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ABSTRACT Genetic improvement toward optimized and stable agronomic performance of soybean genotypes
is desirable for food security. Understanding how genotypes perform in different environmental conditions helps
breeders develop sustainable cultivars adapted to target regions. Complex traits of importance are known to be
controlled by a large number of genomic regions with small effects whose magnitude and direction are
modulated by environmental factors. Knowledge of the constraints and undesirable effects resulting from
genotype by environmental interactions is a key objective in improving selection procedures in soybean breeding
programs. In this study, the genetic basis of soybean grain yield responsiveness to environmental factors was
examined in a large soybean nested association population. For this, a genome-wide association to performance
stability estimates generated from a Finlay-Wilkinson analysis and the inclusion of the interaction between marker
genotypes and environmental factors was implemented. Genomic footprints were investigated by analysis and
meta-analysis using a recently published multiparent model. Results indicated that specific soybean genomic
regions were associated with stability, and that multiplicative interactions were present between environments
and genetic background. Seven genomic regions in six chromosomes were identified as being associated with
genotype-by-environment interactions. This study provides insight into genomic assisted breeding aimed at
achieving a more stable agronomic performance of soybean, and documented opportunities to exploit genomic
regions that were specifically associated with interactions involving environments and subpopulations.
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One of the objectives of plant breeders is to develop cultivars that are high
yielding across extensive range of environmental conditions. However,
the presence of genotype-by-environment interactions (GEI) (Crossa
1990; Kang 1997; Zobel et al. 1988) might complicate this labor. For
example, the GEI of a cross-over type causes changes in ranking per-
formance across environments, complicating the breeder’s task of se-

-=.G3:Genes| Genomes | Genetics

lecting best candidate parents for next improvement cycle, and/or what
to release as new cultivars for a given area or large region.

When significant, GEI has an important role in accounting for the
phenotypic variation of quantitative traits and can be accommodated in
statistical models designed for multi-environmental trials (Cooper et al.
1996). Stable genotypic performance is highly desirable in improved
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cultivars, which is important for food security and industrial uses
(Boyer et al. 2013). Yield stability is defined as the ability of a genotype
to avoid significant fluctuation in yield over a range of environmental
conditions (Heinrich ef al. 1983). However, responsiveness to advances
in the agronomic improvement of a production environment is also an
important aspect in breeding, which describes the cultivar’s ability to
react to the change in the environmental conditions.

The difference between stability and responsiveness can be graph-
ically conceptualized (Figure 1). Cultivar A is stable in environments of
low and high agronomic productivity, but that stability comes at the
cost of not responding to agronomic improvement. Cultivar B is also
stable, and yields higher in both low and high environments than
Cultivar A. Cultivar A and B represent an unrealistic situation in a
context that involves consideration of genotypic yield response to a
range of low-to-high yield environments because varieties do not per-
form exactly the same in terms of yield when the environment changes
significantly. Cultivar C is responsive to improvement in the environ-
mental productivity. With respect to just A and B, their GEI is a non-
cross-over type (i.e., B is always superior to A in both environments and
thus rank per se selection will be successful). Cultivar D is higher
yielding than either C or E when environmental productivity is low,
but is lower yielding than C when productivity is high. In this instance,
the greater stability of cultivar D (with less change in yield) vis-a-vis the
greater responsivity of cultivar C results in a cross-over type of GEI (i.e.,
an inverted performance rank of C and D), thus making the choice of
the best cultivar dependent upon the productivity of the targeted en-
vironment. Clearly, when cultivars C and D are compared, cultivar D is
favored in environments of low productivity, but cultivar C is favored
in environments of high productivity. When cultivars C and E are
compared, they both respond to the environmental change but cultivar
C is superior to cultivar E in both low and high environments.

Becker and Leon (1988) classified stability as either static or dy-
namic. Static stability would be typified by a cultivar with a low yield
variance (compared to other cultivars) over a range of low to high
environmental productivities (i.e., cultivar A in Figure 1). Dynamic
stability was characterized as a cultivar whose performance, when
regressed across a low to high environmental productivity range, mir-
rors the overall mean regression performance of all cultivars in the
same trial.

Many breeders have used the Finlay and Wilkinson (1963) approach
of joint linear regression analysis to assess GEI, by plotting the indi-
vidual genotypic regression coefficients (i.e., genotypic response to a
linear array of environmental productivities) against the genotypic
means over all environments to interpret the results (Figure 2). Geno-
types with more “stability” have regression coefficients of less than
unity, which is consistent with these genotypes performing well in
low productivity environments, but also performing poorly in high
productivity environments. Genotypes with regression coefficients
>1 are more sensitive to environmental changes, thus the environmen-
tal conditions have a greater influence on their performance than the
genotypes that have regression coefficients closer to zero.

Copyright © 2018 Xavier et al.

doi: https://doi.org/10.1534/g3.117.300300

Manuscript received September 22, 2017; accepted for publication November 21,
2017; published Early Online December 7, 2017.

This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1Corresponding author: Department of Statistics, University of Nebraska-Lincoln,
342B Hardin Hall-North Wing, Lincoln, NE 68583. E-mail: rekahoward@unl.edu

520 | A. Xavier et al.

Easy access to molecular tools in the “omic” era has opened a new
horizon to understand and exploit GEIs at the genomic level
(Deshmukh et al. 2014; Cuevas et al. 2017). There is now a growing
interest in investigating the genetic basis of GEI at a quantitative trait
locus (QTL) level, allowing marker-assisted selection to be brought to
the fore in terms of manipulating trait stability or responsiveness to
environmental stimuli in breeding programs (Des Marais et al. 2013;
Malosetti et al. 2013).

The behavior of cultivars in distinct environments is of special
interest in breeding efforts targeting complex traits, such as grain yield,
whichare controlled by alarge number of alleles, mostly presenting small
effects, but which are very responsive to the environment (Des Marais ef
al. 2013; Xavier et al. 2016). The development of large experimental
multiparental panels, known as next-generation populations (Morrell
et al. 2012), has made studies of complex traits feasible, as it provides
sufficient power and resolution to detect genomic associations for com-
plex traits. Nested Association Mapping (NAM) populations are a
special kind of multiparental panel, characterized by multiple biparen-
tal crosses that share a common parent.

The NAM structure enabled maize researchers to identify QTL for
agriculturally important traits with high statistical power and mapping
resolution (Yu et al. 2008). Such genetic resource, along with enough
phenotypic data, can enable scientists to address questions about the
genomic origins of genotype by environment interactions, and, in com-
bination with environmental information yield stability, can be
addressed for the genotypes. The first NAM population was developed
in maize, and originated from 25 diverse maize lines mated to the
inbred line B73, followed by selfing the F1 plants for six generations
to generate 200 recombinant inbred lines (RILs) per mating (i.e., fam-
ily) totaling to 5000 individuals in the maize NAM population, which
then was used in multi-environmental scenarios for genomic prediction
purposes (Guo et al. 2013) to identify GEL

Another NAM population was created in soybean to take advantage
of historic and more recent recombination in the examination of the
genetic architecture of complex traits, and the influence of environ-
mental variation with high statistical resolution power. In this study, the
main objective was to perform a genome-wide association study
(GWAYS) involving the soybean NAM population to identify genomic
regions that not only influenced grain yield across all environments, but
also regions that influenced GEI.

Two standard analysis methods that were previously used to in-
vestigate connections between genetics and the environment in soybeans
(Zhe et al. 2010) were herein adapted to conduct a whole-genome
analysis: (a) a regression-based stability index (Malosetti et al. 2013),
and (b) the principal components-based interaction (Malosetti et al.
2013). In the regression-based stability index, the regression coefficient
of a linear regression model describes the genotype across different
environments, and the deviation from the estimated regression de-
scribes the consistency of the genotype. When the regression coefficient
is zero, the genotype is considered to be dynamically stable. The principal-
component-based interactions can be evaluated via Genotype and Genotype-
Environment (GGE) biplot analysis where the GEI can be accessed
visually, and the stability of the genotypes and environments can be
evaluated.

The stability testing and GEI testing were performed using the
soybean NAM population. In this paper, we first describe the pedigree
structure of the soybean NAM population, how the phenotypic data
were collected in the multiple environments, and how the data were
utilized for our analyses. Genome-wide associations were conducted
using the Finlay-Wilkinson stability (FW) index (Finlay and Wilkinson
1963) to evaluate the dynamic stability. The GEI analysis was conducted

-=.G3:Genes| Genomes | Genetics
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Figure 1 A graphical depiction of the difference between static and
dynamic stability; showing the stability and responsiveness of Cultivars
A, B, C, D, and E.

via meta-analysis using genomic markers and phenotypic values from
the multiple environments. Six QTL associated with responsiveness of
grain yield to environmental factors and one QTL linked to grain
yield stability were identified.

MATERIALS AND METHODS

SoyNAM structure

This study was conducted using a soybean nested association mapping
population named SoyNAM, which, as of now, is the largest published
set of experimental plant population designed for genetic mapping,
comprising 5600 recombinant inbred lines (RILs). The SoyNAM was
developed by creating 40 biparental matings that involved one common
high yielding parent (IA3023) mated to 40 unique parents (Table 1).
Note that the 17 NAM parents were high-yielding cultivars or elite
breeding lines nominated by eight state breeders, 15 NAM parents
had diverse ancestry and originated from R. Nelson’s Agricultural Re-
search Service-United States Department of Agriculture (ARS-USDA)
program at University of Illinois, and 8 NAM parents were nominated
by J. Specht at University of Nebraska-Lincoln, because of their high-
yielding performance in drought conditions. For more descriptive in-
formation about the soybean NAM population, including midsummer
and mature photos of the NAM parents, the reader can refer to https://
www.soybase.org/SoyNAM/.

The development of the SoyNAM population (Song et al. 2017) was
similar to the maize NAM population (Figure 3). Each of the 40 bi-
parental matings resulted in 140 Fs derived RILs, derived from F2
plants via single-seed descent, and thus totaled to 5600 RILs. Some
RILs had to be dropped due to mislabeling, and other generation ad-
vance errors, and one family was dropped because of uncertainty rel-
ative to the parental ancestry. The final NAM subset utilized for this
investigation consisted of 39 families and 5143 RILs.

The RILs were planted at nine locations during the years of 2011,
2012, and 2013, but data were collected on only 18 unique environments
(location-year) combinations. Phenotypic data were collected on grain
yield (in kg/ha™1), days to maturity, plant height (in centimeter), lodg-
ing (score 1-5), seed size (mass of 100 seed in grams), plus seed com-
position (in % in the grain) of protein, oil, and fiber content. For this
study, however, the focus was on grain yield adjusted to 13% moisture.

-=.G3:Genes| Genomes | Genetics

Volume 8 February 2018 |

SPECIFICALLY
ADAPTED TO S
| FAVOURABLE ENVIRONMENTS ~
-~ | S —
5 et v T
5 sl E e
E S BELOW .
™ <! AVERAGE STABLITY i
a | Fos
Q s
POORLY ADAPTED TO y WELLADAPTEDTO
g 1.0 [_‘mﬁ—m‘f AVERAGE STABLITY > L oS ®
2 i
@ -
s 3 ¥
e H ABOVE -
@ AVERAGE STABILITY g
& a st
K T

SPECIFICALL Y ADAPTED —
TO UNFAVOURABLE -
ENVIRONMENTS

Variety mean yield

Figure 2 A generic depiction of FW genotype regression coefficients
vs. genotypic means (from Finlay and Wilkinson 1963).

The entire set of RILs were grown at four locations in Nebraska, Iowa,
Mlinois, and Indiana in 2012 and 2013, but the 2013 Nebraska trial was
unfortunately lost due to a hail storm. Only partial RIL sets were grown at
other locations in one or more of the 3 yr. The number of RILs grown in
the 18 environments was somewhat variable due to some missing plots
(Table 2). The locations in Ohio were divided into two regions; the
South Charleston area and the Wooster area. A considerable number of
check cultivars (i.e., parents, high yield checks, and maturity checks)
were grown in each trial environment to assess field variation (Table 3).

The experimental units were two-row plots (2.9 X 0.76 m), seeded
at a density of ca. 36 plants/m?, arranged in a modified augmented
design (Lin and Poushinsky 1983) without replication within each test
environment. Yields were restricted by drought conditions during
2012 (Rippey 2015) although plots were always irrigated at Nebraska
and Kansas.

Table 1 The set of parental lines that were used to cross with
the common parent, IA3023, and the corresponding SoyNAM
family code

Elite Line  Family Diverse Line Family Pl Lines  Family
TNO5-3027 NAM 2 LG03-2979 NAM24 PI-398881 NAM40
4J105-3-4  NAM 3 LG03-3191 NAM25 PI-427136 NAM41
5M20-2-5-2 NAM 4 LG04-4717 NAM26 PI-437169B NAM42

CL0J095-4-6 NAM 5 LG05-4292 NAM27 PI-507681B NAM46
CL0J173-6-8 NAM 6 LG05-4317 NAM28 PI-518751 NAMA48
HS6-3976  NAM 8 LG05-4464 NAM29 PI-561370 NAMS0
Prohio NAM 9 LG05-4832 NAM30 PI-404188A NAM54
LD00-3309 NAMT0 LG90-2550 NAM31 PI-574486 NAM64
LD01-5907 NAM11 LG92-1255 NAMS32

LD02-4485 NAM12 LG94-1128 NAM33

LD02-9050 NAM13 LG94-1906 NAM34

Magellan ~ NAM14 LG97-7012 NAM36

Maverick ~ NAM15 LG98-1605 NAM37

S06-13640 NAM17 LG00-3372 NAM38

NE3001 NAM18 LG04-6000 NAM39

Skylla NAM22

U03-100612 NAM23

The first two columns of the table represent the name and the family designation
of the elite lines, the third and fourth columns are for the genetically diverse
lines, and the last two columns are for the plant introduction lines.
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Figure 3 Schematic diagram of the development of the SoyNAM.

The average grain yield of the RILs in the 18 environments ranged
from alow of 2364 kg ha~!in 2012 in Michigan to respective highs of
5057 and 5050 kg ha~! in 2011 in Nebraska and 2013 in Indiana
(Table 4).

The yield data collected from the 18 environments were used to
identify clusters of similarity among the environments (Figure 4). The
cluster dendogram was created using a hierarchical clustering algo-
rithm hclust implemented in R (R Core Team 2017) with the Ward-D
agglomeration method using the Euclidean distance. The OHmc loca-
tion represents the South Charleston, Ohio area, which was obtained by
L.M., and the OHmi location represents the Wooster, Ohio area which
was the responsibility of R.M. The eight site-year trials in the leftmost
cluster were the distinctively lower yielding (i.e., <3400 kg ha~!) than
the three rightmost clusters. Of the latter, the central cluster with the
three site-year trials of NE 2011 and 2012 and Indiana 2013 was the
highest yielding (i.e., >4700 kg ha~1), and was distinctly different

from the other two clusters of four and three site trials (i.e., yield range
of 3386-4420 kg ha™1).

Genotyping
Parental lines were sequenced to derive the SNP allele calls. A total of
5303 SNP loci were selected with the criterion of maximizing the number
of families segregating for those loci. The SNPs were used to build the
SoyNAM 6K BreadChip SNP array using the Illumina Infinium HD
Assay platform (Ilumina, Inc.) (Song et al. 2017). Among those SNPs, a
subset of 4312 markers were selected by the SoyNAM group as quality-
assured based on proportion of missing loci and correct segregation
patterns. Both raw and quality assured genotypes are available in the R
package SoyNAM. The missing genotypes were imputed using a ran-
dom forest algorithm (Stekhoven and Bithlmann 2012).

The statistical model designed for association in multiple popula-
tions (Wei and Xu 2016) requires the markers to represent the parental

Table 2 Number of SoyNAM RILs with nonmissing plot data in each environment

lowa lllinois Indiana Kansas Michigan Missouri Nebraska Ohio1 Ohio2
201 — 2500 — — — — 2500 — —
2012 5111 5138 5041 3158 816 819 5127 1606 1626
2013 5100 5137 5136 3230 — 804 — 1619 1571
522 | A Xavier et al. ~£.G3Genes| Genomes | Genefics



Table 3 Number of check cultivars in each environment

lowa lllinois Indiana Kansas Michigan Missouri Nebraska Ohio1 Ohio2
2011 — 419 — — — — 419 — —
2012 825 825 825 525 125 125 825 250 253
2013 825 825 825 510 — 137 — 253 262

sources, so we proceeded as follows: SNPs were recoded to express the
allele of origin, where 0 represents homozygous for the founder parent,
1 as heterozygous, and 2 homozygous for the common parent IA3023.
Using the allele and family information, the R package NAM (Xavier
et al. 2015) recoded each locus into an incidence vector indicating the
parental origin of the alleles, in other words, as the interaction marker-
by-family, hence allowing markers to present different effects across
families.

Association analysis

Genome-wide association analyses were based on the multiparental
model proposed by Xavier et al. (2015) and implemented for NAM
populations. A detailed theoretical description is presented by Wei and
Xu (2016), who extended the methodology to multiparent advanced
generation intercross-population (MAGIC) populations. The following
mixed linear model describes how the association analyses were
performed:

y=XB+Za+l+e (1)

where y is the vector of phenotypes, X is the design matrix of fixed
effects allocating the intercept and block effect estimated from checks,
B is the fixed effect coefficients, Z is the incidence matrix of the
marker data, o is the vector of regression coefficients associated with
the haplotypes, U corresponds to the polygenic coefficients, and ¢€ is
the vector of residuals. The model assumes that o ~ N(0, I(ri), b~N
(0, Ko) and & ~ N(0, Iog?), where o7, is the genetic variance asso-
ciated with the haplotypes, o7, is the genetic effect associated with the
polygenic effects. The population structure is captured by the poly-
genic term with covariance K, which corresponds to the genomic
relationship matrix that represents the genetic similarities among
individuals through a linear additive kernel (K = aMM’, Xu 2016).

Statistical significance of single markers was evaluated through the
likelihood ratio test (LRT) by comparing the log-likelihood of the model
that includes the marker effect Zox (L;) with the log-likelihood of the
model that does not (Ly), i.e., the reduced model. Ly represents the null
hypothesis, and L, represents the alternative hypothesis. The LRT
(McCulloch and Searle 2001) for comparing the full model (L;) to
the reduced model (L) can be written as

LRT = —2(L; — Lo). 2)

In the random effects model, the LRT follows a mixture of chi-square
and binomial distributions (Xavier et al. 2015), with p-values com-
puted using a chi-square distribution with 0.5 degrees of freedom.
Multiple test correction was performed via a Bonferroni threshold
(o = 0.05) to define which markers were significantly associated with

the FW index. The Bonferroni threshold for 4312 SNPsisa —log
(p-value) value of ~5.

GEI testing

Association analyses for grain yield were conducted for individual
environments one at a time using the described model in (1). Meta-
analysis, which combines data from multiple sources for analysis was
utilized to infer markers that presented significant GEI from the
estimated allele effects when using grain yield as response variable.
Meta-analysis was performed with the following model:

a=Wd+e (3)

where a is the vector of allele effects estimated from the association
analysis for individual environments, W is the incidence matrix of
parental source (where each column of W refers to a parent, each
element of o is the marker effect of a family in a given environment),
d is the vector of regression coefficients representing the true marker
effects, and e is the vector of residuals. The environmental term is not
added to the GGE model (Yan et al. 2007). A GGE model is a para-
metric, multivariate technique used to predict the adaptation and
stability of a cultivar (Mortazavian et al. 2014), based on environ-
ment-centered principal components (Gauch 2006). Environment-
centered principal components refer to the technique in which singular
value decomposition (SVD) is applied to the residual matrix resulting
from the environmental mean estimation.

The interaction term () in model (4) is defined as a matrix with
dimensions corresponding to the number of NAM parents by the
number of environments whose entries are comprised with the first
component from the single value decomposition of the residuals. The
model is

a=Wdé+vy+e (4)

where W and 8 are as defined above, y represents the interaction
term, and e is the new vector of residuals, without the GE interactions
captured by <. The vy; multiplicative interaction of the ith family at
the jth environment can be described as the product of the first set of
eigenvectors (U and V) and the first eigenvalue (D) from the residual
single value decomposition as follows:

o —ZW]‘BJ' = &jj = Vj + €= uidiivj + € (i = fam,j = env)
)

Models (3) and (4) were fitted via weighted least squares, where the allele
effects were weighted according to the number of individuals observed in
each combinations of NAM family and environment. The statistical test

Table 4 Average grain yield (kg ha="') of SoyNAM RILs observed in each environment

lowa lllinois Indiana Kansas Michigan Missouri Nebraska Ohio1 Ohio2
2011 — 2780 — — — — 5057 — —
2012 2776 3386 4231 3871 2364 3414 4728 3394 2823
2013 2871 3115 5050 2747 — 4091 — 3629 4420
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is a likelihood ratio, as presented in (2). The model in (3) is assumed to
represent the null hypothesis, whereas the model presented in (4)
represent the alternative hypothesis. The LRT was assumed to have a
chi-square distribution, where the number of degrees of freedom is a
function of the number of environments in which the allele was observed
and the number of parents segregating for that allele, which represents
the genetic component (Gauch 1988). An empirical threshold of
50 [—log(p-value)] was chosen to define significant associations.

Data availability

All data are publically available in the R package SoyNAM. Access with
the following command: data (soybase, package=“SoyNAM”). Data
formatted for the analysis of the NAM package is available with the
following command: SoyNAM::ENV().

RESULTS

A meta-analysis of GEI identified six statistically significant peaks on
chromosomes 4,6,9, 13, 15,and 18 (Figure 5A). Among these peaks, the
QTL on chromosome 18 also appears to be significantly associated with
grain yield stability, as measured with the FW index (Figure 5B).

The most significant SNPs from each QTL, and the annotations of
the nearest gene from SNP physical position, are presented in Table 5.
The annotation does not necessarily correspond to candidate gene due
to the limitation of dataset, including the large linkage disequilibrium
block (Hyten et al. 2006, 2007) and genotyping coverage in the Soy-
NAM population (Song et al. 2017). However, previous reports were
traced in the soybean database “soybase” (Grant et al. 2010) supporting
the involvement of these genes.

The chromosome 18 QTL associated with stability explained 1% of
the variance of the FW index (Table 5), and its effect on yield and
stability is presented in the Appendix. Regarding the QTL peaks of
GEI (Table 5), from 20 to 35% of the variation attributed to interactions
between family and environment was captured in the first principal
component.

Genes surrounding the peaks

The genes potentially linked to the regions associated with GEI, or yield
stability, have been reported to be involved in environmental stress
tolerance or in biosynthetic pathways that may underlie overtly measur-
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able secondary traits such as yield stability and GEI. Details of each gene
are presented below.

The rRNA 2-O-Methyltransferase Fibrillarin gene Glyma.04g200700,
which corresponds to the SNP peak on chromosome 4 (Table 5), has
been reported to be associated with responsiveness to flooding stress in
soybeans (Komatsu et al. 2012; Won Oh et al. 2014). These regions also
coincides with the flood stress resistance QTL previously reported by
Githiri et al. (2006).

The protein giving rise to a cup-shaped cotyledon trait is an enzyme
transcribed by the gene Glyma.06g014900, which has a position that
corresponds to the peak on chromosome 6 (Table 5). This gene has
been reported to be related to seed protein storage in soybeans (Han
et al. 2009), and it was previously reported in the same region through
QTL mapping (Ma et al. 2016). In another QTL study, Hwang et al.
(2013) reported this region related to ureide content in soybeans, used
as an indirect measure of drought resistance.

Beta-carotene 3-hydroxylase is the enzyme transcribed from the gene
Glyma.09g132200, which corresponds to the peak on chromosome
9 (Table 5). This protein is associated with enhanced stress tolerance
in Arabidopsis (Davison et al. 2002), by preventing photo-oxidative
damage caused by excessive light. Genetic signals for resistance to
ultraviolet B radiation were previous report in the soybeans chromo-
some 9 by Shim et al. (2015). B-Carotene hydroxylases have also been
associated with nodulation in soybeans (Kim et al. 2013).

Glyma.13g276100, which corresponds to the SNP peak on chromo-
some 13 (Table 5), produces VQ motif, which has been reported to play
an important role in abiotic stress, plant development, and nitrogen
metabolism in soybeans (Wang et al. 2014).

The SNP Gm15_48033340_A_G has a genomic position close to two
genes: Glyma.15¢252200 and Glyma.15g252100 (Table 5). Glyma.15g252200
is transcribed into Glutathione S-Transferase (GST), which plays an im-
portant role in soybean development (McGonigle et al. 2000), and is
associated with salt and drought tolerance in soybeans (Ji et al. 2010).
GST is also related to mycorrhiza symbiosis (Hogekamp and Kiister
2013), which may be involved in water and nutrient absorption. The second
gene, Glyma.15¢252100, is transcribed into Gibberellin 2-Beta-Dioxygenase,
an enzyme involved in soybean nodulation (Zhu et al. 2013) and nodule
activity (Méndez et al. 2014). The enzyme is also known to interfere with
plant growth, root gravity, and salt stress tolerance (Shan et al. 2014).
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The SNP Gm15_48033340_A_G also coincide with two QTL pre-
viously reported to be associated with resistance to root-knot nematode
(Tamulonis et al. 1997) and soybean cyst nematode (Yue et al. 2001).

Two peaks were found on chromosome 18 (Table 5). Gly-
ma.18g127100 (i.e., Nitrogen Transporter — 1, NRT1), which was
the gene identified by SNP signal for stability, produces NRT1, which
is responsible for the transport of nitrogen metabolites, and it is
believed to play a role in the soybean nitrogen uptake (Yokoyama
et al. 2001).

Several studies in Arabidopsis, maize and soybean have established
correlation between grain yield with nitrogen remobilization and ni-
trogen storage capacity (Fan et al. 2009). In addition, soil nitrogen
changes have been shown to produce improvements in grain yield
and Nitrogen Use Efficiency (NUE) (Ma et al. 1999).

Nitrate Transporters such as NRT1 play key roles in nitrogen
remobilization, with several members of NRT1 family performing
specific roles in nitrogen uptake, efflux, and tissue-to-tissue nitrogen
transport (Parker and Newstead 2014; Tsay et al. 1993; Lin et al. 2008).

Table 5 Summary statistics of the significant QTL positions associated with GEI and stability in the SoyNAM data, and annotation from

JBrowse Phytozome (Goodstein et al. 2012)

Marker Trait AdjR? PCload -log(p) AdjR? Nearest Gene Annotation?
GmO04_47341754_G_, GEl 0.23 72.83 Glyma.04g200700  rRNA 2-O-Methyltransferase Fibrillarin
Gm06_1121274_A_G GEl — 0.30 77.40 — Glyma.06g014900  Protein cup-shaped cotyledon
Gm09_32881587_T_C  GEl — 0.22 66.19 — Glyma.09g132200  Beta-carotene 3-Hydroxylase
Gm13_37765877_T_C  GEl — 0.20 62.11 — Glyma.13g276100  VQ motif
Gm15_48033340_A_ G  GEl — 0.24 101.38 — Glyma.15g252200  Glutathione S-Transferase

Glyma.15g252100  Gibberellin 2-Beta-Dioxygenase

Gm18_1685024_A G GEl — 0.35 123.12 — Glyma.18g127100  Protein NRT1
Gm18_2444660_C_T  Stability 0.0126 — 30.35 0.0126 Glyma.189145700 UDP-glucose 4-epimerase

@ Annotation from JBrowse Phytozome (Goodstein et al. 2012).
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Table 6 Stability peak on chromosome 18 for the NAM parents
segregating for the SNP

Allele Donor Yield (kg ha™") FW Index
Intercept 3663.52 0.899
NAM3 58.44 —0.253
NAM4 —6.96 0.236
NAM5 20.91 —-0.262
NAM10 44.05 —0.306
NAM11 21.54 —0.042
NAM12 8.82 -0.172
NAM13 13.69 —-0.035
NAM14 —23.89 0.057
NAM15 2.94 -0.289
NAM18 —5.21 0.240
NAM27 72.91 —-0.267
NAM28 —-15.95 0.233
NAM33 —42.27 0.045
NAM36 -11.05 0.185
NAM39 —28.09 0.133
NAM48 —27.23 0.132
NAM50 —42.17 0.076
NAM64 —-44.43 0.064

The allele effect of Gm18_1685024_A_G on grain yield and upon stability
expressed by the FW index.

Given its plausible indirect effect on yield, the role of NRT1 in yield
stability is not clear, as we do not have data on soil nitrogen level and
other confounding factors in the different environments.

Glyma.18g145700, which is the nearest gene from the QTL identified
on chromosome 18 for GEI, produces UDP-glucose 4-epimerase
(BrUGE). BrUGE appears to be involved in the cell wall carbohydrate
partitioning under nitrogen stress in rice (Guevara et al. 2014) and
Arabidopsis (Barber et al. 2006). Epimerases have been found to be
N-responsive, showing expression levels in N-dependent manner
(Guevara et al. 2014). This further hints at the correlation of
N-metabolism with yield stability.

DISCUSSION

In yield trials, plant breeders evaluate genotypes in multiple environ-
ments to identify the superior ones, but the presence of GEI complicates
the attainment of this objective. Ideally, genotypes that perform well
across abroad range of environments are desired, though genotypes with
specific superior yield responses in the lowest vs. highest ends of the
range of environments may require selection of genotypes with specific
adaptation (Figure 2). Still, it is important to partition environmental
and genetic variability to determine how GEI impacts these variances,
and how stable or responsive the selected cultivars are to environmental
stimuli.

Abiotic stress
Soybean cultivars that display genetic tolerance to different stresses are
more likely to endure suboptimal environmental conditions (Des Marais
et al. 2013). The nearest genes colocalized with the QTL peaks were
reported in literature to be related to the physiological response of soy-
beans and other species to various types of stresses. In summary, these
genes were reported to play a role in soybean flood, drought and salt
tolerance (Chr 4 and 15), tolerance to photo-oxidative stress (Chr 9),
plant development, nodulation, and nitrogen metabolism under stress
(Chr 9, 13, and 15), and water and nutrient uptake (Chr 15 and 18).
Tolerance to different stresses can frequently be inter-related. For
instance, soybean nitrogen fixation is favored under optimal environ-
mental conditions, such that minor abiotic stresses can disrupt the
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process (Salvagiotti et al. 2008). Water-related stresses inhibit nodula-
tion by restricting photosynthate supply to nodules (Gil-Quintana et al.
2013). However, genotypes with enhanced enzymatic degradation of
ureide are drought tolerant by being able to perform nitrogen fixation
under stress (Purcell et al. 2000; Sinclair et al. 2007; Ray et al. 2015).

Associations in multiple environments

Genome-wide analysis including interactions between markers and
environment has been scarce in plant due to the lack of statistical power
(El-Soda et al. 2014). Attempts to identify GEI through genome-wide
scans have been performed in barley (Malosetti ef al. 2004) and maize
(Boer et al. 2007) in a multi-step approach based on regressing the QTL
effects on environmental factors to detect interactions. These studies
also found few regions significant for GEI, which indicates an oligo-
genic architecture for interactions where only some genomic regions
were responsive to environmental stimuli.

Quantitative nature of secondary traits

Stress-related genes are important when the crop is exposed to harsh
environments. Genomic regions that contain these genes are unlikely to
show significant association to yield when the phenotypic data were
collected from optimal environmental conditions, because the pheno-
typic variation attributed to these genes is hidden under stress-free
seasons (Schlichting and Smith 2002). However, the inverse may also be
true, in that productivity-improving genes may not be readily detect-
able in low productivity environments.

In this context, GEI and stability are secondary traits used to
investigate variation of a primary trait of interest—grain yield. Figure
5 indicates that a number of genomic regions were responsive to envi-
ronmental stimuli. The environment-dependent expression of these
regions modulates the phenotype under unfavorable conditions
(Smith 1990), resulting in the stress-related genes to play a major role
to the stability of grain yield. On another hand, De Bruin and Pedersen
(2009) reported that cultivars resistant to soybean cyst nematode were
able to maintain good performance standards in low yielding environ-
ments, being more stable than their susceptible counterparts.

GEl, stability, and breeding

Breeding soybeans for high yield can be translated into the development of
cultivar able to not only thrive under adverse farming conditions, but also
have the ability to be responsive to optimal management practices (Board
and Kahlon 2011; Ramachandra et al. 2015). In other words, breeders
desire to increase the genetic yield baseline along with yield potential. For
instance, modern soybean cultivars outperform older cultivars while
presenting stability index >1 (Rincker et al. 2014). The challenge is
breeding for both higher yield performance and stability often presents
negative genetic correlation (Rosielle and Hamblin 1981).

In order to achieve an ideotype that is both high yielding and stress
tolerant the target environments, it is important to be aware of bioticand
abiotic stresses in that region, and which “omic” tools provide the
necessary information to address the issue (Mir et al. 2012). Those
may include phenomic sensors, genome-wide selection, or the intro-
gression of QTL that confer stability or yield advantage to the specific
target environment (van Eeuwijk et al. 2010). In addition, if the genetic
progress toward regional ideotypes is slow through conventional meth-
ods, or if the exiting genetic resources are scarce, the knowledge of the
genes involved in GEI and stability can still provide target regions for
genetic engineering (Manavalan et al. 2009).

Interactions between the environment and genetics occur in the
genomic regions that respond to the environmental stimuli (Smith
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1990). We show here that genomic regions exist with strong GEI sig-
naling (Figure 5). The knowledge of the genes that are possibly in-
volved, their functionality and location allow us to strategize the best
ways of making good use of these regions.

Role of NAM

The identification of QTL that modulate grain yield under complex
interactions between genomic regions and environmental stimuli can be
improved by using multi-parental families with large progeny numbers,
which are generated in a NAM project. Aside from the greater statistical
power associated with the large number of individuals, the multi-
parental model (Wei and Xu 2016) allows for the estimation of SNP
effects from each parent-environment combination. Such information
is particularly valuable by informing which NAM parent provided the
most favorable haplotype in each environment or set of environments,
similar to which-who-where analysis (Yan 2016). Such variability of the
allele effects across families and environments is particularly important
for QTL introgression.

Multi-parental association mapping informs which parental lines
display the most optimal haplotype that should be used as QTL donors
(Xavier et al. 2015; Wei and Xu 2016). An example is shown in Table 6
and Figure 6 by demonstrating the FW index for 19 different NAM
parents. Estimated allele effect of SNP Gm18_1685024_A_G on grain
yield is shown in the second column of Table 6 for the 19 NAM parents,
and the FW index is shown in the third column of Table 6. The index is
a deviation from a regression coefficient bpy = 1 showing the contri-
bution of GEI. Since the FW index is low for all of the NAM parents it
shows that the effect of this QTL is influenced by the environment, thus
showing GEI. This statistical procedure for associations acknowledges
the possibility that the same allele may have different effects in different
families and environments.

The distribution of the FW index of grain yield stability is normal
with the center ~1 (shown in Figure 6) demonstrating that most of the
positions have no GEI effect on the grain yield. However, the tails of the
distribution confirm the existence of GEI in the 19 NAM parents for
grain yield stability.

The interaction between family and QTL can be observed when, for
instance, the linkage phase between the SNP marker and the QTL is in
coupling in some families and repulsion in others (Lynch and Walsh
1998). Another possibility is the interaction between the QTL and the
genetic background (Liao ef al. 2001), which may have implications in
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the direction and magnitude of allele effects in different families. These
scenarios can be allied to an additional order of interactions: between
QTL and environment (Wang et al. 1999; Xing et al. 2002; van Eeuwijk
et al. 2010).

On another hand, if the panel has a sufficiently dense coverage,
noninteractive association techniques can be applied in NAM popula-
tions to search for “universal” QTL (Palomeque et al. 2010) and caus-
ative quantitative trait nucleotides, thus alleles with stable performance
across families or environments. Tian et al. (2011) pinpointed a few
genes associated with leaf architecture in maize using a NAM popula-
tion with high-density genotyping. For the SoyNAM, such approach
can be enabled by the imputation or projection of the current SNP
panel of 4323 SNPs into a higher-density platform (Howie et al. 2011).

Conclusion

Stability analysis can aid plant breeders in the selection procedure, and
give cultivar recommendations. Identifying the chromosome regions
that influence stability can further enhance the selection process. In this
study we evaluated the multi-parental population referred to as the
SoyNAM population, and conducted genome-wide stability analysis
with the FW index as the phenotype, and genome-wide meta-analysis
based on the AMMI analysis estimates of the GEI component. We
identified six chromosomal regions that were responsible for the GEI,
and we found that one of these chromosomal regions was also associated
with yield stability.

The success of stability analysis, and the proportion of the phenotypic
variability explained by GEI can be influenced by genotypes and the
population structure. In this study, we evaluated a family structure in
soybean consisting one common parent crossed with 39 different
parents. Stability analysis was performed using a nested family structure
in multiple environments, which led to the identification of chromosome
segments that are associated with yield stability and GEI.

We envision future direction of this research as the investigation of
grain yield stability conditional to different environmental representa-
tion: genome-wide prediction studies of yield performance is needed
along with enviro-typing (Xu 2016), targeting the soybean genomic
assisted breeding research through transdisciplinary investigations in-
volving genetics and precision agriculture. The representation of man-
agement and environmental parameters in continuous scale (Lee et al.
2016) could represent a potential emerging area for genomic studies of
GEI and stability in soybeans.
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