.01 23.8 3.41 17.6** 

 2 10 6.28 14.8 3.22 19.8** 

JA17 1 13 6.05 45.3 1.80** 10.2** 

 2 12 6.08 44.3 1.06** 6.7** 

KR17 1 9 6.74 17.1 1.38 8.0 

 2 16 6.72 25.3 1.08 6.1 

*Statistical significance at p < 0.05. 

**Statistical significance at p < 0.01. 
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Table 2.9. Yield response to N rate models by zone. Fields HU16 and JA17 did not have any blocks fitting a quadratic-plateau 

function in one of their zones, so comparisons could not be made. 

Field Zone Quadratic Model 

N Rate 

at Max 

Yield 

Max 

Yield EONR 

Yield at 

EONR ESS TSS RMSE r2 

Difference 

Between 

Zones† 

  a b c kg·ha-1 Mg·ha-1 kg·ha-1 Mg·ha-1      

AR16 1 7.75 0.0663 -0.000154 216 14.90 189 14.79 0.4015 6.0149 0.32 0.93 
NS 

 2 7.62 0.0708 -0.000188 188 14.27 166 14.18 0.8437 4.1215 0.46 0.80 

CA16 1 7.02 0.0918 -0.000519 88 11.08 80 11.05 0.0394 13.2782 0.10 1.00 
NS 

 2 6.23 0.0496 -0.000117 212 11.48 176 11.33 1.0882 22.9005 0.52 0.95 

HU16 1 . . . . . . . . . . . 
- 

 2 9.78 0.0921 -0.000396 116 15.14 106 15.10 0.0777 23.1395 0.14 1.00 

KR16 1 10.79 0.0438 -0.000093 235 15.93 191 15.75 0.7916 21.6562 0.44 0.96 
*** 

 2 5.88 0.0552 -0.000116 238 12.44 202 12.29 0.0376 34.7155 0.10 1.00 

AR17 1 10.84 0.0606 -0.000253 120 14.47 103 14.40 0.2593 10.7858 0.25 0.98 
NS 

 2 10.17 0.0659 -0.000253 130 14.46 114 14.39 0.5071 15.1901 0.36 0.97 

HU17 1 12.11 0.1027 -0.000586 88 16.61 81 16.58 0.0447 16.2871 0.11 1.00 
** 

 2 9.68 0.0874 -0.000302 145 16.00 131 15.94 0.7416 33.5209 0.43 0.98 

JA17 1 10.47 0.0669 -0.000150 223 17.94 196 17.83 1.3068 25.5128 0.57 0.95 
- 

 2 . . . . . . . . . . . 

KR17 1 10.39 0.0539 -0.000135 199 15.76 169 15.63 0.7065 14.8252 0.42 0.95 
*** 

 2 7.43 0.0750 -0.000236 159 13.37 141 13.30 0.3099 15.2573 0.28 0.98 

† NS: Not significant at α= 0.05. 

** Statistical significance at p < 0.01. 

*** Statistical significance at p < 0.001. 
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CHAPTER 3: EVALUATING THE POTENTIAL OF AN INTEGRATED 

MANAGEMENT ZONE-CANOPY SENSOR APPROACH FOR IMPROVED 

NITROGEN MANAGEMENT IN MAIZE 

 

ABSTRACT 

Active crop canopy sensors and soil-based management zones (MZ) are tools that can be 

used to direct variable-rate, in-season nitrogen (N) fertilizer applications in maize (Zea 

mays L.). Some have suggested the integration of these two methods may improve 

performance of sensor-based N application algorithms through increased N use efficiency 

(NUE) and profitability. The objectives of this research study were to (1) test a sensor-

based N application algorithm compared to uniform N management in a variety of soil 

conditions and (2) evaluate the potential of an integrated MZ- and sensor-based N 

management approach compared to sensor-based N management alone. Research was 

carried out on eight irrigated maize fields in east central Nebraska during the 2016 and 

2017 growing seasons. Three N treatments were applied in field-length strips in a RCBD 

with 6 replications per field. Canopy reflectance and yield data were collected, and partial 

factor productivity of N was calculated for each treatment. Sensor-based application 

resulted in significantly increased NUE compared to uniform N management in six of eight 

fields. Marginal net return was significantly increased in four of eight fields. Management 

zones delineated using field-specific soil and topographic variables accurately 

characterized spatial variability in in-season N status in four of eight fields. Integrating MZ 

with a sensor-based approach has the potential to further increase NUE and economic 

return in fields with high spatial variability in soils and topography. Future research should 
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seek to modify current sensor algorithms to allow for incorporation of MZ and validate this 

practice compared to sensor-based N management. 

 

Abbreviations: ECa, apparent electrical conductivity; EONR, economic optimum nitrogen 

rate; MZ, management zones; NDRE, normalized difference red edge; NIR, near-infrared; 

NUE, nitrogen use efficiency; RE, red edge; RMSE, root mean square error; SI, sufficiency 

index; SOM, soil organic matter. 
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INTRODUCTION 

As the most widely grown crop in the US and the largest user of nitrogen (N) 

fertilizer (Morris et al., 2018), maize is often the target of environmental impact policies 

where N is concerned (Snyder, 2012). Fertilizer N use in cereal production is historically 

inefficient, with estimates of maize N use efficiency (NUE) ranging from 35 to 75% 

(Morris et al., 2018). Applied N fertilizer that is not taken up by the crop is subject to 

numerous loss mechanisms, including denitrification, volatilization, and leaching 

(Cassman et al., 2002). Low NUE over time has resulted in severe environmental 

consequences in several regions of the US.  

Low NUE in maize production can be attributed to three major factors: (1) poor 

synchrony between soil N supply and crop demand (Shanahan et al., 2008), (2) applying 

uniform rates of fertilizer N to spatially variable landscapes, and (3) failure to account for 

temporal variability in crop response to N. Collectively, these three factors make accurate 

estimation of EONR difficult for many fields. Innovative N management strategies that 

can account for these factors are needed to increase NUE and mitigate detrimental 

environmental impacts. 

Delineating fields into management zones (MZ) is one method for managing 

within-field variability to increase NUE. Management zones are regions of a field with 

homogenous soil and landscape attributes, resulting in similar yield-limiting factors and 

corresponding uniform levels of crop inputs (Doerge, 1999). Myriad approaches to MZ 

delineation have been developed in the last 25 years (Khosla et al., 2010). Some common 

attributes that have been used—either individually or in combination—for MZ 

delineation include soil apparent electrical conductivity (ECa) (Kitchen et al., 1999; 
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Fleming et al., 2004), yield maps (Flowers et al., 2005), imagery (Schepers et al., 2004), 

topography (Fraisse et al., 2001), and soil survey maps (Franzen et al., 2002). The 

classification methods used to delineate MZ are also numerous. Among them is a free 

software program called Management Zone Analyst (MZA) (University of Missouri, 

USDA-ARS, Columbia, MO), which uses a fuzzy c-means (or k-means) algorithm for 

clustering (Fridgen et al., 2004). 

While managing N through the use of MZ often improves efficiency compared to 

uniform field management by helping to characterize the spatial variability in soil 

physical and chemical properties, MZ are often inconsistent in characterizing the spatial 

variability in crop N requirement because of the effect of temporal variability on crop N 

response (Shanahan et al., 2008). In a five-year study in Nebraska, Schepers et al. (2004) 

found temporal variability to greatly affect MZ, and the use of MZ to direct variable N 

application would have been appropriate in only three of five years. They concluded that 

a static, soil-based MZ approach alone is likely inadequate for directing variable 

applications of N due to the inability to account for temporal variability. 

One tool with the potential to manage all three factors causing low NUE is crop 

canopy sensing. This strategy is known as a reactive approach to N fertilizer management 

because the sensors can identify and correct N stress that has already occurred during the 

growing season (Ping et al., 2008). Rather than using indirect measures of growing 

condition from the soil or from atmospheric conditions, canopy sensors use the crop itself 

as a bio-indicator to assess crop N status and direct real-time, variable-rate, in-season 

applications of N fertilizer (Adamchuk et al., 2011). Canopy sensors have been used 

successfully to direct in-season variable-rate N fertilizer applications in several crops, 
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including maize (Holland and Schepers, 2010), wheat (Solie et al., 2012), cotton 

(Oliveira et al., 2013), rice (Tubaña et al., 2012), and sugarcane (Amaral et al., 2015). 

Active crop canopy sensors emit modulated light in two or more wavelengths in 

the visible (400-700 nm) and near-infrared (NIR) (750-1400 nm) regions of the 

electromagnetic spectrum, and measure the reflectance from the crop canopy with 

photodetectors. Reflectance in these wavelengths is combined into vegetation indices, 

which are well correlated with chlorophyll content and N sufficiency (Walburg et al., 

1982). In order to assess crop N status, canopy reflectance of plants yet to be fertilized is 

compared to reflectance from plants receiving an adequate amount of N fertilizer such 

that N is not a limiting factor (Shanahan et al., 2008). This N-sufficient reference is used 

to calculate a ratio known as the Sufficiency Index (SI) (Peterson et al., 1993). 

Essentially, lower SI values signify that unfertilized plants are more deficient, and so will 

require more N fertilizer to achieve their yield potential (Shanahan et al., 2008).  

Numerous algorithms have been developed to convert sensor reflectance data into 

an in-season N fertilizer application rate (Scharf et al., 2011; Solie et al., 2012; Franzen et 

al., 2014). Holland and Schepers (2010) developed a generalized N application algorithm 

for use with crop canopy sensors. The algorithm uses an estimated optimum N rate 

(NOPT) along with the calculated SI to control the yield response model. It also allows for 

incorporating economics into the NOPT term and accounts for fertilizer N already applied 

as well as any N credits. 

The use of these systems to direct variable-rate, in-season N fertilizer applications 

in cereal cropping systems has resulted in positive environmental and economic returns 

(Kitchen et al., 2010; Roberts et al., 2010). However, crop canopy sensors and their 
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corresponding algorithms are not without their limitations. With no direct knowledge of 

the soil and topographic characteristics underneath the growing crop, the sensor cannot 

accurately predict how spatial variability may affect future N mineralization or losses that 

are not expressed in the crop at the time of sensing. This lack of soil-based information 

has resulted in poor algorithm performance in certain subfield regions due to local spatial 

variability (Ferguson, unpublished data, 2015). Researchers agree that refinements are 

needed in order to account for additional management, soil, and climatic factors 

(Shanahan et al., 2008), combining both anticipatory and reactive decision-making (Ping 

et al., 2008). Schepers et al. (2004) and others (Holland and Schepers, 2010; Solari et al., 

2008) have suggested combining MZ and in-season crop canopy sensing to better predict 

the EONR throughout the field and achieve greater NUE. 

 Roberts et al. (2012) experimented with an integrated MZ and canopy sensor 

approach on six irrigated fields in Nebraska, USA and found potential for this integrated 

approach to increase NUE and economic return over current management practices, 

particularly in silt loam fields with eroded slopes. However, they believed further 

research was needed to further refine current algorithms and explore how to best integrate 

the two N management strategies. The objectives of this research study were to (1) test a 

sensor-based N application algorithm compared to uniform N management in a variety of 

soil conditions and (2) evaluate the potential of an integrated MZ- and sensor-based N 

management approach compared to sensor-based N management alone. 
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MATERIALS AND METHODS 

Research Fields 

Experiments were conducted on eight maize fields, all center-pivot irrigated, 

during the 2016 (Fields AR16, CA16, HU16, and KR16) and 2017 (Fields AR17, HU17, 

JA17, and KR17) growing seasons.  Fields were located in east central Nebraska, USA 

(Fig. 3.1). Fields AR16, KR16, AR17, HU17, and KR17 were relatively flat (< 5 m of 

relief), while there were substantial differences in elevation (~7-20 m) and topography for 

Fields CA16, HU16, and JA17. The sites were grouped into four classifications based on 

soil texture and topography: sandy loam, relatively level (KR16 and KR17), silt loam, 

relatively level (AR16, AR17, HU17), silt loam, eroded slopes (CA16 and HU16), and 

sandy loam, eroded slopes (JA17). One to four soil series were represented at each site 

(Table 3.1). 

Experimental Treatments 

Tillage practices, crop rotation, hybrid selection, planting date, seeding rate, 

irrigation, and other field management decisions and operations were managed by 

individual producers (Table 3.2). The eight fields in the study were part of a larger three-

year study of 54 fields that compared a commercially-available active-sensor system to 

producer-chosen N rates. Results for the eight fields with additional small plot N 

treatments (Chapter 2) were used to compare an integrated MZ-sensor approach to 

sensor-based application alone and to uniform N management.  

There were three N application treatments: 

1. ~84 kg·ha-1 early season base rate + sensor-based variable-rate N (Sensor) 

2. Producer-selected uniform N rate (Uniform) 
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3. High-N reference (N Ref) 

Nitrogen rate and application timing for Treatment 2 were decided by individual 

producers. Treatment 3 provided a non-limiting area for implementation of the sensor 

algorithm, receiving 252 or 280 kg N·ha-1. Nitrogen rates and timing for each field are 

shown in Table 3.3. The experimental design consisted of field-length strips in a RCBD 

with four replications of Treatments 1 and 2 and two replications of Treatment 3. 

Treatment strips were 8, 12, or 16 rows wide, depending on the width of the producers’ 

equipment (Table 3.2). An experimental design map for Field HU16 is shown in Figure 

3.2, and treatment maps for all fields can be located in Appendix 1. 

Sensor-based N application was carried out using a commercially-available, on-

the-go active crop canopy sensing system called OptRx (Ag Leader Technology, Ames, 

IA). Four OptRx sensors were mounted on the front of a Hagie DTS 10 high-clearance 

applicator (Hagie Manufacturing Co., Clarion, IA) approximately 0.3 to 0.6 m above the 

crop canopy. The sensors were positioned over rows 4, 7, 9, and 12 for the 16-row strips. 

For the 8-row and 12-row studies, only two sensors were utilized. They were positioned 

over rows 5 and 7 for the 12-row studies and over rows 3 and 5 for the 8-row study. 

Nitrogen fertilizer was applied with a high-clearance applicator (Hagie DTS 10, Hagie 

Manufacturing Co., Clarion, IA), and the fertilizer was applied through a straight stream 

nozzle between each row. Flow rate was controlled with a pulse-width modulation spray 

rate controller (PinPoint, Capstan Ag Systems, Topeka, KS). 

Sensor reflectance in the red-edge (RE; 730 nm) and NIR (780 nm) wavelengths 

was used to calculate the normalized difference red edge (NDRE) vegetation index using 

the following equation (Gitelson and Merzylak, 1994): 
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𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅780−𝑅𝐸730

𝑁𝐼𝑅780+𝑅𝐸730
       [3.1] 

The NDRE values were then related to a reference value of plants receiving an adequate 

amount of N fertilizer such that N is not a limiting factor. These NDRE values are used to 

calculate a Sufficiency Index (SI) with the following equation (Peterson et al., 1993): 

 𝑆𝐼 =
𝑉𝐼𝑇𝑎𝑟𝑔𝑒𝑡

𝑉𝐼𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
       [3.2] 

where 

 0 ≤ 𝑆𝐼 ≤ 1 

 𝑉𝐼𝑇𝑎𝑟𝑔𝑒𝑡 = vegetation index of target crop 

 𝑉𝐼𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = vegetation index of high-N reference 

The OptRx system uses a virtual-reference approach to determine the value for VIReference. 

This statistical approach involves driving over a portion of the field for five minutes, 

observing a wide range of plant vigor and N status. The 95th percentile value is selected 

from a histogram of NDRE values, and this value is used as VIReference to generate the SI 

(Holland and Schepers, 2013). 

Nitrogen rate was determined using the OptRx algorithm controlled by the Ag 

Leader monitor in the high-clearance applicator. This algorithm is a slightly modified 

version of the Holland and Schepers algorithm and takes the following form (Holland and 

Schepers, 2010): 

     𝑁𝐴𝑃𝑃 = (𝑁𝑂𝑃𝑇 − 𝑁𝑃𝑟𝑒𝐹𝑒𝑟𝑡 − 𝑁𝐶𝑅𝐷) ∙ √
(1−𝑆𝐼)

∆𝑆𝐼
            [3.3] 

where 

 𝑁𝐴𝑃𝑃 = N application rate 



94 

 
 

 𝑁𝑂𝑃𝑇 = the EONR or the maximum N rate prescribed by producers  

 𝑁𝑃𝑟𝑒𝐹𝑒𝑟𝑡 = the sum of fertilizer N applied before sensor-based N application 

𝑁𝐶𝑅𝐷 = N credit for previous crop, NO3
- in irrigation water, manure application, 

etc. 

𝑆𝐼 = Sufficiency Index of target crop 

∆𝑆𝐼 = 1 − 𝑆𝐼(0); the difference between 𝑆𝐼 = 1 and the y-intercept of the N 

response curve; set to default of 0.7 

The NOPT term was calculated using Maize-N (NUtech Ventures, Lincoln, NE), a 

simulation model for estimating EONR for maize. Maize-N uses N uptake efficiency, 

expected yield response, grain and fertilizer prices, and soil N mineralization to estimate 

EONR (Setiyono et al., 2011). To avoid double-counting of N credits, only nitrate in 

irrigation water was used for the NCRD term. Minimum and maximum N rates of 34 and 

336 kg N·ha-1 were implemented to place limits on the sensor algorithm when necessary. 

Nitrogen source for all sensor-based treatments was either 28 or 32% urea 

ammonium nitrate (UAN) solution (Table 3.3). Nitrogen fertilizer was applied 

simultaneously with sensing using the high-clearance applicator, with the fertilizer 

applied through a straight stream nozzle between each row. Fertilizer application data 

were collected with a flowmeter at a rate of 1 Hz. Fifteen m of data points were removed 

from each end of the field for each pass. 

Field Data Collection 

Soil Data 

Spatial soil data collected for each field included soil apparent electrical 

conductivity (ECa) and soil optical reflectance (red and NIR bands). These attributes were 
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collected for each field prior to planting (except for Field HU17, for which data were 

collected following harvest) using a Veris MSP3 on-the-go soil sensing platform (Veris 

Technologies, Inc., Salina, KS). The MSP3 instrument uses two arrays of coulter-

electrode pairs to measure soil ECa at depths of 0 to 0.3 m (shallow EC—ECs) and 0 to 

0.9 m (deep EC—ECd) simultaneously. The MSP3 also measures soil optical reflectance 

with an active optical sensor located ~5 cm deep in the soil measuring in red and near-

infrared (NIR) wavelengths. The simple ratio (SRsoil) (
𝑁𝐼𝑅

𝑅𝑒𝑑
) was calculated from the 

reflectance readings. 25 soil samples were collected to a depth of 20 cm across the range 

of ECsh and reflectance values for the field, and results were used by Veris Technologies 

to calibrate the optical reflectance readings to estimate soil organic matter (SOM). A 

global positioning system (GPS) receiver was mounted on the MSP3 sensor to log 

geographic coordinates as the instrument made parallel passes ~18 m apart throughout 

the field. 

 Elevation for each field as 2-m Digital Elevation Model grids was retrieved from 

the Nebraska Department of Natural Resources (NeDNR) LiDAR Repository (NeDNR, 

2010). Elevation data for the experimental sites was collected in 2009 (Fields CA16, 

HU16, and HU17) and 2010 (Fields AR16, KR16, AR17, JA17, and KR17). Relative 

elevation (Elevrel) was calculated for each field by subtracting all grids by the minimum 

elevation within the field. Slope was calculated using the Spatial Analyst package in 

ArcMap 10.4 (ESRI, Redlands, CA). Summary statistics for the spatial data can be found 

in Appendix 1. 

All spatial data were projected into the Universal Transverse Mercator (UTM) 

Zone 14N (NAD83 Datum) projection. To obtain values of each data layer for the entire 
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field study, ordinary kriging was used to interpolate each layer (ECs, ECd, SRsoil, OM, 

Elevrel, and Slope). Interpolation was conducted using the Geostatistical Analyst package 

in ArcMap 10.4.  

Crop Response Data 

In addition to the four OptRx active canopy sensors directing the sensor-based N 

fertilizer application, canopy reflectance was measured with an additional OptRx sensor 

and logged with a GeoSCOUT X data logger (Holland Scientific, Lincoln, NE). The 

NDRE vegetation index was calculated from this reflectance data. This sensor was also 

mounted to the front of the high-clearance applicator approximately 0.3-0.6 m above the 

crop canopy. The sensor was positioned over either of the center two rows of each strip in 

the nadir view. Canopy reflectance measurements were collected at a rate of 1 Hz while 

the vehicle traveled at a speed of ~3 to 5 m·sec-1. 

Yield Data 

Each field was harvested at physiological maturity by the producer using a 

harvester equipped with a differential GPS and a yield monitor. Yield monitors were 

calibrated by each producer prior to harvest. Raw yield data files were imported into 

SMS Advanced (Ag Leader Technology, Ames, IA) and then loaded to Yield Editor (v. 

2.0.7. USDA-ARS, Columbia, MO) for cleaning (Sudduth and Drummond, 2007). 

Fifteen m of yield data points were removed from each end of the field for each pass.  

Harvested weight was adjusted to a standard moisture of 155 g·kg-1. To compare NUE 

between the sensor-based approach and uniform N management, the partial factor 

productivity of applied N (PFPN) was calculated, where PFPN = kg grain · kg N applied-1. 
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Whole Field Treatment Effects 

Average treatment effects on NDRE, N rate, grain yield, PFPN, and marginal net 

return were first evaluated for each field using values for field-length treatment strips. 

Maize and N fertilizer prices of $120.07·Mg-1 ($3.05·bu-1) and $0.99·kg N-1        

($0.45·lb N-1) were used in the analysis. Analysis of variance (PROC GLIMMIX, SAS 

9.4, SAS Institute Inc., Cary, NC) was used to evaluate treatment effects, and provide 

least significant difference (LSD) values to separate treatment means at a significance 

level of 0.05. 

Management Zone Delineation 

In order to explore the relationships between the measured soil and crop variables, 

a Pearson correlation analysis was conducted using the methods described in Chapter 2. 

Using Global (all fields combined) and Field-Specific approaches, the two variables with 

the highest significant correlation (p < 0.05 and R > 0.50) to either NDRE or check yield 

for each field were selected as input variables for clustering in Management Zone 

Analyst (MZA) 1.0.1 (USDA-ARS and University of Missouri, Columbia, MO) (Fridgen 

et al., 2004). To increase the number of observations for clustering and to increase the 

overall spatial area of the MZ, all soil and landscape data collected from the plots as well 

as adjacent to them were used as inputs into MZA, resulting in a total area of 12-30 ha. In 

the software, Mahalanobis distance was selected as the measure of similarity except when 

variables with identical units were used. In these instances Euclidean distance was 

chosen.  
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Two indices are calculated by MZA to help determine the optimum number of 

classes. The Normalized Classification Entropy (NCE) quantifies the disorganization 

created by dividing data into classes (Lark and Stafford, 1997). The Fuzziness 

Performance Index (FPI) determines the amount of membership sharing (fuzziness) 

among classes (Odeh et al., 1992). Class number is optimized when both NCE and FPI 

are minimized, meaning a low degree of membership sharing and low disorganization 

from the clustering process (Fridgen et al., 2004). 

Evaluation of Treatment Differences by Zone 

After evaluating treatment differences by strip and delineating MZ, treatments 

were then evaluated by MZ for each field. To accomplish this, field-length treatment 

strips were divided into square grids with length and width equal to the width of each 

treatment strip (Table 3.2). Nitrogen rate, yield, NDRE, and PFPN values were averaged 

within each polygon, and zonal differences were determined using a t-test, LSD 

calculations, and treatment mean groupings.  
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RESULTS AND DISCUSSION 

Treatment Effects on Yield and PFPN 

Nitrogen rates and yield response to N are presented for each field in Figs. 3.3 and 

3.4 and in Table 3.4. Growing conditions were good for both 2016 and 2017, with an 

overall average yield of 14.1 Mg·ha-1 for the high-N reference treatment. The N rate 

prescribed by the active sensing system was significantly lower than the producer-chosen 

uniform rate in five of eight fields, averaging 66 kg N·ha-1 lower. Yield for the sensor 

treatment was also significantly lower than the uniform treatment in all five of those 

fields, by an average of 0.67 Mg·ha-1. For the remaining three fields (KR16, AR17, 

JA17), the sensor-based N rate was either not significantly different or significantly 

higher than the uniform rate. This resulted in significantly increased yield for the Sensor 

treatment for these three fields with an average increase of 0.80 Mg·ha-1. 

 When comparing PFPN for the sensor and uniform treatments, the sensor-based 

strategy resulted in a significantly higher PFPN in six of eight fields (Figs. 3.5 and 3.6; 

Table 3.4). Among these six were the five fields that produced a lower N rate and a lower 

yield using the sensor-based approach. The sixth field (Field KR16) had the same amount 

of N applied, but the sensor treatment increased yield by 1.6 Mg·ha-1 compared to the 

uniform treatment. This result can be attributed to the timing of N application. The 

uniform rate was applied in split applications, but all were completed before V5. The 

sensor treatment was not applied until V10. The coarse-textured soil on this field is very 

prone to nitrate leaching. By applying fertilizer later in the growing season, more N was 

able to be recovered by the crop, resulting in increased yield for the sensor-based 

approach. These results indicate that in-season, sensor-based application has the potential 
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to increase NUE compared to uniform application, primarily through substantially 

decreasing N applied with only a slight reduction in yield as was found by Roberts et al. 

(2010). 

 In order for variable-rate, sensor-based N application to be adopted by crop 

producers, economic benefits need to be shown compared to conventional management 

practices (Swinton and Lowenberg-DeBoer, 1998). An analysis of marginal net return 

between treatments is shown in Table 3.4. A comparison of marginal net return for the 

sensor and uniform treatments produced mixed results. Profitability was increased in four 

of eight fields when using the sensor-based approach, decreased in three of eight fields, 

and there was no significant difference in Field AR16. Of the four fields with increased 

marginal net return, the increase came from higher yields in two fields (KR16 and JA17) 

and from decreased N fertilizer in the other two fields (CA16 and HU17).  

For the fields with decreased marginal net return, two of them (HU16 and KR17) 

came from decreases in yield and the other (AR17) came from a large increase in applied 

N fertilizer with only a slight increase in yield. Fields HU16 and KR17 had higher than 

normal base rates (122 and 178 kg N·ha-1, respectively), while the other six fields had 

base rates ranging from 78 to 91 kg N·ha-1 (Table 3.3). This increased base rate likely 

resulted in higher SI values for the sensor treatment during in-season application and 

correspondingly low N rates applied. In the case of these two fields, the N rates were too 

low to maintain yield, and profitability was decreased compared to the uniform rate. 

Future research should investigate the optimal timing of sensor-based N 

application as well as the base rate required to sustain the crop until in-season application 

under different soil and climatic conditions. Soil N mineralization varies significantly 
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with latitude, SOM content, and annual precipitation (Liu, et al., 2017). Therefore, 

appropriate base N rate recommendations are likely to vary by region and even by field. 

When N fertilizer application occurs before any N stress is realized, either by applying 

too early in the crop life cycle or by applying too high a base rate, the recommended N 

rate will likely be too low. Conversely, applying N fertilizer after the crop is experiencing 

significant N stress will negatively impact yield. The optimal window for sensor-based N 

fertilizer application appears to be much narrower than that currently recommended by 

Ag Leader, between the V5 and VT growth stages.  

An alternative to a recommended growth stage window or growing degree day 

calculation could be identifying a threshold SI value above which it is too early for N 

fertilizer application. In addition, a range of SI could establish the appropriate window 

for in-season application that would be much narrower than a window that relies on crop 

growth stage. Obtaining the SI for a field prior to N fertilizer application would not 

necessarily require driving over the field multiple times with a vehicle-mounted active 

sensor but could come from a handheld crop sensor, a chlorophyll meter, or even from 

unmanned aerial, manned aerial, or satellite imagery. 

Management Zone Delineation 

Fields were clustered into soil-based MZ using MZA in order to compare 

treatment performance between MZ within each field. For the Global Approach, there 

was no significant correlation of any soil or topographic variable to check yield and only 

weak correlations to NDRE, so no variable was chosen to cluster MZ in the Global 

Approach (Tables 3.5 and 3.6). Correlations were subsequently evaluated on a field-by-

field basis (Field-Specific Approach). Results from this analysis are found in Table 3.7. 
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Two clustering variables were chosen for each field, except for Fields CA16 and JA17, 

where only one variable was used. Shallow ECa was chosen as a clustering variable in 

five of eight fields, and ECd was chosen as a clustering variable in four of eight fields. 

Soil organic matter was chosen in three of eight fields, and Elevrel was selected in two of 

eight fields.  

Results from MZA were evaluated using two indices calculated by MZA—NCE 

and FPI. Class number is optimized when both NCE and FPI are minimized (Fridgen et 

al., 2004). The FPI indicated that optimal clustering occurred with five MZ in two of six 

fields, with three MZ in two of six fields, and with two MZ in four of six fields (Fig. 3.7). 

For NCE, optimal clustering occurred with two MZ for all eight fields (Fig. 3.7). To 

simplify analysis, each field was clustered into two MZ. 

 A map of delineated MZ for Field HU17 is presented in Fig. 3.8. Classification 

maps for all fields are included in Appendix 1. For all sites, Zone 1 consisted of more 

productive soils with higher SOM content while Zone 2 classified the less productive 

areas of the field. For the sandy level fields (KR16 and KR17), Zone 1 contained soils 

with higher soil ECa and corresponding higher SOM content. The fields with eroded 

slopes (CA16, HU16, JA17) had more productive areas in the level, upland positions of 

the landscape, while Zone 2 areas were associated with steep slopes and drainage areas, 

and lower SOM, with conditions less suitable for growth. Silt loam level fields (AR16, 

AR17, HU17) had more productive Zone 1 areas associated with lower soil ECa in slight 

depressions.  

Management Zone Validation 

Normalized Difference Red Edge Index 
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Previous research has shown NDRE to be a good measure of in-season crop N 

status (Li et al., 2014), and it was consequently used for to verify that crop response to N 

is consistently affected by MZ. The results of this analysis are shown in Figs. 3.9 and 

3.10. Only two fields (HU16 and KR16) had significantly higher NDRE values for Zone 

1 versus Zone 2 across all N treatments. When looking at the Sensor treatment only, 

NDRE values were significantly higher in Zone 1 than in Zone 2 in four fields (CA16, 

HU16, KR16, and JA17). Though not always statistically significant, NDRE values were 

consistently greater for Zone 1 for all treatments in seven of eight fields. Field AR16 had 

an inconsistent zonal response (Fig. 3.9). This can be attributed to a lack of variability in 

this field, which was very level with similar soil texture across the field. These results 

suggest that these delineated MZ based on field-specific variables can properly 

characterize differences in crop response to N. 

Yield 

Yield response to N was also used to validate MZ delineation for the two MZ 

(Figs. 3.11 and 3.12). Across all treatments, yield was significantly higher (p < 0.05) in 

Zone 1 than in Zone 2 in five of eight fields (AR16, HU16, KR16, HU17, and KR17). 

Yield was higher—though not always significantly higher—for Zone 1 compared to Zone 

2 across all treatments and sites, excluding the N Ref treatment in Field AR17. These 

results indicate that areas classified in Zone 1 were likely more productive and able to 

provide higher amounts of mineralized N than Zone 2 areas.  

The lack of differences between MZ for Field AR17 can be attributed to the 

general lack of spatial variability in this field and high SOM levels throughout the field. 

Field JA17 was a very highly variable field in terms of both soils and topography. Just 
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two delineated MZ using only one attribute (SOM) was likely not enough to capture the 

high variability present in the field. For Field CA16, all but the Uniform treatment 

showed a significant difference, and this treatment still resulted in a yield increase for 

Zone 1 of 0.7 Mg·ha-1 (p = 0.09). 

Nitrogen Use Efficiency 

 Across all treatments, PFPN was generally higher in Zone 1 than in Zone 2 in 

seven of eight fields, however it was only significantly higher (p < 0.05) for all 

treatments in two fields (HU16 and KR16) (Figs. 3.13 and 3.14). When looking at the 

Sensor treatment only, PFPN was significantly higher (p < 0.05) in Zone 1 than Zone 2 in 

six of eight fields. Fields AR16 and AR17, which did not show a statistically significant 

difference between zones in any of the treatments, were the least variable of all fields 

studied. They had the highest SOM levels of any site (Table 3.1) and had little variability 

in topography (Table 3.3). These low PFPN values for Zone 2 were a result of low N 

sufficiency at the time of sensing and in-season N application, which resulted in 

excessively high N rates in areas with inherently lower yield potential. Increased PFPN 

may be realized in these areas by modifying the sensor-based algorithm with a separate 

NDRE reference value for each zone to account for differences in soils and expected 

productivity. Future research should validate this approach in a field setting.  
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CONCLUSIONS 

This study compared in-season, sensor-based N application to producer-selected 

uniform N management in eight fields with varying soil and topographic conditions in 

east central Nebraska. The sensor-based treatment resulted in significantly increased 

PFPN compared to the uniform treatment in six of eight fields. The increase came from 

drastically decreasing N rate while slightly decreasing yield in five of the fields, and 

maintaining the same N rate while increasing yield in the sixth field. These results 

indicate that in-season, sensor-based application has the potential to increase NUE 

compared to uniform N application, primarily through decreasing applied N with a slight 

or no reduction in grain yield.  

Results from MZ delineation showed that MZ accurately characterized spatial 

differences in N status, measured as NDRE, for the sensor-based treatment in four of 

eight fields. Though not always statistically significant, NDRE values were consistently 

greater for the more productive Zone 1 soils in seven of eight fields. Yield was higher for 

Zone 1 compared to Zone 2 across both sensor-based and uniform treatments for all sites, 

and this difference was statistically significant in five of eight fields. For the sensor-based 

treatment, PFPN was significantly higher for Zone 1 than Zone 2 in six of eight fields. 

These results indicate that further increases in NUE may be achieved by incorporating 

soil-based MZ into sensor-based algorithms, particularly in fields with high variability in 

soils and topography. Integration may not prove successful in fields with little field 

variability when compared to sensor-based N application alone or to uniform N 

management.  
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Fig 3.1. Study site locations within the state of Nebraska. Surface soil texture also shown.
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Fig. 3.2. Experimental design of field-length treatments and small plots in Field HU16.
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Fig. 3.3. Nitrogen rate and yield for each treatment for the 2016 fields. Treatment mean groupings are indicated for yield (uppercase 

letters) and N rate (lowercase letters) for each field. Bars with the same letter are not significantly different. Error bars indicate 

standard error for each treatment. 

B A B C B A C B A A C B

c

b

a

b

a a

c

b

a

b b

a

0

50

100

150

200

250

300

350

0

2

4

6

8

10

12

14

16

18

20

S
e
n

s
o

r

U
n

if
o

rm

N
 R

e
f

S
e
n

s
o

r

U
n

if
o

rm

N
 R

e
f

S
e
n

s
o

r

U
n

if
o

rm

N
 R

e
f

S
e
n

s
o

r

U
n

if
o

rm

N
 R

e
f

AR16 CA16 HU16 KR16

N
 R

a
te

, 
k

g
·h

a
-1

Y
ie

ld
, 
M

g
·h

a
-1

Yield

N Rate



 

 
 

1
1
5
 

 
Fig. 3.4. Nitrogen rate and yield for each treatment for the 2017 fields. Treatment mean groupings are indicated for yield (uppercase 

letters) and N rate (lowercase letters) for each field. Bars with the same letter are not significantly different. Error bars indicate 

standard error for each treatment.
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Fig. 3.5. Partial factor productivity of nitrogen (PFPN) for each treatment for the 2016 fields. Treatment mean groupings are indicated 

for each field. Bars with the same letter are not significantly different. Error bars indicate standard error for each treatment.
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Fig. 3.6. Partial factor productivity of nitrogen (PFPN) for each treatment for the 2017 fields. Treatment mean groupings are indicated 

for each field. Bars with the same letter are not significantly different. Error bars indicate standard error for each treatment.  
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Fig 3.7.  FPI and NCE values calculated in MZA for all fields.
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Fig. 3.8. Management zone delineation for Field HU17 using ECs and SOM. 
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Fig. 3.9. NDRE by treatment by MZ for the 2016 fields. Treatment mean groupings are indicated for each field. Bars with the same 

letter are not significantly different. Error bars indicate standard error for each treatment.
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Fig. 3.10. NDRE by treatment by MZ for the 2017 fields. Treatment mean groupings are indicated for each field. Bars with the same 

letter are not significantly different. Error bars indicate standard error for each treatment. 
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Fig. 3.11. Yield by treatment by MZ for the 2016 fields. Treatment mean groupings are indicated for each field. Bars with the same 

letter are not significantly different. Error bars indicate standard error for each treatment. 
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Fig. 3.12. Yield by treatment by MZ for the 2017 fields. Treatment mean groupings are indicated for each field. Bars with the same 

letter are not significantly different. Error bars indicate standard error for each treatment. 
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Fig. 3.13. Partial factor productivity of nitrogen (PFPN) by treatment by MZ for the 2017 fields. Treatment mean groupings are 

indicated for each field. Bars with the same letter are not significantly different. Error bars indicate standard error for each treatment. 
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Fig. 3.14. Partial factor productivity of nitrogen (PFPN) by treatment by MZ for the 2017 fields. Treatment mean groupings are 

indicated for each field. Bars with the same letter are not significantly different. Error bars indicate standard error for each treatment.  
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Table 3.1. Field location, soil series, and soil classification for all fields. 
 

Field 

ID Year Legal Description Soil Series Soil Great Group Slope 

SOM 

Range† 

AR16 2016 T.14N-R.9E., Sec 

19, NW ¼, N ½  

Filbert silt loam Vertic Argialbolls 0-1% 2.9-5.0% 

Tomek silt loam Pachic Argiudolls 0-2%  

Yutan silty clay loam Mollic Hapludalfs 2-6%, eroded  

CA16 2016 T.9N-R.2E., Sec 19, 

NW ¼, W ½, S ½  

Deroin silty clay loam Mollic Hapludalfs 6-11%, severely eroded 1.9-3.6% 

Hastings silty clay loam Udic Argiustolls 3-7%, eroded  

Deroin silty clay loam Mollic Hapludalfs 11-30%, severely eroded  

HU16 2016 T.9N-R.7W., Sec 4, 

SW ¼, E ½  

Hastings silt loam Udic Argiustolls 0-1% 1.9-3.8% 

Crete silt loam Udertic Argiustolls 0-1%  

Hastings silty clay loam Udic Argiustolls 7-11%, eroded  

Hastings silty clay loam Udic Argiustolls 3-7%, eroded  

KR16 2016 T.16N-R.1E., Sec 

21, NW ¼, S ½  

Brocksburg sandy loam Pachic Argiustolls 0-2% 0.6-1.7% 

AR17 2017 T.14N-R.9E., Sec 

20, SW ¼, W ½  

Yutan silty clay loam Mollic Hapludalfs 2-6%, eroded 1.9-4.7% 

Filbert silt loam Vertic Argialbolls 0-1%  

Tomek silt loam Pachic Argiudolls 0-2%  

HU17 2017 T.9N-R.8W, Sec 1, 

NE ¼, N ½  

Hastings silt loam Udic Argiustolls 0-1% 2.2-4.4% 

Hastings silt loam Udic Argiustolls 1-3%  

JA17 2017 T.16N-R.4W, Sec 7, 

SE ¼, S ½  

Thurman loamy fine sand Udorthentic Haplustolls 2-6% 0.9-3.1% 

Loretto-Thurman 

complex 

Udic Argiustolls 1-3%  

Thurman loamy fine sand Udorthentic Haplustolls 2-6%, eroded  

KR17 2017 T.16N-R.1E., Sec 

16, SW ¼, S ½  

Thurman loamy fine sand Udorthentic Haplustolls 2-6% 0.7-2.0% 

Brocksburg sandy loam Pachic Argiustolls 0-2%  

† Soil organic matter content (%). 25 soil samples per site at 20-cm depth. 
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Table 3.2. Producer management practices for all fields. 
 

Field 

ID Tillage† 

Previous 

Crop 

Planting 

Date Hybrid 

Seeding 

Rate 

Strip 

Width 

Harvest 

Date 

     seeds·ha-1 m  

AR16 NT Soybean 5/5/16 Pioneer 1197AM 76,600 6.1 11/1/16 

CA16 NT Maize 5/19/16 Golden Harvest 

G07B39-311A 

74,130 12.2 10/25/16 

HU16 ST Maize 5/6/16 Pioneer 1105AM 81,540 9.1 10/17/16 

KR16 NT Soybean 4/24/16 Pioneer 33D53AM 79,070 12.2 10/22/16 

AR17 NT Soybean 4/25/17 DeKalb 62-98 81,510 12.2 10/11/17 

HU17 ST Maize 4/25/17 Pioneer 1306WHR 83,030 9.1 10/30/17 

JA17 NT Soybean 5/5/17 Pioneer 1690 74,100 12.2 11/5/17 

KR17 NT Soybean 4/23/17 Pioneer 1498 80,560 12.2 10/17/17 

† NT: no-till; ST: strip-till 
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Table 3.3. Nitrogen application information for all treatments for all fields. 
 

Field 

ID 

Base Rate Application Sensor-Based Application 

Producer 

Field N 

Rate 

High-N 

Reference Date 

Crop 

Growth 

Stage† 

N 

Rate Source‡ Date 

Crop 

Growth 

Stage† 

Average 

N Rate Source‡ 

   kg·ha-1    kg·ha-1  kg·ha-1 kg·ha-1 

AR16 3/17/16 Pre-plant 84 
Anhydrous 

ammonia 
6/24/16 V9 158 28% UAN 196 252 

CA16 6/6/16 V2 84 28% UAN 7/19/16 VT 150 28% UAN 246 252 

HU16 6/24/16 V7 178 28% UAN 7/11/16 V13 212 28% UAN 245 280 

KR16 5/4/16 Pre-emerge 82 32% UAN 6/24/16 V10 193 32% UAN 188 280 

AR17 3/24/17 Pre-plant 84 
Anhydrous 

ammonia 
6/23/17 V11 259 28% UAN 202 252 

HU17 6/7/17 V4 91 28% UAN 7/5/17 V13 147 28% UAN 235 280 

JA17 5/9/17 Pre-emerge 78 30% UAN 6/28/17 V11 213 32% UAN 163 280 

KR17 4/29/17 Pre-emerge 122 32% UAN 6/29/17 V11 169 32% UAN 244 280 

† Number of collared leaves 

‡ UAN = urea-ammonium nitrate solution  
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Table 3.4. Treatment effects on N applied, grain yield, partial factor productivity of nitrogen (PFPN), and marginal net return. 

Treatment mean groupings were calculated separately for each field. Maize and N fertilizer prices of $120.07·Mg-1 ($3.05·bu-1) and 

$0.99·kg N-1 ($0.45·lb N-1) were used to calculate marginal net return. 

Field Treatment 

N Applied 

(kg N·ha-1) Sig* 

Yield 

(Mg·ha-1) Sig 

PFPN (kg grain 

· kg N-1) Sig 

Marginal Net 

Return ($·ha-1) Sig 

AR16 Sensor 158 B 14.7 B 93 A 1,607.85 A 

 Uniform 196 A 15.1 A 77 B 1,617.83 A 

CA16 Sensor 150 B 10.1 B 68 A 1,065.74 A 

 Uniform 246 A 10.8 A 44 B 1,047.38 B 

HU16 Sensor 212 B 13.1 B 62 A 1,362.40 B 

 Uniform 245 A 13.9 A 57 B 1,425.63 A 

KR16 Sensor 193 A 13.1 A 68 A 1,379.45 A 

 Uniform 188 A 11.5 B 61 B 1,197.11 B 

AR17 Sensor 259 A 16.6 A 64 B 1,735.36 B 

 Uniform 202 B 16.4 B 81 A 1,771.81 A 

HU17 Sensor 147 B 15.9 B 109 A 1,767.09 A 

 Uniform 235 A 16.1 A 68 B 1,700.09 B 

JA17 Sensor 213 A 14.3 A 67 B 1,501.92 A 

 Uniform 163 B 13.6 B 84 A 1,472.39 B 

KR17 Sensor 169 B 12.5 B 74 A 1,330.94 B 

 Uniform 244 A 13.8 A 57 B 1,415.56 A 

* Treatments with the same letter not significantly different at α = 0.05. 
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Table 3.5. Pearson correlation coefficients of soil and topographic variables to check plot 

yield and in-season NDRE measurements across all fields (Global Approach)  

(n = 108; for SOM n = 92). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.67*** 1       

ECs -0.01 -0.09 1      

ECd 0.03 -0.13 0.94*** 1     

SRsoil -0.10 -0.14 -0.34*** -0.30** 1    

SOM -0.04 0.04 0.65*** 0.71*** -0.04 1   

Elevrel -0.17 -0.21* 0.52*** 0.45*** -0.31** 0.22* 1  

Slope -0.19 -0.25* 0.45*** 0.33*** -0.38*** -0.07 0.65*** 1 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table 3.6. Pearson correlation coefficients of soil and topographic variables to in-season 

NDRE measurements for all nonzero plots across all fields (Global Approach)  

(n = 552; for SOM n = 472). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs -0.03 1      

ECd -0.05 0.95*** 1     

SRsoil -0.14*** -0.33*** -0.25*** 1    

SOM 0.17*** 0.64*** 0.72*** 0.00 1   

Elevrel -0.11* 0.58*** 0.50*** -0.29*** 0.24*** 1  

Slope -0.14** 0.46*** 0.35*** -0.35*** -0.06 0.63*** 1 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table 3.7. Pearson correlation coefficients of soil and topographic variables to check plot yield and NDRE for all site-years (Field-

Specific Approach). Bold data indicate select variables used in management zone delineation. 

Field 

Crop 

Parameter 

N Rate 

kg·ha-1 n 

Electrical Conductivity Soil Optical Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 
AR16 NDRE 84 60 -0.66*** -0.61*** 0.25 0.43** -0.56*** -0.34** 

 Yield 84 10 0.46 0.41 -0.30 -0.40 0.28 0.21 

CA16 NDRE 56 65 0.07 -0.06 0.01 0.06 0.23 -0.15 

 NDRE 0 13 0.55 0.41 -0.20 0.36 0.60* -0.32 

 Yield 0 13 0.43 0.41 0.30 -0.12 0.43 -0.18 

HU16 NDRE 56 75 -0.60*** -0.57*** 0.38*** 0.41*** 0.35** -0.35** 

 NDRE 0 12 -0.63* -0.78** 0.44 0.52 0.51 -0.52 

 Yield 0 12 -0.64* -0.80** 0.42 0.51 0.46 -0.44 

KR16 NDRE 56 80 0.69*** 0.66*** -0.55*** - 0.14 0.05 

 NDRE 0 16 0.83*** 0.67** -0.65** - 0.15 -0.17 

 Yield 0 16 0.91*** 0.72** -0.74** - 0.22 -0.08 

AR17 NDRE 56 52 -0.22 -0.18 -0.08 0.16 -0.12 0.14 

 NDRE 0 11 -0.40 -0.27 0.44 0.30 -0.77** -0.23 

 Yield 0 11 -0.55 -0.35 -0.24 0.62* -0.36 -0.36 

HU17 NDRE 56 70 -0.57*** -0.34** 0.12 0.68*** -0.39** -0.63*** 

 NDRE 0 14 -0.79*** -0.62* -0.07 0.73** -0.40 -0.56* 

 Yield 0 14 -0.79*** -0.56* 0.07 0.73** -0.21 -0.64* 

JA17 NDRE 56 80 0.35** 0.18 -0.49*** 0.50*** -0.14 -0.18 

 NDRE 39 16 0.40 0.31 -0.47 0.47 -0.30 -0.45 

 Yield 39 16 0.19 0.27 0.07 -0.02 -0.20 -0.15 

KR17 NDRE 80 80 0.45*** 0.26* -0.30** 0.44*** 0.12 -0.36** 

 NDRE 24 16 0.53* 0.46 -0.52* 0.50* -0.14 -0.54* 

 Yield 24 16 0.85*** 0.84*** -0.08 -0.03 0.42 0.22 

 * Statistical significance at P < 0.05. 

 ** Statistical significance at P < 0.01. 

 *** Statistical significance at P < 0.001. 

  



 

 
 

1
3
2
 

APPENDIX 1 
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Fig. A1.1. Experimental design of field-length treatments and small plots in Field AR16.
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Fig. A1.2. Experimental design of field-length treatments and small plots in Field CA16. 
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Fig. A1.3. Experimental design of field-length treatments and small plots in Field HU16.
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Fig. A1.4. Experimental design of field-length treatments and small plots in Field KR16. 
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Fig. A1.5. Experimental design of field-length treatments and small plots in Field AR17. 
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Fig. A1.6. Experimental design of field-length treatments and small plots in Field HU17.  
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Fig. A1.7. Experimental design of field-length treatments and small plots in Field JA17.   
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Fig. A1.8. Experimental design of field-length treatments and small plots in Field KR17.  
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Fig. A1.9. Management zone delineation for Field AR16 using ECs and ECd.
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Fig. A1.10. MZ delineation for Field CA16 using Elevrel. 
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Fig. A1.11. MZ delineation for Field HU16 using ECd and ECs.
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Fig A1.12. MZ delineation for Field KR16 using ECs and ECd.
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Fig. A1.13. MZ delineation for Field AR17 using Elevrel and SOM. 
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Fig. A1.14. MZ delineation for Field HU17 using ECs and SOM. 
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Fig. A1.15. MZ delineation for Field JA17 using SOM. 
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Fig A1.16. MZ delineation for Field KR17 using ECs and ECd.   
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Fig. A1.17. Yield response to N rate models for treatment blocks in Field AR16.   
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Fig. A1.18. Yield response to N rate models for treatment blocks in Field CA16. 
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Fig. A1.18. Yield response to N rate models for treatment blocks in Field CA16.   
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Fig. A1.19. Yield response to N rate models for treatment blocks in Field HU16. 
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Fig. A1.19. Yield response to N rate models for treatment blocks in Field HU16. 
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Fig. A1.20. Yield response to N rate models for treatment blocks in Field KR16. 
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Fig. A1.20. Yield response to N rate models for treatment blocks in Field KR16. 
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Fig. A1.21. Yield response to N rate models for treatment blocks in Field AR17. 
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Fig. A1.22. Yield response to N rate models for treatment blocks in Field HU17. 
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Fig. A1.22. Yield response to N rate models for treatment blocks in Field HU17. 
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Fig. A1.23. Yield response to N rate models for treatment blocks in Field JA17. 
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Fig. A1.23. Yield response to N rate models for treatment blocks in Field JA17. 
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Fig. A1.24. Yield response to N rate models for treatment blocks in Field KR17. 
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Fig. A1.24. Yield response to N rate models for treatment blocks in Field KR17. 
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Table A1.1. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field AR16 (n = 10). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE -0.21 1       

ECs 0.46 -0.86** 1      

ECd 0.41 -0.83** 0.97*** 1     

SRsoil -0.30 0.69* -0.43 -0.38 1    

SOM -0.40 0.60# -0.78** -0.74* 0.21 1   

Elevrel 0.28 -0.74* 0.84** 0.93*** -0.34 -0.54 1  

Slope 0.21 -0.65* 0.57# 0.39 -0.44 -0.44 0.16 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.2. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field AR16 (n = 50). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs -0.66*** 1      

ECd -0.62*** 0.96*** 1     

SRsoil 0.27# -0.17 -0.15 1    

SOM 0.40** -0.66*** -0.55*** -0.03 1   

Elevrel -0.58*** 0.93*** 0.91*** -0.10 -0.59*** 1  

Slope -0.30* 0.46*** 0.34* -0.17 -0.52*** 0.33* 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.3. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field CA16 (n = 13). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.77** 1       

ECs 0.43 0.55# 1      

ECd 0.41 0.41 0.84** 1     

SRsoil 0.30 -0.20 -0.05 0.22 1    

SOM -0.12 0.36 0.28 0.23 -0.63* 1   

Elevrel 0.43 0.60* 0.26 0.16 -0.32 0.55# 1  

Slope -0.18 -0.32 0.00 -0.06 0.14 0.09 -0.16 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.4. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field CA16 (n = 65). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs 0.07 1      

ECd -0.06 0.90*** 1     

SRsoil 0.01 -0.27* -0.16 1    

SOM 0.06 0.36** 0.38** -0.51*** 1   

Elevrel 0.23# 0.11 0.01 -0.29* 0.63*** 1  

Slope -0.15 -0.05 -0.08 0.16 -0.19 -0.02 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.5. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field HU16 (n = 12). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.89*** 1       

ECs -0.64* -0.63* 1      

ECd -0.80** -0.78** 0.91*** 1     

SRsoil 0.42 0.44 -0.78** -0.63* 1    

SOM 0.51# 0.52# -0.85*** -0.74** 0.94*** 1   

Elevrel 0.46 0.51# -0.78** -0.69* 0.86*** 0.93*** 1  

Slope -0.44 -0.52# 0.82** 0.68* -0.85*** -0.91*** -0.94*** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.6. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field HU16 (n = 75). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs -0.60*** 1      

ECd -0.57*** 0.85** 1     

SRsoil 0.38*** -0.71*** -0.42*** 1    

SOM 0.41*** -0.75*** -0.56*** 0.85*** 1   

Elevrel 0.35** -0.63*** -0.50*** 0.65*** 0.83*** 1  

Slope -0.35** 0.71*** 0.44*** -0.81*** -0.83*** -0.81*** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.7. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field KR16 (n = 16). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.94*** 1       

ECs 0.91*** 0.83*** 1      

ECd 0.72** 0.67** 0.84*** 1     

SRsoil -0.74** -0.65** -0.78*** -0.56* 1    

SOM . . . . . 1   

Elevrel 0.22 0.15 0.22 0.30 0.23 . 1  

Slope -0.08 -0.17 -0.05 0.17 -0.13 . 0.06 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.8. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field KR16 (n = 80). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs 0.69*** 1      

ECd 0.66*** 0.86*** 1     

SRsoil -0.55*** -0.74*** -0.55*** 1    

SOM . . . . 1   

Elevrel 0.14 0.16 0.18 0.14 . 1  

Slope 0.05 0.04 0.02 -0.11 . 0.12 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.9. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field AR17 (n = 11). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.44 1       

ECs -0.55# -0.40 1      

ECd -0.35 -0.27 0.41 1     

SRsoil -0.24 0.44 -0.07 0.05 1    

SOM 0.62* 0.30 -0.09 -0.12 -0.57# 1   

Elevrel -0.36 -0.77** 0.74** 0.23 -0.61* 0.15 1  

Slope -0.36 -0.23 0.06 0.00 0.46 -0.69* -0.11 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.10. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field AR17 (n = 52). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs -0.22 1      

ECd -0.18 0.47*** 1     

SRsoil -0.08 -0.37** 0.07 1    

SOM 0.16 -0.15 -0.27# -0.48*** 1   

Elevrel -0.12 0.80*** 0.17 -0.52*** -0.04 1  

Slope 0.14 0.40** 0.13 -0.04 -0.19 0.38** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.11. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field HU17 (n = 14). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.81*** 1       

ECs -0.79*** -0.79*** 1      

ECd -0.56* -0.62* 0.80*** 1     

SRsoil 0.07 -0.07 -0.34 0.01 1    

SOM 0.73** 0.73** -0.69** -0.27 0.28 1   

Elevrel -0.21 -0.40 0.48# 0.46# -0.01 -0.43 1  

Slope -0.64* -0.56* 0.54* 0.10 -0.36 -0.93*** 0.30 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.12. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field HU17 (n = 70). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs -0.57*** 1      

ECd -0.34** 0.66*** 1     

SRsoil 0.12 -0.02 0.17 1    

SOM 0.68*** -0.70*** -0.32** 0.17 1   

Elevrel -0.39** 0.45*** 0.27* 0.25* -0.42*** 1  

Slope -0.63*** 0.52*** 0.26* -0.20 -0.81*** 0.35** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.13. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field JA17 (n = 16). 
 

 

Yield NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.50* 1       

ECs 0.19 0.40 1      

ECd 0.27 0.31 0.91*** 1     

SRsoil 0.07 -0.47# -0.74** -0.48# 1    

SOM -0.02 0.47# 0.65** 0.40 -0.95*** 1   

Elevrel -0.20 -0.30 -0.74** -0.77*** 0.35 -0.28 1  

Slope -0.15 -0.45# -0.80*** -0.68** 0.64** -0.61* 0.70** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.14. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field JA17 (n = 80). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs 0.35** 1      

ECd 0.18 0.90*** 1     

SRsoil -0.49*** -0.73*** -0.46*** 1    

SOM 0.50*** 0.63*** 0.34** -0.94*** 1   

Elevrel -0.14 -0.80*** 0.76*** 0.44*** -0.34** 1  

Slope -0.18 -0.61*** -0.49*** 0.50*** -0.51*** 0.62*** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.15. Pearson correlation coefficients of soil and topographic variables to check 

plot yield and in-season NDRE for Field KR17 (n = 16). 
 

 

Yield NDRE 

Apparent 

Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

Yield 1        

NDRE 0.52* 1       

ECs 0.85*** 0.53* 1      

ECd 0.84*** 0.46# 0.96*** 1     

SRsoil -0.08 -0.52* -0.06 0.04 1    

SOM -0.03 0.50* -0.11 -0.25 -0.90*** 1   

Elevrel 0.42 -0.14 0.36 0.50* 0.75*** 0.75*** 1  

Slope 0.22 -0.54* 0.07 0.27 0.53* 0.53* 0.66** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 

 

 

 

 

 

Table A1.16. Pearson correlation coefficients of soil and topographic variables to in-

season NDRE for all nonzero plots for Field KR17 (n = 80). 
 

 

NDRE 

Apparent Electrical 

Conductivity 

Soil Optical 

Reflectance Landscape 

ECs ECd SRsoil SOM Elevrel Slope 

NDRE 1       

ECs 0.45*** 1      

ECd 0.26* 0.91*** 1     

SRsoil -0.30** -0.04 0.15 1    

SOM 0.44*** -0.05 -0.24* -0.92*** 1   

Elevrel 0.12 0.53*** 0.65*** 0.54*** -0.51*** 1  

Slope -0.36** 0.14 0.28* 0.53*** -0.67*** 0.32** 1 

# Statistical significance at P < 0.10. 

* Statistical significance at P < 0.05. 

** Statistical significance at P < 0.01. 

*** Statistical significance at P < 0.001. 
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Table A1.17. Summary statistics for soil and topographic variables for all 2016 fields. 

Field Variable Units Min Max Range Mean 

Standard 

Deviation CV 

AR16 ECs dS·m-1 11.4 73.4 62.0 31.9 11.85 37.2%  
ECd dS·m-1 22.0 101.8 79.8 48.9 16.75 34.3%  

SRsoil - 1.7 2.0 0.3 1.9 0.05 2.6%  
SOMcal % 3.1 4.6 1.5 3.9 0.22 5.5%  
SOM % 2.9 5.0 2.1 3.9 0.39 9.9%  
CEC cmolc·kg-1 13.6 24.8 11.2 18.5 2.86 15.5%  

Elevrel m 0.0 4.4 4.4 2.1 0.83 40.4%  
Slope % 0.0 15.1 15.1 2.1 1.26 60.7% 

CA16 ECs dS·m-1 19.4 82.2 62.8 46.3 11.29 24.4%  
ECd dS·m-1 26.5 119.9 93.4 69.6 15.50 22.3%  

SRsoil - 1.7 1.9 0.2 1.8 0.04 2.1%  
SOMcal % 2.3 3.7 1.4 3.1 0.20 6.6%  
SOM % 1.9 3.6 1.7 3.0 0.42 14.0%  
CEC cmolc·kg-1 13.7 25.4 11.7 19.6 3.02 15.4%  

Elevrel m 0.0 20.0 20.0 9.7 4.84 49.6%  
Slope % 0.0 26.5 26.5 7.0 3.38 48.1% 

HU16 ECs dS·m-1 14.4 95.1 80.7 38.6 11.72 30.3%  
ECd dS·m-1 24.8 136.2 111.4 66.1 14.88 22.5%  

SRsoil - 1.7 2.0 0.3 1.9 0.05 2.8%  
SOMcal % 1.7 3.6 1.9 2.9 0.32 11.1%  
SOM % 1.9 3.8 1.9 2.9 0.46 15.9%  
CEC cmolc·kg-1 13.3 22.7 9.4 16.6 2.75 16.6%  

Elevrel m 0.0 8.5 8.5 6.3 1.64 25.9%  
Slope % 0.0 19.8 19.8 2.9 2.93 101.4% 

KR16 ECs dS·m-1 1.3 27.1 25.7 4.1 2.69 66.4%  
ECd dS·m-1 2.0 24.2 22.3 7.1 4.13 58.5%  

SRsoil - 1.8 2.2 0.4 2.0 0.06 3.0%  
SOMcal % - - - - - -  
SOM % 0.6 1.7 1.1 1.0 0.30 31.0%  
CEC cmolc·kg-1 3.8 9.1 5.3 5.1 1.41 27.8%  

Elevrel m 0.0 4.7 4.7 2.0 0.62 32.0%  
Slope % 0.0 12.6 12.6 1.5 1.26 84.0% 

ECs, shallow apparent electrical conductivity 

ECd, deep apparent electrical conductivity 

SRsoil, simple ratio of soil optical reflectance 

SOMcal, calibrated soil organic matter 

SOM, measured soil organic matter 

CEC, measured cation-exchange capacity 

Elevrel, relative elevation  
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Table A1.18. Summary statistics for soil and topographic variables for all 2017 fields. 

Field Variable Units Min Max Range Mean 

Standard 

Deviation CV 

AR17 ECs dS·m-1 14.5 67.0 52.5 29.2 8.65 29.6%  
ECd dS·m-1 11.4 155.3 143.9 52.9 20.91 39.5%  

SRsoil - 1.6 1.9 0.2 1.8 0.03 1.8%  
SOMcal % 2.2 3.8 1.5 3.0 0.19 6.5%  
SOM % 1.9 4.7 2.8 3.0 0.55 18.5%  
CEC cmolc·kg-1 14.6 25.2 10.6 19.5 2.75 14.1%  

Elevrel m 0.0 4.0 4.0 1.5 0.81 54.2%  
Slope % 0.0 13.5 13.5 2.1 1.47 68.9% 

HU17 ECs dS·m-1 6.6 70.6 64.0 31.9 9.59 30.1%  
ECd dS·m-1 12.7 95.2 82.6 55.0 13.56 24.6%  

SRsoil - 1.6 2.3 0.7 2.1 0.10 4.6%  
SOMcal % 1.8 4.2 2.4 3.3 0.36 10.9%  
SOM % 2.2 4.4 2.2 3.3 0.42 12.6%  
CEC cmolc·kg-1 15.4 24.0 8.6 18.5 1.95 10.5%  

Elevrel m 0.0 5.1 5.1 2.2 1.06 47.6%  
Slope % 0.0 10.2 10.2 1.3 1.17 90.1% 

JA17 ECs dS·m-1 2.3 37.9 35.6 7.8 4.63 59.2%  
ECd dS·m-1 2.6 48.5 46.0 12.7 8.24 65.1%  

SRsoil - 1.7 2.2 0.4 1.9 0.08 4.1%  
SOMcal % 0.0 2.5 2.5 1.4 0.50 36.0%  
SOM % 0.9 3.1 2.2 1.4 0.57 39.7%  
CEC cmolc·kg-1 5.3 16.7 11.4 8.6 3.08 36.0%  

Elevrel m 0.0 7.0 7.0 2.2 1.51 68.9%  
Slope % 0.0 16.0 16.0 3.2 2.42 76.1% 

KR17 ECs dS·m-1 1.7 26.2 24.6 5.8 3.94 67.5%  
ECd dS·m-1 0.0 55.5 55.5 6.0 5.40 90.6%  

SRsoil - 1.7 2.1 0.4 1.9 0.06 3.3%  
SOMcal % 0.3 1.7 1.4 1.2 0.24 20.2%  
SOM % 0.7 2.0 1.3 1.2 0.39 32.8%  
CEC cmolc·kg-1 3.8 13.9 10.1 6.8 2.39 35.1%  

Elevrel m 0.0 2.9 2.9 1.2 0.46 38.9%  
Slope % 0.0 7.9 7.9 1.8 1.35 76.1% 

ECs, shallow apparent electrical conductivity 

ECd, deep apparent electrical conductivity 

SRsoil, simple ratio of soil optical reflectance 

SOMcal, calibrated soil organic matter 

SOM, measured soil organic matter 

CEC, measured cation-exchange capacity 

Elevrel, relative elevation  
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APPENDIX 2 

A2.1. SAS Code for estimation of EONR by quadratic-plateau function. 

*Quadratic-Plateau Model; 

Title 'Quadratic-Plateau Analysis'; 

PROC NLIN DATA=All;  

 by Site Rep; 

 parms  a=7  

   b=0.05  

   c=-0.0002; 

x0=-.5*b/c; 

db=-.5/c; 

dc=.5*b/c**2; 

output out=quadplat p=QPpred r=QPresid ess=QPess parms = a b c; 

if AppN<x0 then do; 

model Yld=a+b*AppN+c*AppN*AppN; 

der.a=1; der.b=AppN; der.c=AppN*AppN; 

end; 

else do; 

model Yld=a+b*x0+c*x0*x0; 

der.a=1; der.b=x0+b*db+2*c*x0*db; der.c=b*dc+x0*x0+2*c*x0*dc; 

end; 

if _obs_=1 & _model_=1 then do; 

plateau=a+b*x0+c*x0*x0; 

put x0= plateau=; 

end; 

ods output ConvergenceStatus=CS ANOVA=AN; 

run; 

 

PROC SORT DATA=CS; 

BY site rep; 

RUN; 

PROC SORT DATA=AN; 

BY site rep; 

RUN; 

PROC SORT DATA=quadplat; 

BY site rep; 

RUN; 

DATA merge1; 

MERGE quadplat (in=in1) AN; 

BY site rep; 

IF in1; 

RUN; 

DATA merge2; 

MERGE merge1 (in=in1) CS; 

BY site rep; 

IF in1; 

RUN; 

PROC PRINT DATA=merge2; 

RUN; 
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A2.2. SAS code for linear regression of yield response to N. 

PROC REG DATA=NOConverge plots=ResidualByPredicted 

plots=predictions(X=AppN); 

 by site rep; 

 var AppN; 

 model Yld=AppN / r clm cli; 

ods output ANOVA=AN FitStatistics=FS ParameterEstimates=PE; 

RUN; 

ods graphics off; 

 

DATA merge1; 

MERGE AN (in=in1) FS; 

IF in1; 

RUN; 

DATA merge2; 

MERGE merge1 (in=in1) PE; 

IF in1; 

RUN; 

PROC PRINT DATA=merge2; 

RUN; 
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A2.3. R code for an alternative MZ delineation method. 

Several methods of cluster analysis are available for management zone (MZ) 

delineation. Fuzzy k-means cluster analysis has been used often to identify MZ for 

precision agriculture. In addition to using the original soil and topographic variables as 

inputs, some have used Principal Component Analysis (PCA) to build linear 

combinations of those variables, which are then used in the k-means clustering algorithm. 

Classical PCA summarizes the variability of several variables in new synthetic variables.  

One issue with traditional k-means cluster analysis is that it does not include 

spatial autocorrelation or any reference to the geographical position of the data points. 

These clustering algorithms were not developed for spatial data, and often high zone 

fragmentation occurs when the spatial nature of the data is ignored. 

Recent research by Córdoba et al. (2013) sought to apply a method proposed by 

Dray et al. (2008) that first takes into account spatial autocorrelation and then uses a 

fuzzy k-means clustering algorithm using spatial principal components from PCA as 

input variables. Dray et al. (2008) had applied this at a macrogeographical scale, and 

Córdoba et al. (2013) applied it to precision agriculture, finding it to be a more successful 

method for MZ delineation than traditional fuzzy k-means cluster analysis. They called 

this method cluster fuzzy k-means from spatial PCA (KM-sPC). 

To test if MZ are delineated appropriately, MZ are evaluated to determine if there 

are differences among the zones in terms of crop response, yield, or other validation 

traits. However, conventional statistical models such as ANOVA are not recommended 

for use in evaluating mean differences between zones. One assumption of ANOVA is that 

all observations are independent, but independence is not met when the dataset is 
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spatially referenced (Lawes and Bramley, 2012). Mixed Linear Models (MLM) are 

preferred because they can account for spatial correlation in the dataset. 

Cordoba et al. (2016) developed a protocol using R software for delineating MZ 

using the KM-sPC method and for testing the appropriateness of MZ using four MLM, 

all with a fixed zone effect. The four models were spherical and exponential spatial 

correlation functions, with and without a nugget effect. Akaike information criterion 

(AIC) was used to select the best-fitting model. 

This method was explored for analyzing MZ in this thesis research. However, 

uncertainty as to the accuracy of this method precluded its conclusion in the thesis, and 

the more widely adopted fuzzy k-means clustering algorithm using Management Zone 

Analyst (MZA) was used in this study. Future research should consider the implications 

of these findings. 

 

Córdoba, M., C. Bruno, J. Costa, and M. Balzarini. 2013. Subfield management class 

delineation using cluster analysis from spatial principal components of soil 

variables. Comput. Electron. Agric. 97:6-14. 

Córdoba, M.A., C.I. Bruno, J.L. Costa, N.R. Peralta, and M.G. Balzarini. 2016. Protocol 

for multivariate homogeneous zone delineation in precision agriculture. Biosyst. 

Eng. 143:95-107. 

Dray, S., S. Saïd, and F. Débias. 2008. Spatial ordination of vegetation data using a 

generalization of Wartenberg’s multivariate spatial correlation. J. Veg. Sci. 19:45-

56. 
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Lawes, R.A., and R.G.V. Bramley. 2012. A simple method for the analysis of on-farm 

strip trials. Agron. J. 104:371-377. 

 

 

R Code for delineating MZ using the KM-sPC method (Córdoba et al., 2016) 

## INSTALLATION AND LOADING OF REQUIRED PACKAGES-----------

------------------------------- 

install.packages 

("spdep","rgdal","geoR","gstat","ade4","e1071","sampli

ng") 

library(spdep) 

library(rgdal) 

library(geoR) 

library(gstat) 

library(ade4) 

library(e1071) 

library(nlme) 

library(lsmeans) 

 

 

## LOAD DATA SET-------------------------------------------

------------------------------- 

data0 <-read.table("C:\\.....\\name.txt", header = TRUE) 

 

## 1. REMOVAL OF OUTLIERS----------------------------------

------------------------------- 

 

# Histogram and summary measures before outlier removal 

summary(data0$ECa30) 

boxplot(data0$ECa30,col='gray',ylab='ECa30 

(mS/m)',main="Box-Plot") 

 

# Mean and standard deviation calculation 

Mean <- mean(data0$ECa30) 

stde <- sd(data0$ECa30) 

Lower <- Mean-3*stde 

Upper <- Mean+3*stde 

 

# Selection of data that are located between the mean ± 3 

SD 

data0$ECa30[Upper<data0$ECa30|data0$ECa30<Lower] <-NA 
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data0 <- subset(na.omit(data0),select=c(x,y,ECa30)) 

 

# Histogram and summary measures after outlier removal 

summary(data0$ECa30) 

boxplot(data0$ECa30,col='gray',ylab='ECa30 

(mS/m)',main="Box-Plot") 

 

 

 

## 2. REMOVAL OF INLIERS-----------------------------------

------------------------------- 

 

# Spatial weights matrix 

cord <- coordinates(data0[,1:2]) 

gri <- dnearneigh(cord,0,25) 

lw <- nb2listw(gri, style = "W") 

 

# Local Moran’s Index 

LM <- 

localmoran(data0$ECa30,lw,p.adjust.method="bonferroni"

,alternative ="less") 

LM 

 

# Moran Plot 

MP <- moran.plot(data0$ECa30, 

lw,quiet=T,labels=F,col=3,zero.policy=F,xlab="ECa30", 

ylab="ECa30 Spatially Lagged") 

summary(MP) 

 

# Identification of inliers 

Influ <- MP$is.inf ; Influ 

data0 <- data.frame(data0,LM,Influ); data0 

 

# Removal data with negative local Moran and statistically 

significant (p <0.05) 

data1 <- subset(data0,data0[,4] > 0 | data0[,8] > 0.05 ) ; 

data1 

 

# Elimination of inliers identified with Moran Plot 

data2 <- data1[data1$dfb.1_ == FALSE & data1$dfb.x == FALSE 

& data1$dffit == FALSE 

& data1$cov.r == FALSE & data1$cook.d  == FALSE & data1$hat 

== FALSE, ] 
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## 3. SPATIAL INTERPOLATION OF DATA------------------------

------------------------------- 

 

# Fit the empirical and theoretical semivariogram 

coordinates(data2) <- ~x+y 

 

ECa30vario <- variogram(ECa30~1, data2, cutoff=250) 

Exp_wls <- fit.variogram(fit.method=1,ECa30vario, vgm(25, 

"Exp", 80,10)) 

Exp_wls 

plot(ECa30vario,Exp_wls,main="ECa30",xlab="Distance between 

field sites",ylab="Semivariance of 

ECa30",cex=1,cex.axis=10) 

attr(Exp_wls, 'SSErr') 

 

Esf_wls <- fit.variogram(fit.method=1,ECa30vario, vgm(25, 

"Sph", 80,10)) 

Esf_wls 

plot(ECa30vario,Esf_wls,main="ECa30",xlab="Distance between 

field sites",ylab="Semivariance of ECa30") 

attr(Esf_wls, 'SSErr') 

 

# Cross Validation 

val_exp <- krige.cv(ECa30~1, data2, model = Exp_wls, 

nfold=200,verbose=F,nmin=7,nmax=25) 

val_sph <- krige.cv(ECa30~1, data2, model = Esf_wls, 

nfold=200,verbose=F,nmin=7,nmax=25) 

 

# Mean square error-MSE(ideally small) 

MSE_exp <- mean(val_exp$residual^2) 

MSE_sph <- mean(val_sph$residual^2) 

 

# Root mean squared error-RMSE (ideally small) 

RMSE_exp <- sqrt(mean(val_exp$residual^2)) 

RMSE_sph <- sqrt(mean(val_sph$residual^2)) 

 

# mean squared deviation ratio-MSDR (ideally close to 1) 

MSDR_exp <- mean(val_exp$zscore^2) 

MSDR_sph <- mean(val_sph$zscore^2) 

 

# Load data set with the georeferenced points that make up 

the plot polygon, 

# i.e., points representing the field boundaries 

Bound <-read.table("C:\\.....\\Bound.txt", header = TRUE) 

 

# Regular grid of 10 x 10 m 
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gr <- pred_grid(Bound, by=10) 

gri <- polygrid(gr, bor=Bound) 

plot(gri,col = "red", pch = 10, cex = 

0.2,xlab="X",ylab="Y") 

gridded(gri) = ~Var1+Var2 

 

# Interpolation using block kriging 

Kg_wls <- krige(ECa30~1, data2, gri, model = Exp_wls, block 

= c(40,40), nmin=7, nmax=25) 

spplot(Kg_wls["var1.pred"], 

col.regions=terrain.colors(100)) 

 

# Interpolated data extraction 

PredECa30 <- as.data.frame(Kg_wls) 

PredECa30 <- PredECa30[,1:3] 

 

names(PredECa30)[1]<-paste("x") 

names(PredECa30)[2]<-paste("y") 

names(PredECa30)[3]<-paste("ECa30") 

 

 

 

## 4. MULTIVARIATE SITE CLASSIFICATION --------------------

------------------------------- 

 

# After all the variables have been processed from step 1 

up to the interpolation with the same prediction grid 

(step 5), 

# the different data sets obtained should be concatenated 

using the cbind function. 

# Below the R code was deactivated because a new database 

that has been concatenated is used. 

 

# Pred <- cbind(PredECa30[,1:3], PredECa90[,3], 

PredElev[,3],PredSd[,3]) 

# names(Pred)[3]<-paste("ECa30") 

# names(Pred)[4]<-paste("ECa90") 

# names(Pred)[5]<-paste("Elev") 

# names(Pred)[6]<-paste("Sd") 

 

Pred <-read.table("C:\\.....\\Pred.txt", header = TRUE) 

 

# Spatial principal component analysis (MULTISPATI-PCA) 

pca <- dudi.pca(Pred[,3:6], center=T,scannf = FALSE,  nf = 

5) 
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cord_1 <- coordinates(Pred[,1:2]) 

gri_1 <- dnearneigh(cord_1,0,25) 

lw_1 <- nb2listw(gri_1, style = "W") 

 

ms <- multispati(pca, lw_1, scannf = F, nfposi = 5) 

s.arrow(ms$c1,xax = 1, yax = 2, clabel = 1) 

 

# Extraction of spatial principal components 

sPC <- ms$li[,1:4] 

PredMA <- cbind(Pred,sPC) ;PredMA 

 

#  Fuzzy k-means cluster analysis 

MC_2<-cmeans(PredMA[,7:8],2,100,method="cmeans",m=1.3) 

MC_3<-cmeans(PredMA[,7:8],3,100,method="cmeans",m=1.3) 

MC_4<-cmeans(PredMA[,7:8],4,100,method="cmeans",m=1.3) 

 

# Indices for selecting the number of classes: two (I2MC), 

three (I3MC) and four (I4MC) 

I2MC <- fclustIndex(MC_2,PredMA[,7:8], index=c("xie.beni", 

"fukuyama.sugeno", 

"partition.coefficient", "partition.entropy")) 

 

I3MC <- fclustIndex(MC_3,PredMA[,7:8], index=c("xie.beni", 

"fukuyama.sugeno", 

"partition.coefficient", "partition.entropy")) 

 

I4MC <- fclustIndex(MC_4,PredMA[,7:8], index=c("xie.beni", 

"fukuyama.sugeno", 

"partition.coefficient", "partition.entropy")) 

 

Indices0 <- cbind(I2MC,I3MC,I4MC) 

 

XieBeni <-Indices0[1,] 

FukSug <-Indices0[2,] 

PartCoef_1 <-Indices0[3,] 

PartCoef <- 1/PartCoef_1 

PartEntr <-Indices0[4,] 

 

Indices <- 

as.data.frame(rbind(XieBeni,FukSug,PartCoef,PartEntr)) 

Indices 

 

# Summary indices 

XieBeniMax<-max(Indices[1,]) 

FukSugMax<-max(Indices[2,]) 

PartCoefMax<-max(Indices[3,]) 
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PartEntrMax<-max(Indices[4,]) 

 

XieBeniN<- XieBeni/XieBeniMax 

FukSugN<- FukSug/FukSugMax 

PartCoefN<- PartCoef/PartCoefMax 

PartEntrN<-PartEntr/PartEntrMax 

 

IndicesN <- 

as.data.frame(rbind(XieBeniN,FukSugN,PartCoefN,PartEnt

rN)) 

IndicesN2 <- (IndicesN)^2 

 

Indice2MC <- sqrt(sum(IndicesN2[,1])) 

Indice3MC <- sqrt(sum(IndicesN2[,2])) 

Indice4MC<- sqrt(sum(IndicesN2[,3])) 

 

# Summary indices for selection of two, three or four 

management zones 

Indice2MC; Indice3MC; Indice4MC 

 

# Maps with management classes delimited 

MC_22 <-as.data.frame(MC_2$cluster) 

MC_33 <-as.data.frame(MC_3$cluster) 

MC_44 <-as.data.frame(MC_4$cluster) 

 

baseMC <- cbind(PredMA[,1:2],MC_22,MC_33,MC_44) 

 

coordinates(baseMC) <- ~x+y 

gridded(baseMC) <- T 

spplot(baseMC["MC_2$cluster"],col.regions=gray.colors(2),co

lorkey = F) 

 

spplot(baseMC["MC_3$cluster"],col.regions=gray.colors(10),c

olorkey = F) 

 

spplot(baseMC["MC_4$cluster"],col.regions=gray.colors(4),co

lorkey = F) 

 

 

 

## 5. SMOOTHING OF CLASSIFICATION RESULTS -----------------

------------------------------- 

 

# Median filter function 

smooth <-function(mytable,mywindow){ 
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  newtable<-

matrix(1:(dim(mytable)[1]*dim(mytable)[2]),dim(mytable

)[1],dim(mytable)[2]) 

      vecinity<-function(pos) { 

        col=as.integer((pos-1)/nrow(newtable))+1 

        row=pos-((nrow(newtable)*col)-nrow(newtable)) 

        if (is.na(mytable[row,col])) NA else{ 

        myrow1<-ifelse(row-mywindow<1,1,row-mywindow) 

        mycol1<-ifelse(col-mywindow<1,1,col-mywindow) 

        myrow2<-

ifelse(row+mywindow>dim(newtable)[1],row,row+mywindow) 

        mycol2<-

ifelse(col+mywindow>dim(newtable)[2],col,col+mywindow) 

 

        neighbor<-

na.omit(as.vector(mytable[myrow1:myrow2,mycol1:mycol2]

)) 

        round(median(neighbor),digits=0) 

      }} 

      as.matrix(apply(newtable,c(1,2),vecinity))} 

 

# Function to obtain a matrix 

obtainM <- function(mytable){ 

  x<-as.numeric(names(table(mytable$x))) 

  y<-as.numeric(names(table(mytable$y))) 

  myframe <- matrix(1:(length(x)*length(y)), length(x), 

length(y)) 

  position<-function(pos) { 

    col=as.integer((pos-1)/nrow(myframe))+1 

    row=pos-((nrow(myframe)*col)-nrow(myframe)) 

    myindex=which(mytable$x==x[row] & 

mytable$y==y[col],arr.ind=T) 

    if(length(myindex)==0) return(NA) else 

mytable[myindex,3] 

  } 

 thematrix<-as.matrix(apply(myframe,c(1,2),position)) 

 rownames(thematrix)<-x 

 colnames(thematrix)<-y 

 thematrix} 

 

base0 <- cbind(PredMA[,1:2],MC_22) 

datafilter <- obtainM(base0) 

 

# Windows 5 x 5 

smoot5x5 <- smooth(datafilter,5) 
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# Windows 7 x 7 

smoot7x7 <- smooth(datafilter,7) 

 

# Windows 9 x 9 

smoot9x9 <- smooth(datafilter,9) 

 

par(mfrow=c(2,2)) 

image(datafilter, main= "Original Zonification", axes = 

FALSE, 

xlab="",ylab="",col=palette(c("grey94","grey34"))) 

image(smoot5x5, main= "Median Filter 5 x 5",axes = FALSE, 

xlab="",ylab="",col=palette(c("grey94","grey34"))) 

image(smoot7x7, main= "Median Filter 7 x 7",axes = FALSE, 

xlab="",ylab="",col=palette(c("grey94","grey34"))) 

image(smoot9x9, main= "Median Filter 9 x 9",axes = FALSE, 

xlab="",ylab="",col=palette(c("grey94","grey34"))) 

 

# Data set with smoothing classification 

# Function to ransform a matrix to table 

MtoT <- function(mymatrix){ 

position <- function(ij){ 

data.frame(x=rownames(mymatrix)[ij[1]],y=colnames(mymatrix)

[ij[2]],z=mymatrix[ij[1],ij[2]]) 

} 

myindex <- 

which(!is.na(mymatrix),arr.ind=T);rownames(myindex)=NU

LL 

b <- apply(myindex,1,position) 

b <- do.call("rbind",b);b} 

 

# New data set 

base1 <- as.data.frame(smoot9x9) 

base2 <- MtoT(base1) 

base2[order(base2[,1], base2[,2]),] 

PredMA[order(PredMA[,1], PredMA[,2]),] 

Finalbase <- cbind(PredMA[,1:6],base2[,3]) 

names(Finalbase)[7]<-paste("Zone") 
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R Code for evaluating the appropriateness of delineated MZ using four MLM 

## INSTALLATION AND LOADING OF REQUIRED PACKAGES-----------

------------------------------- 

 

library(nlme) 

library(estimability) 

library(lsmeans) 

 

## VALIDATION OF MANAGEMENT ZONES--------------------------

---------------------------- 

 

# Load data set 

Sample <-read.table("C:\\...\\name.txt", header = TRUE) 

Sample$Zone<-as.factor(Sample$Zone) 

 

# NDRE data -----------------------------------------------

------------------- 

# Model with exponential spatial correlation 

mod1_NDRE <-gls(NDRE~1+Zone 

,correlation=corExp(form=~as.numeric(as.character(X))+as.nu

meric(as.character(Y)) 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 

,na.action=na.omit 

,data=Sample) 

 

# Model with exponential spatial correlation and nugget 

effect 

mod2_NDRE <-gls(NDRE~1+Zone 

,correlation=corExp(form=~as.numeric(as.character(X))+as.nu

meric(as.character(Y)) 

,metric="euclidean" 

,nugget=TRUE) 

,method="REML" 

,na.action=na.omit 

,data=Sample) 

 

# Model with spherical spatial correlation 

mod3_NDRE <-gls(NDRE~1+Zone 

,correlation=corSpher(form=~as.numeric(as.character(X))+as.

numeric(as.character(Y)) 

,metric="euclidean" 

,nugget=FALSE) 

,method="REML" 
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,na.action=na.omit 

,data=Sample) 

 

# Model with spherical spatial correlation and nugget 

effect 

mod4_NDRE <-gls(NDRE~1+Zone 

,correlation=corSpher(form=~as.numeric(as.character(X))+as.

numeric(as.character(Y)) 

,metric="euclidean" 

,nugget=TRUE) 

,method="REML" 

,na.action=na.omit 

,data=Sample) 

 

# Model of independent errors 

mod5_NDRE <-gls(NDRE~1+Zone 

,method="REML" 

,na.action=na.omit 

,data=Sample) 

 

# Selecting spatial correlation model using the Akaike 

information criterion 

AICmod1_NDRE <- AIC(mod1_NDRE) 

AICmod2_NDRE <- AIC(mod2_NDRE) 

AICmod3_NDRE <- AIC(mod3_NDRE) 

AICmod4_NDRE <- AIC(mod4_NDRE) 

AICmod5_NDRE <- AIC(mod5_NDRE) 

 

AICmod1_NDRE 

AICmod2_NDRE 

AICmod3_NDRE 

AICmod4_NDRE 

AICmod5_NDRE 

 

# LSMeans Summaries for Each Attribute---------------------

------------------ 

# Select the correct model below based on AIC values-------

------------------ 

 

# Summary of selected model (NDRE) 

NDREmeans <- summary(lsmeans(mod4_NDRE, pairwise~Zone)); 

NDREmeans 
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