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Dietary magnesium and copper affect survival time and
neuroinflammation in chronic wasting disease
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ABSTRACT. Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer,
elk and moose. The disease is an ongoing and expanding problem in both wild and captive North
American cervid populations and is difficult to control in part due to the extreme environmental
persistence of prions, which can transmit disease years after initial contamination. The role of
exogenous factors in CWD transmission and progression is largely unexplored. In an effort to
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understand the influence of environmental and dietary constituents on CWD, we collected and
analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as
from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive
sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher
magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized
transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu
ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after
intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene
expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard
rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through

modulating inflammation in the brain.

KEYWORDS. Cations,
manganese, metals, prion disease

INTRODUCTION

Chronic wasting disease (CWD), the only
known wildlife prion disease, is a progressive
fatal neurodegenerative disease that is transmitted
in the absence of nucleic acids by infectious pro-
teinacious particles that resists protease digestion
(PrPR®).! Efficient transmission occurs directly
from animal-to-animal,”> and indirectly via the
environment.’ Brain pathology includes PrP“™P
plaques, neuroinflammation, and spongiform
degeneration *. Since its recognition in the 1960s,
CWD has become a persistent problem in both
wild and captive populations of North American
cervids (deer, elk and moose), has spread to 22
states in the USA and 2 Canadian provinces and
shows no sign of stopping. Once established,
prevalence rates can be as high as 50% in deer,
leading to an overall decrease in cervid popula-
tions.™® The presence of CWD has been cata-
strophic to the captive cervid industry, often
requiring the culling of entire herds. The disease
is difficult to control in part because prions are
able to remain infectious in the environment and
transmit disease years after contamination, pro-
viding an ongoing reservoir for indirect CWD
transmission.”'® There are currently no treat-
ments or preventatives available for CWD or any
other prion disease.

Multiple studies have suggested that essential
micronutrients, such as copper (Cu*" and man-
ganese (Mn”"), may have an influence on the
conversion of PrP< to PrPR®,'""'* with Cu®* che-
lation resulting in delayed prion disease onset.'

chronic wasting disease,

copper, environment, iron, magnesium,

Copper is a normal ligand for PrP<, and Mn>*
has been shown to actively compete for Cu*"
binding sites on PrP€.'¢"?

To understand the role of environmental and
dietary constituents on CWD infection and patho-
genesis, we collected and analyzed water and soil
samples from CWD-positive and negative captive
cervid facilities, as well as from CWD-enzootic
wild areas. Our analysis revealed that water from
CWD-negative sites had significantly higher
magnesium [(Mg)/Cu, Mg/Mn, and Mg/iron
(Fe)] ratios than water from CWD-positive sites,
with the Mg/Cu ratio having the most significant
relevance. The levels Mg in the water were
higher on negative sites and Cu, Mn, and Fe were
all lower on negative sites, although not statisti-
cally significant. To further assess the roles of
Mg and Cu in CWD disease progression, a bioas-
say was conducted in which transgenic mice
expressing elk PrP (Tg 12) were fed a custom
diet devoid of Mg and Cu in combination with
drinking water containing a spectrum of Mg/Cu
ratios. Because the environmental Mg/Cu ratio
had the highest significance, it was selected to be
the focus of this study. Our results demonstrate
that after intracerebral CWD inoculation, (1) Tg
12 mice on diets with the highest Mg/Cu ratio
and lowest Cu concentration had significantly
longer survival times those on lower Mg/Cu
rations and higher levels of Cu; (2) Tg 12 mice
on a high Cu diet produced significantly higher
levels of several inflammatory cytokines when
compared to mice on a low Cu diet; (3) Tg 12
mice on a diet with an optimal Mg/Cu ratio
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showed a lower expression of inflammatory
genes when compared with mice on a standard
rodent diet. Our findings are consistent with the
hypothesis that the observed increase in survival
time in mice on diets with high Mg/Cu ratios is
due to a decrease in neuroinflammation, a hall-
mark of prion diseases,>! since Mg has been
shown to decrease neuroinﬂammation,22 while
copper does the opposite.”>**

RESULTS

Environmental Samples - ICP Soil
Analysis

Soil levels of copper (Cu), manganese (Mn),
magnesium (Mg), and Iron (Fe) were compared
between CWD-positive and CWD-negative
locations. No significant difference between
sites was found in either the levels of each indi-
vidual cation (Fig. 1) or the ratios of Mg/Cu,
Mg/Mn, and Mg/Fe (Fig. 2).

T. A. Nichols et al.

Soil Composition Analysis

Analysis was done to determine if soil com-
position differed between sites, and no signifi-
cant difference was detected in the relative
amount of organic matter, quartz, silt, and clay
(Table 1).

Environmental Samples - ICP Water
Analysis

ICP-MS analysis of water from the study
locations revealed no statistically significant
differences in individual Mg, Cu, Mn and Fe
concentrations. However, with the exception of
Mg, the metal cation concentrations tended to
be higher on CWD-positive sites (Fig. 3).
When Mg/Cu, Mg/Mn and Mg/Fe ratios were
calculated, CWD-negatives sites all had signifi-
cantly higher ratios than CWD-positive sites
(Fig. 4).

FIGURE 1. ICP-MS soil concentrations (ppb- parts per billion) of Mg (A), Cu (B), Fe (C) and Mn (D)
from captive white-tailed deer and elk locations (n =16). No significant difference in cation concen-
tration was detected between CWD-positive and CWD-negative locations (Two-tailed Student’s T-
test, « = 0.05) Mg (p = 0.719), Cu (p = 0.580), Fe (p = 0.335) and Mn (p = 0.732).
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FIGURE 2. Soil Mg/cation ratio comparisons between CWD-positive and CWD-negative locations
Mg/Cu (A), Mg/Mn (B), Mg/Fe (C) from captive white-tailed deer and elk locations. No significant dif-
ference was detected between any of the groups (Two-tailed Student’s T-test, « = 0.05). Mg/Cu
(p = 0.803), Mg/Mn (p = 0.936), Mg/Fe (p = 0.304).
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Transgenic Mouse Bioassay -
Intracerebral Inoculation

Survival

TG 12 mice IC inoculated with CWD were
euthanized when they became symptomatic. Dis-
ease status was confirmed by Western blot

TABLE 1. Soil composition (by percent) at
CWD-positive and negative sites. There was no
statistically significant difference in composition

between positive and negative sites (2-tailed
Student’s T-test, « = 0.05).

Soil Mean % at Mean% at Statistical

Constituent  CWD- Sites  CWD+ Sites  Significance

Organic 8.28 6.57 p=0.562
Matter

Quartz 54.8 52.8 p=0.674

Silt 13.6 12.8 p=0.750

Clay 31.6 34.4 p=0.375

CWD +
Site

analysis (data not shown). Mice fed the custom
diet with the highest Mg/Cu drinking water ratio
and the lowest concentration of Cu in drinking
water, (Group D), lived significantly longer (aver-
age 136 days) than those on custom diets with
more Cu (average 125-128 days) (Table 2).

To examine the role of the individual cations
and Mg/Cu ratio in increased survival time, sur-
vival times were plotted against cation concen-
tration or Mg/Cu ratio. Increased survival time
was associated with increased Mg concentra-
tion and Mg/Cu ratio, and with decreased Cu
concentration (Fig. 5). Although difficult to
compare, the Mg/Cu ratio had the greatest slope
(0.02600) as compared to Mg alone (0.00007)
and Cu (—0.00023).

Mouse Brain ICP-MS

Mass spectrometry analysis showed that
the concentration of Cu in the brains of
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FIGURE 3. ICP-MS water concentrations (ppb = parts per billion) of Mg (A), Cu (B), Mn (C) and Fe
(D) from captive white-tailed deer and elk locations. No significant difference in cation concentration
was detected between CWD-positive and CWD-negative locations (Two-tailed Student’'s T-test,
a = 0.05). Mg (p=0.109) Cu (p = 0.227), Mn (p = 0.323), and Fe (p = 0.271).
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CWD-negative and CWD- positive mice from
the same treatment group were not signifi-
cantly different, demonstrating that CWD sta-
tus did not affect the amount of detectable Cu
in the brain (Fig. 6-A). In contrast, signifi-
cantly higher Mg levels were observed in
CWD- positive mice from group A (Fig. 6-
B). The Mg/Cu ratio between CWD-negative
and CWD-positive mice was significantly dif-
ferent only in group A, with the CWD-posi-
tive mice having a higher ratio (Fig. 6-C).
The concentrations of Mg, Cu, and the ratio
of Mg/Cu in the brains at terminal stage
CWD-positive mice appeared to remain con-
stant, regardless of survival time (Fig. 7).

RT-PCR

Mice fed the custom diet with the highest
drinking water Cu/Mg ratio, group D, showed
differential gene expression (>2 -fold

2

[Cu] (ppb)

cwWD CWD +
Site

20004

[Fe] (ppb)

Fe CWD Fe CWD +

Sie

change) from mice fed the standard 5001 diet
and water, group E. Both CWD-positive time
points (60 DPI and terminal disease) from
group D, as well as from CWD-negative ani-
mals, were compared to the CWD-negative
and positive time points from group E. Com-
parison of negative controls between each
group did not show much differentiation in
gene expression, with group D having 2 genes
increased, and 3 decreased, as compared to
group E (Fig. 8A, Table 3a). Comparison
between group E negative controls and group
E, 60 DPI CWD-inoculated mice showed
alterations in 14 genes, with 4 up-regulated,
and 10 down-regulated (Fig. 8B, Table 3b) as
compared to negative controls. The group E
terminal mice had 9 genes upregulated and 6
downregulated, as compared to the group E
negative  controls  (Fig. 8C, Table 3c).
Although the numbers of altered genes is sim-
ilar, there were only 4 genes in common
between the 2 time points. Group D, 60 DPI
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FIGURE 4. Water Mg/cation ratio comparisons between CWD-positive and CWD-negative loca-
tions Mg/Cu (A), Mg/Mn (B), Mg/Fe (C) from captive white-tailed deer locations. A significant differ-
ence (*) was detected between all groups, with CWD-negative locations having greater Mg/cation
ratios (Two-tailed Student’s T-test, « = 0.05). Mg/Cu (p = 0.003), Mg/Mn (p = 0.007), Mg/Fe

(p=0.008).
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CWD-inoculated mice showed alterations in 7
genes, with one up-regulated, and 6 down-
regulated as compared to group E negative
controls (Fig. 8D, Table 3d). In contrast, the
group D terminal mouse comparisons had 13
altered genes, with 4 upregulated and 9
downregulated (Fig. 8E, Table 3e). The two
group D time points had 2 common altered
genes. Group D, 60 DPI mice only shared 4
genes in common with group E, 60 DPI. Ter-
minal mice from groups D and E shared 7
genes in common (ccl-19, ccl-3, ccl-9, csf2,
IL13, Tnfsf-11, Tnfsf-13). The most striking
difference between time points is at 60 DPI,
where group D had far fewer gene alterations
than group E.

To determine if differential gene expression
was associated with disease within group D,
CWD-negative group D control mice were
compared to both 60 DPI and terminal group D
mice. This comparison revealed only 2 gene
alterations at 60 DPI (Fig. 9A, Table 3f), but

CWD +
Siter

13 alterations at terminal disease (Fig. 9B,
Table 3g).

Immunohistochemistry

Glial fibrilary acidic protein (GFAP) stain-
ing in the hippcampus was compared between
groups D and E. The hippocampus was
selected for comparison, as it was the most
affected brain region in CWD mouse studies
conducted in this laboratory. Others have
noted the presence of PrP“™™ staining in the
hippocampus, however the pattern was differ-
ent possibly due to differences in inocu-
lum.*>**® None of the CWD-negative controls
for groups D or E (data not shown) showed
any staining for PrP“® amyloid plaques.
Plaques were visible at DPI 60 in both groups
(data not shown), with group D appearing to
have more staining. At terminal disease pla-
ques could be seen in both groups.
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TABLE 2. Survival time comparisons between test groups inoculated intracerebrally (IC)
with chronic wasting disease. (A) Median survival times, days post inoculation (DPI) Mg/
Cu ratio, and MG and Cu concentration of each CWD-positive treatment group (B). Statis-
tical comparisons between CWD-positive treatment groups. Group D lived significantly
longer than several other groups. ppb= parts per billion, * = significantly different. (Log-

Rank test, « < 0.05)

Test Group Mg/Cu Ratio [Mg] ppb [Cu] ppb Mean survival DPI and Cl
A. Custom 26 1,000,000 38,340 125 (113-134)

B. Custom 9 350,000 38,340 126 (119-137)

C. Custom 167 1,000,000 6,000 128 (124-135)

D. Custom 500 1,000,000 2,000 136 (130-148)

E. 5001 162 2,100,000 13,000 133 (127-136)
Treatment Group survival times compared p=
Dvs. A 0.03*
Dvs.B 0.10
Dvs.C 0.04*
Dvs.E 0.07
Avs.B 0.71
Avs.C 0.03*
Avs. E 0.24
Bvs.C 0.76
Bvs. E 0.51
Cvs. E 0.76

All groups showed GFAP expression in the
hippocampus, however group E had more stain-
ing at DPI 60 (Fig. 10 B).

Protein Expression

We next investigated whether the increases
in transcripts encoding chemokines and their
receptors and inflammatory cytokines in mice
fed high Cu diets translated into increased
expression of cognate inflammatory cytokines.
We simultaneously measured levels of 11 cyto-
kines in brains from mice fed a high Cu diet
(E) or low Cu diet (D). Of the inflammatory
cytokines analyzed, we detected significant
increases of IFNy and IL-18 in brains of mice
fed a high Cu diet and terminally ill with CWD
over mock-infected controls, whereas mice fed
a high Cu diet and terminally ill with CWD
over mock-infected controls, whereas mice fed
a low Cu diet exhibited no increase in IFNy
and a significant decrease of IL-18 at 60 DPI
and terminal disease (Fig. 11).

We observed no significant difference in
expression of TNFo and IL-6. We detected no
granulocyte-monocyte  colony  stimulating

factor (GM-CSF) in any mice from any group.
We also observed significant reduction in
expression of T cell-activating cytokines IL-2,
IL-12p70 and IL-18, as well as the anti-inflam-
matory Th2 cytokine IL-13, in mice fed low
Cu diets compared to mice fed high Cu diets.
We detected no IL-4 or IL-5 in any mice from
any group.

DISCUSSION

The goal of this work was to determine if
differences observed in Mg and Cu water con-
centrations on CWD-negative and CWD-posi-
tive sites could be translated into a transgenic
mouse bioassay to assess their effects on CWD
progression. Numerous studies have shown that
metals such as manganese and copper alter
prion protein stability, leading to altered levels
in diseased animals.'®*’=° Copper is a com-
mon environmental divalent cation and can be
found in varying concentrations in soil and
water,”’ is a normal ligand for PrP®, and
increased Cu levels show convincing evidence
for being a factor in CWD propagation.' 323>
However, little work has been done to
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FIGURE 5. Survival times (DPI-days post inoculation) versus Mg, Cu, or Mg/Cu ratio concentra-
tions in CWD+ mouse diet. (A) Mg concentrations low to high, (B) Cu concentrations, low to high
(C) and Mg/Cu expressed as a ratio, low to high. The Mg/Cu ratio showed the most positive influ-
ence on survival time (slope: 0.02600), followed by the negative influence of Cu (slope: —0.00023),
and a modest increase on survival time by Mg (slope: 0.00007).
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specifically assess the levels of cations in the
environment and their impact on CWD.

Environmental Sampling

Our environmental analysis showed no dif-
ference between copper (Cu), manganese (Mn),
magnesium (Mg), and iron (Fe) soil levels at
CWD-positive and negative locations. How-
ever, Mg was significantly higher at CWD-neg-
ative sites in the water, and there was a trend
toward decreased Cu, Mn and Fe levels at these
sites, and increased Cu, Mn and Fe on CWD-
positive sites.

Water sources were compared to determine
if the origin of the water, well versus surface
water, had an impact on the cation levels since
metals can leach from pipes into the water.
CWD-negative sites had a greater percentage

Mg/Cu Rato

of well water sources than CWD-positive sites,
yet had lower levels of Cu indicating that the
increased level of Cu, Fe and Mn seen at
CWD-positive sites was not a result of leaching
from copper supply pipes. A study by Davies
and Brown suggests that increased Mn can help
protect the prion protein from degradation and
increase its infective potential.>® Although not
statistically significant, an increase in Mn was
seen in water from CWD-positive sites.
Although Cu was the cation selected for this
study, it is totally within the realm of possibil-
ity that similar survival outcomes could be
observed by interchanging Mn or Fe with the
Cu. If so, it would suggest that redox reactions
with divalent cations, in general, could have
negative impacts on disease progression, sur-
vival, and neuroinflammation.

Several studies have implicated clays in
increased environmental prion persistence and
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FIGURE 6. ICP-MS analysis of mouse brains from each group. (A) Cu concentration comparisons
between CWD-negative (—) and CWD-positive (+) mice from each treatment group. (B) Mg con-
centration comparisons between CWD- and CWD+ mice from each treatment group. (C) Mg/Cu
ratio comparisons between CWD- and CWD+ mice from each treatment group. ppb = parts per bil-
lion. * = significantly different from matched CWD- matches. (Student’s one-tailed T-test, « < 0.05.)
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even infectivity.’’® Soil composition was
compared between positive and negative sites.
The clay fraction levels were similar between
sites suggesting that increased clay composition
was not responsible for the increased incidence
of CWD at the positive locations. A recent
study examining the particulars of clay compo-
sition revealed that the type of clay present can
influence CWD persistence.”® However, that
type of analysis was beyond the scope of this
study, and would not explain the bioassay
results where no clay exposure occurred.

Transgenic Mouse Bioassay

Mice fed the lowest concentration of Cu and
highest concentration of Mg, ie the highest Mg/
Cu ratio, lived significantly longer than the other
treatment groups with custom diets and
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supplemented drinking water, as well as the
standard rodent diet and water group. Mice were
inoculated with an infectious dose one order of
magnitude lower than what is often utilized in
IC studies (0.1% vs. 1% infected brain homoge-
nate). This was done to try to more closely repre-
sent a natural dose. However, we readily
acknowledge that the very nature of IC inocula-
tion precludes it from being a true model for nat-
ural infection. It appears that Cu concentration
had the greatest impact on survival, as mice fed
the lowest concentration lived the longest. Mice
fed >6000 ppb had similar survival times indi-
cating a threshold dose between 2000 and 6000
ppb. However, all animals in each group ulti-
mately succumbed to disease. Our results sup-
port findings from a previous study using mouse
scrapie which demonstrated a neuroprotective
effect of dietary copper depletion, but an inabil-
ity to prevent neuronal death.”’ However, a



DIETARY MAGNESIUM AND COPPER AFFECT SURVIVAL TIME AND NEUROINFLAMMATION 237

FIGURE 7. Survival times (DPI-days post inoculation) vs. ICP brain concentrations in CWD+ mice.
(A) Mg concentrations low to high, (B) Cu concentrations, low to high (C) and Mg/Cu expressed as
a ratio, low to high. The concentrations of Mg, Cu, or the Mg/Cu ratio found in study mouse brains

did not appear to vary between survival times.
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balance is essential, as significant copper deple-
tion can also have detrimental effects such as
spongiosis in the brain.*> Copper also has been
shown to play a role in Alzheimer’s disease
(AD), a close cousin of prion diseases. Increased
Cu has been found in the brains of AD
patients,*’ and been shown to increase amyloid
precursor protein (APP) expression ** and exac-
erbate both tau and amyloid B pathology,****
while copper chelation slowed Alzheimer’s dis-
ease progression.*’ The presence of redox-active
metals, particularly Cu, has been shown to
induce oxidative stress in the brain.*>** 4647
Oxidative stress, in the form of reactive oxygen
species (ROS), hydroxyl radicals, and lipid per-
oxidation, has been implicated in neurodegener-
ative disease progression by initiating
inflammation.>**%>? Studies examining the lev-
els of various cations in CWD-positive and neg-
ative animal tissues have shown both Cu
increases and decreases in the blood and brain in

deer, elk, and rodents, complicating interpreta-
tion,46-53. 54

Unlike Cu, Mg is not a ligand for binding
sites on PrP. However, it is an important com-
ponent for over 300 enzymes such as those that
polymerize RNA and DNA, phosphorylate
molecules, and combat oxidative stress.>! Its
presence has been shown to reduce inflamma-
tion > and have a beneficial effect on diabe-
tes, metabolic syndrome, and arsenic-induced
oxidative stress.”’>° The role of Mg in prion
disease has largely been ignored as it does not
directly bind to the prion protein like Cu or
Mn. However, a study with Alzheimer’s dis-
ease patients demonstrated that individuals
who took Mg supplements, had slower cogni-
tive decline than those that didn’t.*

Magnesium ions can reduce inflammatory
responses and neuronal death by antago-
nizing calcium channels thus preventing
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FIGURE 8. RT-PCR differential gene expression comparing CWD-infected mice from treatment
groups D and E to CWD-negative control mice from group E. CWD-inoculated animals given higher
Cu (ppm), group E, had a greater number of gene expression alterations (14 > 2-fold) at 60 d post
inoculation (DPI), and at terminal disease (15 >2-fold) (A) than group D, which had 7 altered genes
at 60 DPI and 13 at terminal disease (B). Although similar in number, the genes altered at terminal

disease were different between groups E and D.
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A.
[13,000]

60 DP1

Gene

the release of neurotoxic TNF« and IL-6,
and reducing pro-apoptotic proteins.®!
Both TNF« and IL-6 protein levels were
reduced in mice fed lower Cu and higher
Mg in this study. Mg levels, overall, are
reduced in patients with AD >*** and Mg
supplementation has been suggested as a
therapeutic agent °*%> ®® An increase in
Mg alone was insufficient to rescue or
prevent death from CWD in this study.
Group E had very high levels of Mg
(2,100,000 ppb), but still did not survive
significantly longer than the other groups.
However, Mg may have played somewhat
of a role in increased survival as there
was no significant difference in survival
time between group C and groups A and
B despite there being over a 6-fold
increase in the copper concentration in A
and B, but the same level of Mg. More
work is warranted to evaluate the effect of
magnesium on CWD and other prion
diseases.

col- 147
ce

Mouse Brain ICP-MS

Analysis of the brains from 3 randomly
selected mice from each of the 5 treatment
groups and inoculation status did not reflect the
amount of Cu and Mg ingested in drinking water.
Mice consuming higher levels of Cu in their
drinking water did not present with higher Cu
brain levels than those receiving 19 times less,
indicating tightly controlled homeostasis. CWD
status did not affect the amount of Cu detected in
the brain, however, mice with CWD did have
increased Mg levels, with 2 groups having signif-
icant differences. Perhaps this reflects an attempt
by the body to combat neuroinflammation, which
is central to prion disease progression.”"*®” Stud-
ies have shown both increases and decreases in
blood and brain cation levels of prion-positive
vs. negative deer, elk and rodents.**>* 3* In con-
trast to our findings, a study examining Mg and
Cu levels in the brain of CWD-negative and posi-
tive elk found decreased brain Mg levels in
CWD-positive animals and no difference in
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TABLE 3. Gene alterations >2-fold by comparison group. Table shows gene abbreviation and full
name. CWD- = CWD-negative animals, CWD+ = CWD-positive animals

Compared Groups Gene
a. Group E CWD- vs Group D
CWD-
Cxcl-15 Chemokine (c-x-c¢ motif) ligand 15
Infng Interfuron gamma
IL-18 Interleukin 1 Beta
IL-16 Interleukin 16
IL-17B Interleukin 17 B
b. Group E CWD- vs Group E
CWD+ 60 DPI
ccl-4 Chemokine (C-C motif) ligand 4
ccl-6 Chemokine (C-C motif) ligand 6
ccl-19 Chemokine (C-C motif) ligand 19
ccl-20 Chemokine (C-C motif) ligand 20
Ccr-2 Chemokine (C-C motif) receptor 2
Ccer-4 Chemokine (C-C motif) receptor 4
Cxcl-5 Chemokine (c-x-c motif) ligand 5
Tnfsf-13b Tumor necrosis factor (ligand) superfamily member 13b
Fasl Fas ligand (TNF superfamily member 6)
Bmp-2 Bone morphogenic protein 2
Spp1 Secreted phosphoprotein 1, OPN
IL-2ry Interleukin 2 receptor gamma
IL-13 Interleukin 13
IL-16 Interleukin 16
c. Group E CWD- vs Group E
CWD+ terminal disease
ccl-3 Chemokine (C-C motif) ligand 3
ccl-9 Chemokine (C-C motif) ligand 9
ccl-19 Chemokine (C-C motif) ligand 19
Ccr-10 Chemokine (C-C motif) receptor 10
Cxcl-15 Chemokine (c-x-c motif) ligand 15
Tnfsf-11 Tumor necrosis factor receptor superfamily member
11b- osteoprotegerin
Tnfsf-13 Tumor necrosis factor (ligand) superfamily member 13
Csf-2 Colony stimulating factor 2 (granulocyte-macrophage)
OSM Oncostatin M
Infng Interfuron gamma
TNF Tumor necrosis factor «
IL-2rb Interleukin 2 receptor gamma
IL-11 Interleukin 11
IL-13 Interleukin 13
IL-16 Interleukin 16
d. Group E CWD- vs Group D
CWD+ 60 DPI
ccl-12 Chemokine (C-C motif) ligand 12
ccl-19 Chemokine (C-C motif) ligand 19
Tnfsf-11 Tumor necrosis factor receptor superfamily member
11b- osteoprotegerin
Spp1 Secreted phosphoprotein 1, OPN
IL-18 Interleukin 1 Beta
IL-16 Interleukin 16
IL-27 Interleukin 27
Compared Groups Gene
e. Group E CWD- vs Group D
CWD+ terminal disease
ccl-3 Chemokine (C-C motif) ligand 3

(Continued on next page)
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TABLE 3. Gene alterations >2-fold by comparison group. Table shows gene abbreviation and full
name. CWD- = CWD-negative animals, CWD+ = CWD-positive animals (Continued)

Compared Groups Gene
ccl-9 Chemokine (C-C motif) ligand 9
ccl-19 Chemokine (C-C motif) ligand 19
Tnfsf-11 Tumor necrosis factor receptor superfamily member

11b- osteoprotegerin

Tnfsf-13 Tumor necrosis factor (ligand) superfamily member 13
Fasl Fas ligand (TNF superfamily member 6)
Bmp-2 Bone morphogenic protein 2
Csf-2 Colony stimulating factor 2 (granulocyte-macrophage)
Nampt Nicotinamide phosphoribosyltransferase
IL-5ra Interleukin 5 receptor alpha
IL-7 Interleukin 7
IL-13 Interleukin 13
IL-33 Interleukin 33

f. Group D CWD- vs Group D

CWD+ 60 DPI

ccl-1 Chemokine (C-C motif) ligand 1
Spp1 Secreted phosphoprotein 1, OPN

g. Group D CWD- vs Group D

CWD+ terminal disease

ccl-2 Chemokine (C-C motif) ligand 2
ccl-3 Chemokine (C-C motif) ligand 3
ccl-6 Chemokine (C-C motif) ligand 6
ccl-9 Chemokine (C-C motif) ligand 9
ccl-12 Chemokine (C-C motif) ligand 12
Ccer-1 Chemokine (C-C motif) receptor 1
Ccr-6 Chemokine (C-C motif) receptor 6
Tnfsf-13b Tumor necrosis factor (ligand) superfamily member 13b
OSM Oncostatin M
TNF Tumor necrosis factor alpha
IL-5ra Interleukin 5 receptor alpha
IL-13 Interleukin 13
IL-33 Interleukin 33

Cu.> This is not terribly surprising, as elk and necessarily provide evidence of a causative
mice likely process and store minerals differ- effect, but could simply represent a storage or
ently. Altered brain cation levels do not processing dysregulation in the animal.

FIGURE 9. RT-PCR differential gene expression comparing CWD-infected group D time points
to the CWD-negative controls from group D. At 60 DPI, mice showed little differentiation from
control animals (A). At terminal disease there was an increase in gene alterations with 13 exhib-
iting > 2-fold change (B). (20X magnification.)
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FIGURE 10. GFAP staining in the hippocampus of groups E (left column) and D (right column) at
60 d post inoculation (DPI) and at terminal disease in CWD negative (—) and positive (+) TG12
mice (4X magnification).

RT-PCR significant changes in the levels of transcripts in
the brain associated with inflammation in mice
fed a high Cu vs. low Cu diet. Even before onset
of clinical prion disease, we detected increased
expression of transcripts encoding chemokines
and their receptors in high Cu diet mice over

To determine if a decrease in neuroinflamma-
tion might be responsible for an increase in sur-
vival times, we evaluated the expression of an
array of inflammatory transcripts. We observed
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FIGURE 11. Dietary Copper potentiates prion-induced neuroinflammation. Brains from prion-
infected mice fed a high Cu diet (solid line connecting squares) or low Cu diet (dotted line connect-
ing dots) were analyzed at 60 DPI or terminal disease for the indicated cytokine production com-
pared to mock-infected control mice fed the same diet (A-G). Data are expressed as fold-change
ratios compared to mock infected controls. *, p < 0.05 comparing cytokine changes of high versus
low Cu-fed mice at the same time point. **, p < 0.01 comparing cytokine changes of high vs. low
Cu-fed mice at the same time point. **, p < 0.01 comparing cytokine levels at 60 DPI to terminal dis-

ease of mice fed the same diet.
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mock-infected controls, and no increases in che-
motaxis transcripts in low Cu diet mice. At termi-
nal stages of CWD, high Cu diet mice also
increased expression of inflammatory transcripts
for Oncostatin M, TNFa, and IFNy. We observed
no such increase in low Cu diet mice.

Protein Expression

Increased inflammatory transcripts trans-
lated to increased expression of inflammatory

proteins IFNy, IL-18 and IL-18, as well as T
cell activating cytokines IL2, IL-12p70 and
the anti-inflammatory TH2 cytokine IL-13 in
mice fed a high Cu diet. Conversely, we
observed decreased expression of these cyto-
kines in brains of mice fed a low Cu diet.
Taken together, these data support our
hypothesis that lowering Cu levels in mouse
diets decreases cerebral inflammation result-
ing in significantly prolonged survival in
prion-infected mice.
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Immunohistochemistry

Glial fibrillary acidic protein (GFAP), an
intermediate filament protein, staining repre-
sents expression of the protein by astrocytes.®®
The expression of GFAP is utilized as a marker
for reactive gliosis due to disease, CNS injury,
or neurodegeneration.””’® Mice in group D
showed less GFAP staining at 60 DPI when
compared to group E at the same time point
(Fig. 10 B). When taken into consideration
with the neuroinflammatory gene expression
data, the reduction may be a physical represen-
tation of reduced overall brain inflammation
and injury. However, reduction of cellular
GFAP expression has been shown to be
reduced by intravenous administration of Mg in
traumatic brain injury in rats '° and our data
indicates higher Mg brain concentrations in
CWD-infected mice. Although group E had a
considerably higher concentration of Mg than
group D, it also has a much higher concentra-
tion of Cu, which perhaps overwhelmed any
anti-inflammatory effects that Mg might have
conveyed.

Little research has been done to evaluate the
effect of Mg on neurodegeneration considering
its importance in biological functions and its
potential to reduce inflammatory processes. An
increased Mg/Cu ratio altered disease progres-
sion by delaying neuroinflammation, and as a
consequence disease progression. The results
of this preliminary study suggest a role for die-
tary constituents in the progression of CWD
and the importance of feed composition in dis-
ease management. The next step in our research
is to test the optimal Mg/Cu ratio in a cervid
species for efficacy. It is our hope that these
findings may lead toward the development of a
cation-modified diet to prevent or reduce CWD
susceptibility in captive facilities.

METHODS AND MATERIALS

Environmental Samples and Locations

Soil and water samples were collected from
10 captive white-tailed deer locations (5 CWD-
negative, 5 CWD-positive), and water from 4
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CWD-positive captive elk locations and 2 from
CWD-positive wild sites, totaling 11 CWD-
positive sites and 5 CWD-negative sites. All of
the negative sites had 2 different water sources
providing 10 different samples, and 4 of the
positive sites had multiple water sources pro-
viding a total of 16 different samples. Water
sources included surface sources (streams,
ponds, and wallows), and well sources (water-
ers). The historical prevalence of CWD at the
positive captive locations ranged between
5-25% and the cervid CWD incidence rates on
the wild sites ranged between 10-30%. There
was no history of CWD at negative sites.

Environmental Sample Analysis - Soil and
Water by ICP-MS

Approximately 50 g of soil was taken from
10 captive white-tailed deer sites and 30 ml of
water was collected from each source and
placed in 50 ml conical tubes containing 3
drops of nitric acid (Sigma) for preservation.
Upon receipt, soil and water samples were sent
to the Colorado State University analytical
chemistry laboratory in Pueblo, Colorado for
inductively coupled plasma mass spectrometry
(ICP-MS) metals analysis. Water samples were
analyzed utilizing EPA method 200.8 "' and
6020.”* Soil samples were analyzed utilizing
EPA method 30517 and 6020A.7

Soil Composition Analysis

To determine soil composition, samples were
sent to the Colorado State University Soil Labo-
ratory in Fort Collins, Colorado for analysis.
Organic matter, (Method 29-3.5.2, Walkely-
Black procedure),74 Quartz (Method 3-5.3),”4
silt, and clay constituent percentages were iden-
tified (Method 15- hydrometer method).””

Transgenic Mouse Bioassay -
Intracerebral Inoculation

All procedures involving animals were per-
formed to minimize suffering and were
approved by the Institutional Animal Care and
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Use Committee at the USDA National Wildlife
Research Center in accordance with the USDA
Animal Welfare Act Regulation. CFR, title 9,
chapter 1, subchapter A, parts 1-4. The trans-
genic mouse line (TG12) utilized in this study
expresses the elk prion protein with methio-
nine/methionine at codon 132. Mice were gen-
erated as previously described, and generally
develop disease-associated ataxia at about 120
d post inoculation (DPI) after intracerebral
inoculation (IC) with 1% brain homogenate
from CWD-affected cervids.”® For the IC sur-
vival portion of the study, 4 groups of mice
were placed at weaning on a custom Teklad
magnesium (Mg) and copper (Cu)-deficient
diet (Harlan/Teklad) and de-ionized Mg and
Cu-supplemented drinking water, and one
group on Purina 5001 rodent diet (Purina) and
normal drinking water containing negligible
Mg and Cu levels (90 and 4 ppb respectively)
(Tables 4, 5).

Mice were maintained on the diets for 30 d
prior to IC inoculation with either CWD-posi-
tive brain homogenate from a terminal elk or
CWD-negative transgenic mouse brain homog-
enate (NBH). Inoculum was made by diluting
10% (wt/vol) brain homogenate as previously
described "® and diluted to 0.1% in sterile fil-
tered phosphate buffered saline (PBS) contain-
ing 100 units/mL penicillin and 100 pwg/mL
streptomycin (Invitrogen) diluted in inoculum
to 1X, then placed at room temperature for
20 min. The 0.1% brain homogenate was
selected to more closely resemble a natural
dose than the common 1%. Mice were anesthe-
tized with isoflurane gas and inoculated IC

TABLE 4. Dietary constituent values in parts per
billion (ppb) for the custom and 5001 diets

Constituent Custom Diet-ppb 5001 Diet-ppb
Protein 177,000,000 285,000,000
Fat 52,000,000 135,000,000
Potassium 9,520,000 11,800,000
Magnesium 0 2,100,000
Iron 210,000 270,000
Zinc 57,800 79,000
Manganese 122,000 70,000
Copper 500 13,000
Selenium 400 300

T. A. Nichols et al.

with 30 ul of inoculum 3 mm deep through the
coronal suture, 3-5 mm lateral of the sagital
suture. CWD-positive mice from groups A-C
were euthanized at terminal disease when they
presented with severe ataxia. Control mice
from these groups were euthanized at 200 DPI.
Mice from groups D and E were euthanized at
60 DPI, and at terminal disease when they pre-
sented with severe ataxia. Control mice from
groups D and E were euthanized at 60 DPI and
at 200 DPI. Brains were removed at euthanasia,
and half frozen at —80° C and half fixed in
10% formalin. Disease presence was assessed
in CWD-positive and negative mice by West-
ern blot analysis (data not shown).

Mouse Brain Cation Analysis by ICP-MS

A 10% (wt/vol) brain homogenate (CWD-
negative and CWD-positive) was prepared with
100 mg of formalin-fixed brain in de-ionized
water, as described above, for 3, randomly
selected mice from each test group. Sodium
hydroxide (NaOH) (Sigma) was added to each
sample to a final concentration of 1M NaOH
solution to inactive any prions present. Samples
were allowed to sit at room temperature for
10 min and then neutralized to pH 7 by adding
nitric acid. Samples were then sent to the Colo-
rado State University analytical chemistry labo-
ratory in Pueblo, Colorado for ICP-MS analysis
(method 6020A and 3052 """ to determine
the Mg and Cu concentrations present.

Quantitative Real-Time Polymerase
Chain Reaction (RT-PCR)

Mouse brains from groups D and E DPI 60,
and terminal disease (including those utilized
in the IHC and protein assay portions), from
groups D and E were prepared for RT-PCR
inflammatory arrays (Table 6). The cost of the
RT-PCR arrays prohibited the examination of
all mice from these groups. The number of
mice used in each group varied, as the quality
of some of the RNA samples was poor and
generated unusable RT-PCR data. Negative
control groups from DPI 60 and terminal mice
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TABLE 5. Magnesium (Mg) and Copper (Cu) levels and number of mice per treatment group with
(+) and without (—) chronic wasting disease. ppb- parts per billion, Custom-Teklad Mg/Cu deficient
diet and supplemented drinking water 5001-standard Purina rodent chow and regular drinking

water
Test Group [Mg] ppb [Cu] ppb Mg/Cu Ratio Number of mice CWD + Number of mice CWD —
A. Custom 1,000,000 38,340 26 9 9
B. Custom 350,000 38,340 9 8 5
C. Custom 1,000,000 6,000 167 12 6
D. Custom 1,000,000 2,000 500 9 8
E. 5001. 2,100,000 13,000 162 9 6

were combined for each group, and served as
Group D and E controls respectively for gene
expression analysis. Extraction of RNA for
each sample was done by following the
instructions in the RNeasy® Mini kit (Qiagen).
Prior to extraction, 20 mg of brain, and
350 ul of Qiagen buffer RLT with betamer-
capturethanol (BME) were added to 1.5 ml
tubes with 2.5 mm glass beads, and homoge-
nized with a Blue Bullet homogenizer (Nex-
tAdvance) for 2 min on setting 7. Synthesis of
cDNA was done by utilizing the RT* First
Strand kit (Qiagen) as per directions, from
extracted RNA. Once cDNA was synthesized,
it was frozen at —80° C until needed. Pre-
made inflammatory RT-PCR 96-well arrays
were purchased from SABiosciences (PAMM-
011Z format D). Plates were loaded by with
25 ul per well of a 102 ul of cDNA and
1350 ul of RT? SYBR® Green qPCR master-
mix (SABiosciences) mixture. Each plate con-
tained genes for 84 mouse inflammatory
cytokines and receptors that mediate the

TABLE 6. Number of mice for each group
utilized in the inflammatory RT-PCR array and
protein expression assay. With chronic wasting

disease (+) and without (—). DPI- days post
inoculation

Test Group and CWD Status Number of mice

D. CWD- controls
D. CWD + DPI 60
D. CWD + Terminal disease
E. CWD- controls
E. CWD + DPI 60
E. CWD+ Terminal disease

AR BADNDOO®

inflammatory response, as well as 5 house-
keeping genes, and 7 genomic DNA, reverse
transcription, and PCR control wells (see sup-
plemental data section for complete list of
genes). One plate per mouse was amplified on
a Bio-Rad CFX96 RT-PCR instrument utiliz-
ing the following conditions: Hotstart at 95° C
for 10 min, then 40 cycles at 95° C for 15 sec,
then 60°C for 60 sec with ramp rate set to 1°
C/sec. Completed RT-PCR data was exported
from the Bio-Rad CFX96 and uploaded to the
SABiosciences data analysis website (http://
pcrdataanalysis.sabiosciences.com/pcr/arraya
nalysis.php) for analysis.

Immunohistochemistry (IHC)

One brain hemisphere from each of 3 repre-
sentative mice from the CWD-positive and
negative from groups D and E were examined
by IHC at 60 DPI and terminal disease. The
three brain hemispheres were formalin-fixed
and paraffin-embedded, then sectioned at 5 pum
and placed on positively charged microscope
slides. The slides were deparaffinized and rehy-
drated in deionized water.

To prepare for PrP“"® visualization, slides
were pre-treated in 95% formic acid (Sigma-
Aldrich, St. Louis, MO) for 5 minutes at room
temperature, rinsed in deionized water and
placed in 0.1 M Tris buffer, pH 7.3. Antigen
retrieval was performed in DAKO Target
Retrieval Solution (DAKO, Denmark) at 121°
C for 20 minutes. Slides were stained with a
Leica Bond Max automated immunohis-
tochemistry stainer (Leica Biosystems, UK)
using a combination of a Mouse-on-Mouse
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Polymer IHC kit (Abcam, Cambridge, MA) and
the Bond Polymer Refine Detection kit (Leica)
and visualized by horseradish peroxidase-DAB
chemistry at room temperature. The staining
protocol is as follows with appropriate rinses
between steps: hydrogen peroxide block
(Abcam) 10 minutes, rodent block (Abcam) 30
minutes, mouse anti-prion primary antibody
(F99/97.6.1, VMRD, Pullman, WA) 1:250 dilu-
tion for 30 minutes, protein block (Background
Eraser, Biocare Medical, Concord, CA)
10 min., M.O.M. HRP Polymer secondary anti-
body (Abcam) 15 minutes, Mixed DAB Refine
(Leica) 10 minutes, DAB Enhancer (Leica) 5
minutes. Slides were counterstained with hema-
toxylin, and PrP“™® was visualized as brown-
ish granular staining.

GFAP

The same mouse brain samples were used as
the PrP“"VP THC above. To stain for glial fibril-
lary acidic protein (GFAP), a marker for astro-
gliosis, the formalin-fixed paraffin-embedded
mouse brain tissue was sectioned at 5 um and
placed on positively charged microscope slides.
Slides were heated at 60° C for 30 minutes and
loaded onto a Leica Bond Max automated
immunohistochemistry stainer (Leica Biosys-
tems, UK). Slides were dewaxed and antigen
retrieval with ER2 solution (Leica) at 95° C for
20 minutes. Anti- GFAP rabbit monoclonal pri-
mary antibody (clone SP78, Cell Marque, Rock-
lin CA) 1:100 dilution was incubated at room
temperature for 30 minutes. Anti-rabbit second-
ary antibody (Leica) was incubated at room tem-
perature for 25 minutes. The Bond Polymer
Refine Red Detection kit using alkaline phos-
phatase-fast red visualization was run and the
slides were counterstained with hematoxylin.
Hippocampal regions of the brain were reviewed
for changes in stain intensity as this is the most
affected brain region in this transgenic line.

Protein Expression Assay

Mouse brains were homogenized as
described above to generate a 10% homogenate

T. A. Nichols et al.

with following change: protease inhibitor cock-
tail (Roche) was added to PMCA buffer 1, as
per product instructions, in both steps utilizing
PMCA buffer rather than using PMCA buffer 2
for the second part of the protocol. Brain
homogenate was then stored at —80°C until
used in the BioPlex assay.

A mouse Th1/Th2 Extended ProcartaPlex™
Immunoassay (eBioscience, ref#: EPX110-
20820-901) was used to measure 11 cytokines
(IL-1p, IL-2, IL-4, IL-5, IL-6, IL-12p70, IL-13,
IL-18, IFN-y, GM-CSF and TNF-«). Brain
homogenate samples were subjected to centri-
fugation (5000 rpm for 10min at 4°C) and
supernatant was collected and diluted 1:10 for
cytokine analysis. Preparation of samples,
along with kit standards, detection antibody
and streptavidin-PE, were carried out per the
eBioscience magnetic immunoassay protocol.
Standards, samples and a control were run in
triplicate with CWD-negative and positive
samples run on separate 96-well untreated
polystyrene microplates (BD Falcon, 353910).
Cytokine fluorescence intensity was detected
using the BioPlex machine with Luminex Mul-
tiplexing Technology and analyzed by BioPlex
Manager software version 5.0.
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