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Abstract Imposing human perceptions about the

scales of ecological processes can produce unreliable

scientific inferences in wildlife research and possibly

misinform mitigation strategies. An example of this

disconnect occurs in studies of wildlife-vehicle colli-

sions (WVCs). Subjective procedures are often used to

delineate hotspots of WVCs, resulting in hotspots that

are not spatially independent. We developed a new

approach that identifies independent hotspots using

attributes of the landscape to inform delineations

instead of subjective measures. First, we generated a

candidate set of grouping scenarios using unique

combinations of kernel-density estimation parameter-

ization (i.e., bandwidth and isopleth values). Next, we

associated the groups of WVCs with attributes of the

surrounding landscape. Finally, we identified the

grouping scenario with the highest amount of variation

in the landscape among the groups. The highest

variation corresponded to hotspots that were most

distinguishable from each other (i.e., most indepen-

dent) based on the surrounding landscape. We tested

our approach on 3 species of wildlife [island foxes

(Urocyon littoralis) on San Clemente Island, CA;

white-tailed deer (Odocoileus virginianus) in Onon-

daga County, NY; and moose (Alces alces) in western

Maine] that exemplified varying degrees of space-use

in different landscapes. We found that the landscape-

based approach was able to effectively delineate

independent hotspots for each species without using

subjective measures. The landscape-based approach

delineated fewer or larger hotspots than currently used

methods, suggesting a reduction in spatial dependency

among hotspots. Variation in the landscape indicated

that hotspots may be larger than previously identified;

therefore current mitigation strategies should be

adjusted to include larger areas of high risk.

Keywords Animal-vehicle collision � Black-

spot � Cluster � Kernel-density estimation �
Mortality � Road-kill

Introduction

Human perceptions about scales of ecological pro-

cesses may not closely match associated wildlife

behaviors (Wiens 1976, 1989). Examples of this

disconnect occur in studies of wildlife that delineate

hotspots of occurrence (i.e., areas of high incidence)

using point-process data. Methods for delineating

hotspots have evolved to rely on increasingly sophis-

ticated quantitative tools, but most methods require

assumptions that are built upon human perceptions of

how animals respond to the environment. A variety of

different assumptions are used, resulting in hotspots

that are inconsistent and possibly pseudoreplicated.
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Accurately delineating hotspots is important for

wildlife research because they often are indicative of

influential processes that are affecting populations of

wildlife.

Hotspots of wildlife-vehicle collisions (WVCs) are

used to determine what environmental factors influ-

ence where the highest risk locations of WVCs exist.

Typically, hotspots are the sample units in statistical

models that examine how landscape, traffic, and

abundance of wildlife influence the occurrence of

WVCs (e.g., Malo et al. 2004; Ramp et al. 2005;

Gomes et al. 2009; Danks and Porter 2010). These

hotspots are treated as independent sample units,

although the amount of dependency among them is

usually unknown. If they are not independent, then

they are pseudoreplicated. Pseudoreplication can

mislead scientific inferences by identifying conflicting

or invalid relationships, or underestimating the true

variation in statistical models (Hurlbert 1984; Heffner

et al. 1996).

A variety of methods are currently used for

delineating hotspots of WVCs. One method is to

ignore hotspots and treat all WVCs as independent

observations (e.g., Snow et al. 2011). Another method

uses predefined distances to group WVCs into hot-

spots (e.g., Ng et al. 2008). More sophisticated

approaches use the counts of WVCs within predefined

lengths of road segments to identify hotspots (e.g.,

Malo et al. 2004; Ramp et al. 2005; Gomes et al.

2009). Even more sophisticated approaches use near-

est-neighbor clustering with predefined threshold

distances and the overall length of roads in the study

area (e.g., Levine 2004; Clevenger et al. 2006), or use

kernel-density estimators (KDEs) to identify hotspots

(e.g., Xie and Yan 2008; Okabe et al. 2009; Danks and

Porter 2010). Subjective choices are required for all

these approaches and include decisions such as: (1)

assuming every location is independent, (2) selecting

the lengths of road segments, (3) selecting the length

of threshold distances, or (4) defining the parameters

for KDEs (i.e., bandwidths and isopleths).

KDEs provide a promising, non-parametric,

approach for objectively identifying independent

groups of WVCs. For studies of wildlife, the applica-

tion of KDEs has recently expanded from identifying

boundaries of home ranges (e.g., Worton 1989;

Seaman and Powell 1996; Seaman et al. 1999; Laver

and Kelly 2008) to identifying hotspots of WVCs (e.g.,

Danks and Porter 2010). KDE uses a group of

spatially-referenced points (i.e., observations) to gen-

erate a probability surface based on the concentration

of observations across 2-dimensional space (Bailey

and Gatrell 1995). Generating the probability surface

depends on a user-specified, bandwidth smoothing

parameter (Kernohan et al. 2001). Bandwidth param-

eters represent the amount of contribution each

observation point contributes to the entire probability

surface (Gitzen et al. 2006). A large bandwidth value

specifies broad smoothing, and generates a smooth

surface of mostly high probability (Kernohan et al.

2001). Whereas, a small bandwidth represents narrow

smoothing, and generates a more fragmented surface

of probability.

After a probability surface has been generated with

KDE, isopleth lines are used to construct hard

boundaries around user-specified volumes of the

probability surface (Beyer 2012). For example, a

0.95 isopleth represents a boundary around 95 % of

the volume of probability. A 0.05 isopleth represents a

more constricted boundary around 5 % of the volume.

Observations are grouped together within the bound-

aries of isopleths, or are not grouped and are consid-

ered single-occurrence events. The amount of

grouping relies on the size of the bandwidth and

percentage of isopleth used. Selection of these values

has been highly scrutinized for studies of home ranges

(Gitzen et al. 2006; Laver and Kelly 2008), but is not

well understood for studies of WVCs.

We propose a new approach for parameterizing

KDEs to delineate WVCs into hotspots without

relying on subjective choices for bandwidths and

isopleths. We suggest using measures of variation (i.e.,

variance) in the landscape surrounding locations of

WVCs to inform non-subjective parameterization of

KDEs. Attributes of the landscape provide a useful

measure because WVCs are influenced by the land-

scape (Huijser et al. 2008). Specifically, variation of

the landscape can inform how WVCs should be

grouped based on the amount of dispersion (i.e.,

dissimilarity) identified in attributes of the landscape

among proposed groups of WVCs. If variation among

a set of proposed groups is low, then these groups are

not easily distinguishable from each other. As varia-

tion increases, the groups become more distinguish-

able and independent, based on the landscape.

Examining for maximum variation is a concept

developed for understanding scales of animal move-

ment (i.e., first-passage time; Fauchald and Tveraa

818 Landscape Ecol (2014) 29:817–829

123



2003; Williams et al. 2012), but can be expanded to

identify independent hotspots of WVCs. We suggest

using variation in attributes of the landscape as a

means to objectively group WVCs into independent

hotspots. Groups of WVCs that are associated with the

greatest amount of variation in the landscape can be

considered the most independently delineated groups

possible. The amount of independence is informed by

the landscape, and not by subjective measures of

distance between WVCs.

The purpose of our paper is to explore an objective

approach for grouping locations of WVCs into inde-

pendent hotspots. Specifically, we used attributes of the

landscape to inform KDE parameterization for group-

ing locations of WVCs into hotspots. We sought to

explore the robustness of this approach by comparing it

to previously used methods for delineating hotspots

under a variety of conditions. Specifically, we com-

pared our approach to 3 different methods that have

been used for 3 species of wildlife, respectively,

including (1) island foxes (Urocyon littoralis) on San

Clemente Island, California, USA, (2) white-tailed deer

(Odocoileus virginianus) in Onondaga County, New

York, USA, and (3) moose (Alces alces) in the western

region of Maine. This combination of species repre-

sented a gradient of animal space-use in a variety of

landscape types.

Study areas

The subspecies of island fox, (U. l. clementae), is found

on San Clemente Island (146 km2). The island is the

southernmost California Channel Island, located

*109 km west of San Diego, California (Fig. 1A).

Vegetation on the island was comprised primarily of 2

cover types: maritime desert scrub (54.4 %) and grass-

land (32.8 %; Thorne 1976; Sward and Cohen 1980). The

island contained 613.5 km of roads for an overall road

density of 4.2 km/km2. White-tailed deer are found

throughout Onondaga County, NY (2,085 km2). The

county is located in the central region of New York State

(Fig. 1B). Vegetation throughout the county was com-

prised of a mix of forest (35 %) and agriculture (33 %)

with small and large residential and commercial devel-

opment (19 %). The county contained 6,107 km of roads,

for an overall road density of 2.9 km/km2. Moose are

found throughout the Western Mountains biophysical

region of Maine (10,721 km2). This region is located in

the northern reach of the Appalachian Mountains

(Fig. 1C). Vegetation in Western Maine was mostly

comprised of deciduous, conifer, or mixed forests (85 %)

with interspersed shrub wetlands (6 %). Western Maine

contained 2,474 km of roads, for an overall road density

of 0.2 km/km2.

Methods

Data collection

We compiled records of island fox-vehicle collisions

from 2006 to 2010, provided by the United States Navy

and Colorado State University (Snow et al. 2011). Data

were collected at accident sites using a handheld Global

Positioning System device. We used a database of

white-tailed deer-vehicle collisions from 2005 to 2006,

provided by the State University of New York

(Nystrom 2007). These data were compiled from law

enforcement records and field observations. The deer-

vehicle collision locations were verified and recorded

using a handheld Global Positioning System device.

Lastly, we used recorded locations of moose-vehicle

collisions from 1993 to 2010, provided by the Maine

Department of Transportation. These data were assim-

ilated from law enforcement information at accident

sites, and compiled with an estimated accuracy of

160 m (D. Brunell, Maine Department of Transporta-

tion, personal communication). Post hoc, we evaluated

a 2-year subset of the moose-vehicle collision data

(2008–2010) to represent the most recent collisions.

We used the 2006 Coastal Change Analysis Program

for San Clemente Island, CA and western Maine to

describe the land cover and land use (National Oceanic

and Atmospheric Administration Coastal Services Cen-

ter 2012). We used the 2001 National Land Cover

Database for Onondaga County, NY (Homer et al. 2007).

Land-cover and land-use maps were based on data

collected with Landsat 7 Thematic Mapper with 30-m

resolution with 85 % overall classification accuracy for

the Coastal Change Analysis program and 85.3 % for the

National Land Cover Database (Wickham et al. 2010;

National Oceanic and Atmospheric Administration

Coastal Services Center 2012). We reclassified land-

cover and land-use types based on habitat requirements

for each species (Table 1). For San Clemente Island, we

used a 10-m digital elevation map from the United States

Geological Survey, National Elevation Dataset (Gesch

Landscape Ecol (2014) 29:817–829 819
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et al. 2002; Gesch 2007), and shapefiles depicting urban

areas (Gould and Andelt 2011). For western Maine, we

used shapefiles depicting human development based on

1:24,000 quadrangles (Maine Office of GIS 2010).

Landscape metrics

We characterized the landscape surrounding each WVC

using multiple spatial extents based on the reported area

requirements for each species (Leptich and Gilbert 1989;

Peek 2007; Quinn et al. 2012; Resnik 2012). We used

ArcGIS (v9.3, Environmental Systems Research Insti-

tute, Inc., Redlands, CA, USA) to construct 3 buffers

around each WVC. The buffers corresponded to core-use

areas, small home ranges, and large home ranges for each

species (Table 2). We also included 1 additional buffer

for moose to represent an extra-large home range size

because they occasionally migrate (Hundertmark 2007).

Fig. 1 Study areas, roads, and locations of wildlife-vehicle

collisions for: A island foxes on San Clemente Island, CA, USA

(2006–2010), B white-tailed deer in Onondaga County, NY,

USA (2005–2006), and C moose in Western Mountains

biophysical region, ME, USA (1993–2010)

820 Landscape Ecol (2014) 29:817–829
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We characterized the landscape surrounding each

WVC location using a variety of landscape metrics

(Table 2). We used a variety of different metrics for

each species based on their reported habitat require-

ments. For island foxes, we focused on their reported

use of grass and shrub land covers, edges between

different types of land covers, urban areas, and

canyons (Moore and Collins 1995; Gould and Andelt

2011; Resnik 2012). For deer, we focused on their

reported use of agriculture and forest land covers,

edges between agriculture and forest land covers, and

their use of fragmented and intermixed landscapes

(Quinn et al. 2012). For moose, we focused on their

use of forested and wetland land covers, their use of

intermixed land covers, and their avoidance of urban

areas (Allen et al. 1987, 1988).

We calculated composition and configuration met-

rics using the Fragstatsbatch extension in ArcGIS

(Mitchell 2005), and program FRAGSTATS v3.3

(McGarigal et al. 2002). Composition metrics

Table 1 Reclassified land-cover and land-use types for 3

species of wildlife: (A) island foxes on San Clemente Island,

CA, USA (2006–2010), (B) white-tailed deer in Onondaga

County, NY, USA (2005–2006), and (C) moose in western

Maine, USA (1993–2010)

(A) San Clemente Island, CA (B) Onondaga County, NY (C) Western Mountains, ME

Class % Class % Class %

Grassland 75.37 Forest 44.07 Deciduous-mixed forest 57.62

Scrub/shrub 20.61 Agriculture 29.73 Coniferous forest 27.70

Disturbed 3.04 Open water 12.20 Shrub wetland 6.14

Other 0.98 Rangeland 7.42 Open water 3.90

Developed 5.81 Developed 3.55

Wetland 0.66 Agriculture 0.88

Barren 0.12 Other 0.21

Cutover forest 0.0001

Table 2 Metrics for data analysis used in kernel-density

estimation (KDE) for 3 species of wildlife: (A) island foxes

on San Clemente Island, CA, USA (2006–2010), (B) white-

tailed deer in Onondaga County, NY, USA (2005–2006), and

(C) moose in western Maine, USA (1993–2010)

(A) Island fox (B) White-tailed deer (C) Moose

Landscape areas (km2)a 0.03, 0.28, and 1.13 0.50, 1.13, and 8.04 0.78, 3.14, 19.63, and 78.54

Bandwidth range (m)b 20–300 100–2,000 100–2,500

Isopleth range (%)c 5–95 5–95 5–95

No. KDE combinationsd 285 380 475

Metrics examined Proportion of grassland Proportion of agriculture Proportion conifer forest

Proportion of shrub/scrub Proportion of forest Proportion forest

Edge density Contrast-weighted edge density Proportion shrub wetland

Topographic position index Contagion Interspersion/juxtaposition index

Distance to urban areae Interspersion/juxtaposition index Distance to developmente

Distance to shrub wetlande

a Areas of buffers around each WVC location to calculate metrics of the landscape. Buffer sizes were based on estimates of space-

use for each species
b Bandwidth intervals were examined every 20 m for island foxes, and every 100 m for white-tailed deer and moose
c Isopleth intervals were examined every 5 % for all species
d Represents the overall candidate set of potential delineations of WVCs
e Landscape metric was not associated with a landscape area
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represented the proportions of specific land-cover or

land-use types inside each buffered area. Configura-

tion metrics included edge density, contrast-weighted

edge density (CWED), contagion and interspersion/

juxtaposition index (IJI). Edge density was the sum of

the length of borders between cover types divided by

the area of the buffered area (km/km2). CWED

measured edges between agricultural and forested

land covers. The CWED was the sum of the borders

between cover types multiplied by a corresponding

contrast-weight (i.e., weight = 1 for agriculture and

forest cover types, and weight = 0 for all other cover

types) divided by the buffered area (km/km2). Conta-

gion was an index of the spatial aggregation and

interspersion of similar patch types. IJI is an index of

the intermixing of different types of patches.

We used Topography Tools for ArcGIS (Dilts

2010) to calculate the average topographic position

index (TPI) value within buffered areas. Each TPI

value was a measure of the ruggedness of the terrain,

and represented the difference between the elevation

of a central pixel and the mean of the surrounding

cells. We also used ArcGIS to calculate the distances

from each WVC to the nearest focal land-cover and

land-use type(s).

Data analysis

We generated a candidate set of grouping scenarios

that delineated hard boundaries around groups of

WVCs (Fig. 2B). The grouping scenarios represented

all permutations of WVC groups identified using

KDEs (see example Fig. 3). To create these scenarios,

we calculated multiple KDEs for each species using

the Geospatial Modelling Environment (v0.7.1 RC1,

Beyer, H. L.), ArcGIS (v10.0), and Program R

(v2.12.1, R Development Core Team). Each KDE

was comprised of a unique combination of bandwidth

search area and isopleth percentage parameterization

(Table 2). We examined comprehensive ranges of

bandwidths and isopleths to ensure that all reasonable

grouping scenarios were generated. The smallest

bandwidths were representative of the core-area

requirements for each species, whereas the largest

Fig. 2 Conceptual flowchart showing a process for delineating

non-subjective hotspots of wildlife-vehicle collisions (WVC)

using kernel-density estimation (KDEs). Step 1 is to gather

accurate locations of WVCs. Step 2 is to generate a candidate set

of grouping scenarios using KDEs with unique combinations of

bandwidth and isopleth values. Additionally, calculate

landscape metrics for each WVC with user-specified

extent(s) of the landscape. Step 3 is to associate the landscape

metrics to each grouping scenario, and then calculate the

variance for each metric among groups of WVCs within each

grouping scenario. Step 4 is to identify the grouping scenario

with the greatest amount to variation

822 Landscape Ecol (2014) 29:817–829
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bandwidths were the limit at which probability

surfaces became overly smoothed (i.e., high probabil-

ities of WVCs extended throughout the study areas).

We examined all possible values for isopleth percent-

ages, from 5 to 100 by 5 % intervals. Within each

grouping scenario, WVCs were either partitioned into

groups or were occasionally solitary (i.e., isolated

away from other WVCs). We considered WVCs that

were not grouped with other WVCs as single-collision

events (i.e., not hotspots).

We then associated groups of WVCs within each

grouping scenario to corresponding values of

landscape metrics (Fig. 2C). For groups that were

comprised of C2 WVCs, we averaged the correspond-

ing landscape metrics from each WVC to obtain an

overall value for the group. We scaled and centered the

metric values (i.e., subtracted the mean and divided by

the standard deviation) among all groups and grouping

scenarios to allow standardized comparisons among

metrics and across spatial scales (i.e., buffers).

Next, for each grouping scenario we calculated the

variation in landscape metrics among groups using

Program R (Fig. 2D). We calculated the variation for

each spatial scale (i.e., buffer size) of the landscape

Fig. 3 Example grouping

scenarios of San Clemente

Island, CA, USA

(2006–2010) fox-vehicle

collision hotspots calculated

with kernel-density

estimation. Each bandwidth

and isopleth combination

produced unique groups of

WVCs as parts of the overall

candidate set of grouping

scenarios. This figure shows

10 of 285 grouping

scenarios that were

calculated
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metrics. We examined for peaks in variation among

grouping scenarios, and identified the bandwidth and

isopleth parameterization that delineated groups of

WVCs with the highest variance (i.e., most disparity)

relative to the surrounding landscape. The grouping

scenario with the most disparity represented groups

that were most independent from each other, relative

to the landscape. We considered the grouping scenario

with maximum variance as the landscape-based

delineation of WVC hotspots (Fig. 2E).

Once the landscape-based delineation of hotspots

was made, we compared the length of road and

number of hotspots to those delineated using previ-

ous methods for each species. The previous methods

considered were: (1) every location of a fox-vehicle

collision as a unique hotspot for island foxes (Snow

et al. 2011), (2) locations of collisions buffered with

300 m radii and dissolved for white-tailed deer (Ng

et al. 2008), and (3) a KDE with 1 km bandwidth

and 50 % isopleth for moose (Danks and Porter

2010). We compared the lengths of roads (km) that

were delineated as hotspots and examined the

amount of overlap (km of roads) among methodol-

ogies. There was no length of roads associated with

collision events for island foxes using the previous

method; therefore we were unable to compare

lengths of roads between methods for island foxes.

Lastly, we examined the number of landscape-based

hotspots required to account for 25, 50, and 75 %

quantiles of WVCs.

Results

We examined a total of 2,488 records of WVC

locations and generated 1,615 grouping scenarios

using KDEs with unique bandwidth and isopleth

combinations for 3 species. We examined the vari-

ances of 16 landscape metrics (Table 2). The count of

unique hotspots declined with increasing bandwidth

and isopleth values as should be expected with KDE

parameterization. We were able to successfully iden-

tify peaks in variation for all landscape metrics except

3. For those exceptions (i.e., TPI for island foxes,

CWED for white-tailed deer, and distance to devel-

opment for moose), the variance never reached a peak

as the bandwidth and isopleth values increased. Thus,

we considered the maximum variance as being

undefined.

For island foxes, the proportion of shrub land cover

at scale of large home ranges showed the maximum

variance (standardized variance = 1.39; Fig. 4), and

therefore identified the most independent groups of

WVCs based on a landscape attribute. The peak in

variance was identified with a 260 m bandwidth and

55 % isopleth (Fig. 5). This combination delineated

21 hotspots that averaged 0.8 km of roads (SD = 1.4)

and accounted for 72 % of all collisions on San

Clemente Island, CA (Table 3). The previous method

did not delineate hotspots, thus we could not compare

between the 2 approaches.

For white-tailed deer, the proportion of forest land

cover at the scale of large home ranges was the most

informative landscape attribute (standardized vari-

ance = 1.33; Fig. 4) for delineating hotspots in Onon-

daga County, NY. A peak in variance was identified

with a 1,600 m bandwidth and 50 % isopleth (Fig. 5).

The landscape-based approach identified 51 hotspots

that accounted for 69 % of WVCs in Onondaga County,

NY. The previous approach identified 53 hotspots that

accounted for 34 % of WVCs. The landscape-based

approach delineated larger hotspots (mean = 13.8 km

of road; SD = 34.4) than the previous method

(mean = 1.4 km; SD = 0.9; Table 3). It overlapped

the previous method along 293 km of roads, but also

included 538 km more roads as hotspots.

For the full set of moose data (17 years), we found IJI

at the landscape scale of core-use areas had the

maximum variance (standardized variance = 1.33;

Fig. 4) and delineated the most independent groups of

WVCs based on a landscape attribute. We identified a

peak in variance at a bandwidth of 2,300 m and isopleth

of 80 % (Fig. 5). The landscape-based approach iden-

tified 42 hotspots that accounted for 92 % of WVCs in

western Maine (Table 3). The previous approach iden-

tified 99 hotspots that accounted for 67 % of WVCs.

The mean length of a hotspot was 22.5 km (SD = 49.1),

whereas those identified by the previous method were

substantially shorter (mean = 2.6 km; SD = 3.6). The

landscape-based approach overlapped all roads desig-

nated as hotspots by the previous method (i.e., 263 km),

plus an additional 727 km.

For the subset of moose data (2 years), IJI had the

maximum variance (standardized variance = 1.17) at

the scale of large home ranges. The peak in variance

occurred at bandwidths of 2,400 and 2,500 m and an

isopleth of 20 % (Fig. 5). Using this combination we

delineated 20 hotspots with a mean length of 2.8 km
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Fig. 4 Maximum variance values (standardized) for each

landscape metric among hotspots of wildlife-vehicle collisions

for: A island foxes on San Clemente Island, CA, USA

(2006–2010), B white-tailed deer in Onondaga County, NY,

USA (2005–2006), C moose in Western Mountains biophysical

region, ME, USA (1993–2010), and D moose 2-years subset

(2008–2010)

Fig. 5 Peaks in variation were identified at: A 260 m

bandwidth and 55 % isopleth for the proportion of shrub

landscape metric for island foxes on San Clemente Island, CA,

USA (2006–2010), B 1,600 m bandwidth and 50 % isopleth

for the proportion of forest landscape metric for white-tailed

deer in Onondaga County, NY, USA (2005–2006), and

C 2,400 or 2,500 m and 20 % isopleth for the interspersion-

juxtaposition index landscape metric for the 2-years subset of

moose in the Western Mountains biophysical region, ME, USA

(2008–2010)
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(SD = 1.8), that accounted for 38 % of WVCs in

western Maine. The previous approach identified 29

hotspots (mean = 1.2 km; SD = 0.8), that accounted

for 49 % of WVCs. Overall, the landscape-based

approach delineated 61 km of roads as hotspots,

similar to the previous method that delineated 65 km.

Discussion

Our landscape-based approach provides some clear

improvements over the previously used methods.

First, by using variation in landscape metrics to

inform the delineation of hotspots, the landscape-

based approach ensures that the most independent

groups of WVCs are identified relative to the

surrounding landscape. Previous methods disregard

issues with pseudoreplication among groups of WVCs

by only considering subjective measures of spatial

proximity to delineate hotspots. Using variation in the

landscape as measures of independence provides an

objective approach for avoiding pseudoreplication in

statistical models of WVCs. The previous strategies

further ignore the ecological processes that influence

the arrangement of WVCs, and thereby provide little

information for reducing pseudoreplication among

delineated hotspots. Ensuring independent observa-

tions is important for studies that use statistical models

to examine for influences on hotspots of WVCs.

Otherwise, the true variation in parameter estimates

will be underestimated by pseudoreplicated samples

(Hurlbert 1984; Heffner et al. 1996).

Second, the landscape-based approach performs

well in a variety of situations and thereby provides a

flexible, but consistent, methodology for delineating

hotspots. Comparatively, the previous methods yielded

inconsistent delineations of hotspots because of the

variety of methodologies used (Openshaw and Taylor

1981; Gomes et al. 2009; Okabe and Sugihara 2012).

Consistent approaches will afford more reliable com-

parisons among species and environments. The land-

scape-based approach allows for differing degrees of

space-use by animals and differing complexities of

landscapes by incorporating multiple spatial scales and

landscape metrics. Using multiple scales and metrics

also reduces the chances of biasing the delineation

hotspots based on the researcher’s perceptions.

Third, the landscape-based approach uses the land-

scape to inform hotspots and can be expanded toT
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include other influences that affect hotspots. An

obvious expansion includes examining variation in

volume and speed of traffic for delineating hotspots

(e.g., Forman et al. 2003). A critical requirement will

be that data on the volume and speed of traffic are

available at sufficient resolution to calculate variation.

To our knowledge, the landscape-based approach is the

first, flexible approach for using the ecological pro-

cesses to help determine how hotspots are delineated.

Fourth, the landscape-based approach provides a

less subjective and easily identifiable means for

delineating hotspots. We avoided subjective choices

in 3 ways. First, we used variation of the landscape

metrics as non-subjective criteria for selecting group-

ing scenarios that represented the most unique delin-

eation of hotspots. Second, we used the biology of each

species to inform the landscape metrics and the scales

at which we examined them. These metrics quantified

important landscape variables for the habitat require-

ments of each species based on previous literature. We

examined multiple metrics at multiple scales to avoid

bias from our perceptions. Third, we examined the

entire ranges of bandwidth and isopleth values that

could be used in KDE analyses to group WVCs, and

therefore assured that all possible combinations were

tested. By combining these techniques, we developed

the first-known, landscape-based approach that suc-

cessfully informed the delineation of the most inde-

pendent hotspots without imposing human perceptions

about the ecological processes involved.

Although the landscape-based approach improves

upon previous methods, some constraints still exist.

For most landscape metrics we tested, we easily

detected peaks in variance. For 3 metrics, however,

a peak in variance could not be identified because

variation appeared to be driven by sample sizes of

the delineated hotspots (i.e., variance increased

linearly with decreasing numbers of hotspots). This

suggests that not all landscape metrics are useful for

informing hotspots. Particularly, metrics that contain

very little variation throughout the landscape are

less useful. We recommend comparing multiple

landscape metrics that represent varying degrees of

heterogeneity within the study area to inform the

delineation of hotspots.

The temporal scale of WVCs may influence the

delineation of hotspots. For moose in Maine, the 17-year

dataset contained a large sample size of WVCs that

occurred on most sections of roads, thereby resulting in

hotspots that encompassed most roads. However, the

more sparsely distributed 2-year subset indicated much

fewer and smaller hotspots, suggesting that temporal

scales are important considerations for delineating

hotspots. If landscape metrics change through time,

then delineating hotspots without considering the tem-

poral dynamics of the landscape may not be useful.

However, if landscape metrics are relatively stable, then

using locations of WVCs over longer timeframes should

delineate more accurate hotspots.

The landscape-based approach identified fewer or

larger hotspots than the previously used methods,

providing some important implications for mitigating

WVCs. Our approach suggests that larger contiguous

areas may need to be targeted for mitigating WVCs.

For example, fencing may need to be extended over

larger areas to exclude wildlife from roads for some

hotspots. Our approach also indicated that fewer

hotspots may need to be targeted to reduce WVCs.

For example,[20 hotspots accounted for 50 % of all

WVCs for each species, respectively. Managers can

use this information to target mitigation efforts in a

more cost-effective way (e.g., Clevenger et al. 2006;

Huijser et al. 2009; Conover 2010). Our results

indicate that previous methods may not consider large

enough spatial scales for delineating hotspots. This

finding is similar to recent evidence that scales of

effect should be measured at larger scales than are

previously used for predicting population responses to

landscape structure (Jackson and Fahrig 2012).

Finally, our approach indicated that hotspots included

more WVCs, on average, than the previously used

methods. Grouping more WVCs into hotspots will

reduce the chances of analyzing pseudoreplicated

collision sites in exploratory models.

Lastly, our landscape-based approach can be

extended beyond hotspots of WVCs. Many other

ecological studies require objective delineations of

hotspots, such as hotspots of bird nests (e.g., Hatchwell

et al. 1996), insect infestations (e.g., Nelson and Boots

2008), or species distributions (e.g., Stohlgren et al.

2001). These hotspots can be delineated without relying

on human perceptions about the ecological processes to

provide the most unbiased estimates and inferences.

Researchers can examine for peaks in variation from a

variety of inputs (i.e., not just landscapes) that might

inform how hotspots are delineated.
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