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a b s t r a c t

Conflicts from wildlife–vehicle collisions (WVCs) pose serious challenges for managing and conserving
large ungulates throughout the world. However, underreporting of large proportions of WVCs (i.e.,
two-thirds of WVCs in some cases) creates concern for relying on governmental databases to inform
management strategies of WVCs. Our objective was to test the sensitivity of WVC studies to underreport-
ing using 2 species of large ungulates that experience substantial incidences of collisions but exist in dif-
ferent environmental settings: white-tailed deer (Odocoileus virginianus) in agricultural-dominated
central Illinois and moose (Alces alces) in forest-dominated western Maine, USA. We estimated baseline
relationships between the landscape, traffic, and abundance of wildlife on the probabilities of WVCs using
the total number of reported WVCs. Then, we simulated underreporting by randomly excluding reports of
WVCs and evaluated for relative changes in precision, parameter estimates, and prediction. Point esti-
mates of the relationships between environmental influences and WVCs for both species were reliable
until high rates of underreporting occurred (P70%). When underreporting occurred with spatial bias,
shifts in point estimates were detected only for variables that spatially-corresponded with the rate of
reporting. Prediction estimates for both species were also reliable until high rates of underreporting
occurred (P75%). These findings suggest that predictive models generate reliable estimates about WVCs
with large ungulates unless underreporting is severe; possibly because they occur in non-random pat-
terns (i.e., hotspots) and variability in their environment influences is low. We recommend that concern
about underreporting not impede research with existing databases, such as those in this study, for ana-
lyzing predictive models and developing management strategies for reducing WVCs.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicular collisions with wildlife are one of the most wide-
spread and persistent human–wildlife conflicts that exist through-
out the United States and the world (Conover, 2010; Huijser et al.,
2009). Predictive studies are used to identify high risk locations of
WVCs for many species (Gunson et al., 2011), but these studies are
afflicted by various sources of measurement error. These errors
include: (1) the incidences of WVCs are underreported (e.g.,
Donaldson and Lafon, 2010), thus many WVCs are excluded from
study or misclassified as non-collision locations, (2) the spatial
locations of WVCs are inaccurately reported (e.g., Gunson et al.,
2009), and (3) the attributes of the environment near WVCs (e.g.,
land cover) are misclassified (e.g., Foody, 2002). In this manuscript
we focus on the primary source of error, underreporting. To our

knowledge, no studies have examined the extent at which under-
reporting effects predictive models of WVCs.

The degree of underreporting for WVCs is particularly concern-
ing for natural resource and transportation managers that attempt
to reduce collisions with large ungulates. These collisions repre-
sent the most dangerous WVCs for humans (Huijser et al., 2008),
and fatalities have increased 104% since 1990 (Sullivan, 2011).
Reducing collisions relies on accurate information about the eco-
logical drivers of WVCs to determine cost-effective mitigation
strategies (Forman et al., 2003). However, obtaining reliable infor-
mation is difficult because two-thirds or more of WVCs go unre-
ported in national crash databases each year in the United States
(Huijser et al., 2008). This large amount of underreporting may
reduce the ability to distinguish ecological drivers of WVCs, or shift
the estimates of statistical relationships if underreporting is
unevenly distributed throughout an area of study (i.e., spatially
biased; Groves, 2004; Lavrakas, 2008).

Reporting of WVCs generally consists of 2 data collection
methods: (1) collision reported data, or (2) carcass removal data
(Donaldson and Lafon, 2010; Huijser et al., 2007; Lao et al.,
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2011). Collision reported data are afflicted with underreporting
because some WVCs include insufficient property damage to
warrant reporting; motorist decide not to report; or police, nat-
ural resource, and transportation agency conclude that the acci-
dent does not merit reporting (Huijser et al., 2008). Carcass
removal data are afflicted with underreporting because of long
time intervals between carcass collection activities, injured ani-
mals move away from roads following collisions (e.g., Snow
et al., 2012), carcasses are scavenged or decomposed, carcasses
are out of sight and not detected, or the carcass is not a species of
concern (e.g., Knapp et al., 2005; Olson et al., 2014). Reports of
WVCs are usually greater in number for carcass removal data
(e.g., Donaldson and Lafon, 2010), but the spatial coverage of
carcass removal datasets often vary based on program funding
and prioritized roads for carcass removal (e.g., Knapp et al.,
2005). Also, not every state or county collects carcass removal
data. Therefore, we chose to examine records of WVCs from
governmental databases of collision reported data.

We examined collisions reports for 2 species of large ungulates
that experience frequent WVCs and cause concern for human
safety and property damage. Collisions with white-tailed deer
(Odocoileus virginianus; Zimmermann, 1780) are the most fre-
quently reported WVCs, estimated at >1 million each year in the
United States (Conover et al., 1995). Deer–vehicle collisions gener-
ate the highest amount of monetary damage from WVCs, averaging
$6717 per collision (Huijser et al., 2008). Collisions with moose
(Alces alces; Linnaeus, 1758) generate the highest rate of human
injuries and death. Up to 10% of collisions with moose result in
human injury or fatality (Huijser et al., 2008). Databases of these
WVCs provided the opportunity to independently assess sensitivity
of predictive models to underreporting for 2 large ungulates that
exist in differing environments with differing traffic regimes and
population abundances.

The departments of transportation in Illinois and Maine priori-
tize collecting reports of deer– and moose–vehicle collisions,
respectively. In Illinois, the reports are used to inform deer man-
agement strategies (University of Illinois Extension, 2013) and
the reports in Maine provide information for managing moose–
vehicle collisions (Maine Interagency Work Group of Wildlife/
Motor Vehicle Collisions, 2001). Not all WVCs were accounted for
because of underreporting, therefore we used 100% of the reported
deer– and moose–vehicle collisions in these databases as baselines
to approximate the true relationships between environmental
variables and the probabilities of collisions. Thus, the baselines
were limited in scope to the number of reported collisions.

The central question prompted by underreporting is whether
statistical modeling of environmental conditions associated with
WVCs is affected by lack of precision (i.e., estimates of regression
coefficients with high degrees of uncertainty) or bias (i.e., inaccu-
rate estimate of regression coefficients). Generally, statistical mod-
els are used to compare sites of collisions and non-collisions using
logistic regression models and information theoretic procedures to
evaluate how the landscape, traffic, and abundance of wildlife
influence the probability of WVCs (Gunson et al., 2011). Regression
coefficients and 95% confidence limits (CLs) are used to determine
which variables influence the probability of WVCs (e.g., Danks and
Porter, 2010; Finder et al., 1999; Snow et al., 2011) and infer man-
agement implications for reducing WVCs.

Our objective was to evaluate the sensitivity of statistical mod-
els that use collision data for detecting influences on the probabil-
ity of WVCs from the surrounding landscape, traffic, and
abundance of wildlife under varying degrees of underreporting.
We used all of the reported collisions with deer and moose, respec-
tively, to estimate baseline relationships between the environmen-
tal variables and the probabilities of deer– and moose–vehicle
collisions. Then, we simulated underreporting of collision data by

removing records of WVCs, and examining the potential impacts
for (1) reduction in precision of regression coefficients, (2) shifts
in the regressions coefficients, and (3) reduction in the predictive
power of models as underreporting increased. We sought to iden-
tify thresholds in reporting rates where precision, shifts in coeffi-
cients, and prediction became unstable and generated unreliable
inferences. Our intent was to evaluate whether effects of underre-
porting were generalizable across different environmental condi-
tions associated with different ecoregions, traffic, and population
abundances by comparing WVCs with deer in Illinois and moose
in Maine.

2. Materials and methods

2.1. Study area

Our study area (Fig. 1) included 50 counties in central Illinois
(77,655 km2) and portions of 3 counties in the western Maine
(10,721 km2). The vegetation in central Illinois was characteristic
of the temperate, Prairie Parkland ecosystem province (Bailey,
1980, 1995). The landscape contained agriculture (74%), develop-
ment (9%), intermixed deciduous trees (1.5%), and prairies and
groves (<1%). Row crops are comprised primarily of a corn and soy-
bean matrix (Rosenblatt et al., 1999). Central Illinois contains
71,498 km of public roads, for an overall road density of 0.9 km/
km2. During 2007–2008, density estimates for deer within central
Illinois were estimated at 6.1–25.2 deer/km2 (Anderson et al.,
2013).

Vegetation in western Maine was characteristic of the
Adirondack–New England Mixed Forest–Coniferous Forest–
Alpine Meadow ecosystem province (Bailey, 1980, 1995;
Maine Office of GIS, 2010). Vegetation in western Maine was
composed of deciduous, conifer, or mixed forests (85%),
interspersed shrub wetlands (6%), and development (3.5%).
Western Maine contains 2474 km of public roads, for an over-
all road density of 0.2 km/km2. The densities of moose in and
near this region were estimated to be approximately 0.4–
4.0 moose/km2 during 2010–2011 (Kantar and Cumberland,
2013).

2.2. Study design

For each species, we attempted to reduce nuisance uncertainty
in our predictive models from environmental variation by selecting
study areas with evenly distributed human populations (i.e., no
large cities) and uniform landscapes. For each species, we also
attempted to reduce nuisance uncertainty from small sample sizes.
Substantially more deer–vehicle collisions were reported annually
in Illinois than moose–vehicle collisions in Maine, therefore we
examined 1 year of collisions in Illinois and combined 10 years of
collisions in Maine. Reports of moose–vehicle collisions in western
Maine did not fluctuated widely (i.e., 100–160 collisions/yr.)
during the last 2 decades (Danks and Porter, 2010), therefore
combining years was reasonable.

Underreporting confounds identification of non-collision sites
because (1) either no WVC occurred, or (2) a WVC occurred but
was not reported. We included this uncertainty into the study by
generating a set of independent, systematic sites for each species
that were P1.5 times the number of reported collisions for each
species. We generated 1.5 times more systematic sites to create a
large enough pool to draw new samples of independent sites for
the simulations described below. The systematic sites were gener-
ated along the study roads at intervals of 5000 m (n = 14,306 ran-
dom points) for deer, and 500 m for moose (n = 4877 random
points) to create the desired sample size using ArcGIS (v10.1;
Environmental Systems Research Institute, Inc., Redlands, CA).

N.P. Snow et al. / Biological Conservation 181 (2015) 44–53 45



2.3. Data collection

We used a governmental database of 8060 deer–vehicle colli-
sions in central Illinois that occurred during 2011, provided by
the Illinois Department of Transportation. These data were com-
piled from law enforcement officials where P$1500 in property
damage or human injury occurred, with an estimated location
accuracy of ±400 m (C. Adams, Illinois Department of Transporta-
tion, personal communication). For moose–vehicle collisions, we
used a governmental database of 1067 recorded collisions in wes-
tern Maine during 2000–2010, provided by the Maine Department
of Transportation. These data were compiled from law enforce-
ment officials at accident sites where P$1000 in property damage
or a human injury occurred, with an estimated location accuracy of
±160 m (D. Brunell, Maine Department of Transportation, personal
communication). The locations of both deer– and moose–vehicle
collisions were recorded using distance measurements from refer-
ence points along public roads (e.g., intersections or bridges).

We used the 2006 National Land Cover Database with 84% clas-
sification accuracy (Wickham et al., 2013) to represent land cover
and land use throughout central Illinois (Fry et al., 2011). For wes-
tern Maine, we used the National Gap Analysis Program (GAP) Land
Cover Data-Version 2 (U.S. Department of the Interior|U.S.
Geological Survey, 2012). The classification accuracy for GAP data
is currently being evaluated. Both land-cover and land-use
databases were based on data collected with Landsat 7 Thematic
Mapper with 30 m resolution. We reclassified the land-cover and
land-use databases (see reclassification scheme in Appendix 1) to
7 classes for deer (Anderson et al., 1976; Williams et al., 2012)
and 11 classes for moose (Allen et al., 1987; Danks and Porter,

2010; Koitzsch, 2002) to be consistent with the reported habitat
requirements for each species (Table 1).

Previous studies, based on collision reports that were collected
to the nearest mile marker, identified that 800 m buffers around
observations were useful for explaining influences on deer–vehicle
collisions (Finder et al., 1999; Ng et al., 2008). To maintain consis-
tency with these studies, we used 800 m buffers to calculate compo-
sition and configuration metrics of the landscapes using FRAGSTATS
(v4.1, University of Massachusetts, Amherst) for deer in Illinois. We
calculated 3 composition metrics using the proportions of land-
cover types, including the proportion of agriculture (AGRICUL-
TURE), proportion of forest (FOREST), and proportion of water
(WATER). We calculated 2 configuration metrics, contrast-weighted
edge density (EDGE) and a contagion index (CONTAGION). These

Fig. 1. Study area locations of reported (A) deer–vehicle collisions in central Illinois, USA during 2011, and (B) moose–vehicle collisions in western Maine, USA during 2000–
2011.

Table 1
Reclassified land-cover and land-use types for 2 study species: (A) white-tailed deer
in central Illinois, USA (2010), and (B) moose in western Maine, USA (2000–2010).

(A) Central Illinois (B) Western Maine

Class % Class %

Agriculture 74.5 Deciduous-mixed forest 57.4
Forest 15.0 Coniferous forest 27.6
Developed 8.6 Shrub wetland 5.2
Water 1.3 Open water 3.9
Wetlands 0.3 Cutover Forest 2.2
Rangeland 0.2 Developed 1.4
Barren 0.03 Nonwoody wetland 1.0

Agriculture 0.9
Forested wetland 0.3
Other 0.2
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metrics represented measures of edge and fragmentation in the
agro-forested landscape, because deer have higher densities in
landscapes with these characteristics (Campa et al., 2011; Lovely
et al., 2013). Contrast-weighted edge density was a measure of the
length of edges between agriculture and forest land-cover classes,
and between rangeland and forest classes within each county
(km/km2). Contagion served as an index of the aggregation and
interspersion among all land-cover and land-use patches. A conta-
gion value of 0 represented a highly fragmented and intermixed
landscape, whereas a value of 100 represented a landscape com-
prised of a single patch.

A previous study, based on the same database of moose–vehicle
collisions used here, identified that 2500 and 5000 m buffers
around observations were most useful for explaining influences
on moose–vehicle collisions (Danks and Porter, 2010). To be consis-
tent with these findings, we used the same buffer sizes to calculate
metrics of the landscape in Maine. We calculated 3 composition
metrics that influenced landscape-level habitat suitability for
moose (Allen et al., 1987; Dussault et al., 2006; Koitzsch, 2002).
These included proportion of conifer forest (CONIFER), proportion
of cutover forest (CUTOVER FOREST), and the Simpson’s diversity
index (SIDI) of land cover and land use within the 2500 m buffer.
The SIDI was a measure of land-cover and land-use richness on a
0–1 scale, where 1 represents the richest landscape. We calculated
1 configuration metric to represent a measure of interspersion of
land-cover and land-use patches, which is also important for habi-
tat suitability for moose (Dussault et al., 2006). We used an inter-
spersion–juxtaposition index (IJI) to examine the complexity of
the landscape within the 5000 m buffer on a 0–100 scale, where a
value of 100 represents high interspersion of patches.

For moose, we used some other measures of the landscape that
were associated with moose–vehicle collisions (Danks and Porter,
2010). We used ArcGIS to calculate the nearest distances to 3 land-
scape features: distance to the nearest shrub-wetland land-cover
patch (SHB_WETLAND), distance to the nearest stream (STREAM),
and distance to the nearest developed area (DEVELOPED). We used
shapefiles depicting streams and human development based on
1:24,000 quadrangles (Maine Office of GIS, 2010). We also calcu-
lated the degree slope (SLOPE) at each site using a 10-m digital ele-
vation map from the United States Geological Survey, National
Elevation Dataset (Gesch et al., 2002; Gesch, 2007).

We examined characteristics of the volume of traffic to examine
for influences on WVCs. We used estimates of annual average daily
traffic (AADT) provided by Illinois and Maine Departments of
Transportation for deer and moose, respectively, at each observa-
tion. The estimates of AADT were used to represent the volume
of traffic (TRAFFIC) in our models at each WVC location. For deer,
we used an additional measure of the intensity of traffic: estimates
of the numbers of registered vehicles per county (REGIS-
TERED_VEH) provided by the Illinois Secretary of State. We used
speed limits (SPEED) at each observation point for moose. We esti-
mated the relative abundance of deer using estimates of antlered
deer harvested by county provided by the Illinois Department of
Natural Resources (ABUNDANCE). The numbers of harvested
moose were not identified as good predictors of where moose–
vehicle collisions occurred in western Maine (Danks and Porter,
2010), thus we did not include this variable in our analyses.

2.4. Data analysis

Current studies of WVCs often use model selection procedures to
identify the best models for predicting where WVCs are most likely
to occur (e.g., Danks and Porter, 2010; Ng et al., 2008; Snow et al.,
2011). To imitate these studies, and to evaluate how underreport-
ing affected models with differing predictive capabilities, we exam-
ined 2 predictive models for the probabilities of WVCs for each

species based on surrounding environmental conditions. One
model was considered to have good predictive capabilities and
the other had poor capabilities. Our criteria for the predictive capa-
bility was based on area under the receiver operating characteristic
function (AUC) where good models had a value of P0.7 and poor
models had a value of <0.7 (Hosmer et al., 2013). We assessed these
criteria for models conducted using 100% of the reported WVCs for
each species. The models we evaluated were:

Deer model ðgoodÞ : p ¼ TRAFFICþ ABUNDANCEþ EDGE
þ CONTAGIONþ AGRICULTUREþ FOREST;

Deer model ðpoorÞ : p ¼ REGISTERED VEHþ ABUNDANCE
þWATER;

Moose model ðgoodÞ : p¼ TRAFFICþDEVELOPED
þSHB WETLANDþ IJIþCUTOVER FOREST
þCONIFERþSPEED;

Moose model ðpoorÞ : p ¼ STREAMþ SIDIþ SLOPE;

where p was probability of a site being a WVC.
We conducted an intercorrelation analysis of the data and

excluded the less biologically interpretable explanatory variable(s)
from any correlated pair (i.e., |r| P 0.70; Program R v2.15.1; R
Development Core Team). We scaled and centered the remaining
variables (i.e., subtracted the mean and divided by the standard
deviation) to allow standardized comparisons among regression
coefficients. We examined for influences on locations of deer–
and moose–vehicle collisions by comparing attributes of reported
collisions to the systematic sites where WVCs were not reported
using a maximum-likelihood approach with generalized linear
models following binomial error terms and logit-link functions in
Program R. We examined the logistic regression coefficients (b̂)
and 95% confidence limits (CLs) to ascertain the strength and
directionality of the potential influences from each environmental
variable on the probability of a location reportedly being a deer– or
moose–vehicle collision.

2.5. Evaluating sensitivity in precision

First, we analyzed the above models using 100% of the reported
WVCs for each species to identify the relative baselines of esti-
mated relationships between the predictor variables and the prob-
abilities of deer– and moose–vehicle collisions. Then, we evaluated
the effects of underreporting by randomly excluding reports of
deer– and moose–vehicle collisions, and examining for deviation
from those relationships. We randomly excluded points by sam-
pling collision locations, without replacement, for deer– and
moose–vehicle collisions using the sample function in Program R.
We sampled collisions in increments of 5% to represent levels of
0–95% underreporting (n = 20 levels of underreporting). At each
level, we resampled and evaluated 10,000 Monte Carlo simulations
for each of the 2 models for deer– and moose–vehicle collisions.

We randomly sampled from the systematic sites to represent
locations where WVCs were not reported (i.e., non-collision sites)
using a 2-step process for each simulation. First, we excluded
any of the systematic sites that were within 500 m from the sub-
sampled locations of WVCs being examined in the simulation to
avoid confounding sites of reported WVCs with sites where WVCs
were not reported. We used distances of P500 m to ensure these
sites were outside of the estimated accuracy distances of the
reported sites of WVCs. Then we sampled the remaining system-
atic sites in numbers that were equivalent to the subsampled
WVCs being examined in the simulation. This way we consistently
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compared equivalent numbers of subsampled WVCs to subsam-
pled systematic sites where WVCs were not reported, and ensured
that these sites never overlapped each other.

We plotted the mean regression coefficients and 95% CLs from
the 10,000 simulations to evaluate their sensitivity to different lev-
els of underreporting. We evaluated the precision of the regression
coefficients by examining the spread of the 95% CLs and examining
for any changes in statistical significance (i.e., lost or gained signif-
icance) as underreporting increased. We considered reductions in
precision by factors of 2 (i.e., doubling of the spread of 95% CLs)
from the baseline estimates as undesirable for making statistical
inferences.

2.6. Evaluating sensitivity to biased reporting

Reporting of WVCs may not be consistent among geographic
jurisdictions (Knapp et al., 2005). Therefore, we conducted similar
analyses as described above, but we included a spatial bias in
reporting for deer– and moose–vehicle collisions based on jurisdic-
tions of county boundaries. We simulated reporting rates to be
biased low throughout 10 of the 50 counties in central Illinois,
and 1 of the 3 counties in western Maine (Fig. 1), representing
approximately 20% of each study area. We selected these counties
because they had the lowest densities of roads and thereby repre-
sented the least urban counties in each study area. Urbanization
has been identified as an important, county-level, predictor for
the incidence of WVCs with ungulates (Farrell and Tappe, 2007;
Finder et al., 1999; Iverson and Iverson, 1999). For these counties,
we sampled deer– and moose–vehicle collisions to represent levels
of 0–100% underreporting in 5% increments. The remaining coun-
ties were held constant at 100% reporting in order to isolate any
effects from spatial bias. We randomly sampled the systematic
sites where WVCs were not reported using the same methodology
as described above. We conducted 10,000 Monte Carlo simulations
of the logistic regression models for each level of underreporting.
We plotted the mean parameter estimates and 95% CLs to evaluate
their sensitivity to underreporting and determine whether report-
ing bias shifted the statistical interpretation for each explanatory
variable.

2.7. Evaluating sensitivity in model prediction

For each simulation used to evaluate precision, we randomly
withheld 10% of the subsampled deer– and moose–vehicle colli-
sions and 10% of the subsampled systematic sites to predict and val-
idate the models. We input these data into the logistic regression
models and examined how well the models correctly classified
the withheld data (i.e., collisions or non-collisions). We used the
pROC package in Program R (Robin et al., 2011) to calculate the
AUC values and their 95% CLs using for determining the predictive
capabilities of the models. We plotted the mean AUC values and
95% CLs from the 10,000 Monte Carlo simulations for each analysis.

For each simulation used to evaluate bias, we randomly with-
held 2 sets of data to compare how well the biased models pre-
dicted: (1) new-biased data, and (2) new-unbiased data. The first
set of withheld data included 10% of the subsampled deer– and
moose–vehicle collisions that were spatially biased, and an equiv-
alent number of subsampled systematic sites. The second set
included randomly sampled deer– and moose–vehicle collisions
from the full datasets of reported WVCs (i.e., not spatially biased),
and an equivalent number of subsampled systematic sites. Both
the biased and unbiased sets of data had equal sample sizes so
we could directly compare at each level of underreporting. We
plotted the mean AUC values and 95% CLs from the 10,000 Monte
Carlo simulations for both sets of data.

3. Results

Overall, we conducted 1,640,000 Monte Carlo simulations of
logistic regression models to evaluate the sensitivity of precision,
shifts in regression coefficients, and prediction of statistical models
to underreporting of deer– and moose–vehicle collisions. When
underreporting occurred without spatial bias (i.e., random under-
reporting) for deer–vehicle collisions, we found that the precision
of regression coefficients remained relatively stable until P70%
of collisions were unreported (Fig. 2). Above this level of underre-
porting, the amount of uncertainty doubled. For 2 of 9 variables
(EDGE and REGISTERTED_VEH), the 95% CLs began overlapping
zero indicating a loss of statistical significance when P90% of
deer–vehicle collisions were unreported. The point estimates of
the coefficients remained stable up to 95% of deer–vehicle
collisions being unreported.

We found similar results for moose–vehicle collisions when
underreporting occurred without spatial bias. The precision of
regression coefficients were stable until P70% of collisions were
unreported (Appendix 2). For 1 of 10 variables (SHB_WETLAND),
the 95% CLs began overlapping zero when P60% of moose–vehicle
collisions were unreported. Five other variables (CONIFER, IJI,
DEVELOPED, STREAM, and SIDI) lost statistical significance after
P85% of moose–vehicle collisions were unreported. The point esti-
mates of the coefficients remained stable with up to 95% of moose–
vehicle collisions being unreported.

The 10 least urban counties in central Illinois contained 1458
reports of deer–vehicle collisions, representing 18% of the total
records. When underreporting was spatially biased, we found the
point estimates of regression coefficients for 1 variable in both
models (ABUNDANCE) shifted starting at 5% of deer–vehicle colli-
sions being unreported (Fig. 3). This shift became stronger as fewer
collisions were reported. The average values of ABUNDANCE were
substantially higher in the least urban counties compared to the
other counties (Table 2), suggesting that the abundance of deer
was spatially correlated with the biased rates of reporting. Point
estimates for 5 other variables also shifted slightly as fewer colli-
sions were reported (AGRICULTURE, FOREST, EDGE, CONTAGION,
REGISTERTED_VEH), although these shifts did not change statisti-
cal inferences. The average values for these 5 variables were also
unevenly distributed between the least urban and other counties
(Table 2).

We found similar results for moose–vehicle collisions when
underreporting was spatially biased. The least urban county in
western Maine contained 229 reports of moose–vehicle collisions,
representing 21% of the total records. Point estimates for 1 of 10
variables (SLOPE) shifted as fewer collisions were reported (Appen-
dix 3) and changed statistical significance. The average degree of
slope throughout the least urban county was lower than the other
counties (Table 2), indicating a spatial correlation with the biased
reporting. Statistical inferences for the other variables remained
stable.

The predictive capabilities of both good and poor models for
deer– and moose–vehicle collisions were similarly affected by
underreporting of collisions. When underreporting occurred ran-
domly, the estimated AUC values were not affected by underreport-
ing (Appendix 4). The AUC values remained constant for predicting
deer–vehicle collisions (i.e.,�0.80 for the good model and�0.60 for
the poor model), and for predicting moose–vehicle collisions (i.e.,
�0.87 for the good model and �0.67 for the poor model). However,
imprecision around the AUC values doubled after approximately
P75% of collisions were unreported for deer and moose. When
underreporting occurred with spatial bias, the predictive capabili-
ties of the biased models were similar between the new-biased
and new-unbiased data for deer– and moose–vehicle collisions
(Fig. 4). The only situation in which we observed prediction was
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substantially affected by spatial bias in underreporting occurred at
100% underreporting for the poor model of deer–vehicle collisions
in the least urban counties. Here, the ability to predict the new-
unbiased data was reduced, indicating that the biased model was
statistically significantly affected by underreporting.

4. Discussion

We sought to determine the extent that underreporting of
WVCs with large ungulates affects statistical analyses for investi-
gating the relationships between environmental variables and
the probabilities of WVCs. The true relationships between environ-
mental variables and the probabilities of WVCs are unknown in
this study because not all WVCs were reported. Therefore, our find-
ings are based on changes in statistical inferences from baseline
relationships generated using the total number of WVCs that were
reported. We expect these baseline relationships represented good
approximations of the true relationships, given the stability of
parameter estimates throughout most levels of underreporting.

We identified similar effects from underreporting for deer–
vehicle collisions in central Illinois and moose–vehicle collisions
in western Maine. These similarities suggest that the effects of
underreporting are consistent across studies of WVCs. This consis-
tency across species and landscapes can likely be explained by the
tendency of WVCs with ungulates to occur in non-random pat-
terns, or hotspots (e.g., Danks and Porter, 2010; Huijser et al.,
2008; Ng et al., 2008). The existence of hotspots indicates there
is little variation in how environmental conditions influence where
WVCs occur. For any species with less aggregated patterns of
WVCs, these results may not apply.

Where underreporting occurs without spatial bias (i.e., random
underreporting), our findings indicate that the predictive models
for locations of WVCs were mostly robust to underreporting. Esti-
mates of precision for the regression coefficients were stable with a
wide range (0–70%) of underreporting. With more underreporting,
the decrease in sample size caused reduced statistical power
(Krebs, 1999) and difficulty in detecting some relationships
between the environmental variables and the probability of WVCs.
Reporting rates for deer–vehicle collisions have been estimated at
42–50% (Decker et al., 1990; Marcoux and Riley, 2010; Romin and
Bissonette, 1996), below the 70% underreporting threshold we
identified. Reporting rates for moose are unknown, but we expect
underreporting to also be below 70% because collisions with large
animals often result in high property damage or human injury.

Where underreporting occurs with spatial bias, our findings
indicate that models of WVCs are less robust to underreporting.
We detected shifts in 2 of 9 estimates of regression coefficients
for deer and 1 of 10 estimates for moose, but only for variables that
spatially-corresponded with the biased rate of reporting. For exam-
ple, the average ABUNDANCE was substantially higher (1043) in
the 10 counties we selected to have lower reporting than in the
other 40 counties (633). This discrepancy changed the statistical
influence of ABUNDANCE because fewer collisions were reported
in regions that had higher abundances of deer. In this case, the
uneven rates of reporting combined with uneven distribution of
environmental variables results in shifted statistical inferences,
but the shifts were less noticeable at higher rates of reporting.
Therefore, higher rates of reporting lessened shifts in regression
coefficients, but did not eliminate it. These types of unreliable
inferences are produced in survey studies because some groups

Fig. 2. Average parameter estimates (black circles) and 95% confidence intervals (black lines) from 10,000 Monte Carlo simulations of logistic regression analyses at different
levels of underreporting for deer–vehicle collisions in central Illinois, USA, during 2011. We examined for changes in precision and shifts in estimates as fewer collisions were
reported for models with good and poor predictive capabilities.
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or locations may be sampled less and incomplete information is
used in data analyses (Groves, 2004; Lavrakas, 2008). Our analysis
indicated that where the distribution of explanatory variables cor-
respond with biased reporting rates, the most risk of shifting
regression coefficients and inaccurately characterizing the envi-
ronmental influences of collisions exists.

The performances of the good and poor predictive models were
similarly affected by underreporting. When underreporting was
not spatially biased, the precision of AUC values remained stable
until P75% of WVCs were unreported. When underreporting was

spatially biased, the predictive capabilities of the models remained
mostly stable, indicating a high degree of robustness to spatially
biased underreporting. The one exception in predictive perfor-
mance suggests that the robustness of models is related to the rel-
ative importance of each variable. Relative to other variables in the
models, the importance was low for ABUNDANCE in the good
model for deer–vehicle collisions but high in the poor model. In
both cases, the strength and directionality of effects for ABUN-
DANCE were increasingly shifted as fewer deer–vehicle collisions
were reported. However when underreporting was high, the good

Fig. 3. Average parameter estimates (black circles) and 95% confidence intervals (black lines) from 10,000 Monte Carlo simulations of logistic regression analyses including
spatial biases in reporting for different levels of underreporting for deer–vehicle collisions in the most rural counties in central Illinois, USA, during 2011. We examined for
changes in precision and shifts in estimates as fewer collisions were reported for models with good and poor predictive capabilities.

Table 2
Averaged values for environmental variables in counties used to examine influences on the probabilities of deer–vehicle collisions in central Illinois (2010) and moose–vehicle
collisions in western Maine (2000–2010). Biased counties represented counties in which the rates of reporting for collisions were simulated to be lower than unbiased counties.

Central Illinois Western Maine

Environmental variable (deer) Biased counties Unbiased counties Environmental variable (moose) Biased counties Unbiased counties

TRAFFIC 956 3301 TRAFFIC 1357 1684
CONTAGION 65.5 74.0 DEVELOPED (m) 3170 2493
EDGE (km/km2) 34.2 18.1 SHB_WETLAND (m) 289 408
ABUNDANCE* 1043 633 STREAM (m) 444 412
AGRICULTURE 0.60 0.77 IJI 50.0 54.3
FOREST 0.29 0.13 CONIFER 0.27 0.28
WATER 0.03 0.01 CUTOVER FOREST 0.02 0.02
REGISTERED_VEH 16,810 59,291 SIDI 0.59 0.58

SLOPE (�)* 5.9 8.2
SPEED (km/h) 75.8 72.9

TRAFFIC = annual average daily traffic, CONTAGION = contagion index of land-cover and land-use types, EDGE = contrast-weighted edge density among land-cover and land-
use types, ABUNDANCE = index for abundance of deer from estimated harvest of antlered deer, AGRICULTURE = proportion of agriculture, FOREST = proportion of forest,
WATER = Proportion of water, REGISTERTED_VEH = number of registered vehicles, DEVELOPED = distance to nearest developed area, SHB_WETLAND = distance to nearest
shrub wetland, STREAM = distance to nearest stream, IJI = interspersion/juxtaposition index of land-cover and land-use types, CONIFER = proportion of conifer forest, CUT-
OVER FOREST = proportion of cutover (harvested) forest, SIDI = Simpson’s index of diversity for land-cover and land-use types, SLOPE = degree of slope, SPEED = posted speed
limit.

* Represents variables with shifting regression coefficients from logistic regression models as fewer collisions were reported.
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model was capable of predicting new-unbiased data because the
model indicated that ABUNDANCE has little for no impact for pre-
dicting the probability of WVCs. The poor model was less capable
because the contribution of ABUNDANCE was more important in
this model.

Findings from this study can be applied globally for large ungu-
lates, particularly for deer and moose. For instance, Central Euro-
pean roe deer (Capreolus capreolus) experience frequent WVCs
(e.g., Hothorn et al., 2012). With low to moderate levels of under-
reporting, planned road protection and hunting quotas can be
relied on for reducing collisions. Similarly, models to predict risk
of moose–vehicle collisions in Sweden (e.g., Seiler, 2005) should
reliably inform mitigation strategies. In addition to large ungulates,
our findings may provide new insights for WVCs with smaller ani-
mals, or for WVCs that are rare. Snow et al. (2012) found that only
50% of mortalities from vehicles for island foxes (Urocyon littoralis)
would have been detected without radio-telemetry, even though
active searches for road-killed foxes were being conducted.
Collisions with the foxes were not strongly associated with
environmental variables (Snow et al., 2011), perhaps because of
increased statistical uncertainty from having less frequent colli-
sions and high underreporting. In such cases, high underreporting
decreases statistical power and lessens the ability to distinguish
relationships between the environment and WVCs.

Our findings extend to other applications of WVC data. For
instance, Baker et al. (2004) suggested that road-kills of red foxes
(Vulpes vulpes) in the United Kingdom could be used to monitor
population changes for foxes. Similarly, Gehrt (2002) examined
for population changes of raccoons (Procyon lotor) using road-kill
surveys in Illinois, USA. Our findings indicate that underreporting
is an important consideration for such studies, because population
indices may be unreliable if rates of reporting are spatially biased.
Ensuring consistent reporting across space and time will generate
the most reliable estimates.

We recognize that the biological inferences from the baseline
relationships used in this study are afflicted by underreporting.
These relationships were produced using 2 of the most compre-
hensive datasets of reported collisions available, to our knowledge.

We also recognize that the datasets of reported collisions used in
this study are based on WVCs that occurred frequently, and there-
fore provide the benefit of examining large sample sizes. Underre-
porting for studies of rare events will likely generate more
uncertain inferences because of reduced sample sizes (Krebs,
1999), and may need to be analyzed with more caution.

5. Conclusions

In conclusion, we address the concerns about underreporting of
WVCs in governmental databases, and recommend that some cau-
tion is warranted. However, our findings suggest that such caution
should not impede the use of these databases for developing statis-
tically-based management strategies for reducing WVCs. Predic-
tive models with reliable statistical estimates and accuracy can
be generated by these databases, even with high degrees of under-
reporting. We offer assurance to researchers, and natural resource
and transportation managers for fitting statistical models to data-
sets similar to those examined in this study.

Our simulations with databases of WVCs for deer in Illinois and
moose in Maine illustrate that the 3 primary concerns about
underreporting are overemphasized. First, we find that consistent
statistical inferences about the relationships between WVCs and
landscape, traffic, and abundance of wildlife can be drawn under
wide ranges of underreporting (i.e., 0–70%). The baseline relation-
ships for those environmental variables appear to represent good
approximations of the true relationships, given the stability in
parameter estimates with various levels of underreporting. Second,
when underreporting is spatially biased (i.e., not random), shifts in
parameter estimates only occur for explanatory variables that spa-
tially-correspond with the rates of reporting. For instance, for
counties have the lowest rate of reporting but the highest abun-
dance of deer, the statistical influence of abundance on the proba-
bility of deer–vehicle collisions shift. The parameter estimates for
all other explanatory variables are not affected by the spatial bias,
suggesting a high degree of robustness. Third, we find that predic-
tive capabilities of explanatory models are stable across most

Fig. 4. Average receiver operating characteristic function (AUC) and 95% confidence intervals for logistic regression analyses including spatial biases in reporting for the least
urban counties for deer–vehicle collisions in central Illinois, USA, during 2011 and moose–vehicle collisions in western Maine, USA during 2000–2011. The AUC values were
calculated from 10,000 Monte Carlo simulations at different levels of underreporting.
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levels of underreporting, until very high levels of underreporting
(P75%) occur.

Underreporting is likely to occur randomly if reports are gener-
ated based on non-space-related criteria. For instance, the criteria
for collision reports of deer– and moose–vehicle collisions often
are based on the amounts of property damage or injury, not by
location. Underreporting may also be random if data are collected
using well-planned collection procedures (e.g., specifically-
designed carcass collection). In these cases, predictive models
can be reliably developed, even if the rates of underreporting are
high. However, we do not recommend that fewer reports be
collected as a consequence of this assurance, because predictive
models will have higher accuracy with higher rates of reporting.

In situations where the consistency of reporting is unknown, we
recommend that researchers examine the spatial patterns of
explanatory variables for correspondence with the spatial pattern
of WVCs. If the patterns are similar, spatial bias may exist in the
data and cause shifts in regression coefficients. Increasing the rate
of reporting will reduce shifts in parameter estimates, but will not
overcome it. Where spatial bias is shown to occur, it will be impor-
tant to determine the causes.

For WVCs that occur less frequently or that are less spatially
aggregated than deer– or moose–vehicle collisions, higher rates
of reporting may be necessary to produce reliable statistical infer-
ences from predictive models. Consistency in the type of reports
(e.g., collision or carcass), spatial resolution, and sample sizes
remain important considerations for studies of WVCs. We hypoth-
esize that our findings can be applied to other studies that use inci-
dence reports to assess risk (e.g., survey studies).
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