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SEROLOGIC EVIDENCE OF WEST NILE VIRUS EXPOSURE IN
NORTH AMERICAN MESOPREDATORS

KEVIN T. BENTLER,* JEFFREY S. HALL, J. JEFFREY ROOT, KACI KLENK, BRANDON SCHMIT,
BRADLEY F. BLACKWELL, PAUL C. RAMEY, AND LARRY CLARK

National Wildlife Research Center, U.S. Department of Agriculture/Animal and Plant Health Inspection Service/Wildlife Services,
Fort Collins, Colorado; National Wildlife Research Center, U.S. Department of Agriculture/Animal and Plant Health Inspection

Service/Wildlife Service, Sandusky, Ohio; School of Environment and Natural Resources, Ohio State University, Columbus, Ohio

Abstract. Sera from 936 mammalian mesopredators (Virginia opossums, gray foxes, striped skunks, hooded skunks,
raccoons, a bobcat, and a red fox) were collected during 2003 and 2004 in California, Arizona, Texas, Louisiana, Ohio,
and Wyoming and screened for flavivirus-specific antibodies by an epitope-blocking enzyme-linked immunosobent assay
(blocking ELISA). Serum samples positive for antibodies against flaviviruses were screened for West Nile virus (WNV)–
specific antibodies by blocking ELISA and selectively confirmed with plaque-reduction neutralization tests. High preva-
lence rates were observed in raccoons (45.6%) and striped skunks (62.9%). The high WNV antibody prevalence noted
in mesopredators, their peridomestic tendencies, and their overall pervasiveness make these species potentially useful
sentinels for monitoring flaviviruses in defined areas.

INTRODUCTION

The introduction, outbreak, and subsequent spread of West
Nile virus (WNV) into North America has been well docu-
mented.1,2 This virus, a member of the Japanese encephalitis
complex3 (WNV; family Flaviviridae, genus Flavivirus), has
been found to be active throughout the North American con-
tinent with surveys also demonstrating its presence in the
Caribbean region.4 Transmitted by mosquitoes, WNV infects
a wide range of vertebrates.5 The natural cycle involving the
infection of reservoir-competent birds is the principal reason
for the amplification and spread of the virus.6 However, re-
cent studies suggest that mammals, thought to be dead-end
hosts, are not only exposed to WNV, but at least some may
also serve as competent WNV reservoirs.7–9

Although serosurveys in mammals are uncommon and the
extent of the potential host range of WNV in North America
is largely unknown, evidence suggests that mammals are fre-
quently exposed. Horses have been impacted by WNV infec-
tions and high morbidity and mortality rates have been ob-
served.10 Evidence of WNV exposure has also been observed
in companion animals,4 livestock,5 and captive wildlife.11

Wild mammals exposed to WNV include a little brown bat
(Myotis lucifugus), a big brown bat (Eptesicus fuscus), an
eastern chipmunk (Tamias striatus),12 and a striped skunk
(Mephitis mephitis),13 as well as black bears (Ursus america-
nus),14 eastern gray squirrels (Sciurus carolinensis),12,15 fox
squirrels (Sciurus niger),15 and white-tailed deer.16 Recently,
Root and others observed high prevalence rates of antibodies
to WNV among some mesopredators species (raccoons (Pro-
cyon lotor) and Virginia opossums (Didelphis virginianus)).15

Building upon these previous observations, we have focused
exclusively on mesopredators in greater numbers to provide
additional insights on the roles these species play in WNV
transmission.

Because of their peridomestic habits, mesopredators might
serve as useful sentinels for mosquito bridge vector activity
and WNV exposure in mammals, such as humans. Although

serosurveys yield little information about host competency,
they can be used to document potential host range and may
be used to identify sentinel wildlife species. On-going United
States Department of Agriculture wildlife monitoring activi-
ties, such as wildlife rabies surveillance,17 provide occasions
to opportunistically survey for antibodies to WNV. Sera from
various geographic locations in the United States were ob-
tained in this manner, thus allowing us to assess mesopreda-
tors as WNV sentinel species across the United States.

MATERIALS AND METHODS

Trapping sites. We obtained serum samples from mammals
captured during spring, summer, and fall months in 2003 and
2004 from 18 rural study sites ranging in area from 9.1 km2 to
35.0 km2 in Arizona, California, Louisiana, Ohio, Wyoming
and Texas (Figure 1). In Arizona, mammals were live-trapped
on two sites (4/23/03–5/2/03): Fort Huachuca Army Base
(AZF) in Cochise County and Las Cienegas National Con-
servation Area (AZL) in Pima County. The AZL study site
was primarily composed of marshlands (cienegas) and cotton-
wood-willow riparian forests, and the AZF study site was
primarily composed of sacaton grasslands, mesquite bosques,
and semi-desert grasslands. In California, mammals were live-
trapped on two sites (7/16/03–7/29/03): North Etna (CAN)
and South Etna (CAS), both located in Siskiyou County.
These sites were located at an elevation of approximately 915
meters on the Scott River flood plain. Study sites consisted of
pastures with cattle or mixed agriculture (corn and alfalfa). In
Louisiana, mammals were live-trapped at four locations: the
Monroe North Site (MNS) and the Monroe South Site (MSS)
located in Ouachita Parish (4/16/03–4/24/03 and 6/17/03–6/23/
03), and the Lake Charles North site (LCN) and the Lake
Charles South site (LCS), located in Calcasieu Parish (12/2/
03–12/7/03). The Monroe sites were primarily agricultural
(cotton, soybeans) interspersed with mature bottomland
hardwoods, fallow fields, and urban areas. The Lake Charles
sites consisted primarily of agricultural land (rice) with pas-
ture and some mature bottomland hardwoods. In Ohio, rac-
coons were live-trapped on two sites; the U.S. National Aero-
nautics and Space Administration’s Plum Brook Station
(PBS) (5/6/03–10/16/03 and 3/30/04–10/21/04) and Old
Woman Creek National Estuarine Research Reserve (OWC)
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(4/9/04–9/30/04), both located in Erie County. The PBS site,
located on the Lake Erie coastal plane, consisted of herba-
ceous fields, shrublands and oak-dominated hardwood forest.
Water on the site consisted of ephemeral sources (drainage
ditches) and permanent creeks and ponds. The OWC site,
also located on the Lake Erie coastal plane in Erie County 15
km east of PBS, comprises a hardwood and wetland estuary
system (freshwater) surrounded by suburban and agricultural
land. In Texas, mammals were collected on four sites (6/2/03–
6/13/03): TXLM and TXCR, both in Leon County, TXRR in
Hamilton County, and TXW4 in Bosque County. In Wyo-
ming, mammals were sampled on four 4 sites: Upton (UPT)
and Buffalo Creek (BUC), both located in Weston County
(8/5/03–8/15/03), and Greybull East (GBE) and Greybull
West (GBW), both located in Big Horn County (11/11/03–11/
20/03). The UPT and BUC sites were located at an elevation
of approximately 1,370 meters with study sites primarily con-
sisting of sagebrush prairie with ephemeral creeks and artifi-
cial cattle reservoirs. The GBE and GBW sites, both with the
Greybull River serving as a central transect, were in a mixed
riparian, agricultural, and urban environment.

Grid trapping. In Ohio, trapping areas on PBS were ran-
domly selected from within each of eight 1-km2 grids, which
represented the diversity of habitats in the study area, and
were used throughout the trapping periods. Systematic rota-
tion of traps ensured that every location was trapped at least
twice in a trapping period. Traps were spaced at 250-meter
intervals within each grid. Grids were grouped into four pairs
such that the two areas comprising each pair were separated
by � 1 km at their closest point. At the OWC site, traps were
placed subjectively, unlike those of the grid system estab-
lished at PBS. At both sites, raccoons were sampled using
live-catch traps (107 cm × 30 cm × 30 cm; Tomahawk Live
Trap Co., Tomahawk, WI).

Transect trapping. In all states except Ohio transect trap-
ping was conducted in 2003. Typically, sites within a state
were situated � 5 km from each other and all sites contained
a river or riparian zone that served as a central transect with
two adjacent trapping transects placed approximately 1 km to
either side of this transect for a total of three transects per
site. Traps were typically spaced approximately 500 meters
apart per transect. Mammals were sampled using live-catch
Tomahawk traps (81 cm × 25 cm × 30 cm).

Mammal processing. Live-trapped mammals were immobi-
lized with a ketamine:xylazine mixture and whole blood was
collected by cardiac puncture, except for raccoons sampled in
Ohio, which were bled by jugular venipuncture. Typically,
whole blood was stored on ice until centrifugation for serum
collection. Sera was temporarily stored at −20°C before and

during transport (approximately 24 hours) and thereafter
stored at −80°C.

Laboratory analyses. All assays were conducted at the Na-
tional Wildlife Research Center. Mesopredator sera as well as
appropriate negative and positive mammal control sera were
tested to determine the presence of antibodies against WNV
and other flaviviruses using epitope-blocking enzyme-linked
immunosobent assays (blocking ELISAs) by the method of
Blitvich and others.18 Two monoclonal antibodies (MAbs)
were used. The MAb 3.1112G (Chemicon International, Te-
mecula, CA) is specific for the non-structural protein 1 (an
NS1 epitope) of West Nile/Kunjin virus and was used to assay
for WNV antibodies in serum samples. Horseradish peroxi-
dase–labeled MAb 6B6C-1, which is specific for the flavivirus
envelope protein (E protein epitopes), was used to assay for
flavivirus exposure. Briefly, MAb bound to a 96-well micro-
plate surface coated with viral antigen subsequently binds to
peroxidase substrate molecules that upon color development
exhibit a measurable optical density (OD). Optical densities
were analyzed with a microplate reader and percent inhibi-
tion values were calculated (100 − [(ODTS − 0.05)/(ODCS −
0.05)] 100, where TS is test serum and CS is negative control
serum). An inhibition value � 30% was considered positive
for antibodies to flaviviruses.

Samples with positive and negative ELISA results (inhibi-
tion values between 26% and 34%) for MAb 3.1112G were
tested by plaque-reduction neutralization tests (PRNTs) for
verification.19 The PRNTs were performed using the attenu-
ated recombinant vaccines ChimeriVax-WN and Chi-
meriVax-SLE (Acambis Inc., Cambridge, MA). These vac-
cines are the result of infectious clone technology in which
genes encoding the pre-membrane and E structural proteins
of yellow fever 17D vaccine virus are replaced with the cor-
responding genes of WNV or St. Louis encephalitis virus
(SLEV), which produces a virion with the protein coat of
WNV containing all antigenic determinants for neutraliza-
tion. Thus, the recombinant vaccine replicates like yellow fe-
ver 17D and can be neutralized by neutralizing antibodies to
WNV.20 Chimerivax-SLE was used in these analyses because
SLEV has been identified in several of our study areas and is
known to cross-react with neutralizing antibodies to WNV.21

The PRNTs were performed using Vero cells. Sera were
tested at dilutions of 1:10, 1:20, 1:40, 1:80, 1:160, and 1:320.
Titers were expressed as the reciprocal of serum dilutions
yielding � 90% reduction in the number of plaques
(PRNT90). Sera was etiologically diagnosed as being positive
for antibodies to WNV if the PRNT90 WNV antibody titer
was at least four-fold greater than that of its corresponding
SLEV antibody titer,19 it neutralized WNV plaque formation
by at least 90% at a dilution � 1:10, and it blocked the reac-
tion of MAb 3.1112G by 30%. Similarly, sera was diagnosed
as being positive for antibodies to SLEV if the PRNT90 SLEV
antibody titer was at least four-fold greater than that of its
corresponding antibody titer to WNV, it neutralized SLEV
plaque formation by at least 90% at a dilution � 1:10, and it
blocked the binding of MAb 6B6C-1, but not MAb 3.1112G,
by � 30%. Sera having positive PRNT90 titers for both WNV
and SLEV, sera reactive to either WNV or SLEV by PRNT90

but negative by blocking ELISA, and sera reactive to either
WNV or SLEV by blocking ELISA but negative by PRNT90

were considered positive for antibodies to flavivirus. To be
considered negative for antibodies to flavivirus, sera had to

FIGURE 1. Mesopredator sampling site counties, 2003 and 2004.
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show no reactivity to flaviviruses by PRNT90 and by blocking
ELISA.

RESULTS

Sera from raccoons (n � 647), striped skunks (n � 179),
hooded skunks (Mephitis macroura) (n � 4), Virginia opossums
(n � 98), gray foxes (Urocyon cinereoargenteus) (n � 6),
a bobcat (felis rufus) (n � 1), and a red fox (Vulpes vulpes)
(n � 1) were analyzed. The most detailed monitoring for
antibodies against flaviviruses and WNV focused on raccoons
sampled in Ohio during 2003 and 2004.

Ohio monitoring efforts. During 2003, 86.6% of adult rac-
coons and 48.1% of subadult raccoons showed evidence of
exposure to flaviviruses, as determined by detectable antibod-
ies to MAb 6B6C-1 (Figure 2). Exposure to WNV, as deter-
mined by detectable antibodies to MAb 3.1112G, was 59.8%
and 24.1% for adult and subadult raccoons, respectively. Dur-
ing 2004, 68.0% of adults and 23.4% of subadult raccoons
showed evidence of exposure to flaviviruses, and 23.5% of
adults and 5.8% of subadults showed evidence of exposure to
WNV.

Antibody prevalence patterns in the central and western
United States. A total of 391 mammals, belonging to 7 spe-
cies, were captured in Arizona, California, Louisiana, Texas,
and Wyoming (Table 1). In Arizona, prevalence of anti-
bodies to flaviviruses ranged from 44.4% at AZF to 80.0% at
AZL for all animals combined, with an overall mean of
57.1%. Striped skunks and hooded skunks showed evi-
dence of antibodies to flavivirus. Results of the epitope-
blocking ELISA using WNV specific MAb 3.1112G indicated
that no antibodies to WNV were present in the Arizona
mammals sampled. In California, prevalence of antibodies to
flaviviruses ranged from 35.1% at CAN to 66.7% at CAS,
with an overall mean of 52.0%. Striped skunks, raccoons,
Virginia opossums, and a bobcat displayed evidence of anti-
bodies to flavivirus. No antibodies to WNV were detected in
the California mammals sampled. In Louisiana where striped
skunks, raccoons, and Virginia opossums showed evidence
of antibodies to flavivirus, prevalences ranged from 0.0%
at LCN to 46.9% at MSS, with an overall mean of 31.0%.
The presence of antibodies to WNV was observed in Virginia
opossums and a raccoon. The overall prevalence of anti-
bodies to WNV in Louisiana mammals sampled was 12.0%
and site-specific prevalences ranged from 0.0% at LCN to
16.7% at MNS. In Texas, prevalence of antibodies to flavivi-
ruses ranged from 16.0% at TXW4 to 62.5% at TXRR, with
an overall mean of 28.9%. All species sampled, striped
skunks, raccoons, Virginia opossums, and a gray fox, showed
evidence of antibodies to flavivirus. Prevalence of antibodies
to WNV in Virginia opossums was observed. The overall
prevalence of antibodies to WNV in Texas mammals sampled
was 2.6% and site-specific prevalences ranged from 0% at
TXCR and TXRR to 4.5% at TXLM. Wyoming mesopreda-
tors displayed prevalences of antibodies to flaviviruses rang-
ing from 46.7% at UPT to 93.0% at GBW, with an overall
mean of 73.0%. Of the three species sampled in Wyoming, all
showed evidence of antibodies to flavivirus. These were
striped skunks, raccoons, and a Virginia opossum. Results of
the epitope-blocking ELISA using WNV-specific MAb
3.1112G indicated the presence of antibodies to WNV in all
these species. The overall prevalence of antibodies to WNV
in Wyoming mammals sampled was 50.8% and site-specific
prevalences ranged from 46.7% at UPT and to 69.0% at
GBE.

TABLE 1
Summary of seroprevalence for flaviviruses and West Nile virus (WNV) in mesopredators, 2003

Species

Arizona California Louisiana Texas Wyoming

Flavi.* (%)
WNV†

(%) No. Flavi.* (%)
WNV
(%) No. Flavi.* (%)

WNV
(%) No. Flavi.* (%)

WNV
(%) No. Flavi.* (%)

WNV
(%) No.

Didelphis virginianus
(Virginia opossum)

0 0 1 70 0 10 38 17 65 24 10 21 100 100 1

Vulpes vulpes (red fox) 0 0 1
Urocyon cinereoargenteus

(gray fox)
17 0 6

Procyon lotor (raccoon) 65 0 20 30 10 10 35 0 40 84 16 32
Mephitis mephitis

(striped skunk)
56 0 9 42 0 47 12 0 25 22 0 9 68 63 89

Mephitis macroura
(hooded skunks)

75 0 4

Felis rufus (bobcat) 100 0 1
All species 57 14 52 0 79 31 12 100 29 3 76 73 51 122

* Monoclonal antibody (MAb) 6B6C-1 detects antibodies to all flaviviruses.
† MAb 3.1112G is specific in its ability to detect antibodies against WNV.

FIGURE 2. Prevalence of antibodies against flaviviruses and West
Nile virus (WNV) in adult and subadult raccoons sampled in Ohio,
2003 and 2004. ELISA � enzyme-linked immunosorbent assay.
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Plaque-reduction neutralization test. Positive WNV anti-
body results were based upon traditional PRNT serology
(e.g., PRNT90 WNV antibody titer at least four-fold greater
than that of its corresponding SLEV titer and plaque forma-
tion neutralized at a defined serum dilution of � 1:10). Rac-
coon (n � 63), striped skunk (n � 16) and opossum (n � 2)
samples were tested by PRNT. The PRNT90 results are shown
in Table 2. Of 80 mesopredators positive for antibodies to
flavivirus by epitope-blocking ELISA, 20 had sufficient titers
(40–320) to indicate exposures to SLEV (i.e., PRNT90 SLEV
antibody titer at least four-fold greater than that of its corre-
sponding WNV titer and plaque formation was neutralized at
a defined serum dilution of � 1:10), and 47 mesopredators
positive for antibodies to WNV by blocking ELISA were con-
firmed as WNV antibody positive by PRNT90 with titers of 40
to 320. Twelve sera samples could not be categorized as either
WNV antibody positive or SLEV antibody positive and were
therefore considered positive for antibodies to flavivirus. One
sample showed no reactivity to flaviviruses by blocking
ELISA and PRNT90 and thus was considered negative for
antibodies to flavivirus.

DISCUSSION

High prevalence rates of antibodies to WNV were previ-
ously detected in mesopredators (e.g., opossums and rac-
coons), albeit from small sample sizes.15 We focused on a
wider variety of mesopredator species and examined larger
sample sizes. High flavivirus prevalence rates suggest meso-
predators are commonly exposed to one or more flaviviruses.
Data indicating the occurrence of flaviviruses not identified as
WNV or SLEV are of interest. Several flaviviruses, such as
those assigned to the Modoc antigenic complex (Cowbone
Ridge, Sal Vieja, San Perlita, and Modoc viruses) were all first
isolated in mammals (rodents from Florida and the western
United States).22 Although little fieldwork has been con-
ducted on mesopredator-associated flaviviruses, some meso-
predators positive for antibodies to flavivirus sampled in this
study could have been exposed to one or more of the Modoc
antigenic complex viruses or to an undescribed flavivirus.

In the states studied, the presence of antibodies to WNV in
mesopredators during 2003 and 2004 reflected the overall
presence of WNV across the country. In California, no sero-
logic evidence of WNV was reported to the Centers for Dis-

ease Control and Prevention (CDC) until late August 200323

(California mesopredator sampling concluded in late July).
Mosquito24 and avian25 samples submitted in counties imme-
diately adjacent to the California study site (e.g., Del Norte,
Humboldt, and, Shasta Counties) did not indicate the pres-
ence of WNV in the region during 2003. Likewise, there were
no reports of WNV in Arizona at the time mesopredators
were sampled (mid-spring). Evidence of WNV was not ob-
served in Arizona until early August 2003 (WNV-positive
mosquito pools).26 No WNV-seropositive mesopredators
were collected in Arizona or California.

WNV was well established in Texas by the summer of
2003.27 Of the 76 mesopredators sampled, 2.6% (all Virginia
opossums) had antibodies to WNV. Similarly, in Louisiana,
where the first human case of WNV-related disease was re-
ported to the CDC in 2001,28 mesopredators sampled in 2003
showed a prevalence rate of 12.0% for antibodies to WNV. In
Wyoming, reports of WNV in humans began to appear in
early August 2003.26 The presence of antibodies to WNV in
striped skunks coincides with these reports. Mesopredator
sampling was carried out in early to mid-August and mid-
November in 2003, and the resulting high prevalence rates are
striking.

The CDC began receiving reports from Ohio of WNV in
humans in August 2002.29 Therefore, the presence of anti-
bodies to WNV in mesopredator samples from Ohio (2003
and 2004) was not unexpected. The number of human WNV-
related cases reported in Ohio in 2003 (n � 108)30 was
greater than the number reported in 2004 (n � 12).31 Preva-
lence rates for antibodies to WNV in raccoons sampled in
Ohio appear to reflect this trend. Specifically, 45.6% of our
2003 sample tested positive for antibodies to WNV, in con-
trast to 17.6% in 2004. Using antibody prevalence for sub-
adults only (because antibody prevalence in subadults reflects
exposure in naive individuals), apparent transmission of
WNV in raccoons was lower in 2004 relative to 2003 (5.8%
versus 24.1%, respectively; z � 2.96, P � 0.003). However,
the apparent transmission of other, unknown or unidentified
flaviviruses was similar for those years, (24.1% in 2004 versus
17.5% in 2003 z � 0.98, P � 0.325).

If exposure to flaviviruses had no effect on survivorship or
capture probability and exposure was generally continuous
throughout the spring and summer, it is expected that the
antibody prevalence should be cumulative and should in-

TABLE 2
Summary of serologically positive mesopredators tested by PRNT*

Percentage inhibition by blocking
ELISA using MAb 3.1112G

(blocking ELISA result)†
No. WNV antibody-positive

by PRNT90 (titer range)‡
No. SLEV antibody-positive

by PRNT90 (titer range)§

Results

WNV antibody
positive

SLEV antibody
positive

Undetermined flavivirus
antibody positive

10–19 (negative) 0 1 (> 320) 0/1 1/1 0/1
20–29 (negative) 0 20 (40–320) 0/27 20/27 7/27
30–39 (positive) 30 (40–> 320) 0 30/35 0/35 5/35
40–49 (positive) 2 (160) 0 2/2 0/2 0/2
50–59 (positive) 3 (80–160) 0 3/3 0/3 0/3
60–69 (positive) 4 (80–160) 0 4/4 0/4 0/4
70–79 (positive) 3 (160) 0 3/3 0/3 0/3
80–89 (positive) 4 (40–> 320) 0 4/4 0/4 0/4
90–99 (positive) 1 (> 320) 0 1/1 0/1 0/1

* PRNT � plaque-reduction neutralization test; ELISA � enzyme-linked immunosorbent assay; MAb � monoclonal antibody; WNV � West Nile virus; SLEV � St. Louis encephalitis virus.
† Samples with percentage inhibitions values � 30 for MAb 6B6C−1 (flavivirus antibody specific). MAb 3.1112G is WNV antibody specific.
‡ Serum was etiologically diagnosed as WNV antibody positive if the PRNT90 WNV antibody titer was at least four-fold greater than that of the SLEV antibody titer.
§ Serum was etiologically diagnosed as SLEV antibody positive if the PRNT90 WNV antibody titer was at least four-fold greater than that of the WNV antibody titer.
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crease as a function of time. This was not the case for subadult
raccoons in Ohio (Figure 3). Perhaps exposure to flaviviruses
was not continuous throughout spring and summer or perhaps
flavivirus exposure did affect survivorship or capture prob-
ability or both. Also, if serum antibody levels waned as the
year progressed, an accumulation of antibodies in the raccoon
population may have not been perceptible.

Animals sampled in Wyoming had a WNV antibody preva-
lence rate of 50.8% among all species sampled, and a 62.9%
WNV antibody prevalence rate among striped skunks. An
affinity for arboreal habitats that would place a mesopredator
in close proximity to arthropod vectors of WNV might help
explain high WNV antibody prevalence rates. Both raccoons
and opossums are known to use trees; however, striped
skunks are poor climbers.32 Still, association with wetland
areas could bring skunks into frequent contact with arthropod
vectors. McLean and others isolated SLEV from the wide-
spread North American tick Dermacentor variabilis removed
from a raccoon and, in the same study, neutralizing antibodies
against SLEV were detected in another raccoon, two Virginia
opossums, and 10 rodents from the same area identifying a
possible tick-mesopredator pathway for SLEV.33 It is possible
that WNV could follow a similar pathway in mesopredators
although WNV vector competency in D. variabilis appears to
be unlikely. West Nile virus has also been recovered from
other ticks34–36 and has been transmitted under laboratory
conditions,37 raising speculation that these hematophagous
arthropods could be implicated in the trafficking and survival
of WNV.33 Additional research is needed to determine the
role of alternative WNV vectors, such as ticks, especially in
historically arid regions where flavivirus transmission by mos-
quitoes would not be expected to readily occur.

Studies with raptors38 and cats39 showed evidence of sero-
conversion after consumption of WNV-infected animals.
Thus, Root and others have suggested that partially carnivo-
rous habits in mesopredators could make them susceptible to
an additional predator-to-prey mode of transmission.15 A
similar oral route has also been observed in golden hamsters
(Mesocricetus auratus).40 If mesopredators were to consume
WNV-infected prey or carcasses with sufficient virus, this
mode of transmission could lead to increased WNV preva-

lence rates in these species. Striped skunks, for example, are
known to consume bird eggs, mice, shrews, small rabbits, and
small reptiles.41 It is possible that skunks, and perhaps other
mesopredators, could become infected through the consump-
tion of viremic prey species or other food, including dead
birds (e.g., corvids) with high WNV viremias. Of note, greater
sage grouse (Centrocercus urophasianus) populations in Wyo-
ming were significantly impacted by WNV in 2003, resulting
in 25% decreases in survival in four populations.42 Meso-
predators encountering sick or dead birds could potentially
have been exposed to WNV. However, antibody prevalence
rates among skunk prey species remain undetermined, and
additional surveillance is warranted.

Life history characteristics may have also played a role in
the high WNV antibody prevalence rates. Striped skunks ag-
gregate over winter in natural dens or in other human-made
spaces and live in family groups (females with young) through
the summer.41 If striped skunks are capable of shedding
WNV in sufficient quantities, gregariousness could facilitate
horizontal transmission and play a role in virus transmission.
It has been demonstrated that golden hamsters develop
chronic renal infections and are capable of shedding WNV in
urine for up to five months after infection.43 It has also been
demonstrated that crows (Corvus brachyrhynchos), in regular
close contact with WNV-infected crows, succumb to WNV
infection.44 More recently, Klenk and others provided evi-
dence of a fecal to oral WNV transmission route within
American alligators (Alligator mississippiensis) in a popula-
tion-dense experimental environment.45

Serologic evidence of flaviviruses was found in all study
areas. Among the striped skunks, opossums, and raccoons
studied from a variety of geographic areas, high anti-
body prevalence rates were noted. Compared with flavi-
viruses, prevalence rates for WNV were reduced, suggest-
ing the possibility of exposure to one or more different and
perhaps unknown flavivirus. Isolation and description of
unknown flaviviruses in mesopredator species, as well as an
understanding of the vectors involved, could shed light on
the uncertainty generated by using the flavivirus-generic
MAb 6B6C-1 in the epitope-blocking ELISA. We have pro-
vided evidence of WNV exposure in seven species of meso-
predators from North America. Although our findings
varied across states and among sites, antibody prevalences
mirrored a number of independent indicators of WNV activ-
ity. These data suggest that mesopredator species hold
promise as surveillance animals of WNV activity. Since me-
sopredators are widespread and their ecologies are diverse,
surveillance using these species could be conducted across
wide geographic ranges and ecologic niches in North
America. Although these data provide a better understanding
of exposure to WNV, more information on the nature of the
disease and the transmission dynamics in these species is
needed.
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