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Introduction

Although lagomorphs (i.e., rabbits, hares, and pika) could be 
considered unlikely candidates in the epidemiology of avian 
influenza A viruses (IAVs), some lagomorph species are sus-
ceptible to multiple subtypes of these viruses [18, 28, 29]. 
For example, natural exposures of both highly pathogenic 
(HP) and low pathogenic (LP) avian influenza A viruses 
(IAVs) have been reported from plateau pika (Ochotona 
curzoniae) sampled near Qinghai Lake, China [28, 29], a 
location where HP H5N1 IAV has been detected on many 
occasions [5, 26]. In addition, experimentally infected cot-
tontail rabbits (Sylvilagus sp.) shed significant quantities of 
IAV through the oral and nasal routes [18] with the capacity 
to transmit IAV to mallards (Anas platyrhynchos) through 
shared resources [19]. Recently, a study showed that cot-
tontail rabbits are susceptible to and shed relatively large 
quantities of emergent H7N9 IAV [20]. Although these field 
and laboratory studies have provided important information 
about the susceptibility of various lagomorphs to several 
IAVs, they have not evaluated the minimum infectious doses 
and the various routes of infection that are probable in natu-
ral settings for these animals.

Aside from natural infections in lagomorphs, rabbits can 
be commonly found in live-bird markets in many regions of 
the world [6, 27]. Of interest, rabbits have been previously 
suggested as a species that significantly increased the risk of 
live-bird markets testing positive for H7 IAV in the north-
eastern U.S. [4]. The authors were unable to fully assess 
the reason behind this increased risk, but suggested, among 
other things, that it could be associated with unknown fea-
tures pertaining to the rabbits themselves [4].

The recent introduction/detection of Eurasian strain HP 
H5 viruses in the U.S. [9] and the subsequent detection 
of these and reassortant H5 viruses in multiple poultry 
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facilities during 2015 [15] have produced enormous bur-
dens to the poultry industry. Cottontail rabbits are very 
common throughout much of North America [2] and are 
undoubtedly part of the fauna surrounding some poultry 
facilities in the U.S. Hypothetically, if a cottontail rabbit 
were exposed to an IAV at or near a body of water within 
close proximity of a poultry facility, this animal could 
subsequently move the virus to areas adjacent to the enclo-
sures housing the poultry. This scenario, however, may 
be more probable if the oral route of infection is efficient 
in cottontail rabbits and if high levels of viral replica-
tion can be initiated following exposures to low doses of 
virus, conditions characterizing the most likely exposure 
scenarios in natural settings. The objective of this study 
was to assess the efficacy of low infectious doses of IAV 
in cottontail rabbits by both the oral and nasal routes to 
further characterize the biosecurity risk that may be posed 
by this species. To accomplish this study, a LP H4 IAV 
was selected because it has been shown previously to rep-
licate in multiple mammalian species and is a very com-
mon virus in wild bird populations in North America [14, 
16–18, 21].

Materials and methods

Study animals

Thirty-six cottontail rabbits (Sylvilagus sp.) were wild-
caught in north-central Colorado and were subsequently 
used for the experiment following a quarantine period 
of ≥ 14 days. Six cottontail rabbits were assigned to each 
of six treatment groups representing each combination of 
three inoculation doses of approximately  102,  103, and  104 
 EID50 and either the oral or nasal route of inoculation. The 
cottontail rabbits were housed in standard rabbit racks that 
included a nest box, alfalfa, rabbit food (MannaPro®, Pro 
Formula, St. Louis, MO), a water bowl, and an enrichment 
toy. Water and food were replenished each day when needed. 
Each treatment group for the six dose/route combinations 
was housed in a different rabbit rack. Animal methods were 
approved by the National Wildlife Research Center Animal 
Care and Use Committee (2356).

Experimental infections

Prior to initiation of the experiment, a blood sample was 
taken from each cottontail while the animals were anesthe-
tized with isoflurane anesthesia [3, 18] to test for antibod-
ies reactive with IAV. The LP IAV used in this study, A/
Mallard/CO/P70F1-03/08(H4N6), which was grown and 
titered in SPF chicken eggs, has been described previously 

[16]. On day zero of the study, all cottontail rabbits were 
inoculated with their respective viral dose (approximately 
 102,  103, or  104  EID50) diluted in 1 mL (oral route) or 
250 µl (nasal route) of BA-1 diluent [21]. One-half (n = 3) 
of each treatment group was sampled (nasal flush and oral 
swab using 1 mL of BA-1 diluent) on odd days postinfec-
tion (DPI), while the other three were sampled on even 
DPI through 8 DPI using the same isoflurane anesthesia 
methods outlined above. All animals were maintained until 
18 DPI at which time the animals were anesthetized, a 
post-experiment blood sample was drawn, and the animals 
were euthanized.

Laboratory testing

Nasal flushes and oral swabs from cottontail rabbits were 
tested in duplicate using a real-time RT-PCR assay based 
on primers and probes described in [22] and conditions, 
equipment, and reagents described in [19]. Positive sam-
ples were defined as those yielding a two-well positive 
amplification with a Cq value of ≤38. Calibrated controls 
based on known viral titers  (102  EID50/mL–105  EID50/
mL) were also tested, and 4-point standard curves were 
constructed. Viral RNA quantities from samples were 
extrapolated from the standard curves and are reported as 
PCR  EID50 equivalents/mL.

Pre-exposure and post-experiment serum samples were 
tested for the presence of antibodies to IAV group-spe-
cific antigens by the agar gel immunodiffusion (AGID) 
test [12]. AGID tests have the ability to detect antibodies 
to all IAVs [12, 23], but their utility in many species is 
unknown. Details on the use of this and other serologi-
cal procedures in cottontail rabbits have been published 
elsewhere [18].

Data analysis

Box plots and other analyses were completed in R 3.0.2. 
[24]. The impact of inoculation dose and the route of 
inoculation were investigated using linear mixed-effects 
regression. We modeled the total RNA output (sum of 
viral RNA across day sampled) as a function of the follow-
ing main effects: inoculation dose (DOSE,  102  EID50,  103 
 EID50, or  104  EID50), route of inoculation (ROUTE, oral 
or nasal), sample type (TYPE, oral swab or nasal wash), 
and interactions between these main effects. Individual 
animals were modelled as random effects. Models with the 
three main effects, main effects and two-way interactions, 
and main effects with all interactions were compared using 
Akaike’s information criterion (AIC).
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Results

Viral RNA shedding by nasally infected cottontail 
rabbits

All eighteen cottontail rabbits in the nasal treatment groups, 
regardless of inoculation dose (e.g.,  102,  103, or  104  EID50), 
shed viral RNA nasally on multiple DPI. Of interest, IAV 
replicated successfully in all animals in the nasal  102  EID50 
inoculation group, and with the exception of one animal, all 
shed viral RNA via the nasal and oral routes (Fig. 1). Nota-
bly, one animal in this low dose treatment group shed >107 

PCR  EID50 equivalent/mL on 3 DPI. Shedding in the two 
other nasal treatment groups typically began at an earlier 
time point (Fig. 1), and the majority of the animals in these 
groups shed >106 PCR  EID50 equivalent/mL on at least one 
occasion.

Viral RNA shedding by orally infected cottontail 
rabbits

Results from the oral treatment groups were more variable. 
For example, none of six, four of six, and three of six (Fig. 2) 
animals in the  102,  103, and  104  EID50 oral inoculation 

Fig. 1  Nasal and oral shedding 
of cottontail rabbits (Sylvilagus 
sp.) experimentally infected 
with approximately  102,  103, 
and  104  EID50 of a low patho-
genic avian influenza A virus 
by the nasal route.  Nasal and 
oral samples were collected on 
odd days post infection (DPI) 
for one-half of each treatment 
group and on even days for the 
other one-half of each treatment 
group. Horizontal bars represent 
medians and vertical lines 
represent the minimum and 
maximum quantities detected on 
a given DPI
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treatment groups, respectively, shed viral RNA on at least 
one occasion. In addition, high levels of individual hetero-
geneity were noted in orally treated animals. For example, 
although some animals from these groups shed viral RNA 
nasally at levels of >106.0 PCR  EID50 equivalent/mL, others 
produced much lower levels of shedding, and some did not 
shed any detectable virus during the experiment. In general, 
nasal shedding was more pronounced than oral shedding 
in these groups. In addition, cottontail rabbits exposed to 
IAV by the oral route tended to initiate shedding 1-2 days 
later than those inoculated by the nasal route (Fig. 1 and 2). 

Of interest, oral shedding was not detected in the  102 nasal 
treatment group until 2 DPI (Fig. 1), which is in contrast to 
the other two dosage groups (Fig. 1).

Data analysis

The regression model that included the main effects (DOSE, 
ROUTE, and SAMPLE TYPE) and all two-way interactions 
between them had the lowest AIC score and an Akaike 
weight of 0.7 (Table 1), indicating that this model best 
explains the data. The model without variable interactions 

Fig. 2  Nasal and oral shedding 
of cottontail rabbits (Sylvilagus 
sp.) experimentally infected 
with approximately  102,  103, 
and  104  EID50 of a low patho-
genic avian influenza A virus 
by the oral route.  Nasal and 
oral samples were collected on 
odd days post infection (DPI) 
for one-half of each treatment 
group and on even days for the 
other one-half of each treatment 
group. Horizontal bars represent 
medians and vertical lines 
represent the minimum and 
maximum quantities detected on 
a given DPI
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had a ΔAIC value of 19.5, suggesting that the interactions 
between the variables are important. The route of inocula-
tion had a significant impact on the total amount of RNA 
shed (p = 0.003) with significantly higher shedding levels 
observed for nasal inoculations than for oral inoculations 
(Table 2). Similarly, significantly more RNA was found 
in nasal washes than in oral swabs (p < 0.001), and there 
was a significant interaction between these two variables. 
Inoculation dose did not show a significant effect on the total 
amount of RNA shed, but the interaction term between inoc-
ulation dose and sample type was significant (p = 0.037), 
and this relationship likely reflects the result that cottontails 
orally inoculated with  102  EID50 did not become infected.

Serology

All animals used in the experiment were determined to be 
negative for antibodies to IAV prior to the initiation of the 
experiment (Table 3). Each of the nasally infected cottontail 
rabbits developed a serologic response by 18 DPI, regard-
less of the dose they received (Table 3). Results associated 
with the oral route of infection were more variable, as 0 of 
6, 4 of 6, and 4 of 6 individuals from the  102,  103, and  104 
 EID50 treatment groups, respectively, developed a serologi-
cal response. In general, animals that shed virus by at least 

one route on at least one day seroconverted by the end of 
the experiment. One exception was noted in the  104  EID50 
oral treatment group, as a single cottontail that exhibited 
no detectable shedding during any sampling period did 
develop a weak positive antibody response by the end of the 
experiment. Thus, it is likely that this animal was exposed 
to enough virus to elicit a weak immune response but not 
enough to initiate detectable viral replication. However, con-
sidering that the animals were only sampled every other day, 
this animal could have shed during a day when sampling was 
not conducted.

Clinical signs of disease

As has been reported previously for cottontail rabbits 
infected with H4 LP IAV [18], no observable clinical signs 
of disease were noted in any of the animals. This is in con-
trast to a study of cottontail rabbits infected with emergent 
H7N9 IAV, where most experimentally infected animals 
developed mild clinical signs of disease [20].

Discussion

Considering that all cottontail rabbits in the  102  EID50 
nasal inoculation treatment group seroconverted and shed 
virus on at least one occasion, their minimum infectious 
dose by this route of infection is quite low, possibly well 
below the lowest dose used in the current study. Although 
the minimum infectious dose by the oral route was higher 
 (103  EID50), IAV concentrations of ≥103  EID50 per mL 
have been routinely detected in pond water collected dur-
ing experimental infection studies involving waterfowl [1, 
25], and IAVs have been routinely detected in natural bod-
ies of water [10, 13]. This suggests that in some instances, 
a single drink from a small IAV-contaminated body of 
water associated with recent waterfowl activity could be 
sufficient to initiate viral infection in cottontail rabbits. 
Further, the probability of infection of cottontail rabbits 

Table 1  Model selection results comparing the full model with no interaction between the variables, a full model with all two-way interactions, 
and a full model with all interactions

The variables tested are inoculation dose (DOSE), inoculation route (ROUTE), and sample type (SAMPLE TYPE)

Model K AIC ∆AIC AIC weight

Full Model – no interactions
DOSE + ROUTE + SAMPLE TYPE

5 269.4 19.5 0.0

Full – all two-way interactions
DOSE + ROUTE + SAMPLE TYPE + DOSE*ROUTE + DOSE*SAMPLE TYPE + ROUTE*SAMPLE 

TYPE

8 249.9 0 0.7

Full – all interactions
DOSE + ROUTE + SAMPLE TYPE + DOSE*ROUTE + DOSE*SAMPLE TYPE + ROUTE*SAMPLE 

TYPE + DOSE*ROUTE*SAMPLE TYPE

9 251.6 1.7 0.3

Table 2  Model output for the mixed-effect linear regression model 
of total RNA output as a function of inoculation dose (DOSE), inocu-
lation route (ROUTE), and sample type (SAMPLE TYPE), and all 
two-way interactions between these variables

Fixed effects Estimate Std. error t-value Pr(>|t|)

(Intercept) 4.468 1.298 3.443 0.001
DOSE 0.258 0.416 0.620 0.539
ROUTE (Oral) -5.577 1.778 -3.137 0.003
SAMPLE TYPE (Oral) -1.507 0.690 -2.183 0.036
DOSE* ROUTE 0.749 0.569 1.317 0.196
DOSE*SAMPLE TYPE -0.474 0.215 -2.208 0.034
ROUTE *SAMPLE TYPE 1.884 0.351 5.372 <0.001
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may be even higher than shown in the current study, as an 
individual could use the same contaminated water source 
multiple times, thereby increasing the likelihood of infec-
tion due to multiple exposures.

Peak shedding observed in this study generally occurred 
at later time points with low inoculation doses than with 
higher doses (1-2 DPI) such as  106  EID50 [18]. This observa-
tion was especially pronounced for the  102  EID50 treatment 
group, which peaked at 5-6 DPI for nasal samples (Fig. 1). 
In addition, the initiation of shedding by orally inoculated 
animals tended to lag behind that of nasally inoculated ani-
mals by 1-2 days (Fig. 1 and 2). Furthermore, in the orally 
inoculated animals individual heterogeneity was pronounced 
and differences in the animals sampled on odd and even days 
were evident (Fig. 2).

Although a strong effect of dose was not observed in 
our models, this may have been due to the fact that, in our 
regression models, we evaluated the total amount of RNA 
shed, which may have minimized differences. For example, 
when the  102 nasal inoculation cohort is compared to the 
 103 and  104 groups, the peak output is much later for the 
former, but the overall amount of viral RNA shed across the 
sampling period is similar (Fig. 1).

In general terms, delayed virus shedding associated with 
the oral route of infection in certain mammal species may 
be of epidemiological significance. For example, cottontail 
rabbits infected by the oral route did not initiate shedding 
until 2-3 DPI, but when infected, eventually shed virus at 
nearly equal, and in some instances, greater quantities than 
their nasally infected counterparts (Fig. 2). In addition, some 
animals were still shedding moderately high quantities of 
virus at 8 DPI, which is in contrast to those that were inocu-
lated nasally at higher doses in a previous study [18]. Thus, 
this delayed initiation of virus shedding, as well as shedding 
at later time points, suggests that cottontail rabbits orally 
infected with IAV would reach peak shedding a few days 
after exposure, which would allow them sufficient time inter-
vals to contaminate additional environments.

It has been proposed that mammals sharing habitats with 
waterfowl could become infected with various IAVs [7, 11]. 
Once infected, a cottontail rabbit could contaminate a new 
area, such as a poultry facility, with IAV. For example, if 
a rabbit were to consume water or food contaminated by 
waterfowl at ponds associated with a poultry facility, the ani-
mal could then move the virus within close proximity of the 
facility, dependent, of course, on the biosecurity practices 
at the facility. Ponds created to collect facility effluents, as 
well as for aesthetic purposes, are commonplace near some 
poultry facilities and can attract waterfowl. An additional 

Table 3  Serology of cottontail rabbits (Sylvilagus sp.) experimen-
tally infected with multiple doses of a low-pathogenic avian influenza 
A virus by the nasal and oral routes of infection

a  Dose = approximately  102,  103, or  104  log10  EID50 of IAV delivered 
in BA-1
b  O = oral and N = nasal
c  Shedding: N = did not shed; Y = shedding was detected on at least 
one occasion
d   Pre-experiment and 18 DPI serum samples were analyzed with 
standard AGID tests (see “Materials and methods”)

Rack Dosea Infec-
tion 
 routeb

Viral 
RNA 
 shedc

Serologyd

Pre-experiment 18 DPI

1 102 O N Negative Negative
1 102 O N Negative Negative
1 102 O N Negative Negative
1 102 O N Negative Negative
1 102 O N Negative Negative
1 102 O N Negative Negative
2 102 N Y Negative Weak positive
2 102 N Y Negative Strong positive
2 102 N Y Negative Strong positive
2 102 N Y Negative Positive
2 102 N Y Negative Strong positive
2 102 N Y Negative Positive
3 103 O Y Negative Positive
3 103 O Y Negative Positive
3 103 O Y Negative Strong positive
3 103 O Y Negative Positive
3 103 O N Negative Negative
3 103 O N Negative Negative
4 103 N Y Negative Positive
4 103 N Y Negative Positive
4 103 N Y Negative Positive
4 103 N Y Negative Positive
4 103 N Y Negative Positive
4 103 N Y Negative Positive
5 104 O N Negative Negative
5 104 O Y Negative Strong positive
5 104 O N Negative Weak positive
5 104 O N Negative Negative
5 104 O Y Negative Strong positive
5 104 O Y Negative Strong positive
6 104 N Y Negative Strong positive
6 104 N Y Negative Strong positive
6 104 N Y Negative Strong positive
6 104 N Y Negative Strong positive
6 104 N Y Negative Strong positive
6 104 N Y Negative Positive
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scenario is that a cottontail rabbit could transport a virus 
from a nearby farm to an intermittent water source in close 
proximity to a barn where a farm worker or equipment is 
more likely to become contaminated.

These findings also have implications for live-bird mar-
kets. Considering that cottontail rabbits can be commonly 
found at some live-bird markets [4], the observation of 
their oral susceptibility could have implications for IAVs 
in these types of settings. For example, because rabbits 
have been observed to be susceptible to relatively low 
doses by the oral route, they could become infected by 
consuming virus-laden feed or water spilled from another 
cage housing poultry.

Cottontail rabbits showed a relatively low minimum 
infectious dose by the oral route during the current study. 
This is in contrast to raccoons (Procyon lotor), as free 
access to water pans spiked with  105 and  103.2  EID50/
mL of IAV only resulted in transmission to a fraction of 
raccoons experimentally tested with the higher dose of 
water [16], thereby suggesting that raccoons require a 
higher inoculation dose for successful infection, presum-
ably via the oral route, when compared to cottontail rab-
bits. Nonetheless, raccoons have been commonly shown 
to have antibody responses to IAV in multiple regions in 
their native range [7] as well as in introduced populations 
elsewhere [8], suggesting that a sufficient mechanism for 
their infection exists but may not be well described at this 
time. Similar large-scale serological surveys have not been 
conducted on cottontail rabbits. Overall, the generality of 
successful orally-acquired IAV infections in mammals may 
be an important question to address in future studies.

The present study has shown that cottontail rabbits are 
susceptible to infection with IAV at low doses. The oral 
route of infection, although less efficient in this species, 
is likely to be a more probable natural infection route than 
nasal exposure. Nonetheless, inadvertent nasal exposures 
while utilizing a body of water have been suggested for 
other mammal species [16]. As has been suggested pre-
viously [18, 19], cottontail rabbits should be taken into 
account in the biosecurity plans of poultry facilities.
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