

University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

USDA National Wildlife Research Center - Staff **Publications**

U.S. Department of Agriculture: Animal and Plant Health Inspection Service

2009

Experimental Inoculation of Coyotes with *Mycobacterium bovis* Susceptibility and Shedding

Shylo R. Johnson USDA-APHIS-WS

Mike R. Dunbar USDA-APHIS-WS

Lorene Martinez Colorado State University

Robert L. Jones Colorado State University

Richard Bowen Colorado State University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc

Part of the Environmental Sciences Commons

Johnson, Shylo R.; Dunbar, Mike R.; Martinez, Lorene; Jones, Robert L.; Bowen, Richard; and Gordy, Paul, "Experimental Inoculation of Coyotes with Mycobacterium bovis Susceptibility and Shedding" (2009). USDA National Wildlife Research Center - Staff Publications. 930.

https://digitalcommons.unl.edu/icwdm_usdanwrc/930

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors Shylo R. Johnson, Mike R. Dunbar, Lorene Martinez, Robert L. Jones, Richard Bowen, and Paul Gordy

II.C. USAHA SCIENTIFIC PAPERS

EXPERIMENTAL INOCULATION OF COYOTES WITH MYCOBACTERIUM BOVIS: SUSCEPTIBILITY AND SHEDDING

Shylo R Johnson*, Mike R Dunbar, National Wildlife Research Center USDA-APHIS-WS

Lorene Martinez, Robert L Jones, Microbiology, Immunology and Pathology Colorado State University

> Richard Bowen, Paul Gordy Biomedical Sciences Colorado State University

Abstract

Several wildlife species have tested positive for bovine tuberculosis in Michigan and may potentially transmit the disease to other animals. Coyotes have the highest known prevalence in the endemic area and thus, our objective was to investigate the shedding of *Mycobacterium bovis* by coyotes. Four coyotes were orally inoculated with 1 ml of 1 x 10⁵ CFU/ml of *M. bovis*. Oral and nasal swabs, and feces were collected regularly and tested by culture. Fecal samples were also tested by exposing guinea pigs to the coyotes' feces. All animals were necropsied to determine if infection occurred. All swabs, feces and tissues were negative on culture. The dosage of *M. bovis* given to these coyotes was considered biologically relevant, but was insufficient for causing infection. Due to the lack of infection, we still do not know the risk coyotes pose for shedding *M. bovis*.

Introduction

Bovine tuberculosis (bTB), caused by *Mycobacterium bovis*, is a contagious bacterial disease that can affect both humans and animals, including domestic and wild. Because of this, human-wildlife-livestock interactions resulting from actual or potential disease transmission has become an area of increasing concern. In 1975 and again in 1994, bTB was discovered in Michigan's white-tailed deer (*Odocoileous virginianus*). Since then, the disease has become endemic in deer in the northeast corner of Michigan's Lower Peninsula as indicated by follow-up surveillance in 1995 and later (Schmitt et al., 2006). While no additional reservoir host has yet been identified, spillover infections have been identified in at least six other wildlife species. Bovine TB has been found in black bears (*Ursus americanus*), bobcats (*Felis rufus*), coyotes (*Canis latrans*), raccoons (*Procyon lotor*), red fox (*Vulpes vulpes*), and North American opossums (*Didelphis virginiana*)

II.C. USAHA SCIENTIFIC PAPERS

(Bruning-Fann, 2001, Witmer, 2006). Of these wildlife species, coyotes are infected with an average prevalence of 33 percent in the endemic area (VerCauteren et. al., 2008). If coyotes shed the infectious organism coupled with the high prevalence, the potential of serving as a transmission host to other animals is also high. The objective of this study was to investigate the susceptibility of coyotes to bTB and the coyotes' potential for shedding the organism.

Materials and Methods

Four captive-raised coyotes from USDA-APHIS-WS-NWRC Logan Field Station, Utah, consisting of two females and two males, eight to nine years old, were used. They were housed at Colorado State University (CSU), Animal Disease Building, Fort Collins, Colorado in individual cages within the same room. The cage size was 3'x6'x6'h and clear acrylic glass separated adjacent cages. They were fed Mazuri Canine Diet (PMI Nutrition International, LLC, P.O. Box 19798, Brentwood, Missouri 63144, USA) and given water ad libitum. Eight guinea pigs (Harlan Sprague Dawley Inc, Indianapolis, IN) were located in an adjacent room to the coyotes. They were housed two to a cage, which had clear polycarbonate sides and flooring and a wire lid meeting Institute for Laboratory Animal Research (ILAR) guidelines. They had food and water ad libitum. Bedding for the guinea pigs was changed every other day. A protocol detailing experimental procedures and animal care was approved by the CSU Institutional Animal Care and Use Committee prior to the experiment.

The covotes were orally inoculated with 1 ml of 1 x 105 CFU/ml of deer-origin M. bovis on Day 0 of the study. We received 6 isolates cultured from Michigan white-tailed deer (Tuberculosis Laboratory, Michigan Department of Community Health (MDCH) Lansing, Michigan, USA) which were pooled and grown to reach the counts necessary for the inoculums. Pre-inoculation oral and nasal swabs, and fecal samples were also collected on Day 0. We anesthetized the coyotes with 5:1 mixture of ketamine: xylazine for inoculation and collection of swab samples. Starting on Day 10, fecal samples were collected weekly from the coyote cages for culture and PCR testing. Oral and nasal swabs were collected fortnightly starting on Day 17. Two sets of oral and nasal swabs were collected from each covote. Oropharyngeal and nasal swabs were pooled separately and placed in 35ml of DNA/RNA free water. The swab and fecal samples were cultured for M. bovis at the biosafety level (BSL) 3 labs at CSU using a modified version of the protocol from Whitlock and Rosenberger (1994) to reduce bacterial contamination growth. Positive and negative controls were included at each culture timepoint and plates were checked for growth up to eight weeks.

On Day 24, we started exposing the guinea pigs to the coyote feces. Coyote feces were crumbled on the bedding and replaced every other day after the bedding was cleaned. A pair of guinea pigs only received feces from one coyote for the duration of the study.

II.C. USAHA SCIENTIFIC PAPERS

References

- Bruning-Fann, C.S., S.M. Schmitt, S.D. Fitzgerald, J.S. Fierke, P.D. Friedrich, J.B. Kaneene, K.A. Clarke, K.L. Butler, J.B. Payeur, D.L. Whipple, T.M. Cooley, J.M. Miller, and D.P. Muzo. 2001. Bovine tuberculosis in free-ranging carnivores from Michigan. Journal of Wildlife Diseases 37: 58-64.
- Schmitt, S.M., D. O'Brien, and G. Hickling. 2006. Bovine Tuberculosis
 Annual Report. Michigan Bovine Tuberculosis Eradication Project.
 Activities report and Conference Proceedings. 20 March 2007.
 http://www.michigan.gov/documents/emergingdiseases/BTB_2006_
 Activities_Report_189581_7.pdf
- VerCauteren K.C., T.C. Atwood, T.J. DeLiberto, H.J. Smith, J.S. Stevenson, B.V. Thomsen, T. Gidlewski, and J. Payeur. 2008. Surveillance of coyotes to detect bovine tuberculosis, Michigan. Emerging Infectious Diseases 14 [DOI: 10.3201/eid1412.071181]. 2 Dec 2008. http://www.cdc.gov/EID/content/14/12/1862.htm
- Whitlock, R. H. and A.E. Rosenberger, 1994. Fecal culture protocol for *Mycobacterium paratuberculosis*: a recommended procedure, *Proceedings of the 94th U.S. Animal Health Association* Denver, CO (1994), pp. 280–285.
- Witmer, G. 2006. Surveillance for additional wildlife reservoirs and environmental contamination of bovine tuberculosis (*Mycobacterium bovis*) in northern Michigan: Final report (QA-932). USDA/APHIS/Wildlife Services/ National Wildlife Research Center, Fort Collins, CO.

PROCEEDINGS

ONE HUNDRED AND TWELFTH ANNUAL MEETING

of the

United States Animal Health Association

P.O. BOX 8805 SAINT JOSEPH, MO 64508 TEL: (816) 671-1144 FAX: (816) 671-1201 www.usaha.org usaha@usaha.org

Sheraton Greensboro Hotel Greensboro, North Carolina

Copyright 2009 United States Animal Health Association

Library of Congress Catalogue Control Number 2009929204

Meghan Richey Gower, Missouri and Richardson Printing Kansas City, Missouri