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Modeling pollen-mediated gene 
flow from glyphosate-resistant 
to -susceptible giant ragweed 
(Ambrosia trifida L.) under field 
conditions
Zahoor A. Ganie & Amit J. Jhala

A field experiment was conducted to quantify pollen mediated gene flow (PMGF) from glyphosate-
resistant (GR) to glyphosate-susceptible (GS) giant ragweed under simulated field conditions using 
glyphosate resistance as a selective marker. Field experiments were conducted in a concentric 
design with the GR giant ragweed pollen source planted in the center and GS giant ragweed pollen 
receptors surrounding the center in eight directional blocks at specified distances (between 0.1 and 
35 m in cardinal and ordinal directions; and additional 50 m for ordinal directions). Seeds of GS giant 
ragweed were harvested from the pollen receptor blocks and a total of 100,938 giant ragweed plants 
were screened with glyphosate applied at 2,520 g ae ha−1 and 16,813 plants confirmed resistant. The 
frequency of PMGF was fit to a double exponential decay model selected by information-theoretic 
criteria. The highest frequency of gene flow (0.43 to 0.60) was observed at ≤0.5 m from the pollen 
source and reduced rapidly with increasing distances; however, gene flow (0.03 to 0.04) was detected up 
to 50 m. The correlation between PMGF and wind parameters was inconsistent in magnitude, direction, 
and years.

Gene flow is the natural process of disseminating genetic information from one breeding population to another 
(usually) related population or between the closely related species1. More precisely, gene flow includes the incor-
poration of new genes into the gene pool2, or a change in the frequency of existing genes in a population1,3. 
Pollen-mediated gene flow (PMGF) is the movement of genes via pollen within and between populations of spe-
cies of the same genetic background4. PMGF occurs in almost all flowering plant species due to the movement of 
pollen through wind, water, pollinators, or other means1,3,5. The frequency of PMGF depends on several factors, 
including the reproductive biology, breeding system, pollen viability, and pollen dispersal mechanism of a plant 
species, among other factors6,7. Furthermore, size, structure, and proximity among populations8,9 and environ-
mental factors also play a significant role in PMGF10,11. Gene flow is considered a strong and dynamic evolution-
ary force that promotes evolution and speciation along with natural selection and influences the genetic diversity, 
adaptation, and fitness of a population12–14. In cases where natural selection and genetic drift are absent, gene flow 
promotes genetic homogeneity and maintains genetic cohesiveness in a population5,15,16.

Concerns related to gene flow in agriculture became prominently emphasized in both the public domain and 
scientific literature due to the development and commercialization of genetically-modified (GM) crops, which 
raised questions about the co-existence of GM and non-GM crops3,17. The major concern with GM crops is the 
escape of the transgene into either non-GM crops or closely related species18–23. Additional concerns with GM 
crops include the emergence of volunteers as weeds in subsequent crops such as glyphosate-resistant (GR) corn 
volunteers in GR soybean fields in the Midwest24, and the evolution of new invasive plants in natural habitats25. A 
rapid adoption of GM crops occurred with the commercialization of GR crops including soybean [Glycine max 
(L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), and sugarbeet (Beta 
vulgaris)26–28. GR crops revolutionized weed management by permitting the in-crop use of glyphosate—a once 
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in a century herbicide29. Glyphosate is effective on a wide spectrum of grasses and broadleaf weeds without the 
potential for carryover injury to crops grown in rotation26,29,30. Widespread adoption of GR crops primarily in the 
United States and Canada encouraged the use of conservation tillage, resulting in a considerable increase in the 
profitability of agronomic cropping systems29. However, glyphosate use has reduced the diversity of herbicides 
used for weed control, specifically in soybean and cotton31,32.

The overreliance on glyphosate for weed control in GR crops resulted in the evolution of GR  weeds33. As 
of December 2016, 35 weed species, including 16 grasses and 19 broadleaf weeds, have evolved resistance to 
glyphosate worldwide, including 16 species in the United States33. The evolution of GR weeds not only reduces 
weed control options and the utility of GR crops, but also has long-term ecological consequences such as shifts 
in weed species composition and the persistence of the resistance trait in agricultural ecosystems. In most GR 
weed species, the evolution of resistance is due to target and/or non-target site mechanisms controlled by a single 

Figure 1.  Daily average air temperature (C) from May to October in (a) 2014 and (b) 2015 at the South Central 
Agricultural Laboratory (SCAL), Clay Center, NE. The boxplots show the variation in daily average temperature 
(°C) for each month during which field studies were conducted in 2014 and 2015.

Figure 2.  Wind rose plots displaying wind speed (m s−1) and wind frequency (%) in four cardinal (N, S, E, W) 
and four ordinal (NE, NW, SE, SW) directions during the flowering period for giant ragweed in (a) 2014 and (b) 
2015 at the experimental site at South Central Agricultural Laboratory (SCAL), Clay Center, NE. The plots show 
the direction from which the wind was blowing in a particular year.
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dominant or semi-dominant gene with nuclear inheritance34–36. Thus, there exists the possibility of glyphosate 
resistance spreading through pollen movement, especially in cross-pollinated species34. Gene flow via pollen 
dispersal delivers an initial source of resistant alleles to a susceptible weed population at a higher rate compared 
to the hypothetical mutation rate (1 × 10−6 for a gamete at a locus per generation), resulting in the rapid evolution 
and dissemination of resistance genes in new areas13,34. PMGF from GM crops to conventional crops or their 
weedy and wild relatives has been extensively studied to understand the consequences of introducing domes-
ticated alleles or transgenes in natural populations5,11,37–41; however, more scientific information is needed to 
understand the dissemination of herbicide resistant traits between biotypes of the same weed species or closely 
related species for improved management strategies42–47.

The fate of a resistant allele in a weed population is influenced by the heritability, fitness, and reproductive 
and gene dispersal systems of the resistant biotype34,48. PMGF is particularly important in weed species such as 
giant ragweed that are characterized by their outcrossing nature and restricted seed mobility due to their large 
seed size49. Giant ragweed is a competitive summer annual broadleaf weed found throughout the United States 
and southern Canada50–52. It is a monoecious species, meaning that separate male and female flowers are present 
on the same plant. The male flowers occur in the terminal recemes at the top of the plant and the female flowers 
occur in clusters at the axils below the male flowers51,53. The male flowers produce considerably more pollen 
grains than the female flowers need to pollinate on a single plant. During flowering period, a single giant ragweed 

Figure 3.  Pollen-mediated gene flow from glyphosate-resistant to -susceptible giant ragweed affected by 
distance (m) from the pollen source in eight directions: (a) East, (b) West, (c) North, (d) South, (e) Northeast, 
(f) Northwest, (g) Southeast, and (h) Southwest in 2014. The green shaded area represents the 95% confidence 
intervals for prediction plots.

Figure 4.  Pollen-mediated gene flow from glyphosate-resistant to -susceptible giant ragweed affected by 
distance (m) from the pollen source in eight directions: (a) East, (b) West, (c) North, (d) South, (e) Northeast, 
(f) Northwest, (g) Southeast, and (h) Southwest in 2015. The green shaded area represents the 95% confidence 
intervals for prediction plots.
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plant can produce an estimated 10 million pollen grains daily and more than a billion pollen grains during its life 
cycle51,53. Exposure to giant ragweed pollen also causes allergic rhinitis and asthma54.

Giant ragweed’s excessive pollen production allows individual plants to cross-pollinate, leading to varia-
tions in physical appearance and genetic diversity, and consequently a greater potential for resistance genes to 
migrate through pollen movement51. Brabham et al.50 documented an outcrossing rate of 31% between GR and 
glyphosate-susceptible (GS) giant ragweed biotypes while growing side by side at a distance of 76 cm (row spac-
ing) and also suggested that GR is expressed as a dominant phenotype in giant ragweed. However, scientific liter-
ature is not available on how far a viable pollen can move and the frequency of gene flow in giant ragweed and role 
of wind direction. The objectives of this study were to determine the PMGF between GR and GS giant ragweed 
biotypes under simulated field conditions, and to understand the potential role of physical distance, wind speed, 
and wind direction in the dissemination of the glyphosate resistance trait in giant ragweed.

Results
Meteorological Data.  Mean monthly air temperature during the growing season varied from 14 °C to 24 °C 
and 15 °C to 25 °C in 2014 and 2015, respectively (Table S1). The monthly mean precipitation varied from 25 to 
225 mm in 2014 and 29 to 216 mm in 2015 during the giant ragweed growing season (Table S1). However, mean 
daily temperatures during the flowering period varied from 17 °C to 30 °C in 2014 and 20 °C to 30 °C in 2015 
(Fig. 1). Average wind speed during the flowering period in 2014 and 2015 was 1.2 and 2.8 m s−1, respectively 
(Fig. 2). However, the pattern of wind flow was similar in both years, with wind blowing from the south (S) or 
southeast (SE) most of the time (Fig. 2). The correlation between PMGF and wind parameters (wind speed, 
wind frequency, or wind run) was inconsistent in magnitude and direction at different distances in both years 
(Tables S2 and S3). The interactions of distance × direction × year were significant (P < 0.05), suggesting that the 
frequency of gene flow varied between directions in each year and between years at specific distances.

Flowering Synchrony.  Initiation of flowering was observed on July 25 and July 30 in 2014 and 2015, respec-
tively. The female flowers become receptive before the male flowers started shedding pollen. The protrusion of 
stigmas in the female flowers occurred on average 3 to 5 days prior to the pollen shed from male flowers on the 
same plant. GR giant ragweed plants in the center and GS plants within a 4 m distance from the pollen source in 
different directions flowered together, while flowering was delayed by 3 to 6 days in GS plants at distances ≥10 m 
from the pollen source. Peak flowering occurred 3 weeks after floral initiation, though continuous pollen pro-
duction and a small number of new receptive stigmas were observed until mid-September. The total flowering 
period lasted 5 to 6 weeks with a flowering synchrony of ≥80% between GR and GS giant ragweed biotypes in 
both years (Table 1).

Frequency of Gene Flow.  A total of 100,938 giant ragweed plants were screened in the greenhouse and 
16,813 plants were found resistant to glyphosate (Table 2). The frequency of gene flow declined with increasing 
distances from the pollen source following a leptokurtic pattern, though the magnitude varied between directions 
and years (Figs 3 and 4; Table 2). The highest frequency of gene flow averaged over eight directions was 0.54 to 
0.60 (i.e., 54 to 60%) at ≤1 m distance in 2014 compared to 0.43 (43%) at the 0.1 m distance from the edge of the 
pollen-donor block in 2015 (Table 2). The average frequency of gene flow declined to ≤0.09 and ≤0.04 at the 35 
and 50 m distances from the pollen source, respectively, in both years (Table 2).

Directions

Flowering synchrony*
2014 2015

Aug 
1

Aug 
10

Aug 
25

Sep 
10

Aug 
1

Aug 
15

Aug 
30

Sep 
10

N 1.4 1.5 1.0 0.9 1.5 1.0 1.1 0.8

S 0.6 1.3 1.1 1.4 0.8 1.2 1.0 0.9

E 0.9 1.3 1.0 1.6 1.7 1.0 1.0 1.0

W 1.5 1.2 1.0 1.2 1.3 1.0 1.1 1.5

NE 1.1 1.5 1.0 1.0 1.3 1.0 1.0 0.9

NW 1.4 1.5 1.0 1.0 1.6 1.1 1.1 1.1

SE 1.3 1.4 1.0 1.0 1.6 1.0 1.2 1.2

SW 1.5 1.4 1.0 1.0 1.4 1.3 1.0 1.0

Average 1.2 1.4 1.0 1.1 1.4 1.2 1.1 1.1

% flowering plants in 
pollen-donor block 25 45 99 65 35 60 99 60

Table 1.  Flowering synchrony between glyphosate-resistant and -susceptible giant ragweed in the pollen-
mediated gene flow study conducted in 2014 and 2015 at Clay Center, Nebraska (NE), USA. *Flowering 
synchrony between glyphosate-resistant and -susceptible giant ragweed was calculated using Equation: 

= ∑ =Xi n j
n A

B
1

1
%
%j

, where n is the total number of distances in direction i, A% is the percentage of plants shedding 
pollen in the pollen-donor area, and Bj% is the percentage of flowering plants at the jth observation (distance) in 
the pollen-receptor blocks at that specific time. X = 1.0 means perfect synchrony between the pollen donor and 
the receptor. X > 1.0 shows that sufficient pollens from GR male plants were present to pollinate GS females, but 
X values as low as 0.5 were not considered a good synchrony.
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A double exponential decay model (Eq. 4) with distance, direction, and interaction of directions with year was 
selected as the best model out of 43 candidate models based on Akaike’s Information Criterion (AIC) (Table S4). 
All of the top competitive models suggested that inclusion of wind direction as a covariate in modeling was more 
appropriate compared to the inclusion of hourly wind data (wind speed, wind frequency, or wind run) (Table S4). 
The exponential decay curves indicated that the frequency of gene flow varied in different directions in both years 
(Figs 3 and 4). Furthermore, the estimated coefficients for the first or second order intercepts and decay rates 
were variable indicating that wind direction had a strong impact on the magnitude of the gene flow (Table 3). 
Irrespective of other factors, the highest collective PMGF in 2014 occurred in southeast (0.33) and west (0.33) 
directions followed by east direction (0.31) and in east (0.24) and west (0.23) direction in 2015 (Fig. S1).

The predicted distances where gene flow was reduced by 50% (O50) varied from 1.3 m to 7.0 m in 2014; and 
from 0.3 m to 2.4 m in 2015 (Table 4), depending on the direction. Similarly, the predicted distances for 90% 
(O90) reduction in gene flow varied depending on the direction. For example, the maximum distance at which 
90% reduction in gene flow occurred was 49.5 m in the W arm in 2014 and 106.5 m in the N arm in 2015. Large 
confidence intervals of the predicted distances at which 90% reduction in gene flow occurred suggested a higher 
variability in frequency of gene flow at further distances from the pollen source (Table 4). In addition, some of the 
predicted O90 values are greater than the maximum distance (50 m) measured in this study making it difficult to 
maintain the accuracy achieved at the closer distances (Table 4).

Discussion
The results of this study indicated protogynous nature and extended flowering period (from mid-July to late 
August or early September) in the giant ragweed and were in consensus with the earlier reports by Bassett and 
Crompton52. The extended flowering period increases synchrony among flowering plants and protogyny favors 
gene flow55,56. The delayed flowering at distances ≥10 m from the pollen source was possibly due to lower plant 
density and minimal competition for resources resulting in vigorous vegetative growth and a delay in the transi-
tion to the reproductive phase, however, flowering synchrony was not affected.

A double exponential decay model was used to describe PMGF in this study. Sarangi et al.45 and Bagavathiannan 
and Norsworthy42 used a similar approach to determine PMGF in common waterhemp (Amaranthus rudis Sauer)  

Distance from 
pollen-source Plants screened*

Plants with glyphosate 
resistance trait

Frequency of 
gene flow†

Power, (1 − β)‡, 
α = 0.05

m # #

Year 2014₸

0.5 2,591 1,546 0.60 >0.95

1 2,157 1,154 0.54 >0.95

2 3,201 1,281 0.40 >0.95

4 2,456 781 0.32 >0.95

10 2,325 498 0.21 >0.95

15 2,182 282 0.13 0.88

25 3,385 315 0.09 0.95

35 5,585 519 0.09 0.95

50 23,820 941 0.04 0.90

Total 47,702 7,317

Year 2015

0.1 5,198 2,218 0.43 >0.95

0.5 5,941 1,645 0.28 >0.95

1 5,247 1,120 0.21 >0.95

2 6,696 1,535 0.23 >0.95

4 6,376 1,488 0.23 >0.95

10 2,003 247 0.12 >0.95

15 4,782 437 0.10 0.88

25 3,661 278 0.08 0.95

35 3,285 202 0.06 0.80

50 10,047 326 0.03 0.92

Total 53,236 9,496

Table 2.  Pollen-mediated gene flow from glyphosate-resistant to -susceptible giant ragweed in a field 
experiment conducted in 2014 and 2015 at Clay Center, NE. *Total number of giant ragweed plants screened 
from all the eight directions at a specific distance from the pollen source. †Average pollen-mediated gene flow 
frequency from all eight directions. Frequency of gene flow was determined using the equation, 

=Frequency of gene flow Number of surviving plants
Number of sprayed plants

. ‡Value of power was calculated from a 95% confidence interval 
using the procedure described by Jhala et al. (2011). ₸The data for 0.1 m distance from 2014 was not included in 
the analysis because a sufficient sample size for a power of ≥0.8 was not available.
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and barnyardgrass [(Echinochloa crus-galli (L.) Beauv.], respectively. Furthermore, the correlation analysis and 
model selection procedure indicated wind direction as a more relevant predictor of PMGF compared to wind 
parameters, including wind speed, wind frequency, or wind run. High temporal variation in wind frequency or 
wind run and wind gusts may be the reason for the absence of a strong correlation between wind parameters and 
the frequency of PMGF. Because giant ragweed is a monoecious species, pollen competition is expected between 
GR and locally available GS pollen from the pollen receptor plants for successful events of gene flow, reducing the 
chances of gene flow through GR pollen, primarily carried by wind. While historically, very few PMGF studies 
have included the effect of wind direction in quantifying the frequency of gene flow45,57,58, wind direction should 
be included to reduce the potential of the over- or under estimation of gene flow. Recently, Beckie et al.59 reported 
that PMGF from GR to GS kochia [Kochia scoparia (L.) Schrad] was influenced by wind direction; however, 
PMGF in common lambsquarters (Chenopodium album L.) did not depend on wind direction48.

PMGF reported in this study is relatively greater than the 31% reported by Brabham et al.50 between GR and 
GS giant ragweed planted in rows side-by-side at a distance of 0.76 m. This might be because GR pollen source 
was only in one direction and from limited number of plants, while our study had several GR giant ragweed plants 

Coefficients† Estimate Std. Error z value P-value‡

β0 −3.50 0.09 −39.57 <2.0e-16***

β1 0.26 0.10 2.56 0.0103*

γ1 −5.35 1.06 −5.04 4.74e-07***

β2 1.59 0.07 22.40 <2.0e-16***

γ2 −0.03 0.01 −2.65 0.0081**

β2: Direction N −0.25 0.12 −2.19 0.0281*

β2: Direction NE −0.59 0.09 −6.10 1.04e-09***

β2: Direction NW 1.04 0.10 10.20 <2.0e-16***

β2: Direction S 0.09 0.11 0.78 0.4343

β2: Direction SE −0.12 0.12 −0.98 0.3260

β2: Direction SW 1.21 0.10 11.52 <2.0e-16***

β2: Direction W −0.17 0.08 −2.18 0.0293*

γ2: Direction N −0.02 0.02 −0.69 0.4877

γ2: Direction NE 0.24 0.04 6.18 6.35e-10***

γ2: Direction NW −0.52 0.06 −9.19 <2.0e-16***

γ2: Direction S −0.02 0.02 −0.80 0.4235

γ2: Direction SE −0.02 0.02 −1.25 0.2080

γ2: Direction SW −0.05 0.03 −1.66 0.0955

γ2: Direction W 0.02 0.01 2.09 0.0361*

β2: Year 2 −0.23 0.04 -6.10 1.04e-09***

γ2: Year 2 −0.02 0.01 −2.41 0.0156*

β2: Direction N:Year 2 −0.04 0.06 −0.66 0.5074

β2: Direction NE:Year 2 0.31 0.05 5.45 5.04e-08***

β2: Direction NW:Year 2 −0.78 0.06 −12.81 <2.0e-16***

β2: Direction S:Year 2 −0.23 0.06 −3.66 0.0002***

β2: Direction SE:Year 2 −0.02 0.06 −0.31 0.7520

β2: Direction SW:Year 2 −0.94 0.07 −13.12 <2.0e-16***

β2: Direction W:Year 2 0.12 0.04 2.89 0.0038**

γ2: Direction N:Year 2 0.03 0.00 3.32 0.0008***

γ2: Direction NE:Year 2 −0.23 0.03 −6.29 3.13e-10***

γ2: Direction NW:Year 2 0.27 0.03 9.44 <2.0e-16***

γ2: Direction S:Year 2 0.02 0.01 1.68 0.0912

γ2: Direction SE:Year 2 0.02 0.01 2.07 0.0383*

γ2: Direction SW:Year 2 0.01 0.02 0.53 0.5926

γ2: Direction W:Year 2 −0.01 0.00 −0.49 0.6238

Table 3.  Estimation of the coefficients, standard error, and test of significance for the double-exponential 
decay model* for the prediction of gene flow from glyphosate-resistant giant ragweed under field conditions. 
*[logit(pi) = β0 + exp[β1 + γ1 × Distance] + exp[β2(Direction:Year) + γ2(Direction:Year) × Distance], where pi is 
frequency of gene flow of the ith observation; β0 is the overall intercept; β1 and β2 are the intercepts for the first 
and second instances, respectively; and γ1, and γ2 are the decay rates. †β2 and γ2 vary with the direction and 
the year. In this table, β2 and γ2 show the intercept and decay rate, respectively, for one direction (East) in year 
1 (2014). However, “β2:Direction”, or “β2:Year 2” denote the change (from East direction and year 1) in β2 for 
other directions and year 2 (2015), respectively. The same is true for γ2. ‡P-values show the test of significance at 
P < 0.05 (*) and P < 0.01 (**).
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 contributing to create a pollen cloud. Raynor et al.60 reported that approximately 9% of the ragweed (Ambrosia) 
pollen released from the pollen source reached up to a distance of 60 m. A relatively high level of gene flow in giant 
ragweed compared to other self-compatible species such as common lambsquarters48 and giant foxtail (Setaria 
faberi Herrm.)61 is likely due to its facultative outcrossing nature, as favored by anemophilous pollination, ability 
of massive pollen production51 and absence of any physical barriers. Several studies have documented that PMGF 
has a significant role in transferring and altering the frequency of resistant alleles within and between weed pop-
ulations; for example, in a predominantly self-pollinated weed species such as common lambsquarters, PMGF 
varied from 3% at 2 m to 0.16% at 15 m from the pollen source to the receptor biotype48. Similarly, PMGF in giant 
foxtail ranged from 0.24% and 0.73% among plants grown 0.36 m apart61. Recently, Beckie et al.59 reported 5.3 to 
7.5% gene flow at ≤1 m distance from GR to GS kochia, which declined exponentially to 0.1 to 0.4% at the 96 m 
distance. In contrast, gene flow from imidazolinone-resistant domesticated sunflower (Helianthus annuus L.), 
a cross-pollinated species, to wild sunflower ranged from 11 to 22% and 0.3 to 5% at 2.5 and 30 m, respectively, 
from the pollen source62.

The results of this study suggested that PMGF plays a significant role in the dispersal of GR alleles in giant 
ragweed, causing an increase in the frequency of GR giant ragweed plants within field populations along with 
the potential to introduce GR alleles into nearby field or non-crop giant ragweed populations. Similarly, Sarangi 
et al.45 reported PMGF from GR common waterhemp to GS common waterhemp and the potential spread of 
resistance alleles through pollen. It has been reported that giant ragweed is known to grow on field edges, in 
fallow, or other non-crop situations51,52; therefore, it is possible that herbicide-resistant alleles can be transferred 
through PMGF to isolated giant ragweed populations under non-crop situations. In addition to gene flow, the 
dynamics of resistance in a population are determined by the initial frequency of the resistant alleles, along with 
their heritability, reproduction, and fitness34,49. Maxwell et al.63 identified two sets of biological processes that 
influence ecological fitness and gene flow as key factors in the evolution and dynamics of herbicide-resistant weed 
populations. Studies on the relative fitness of GR and GS giant ragweed reported contrasting results50,64. Brabham 
et al.50 reported that the fitness penalty in a GR giant ragweed biotype from Indiana resulted in low fecundity 
in GR plants compared to GS plants, though the authors mentioned that a different origin of the two biotypes 
might be the reason for differences in fecundity. In contrast, Glittner and Stoltenberg64 reported more fecundity 
and similar viability in the GR giant ragweed biotype compared to a GS biotype from Wisconsin in the absence 
of glyphosate. In the absence of a fitness penalty, GR plants with greater fecundity will likely contribute higher 
proportions of GR seeds into the soil seedbank, leading to an increased number of plants with the GR trait in the 
giant ragweed population even in the absence of glyphosate64. Therefore, a high frequency of PMGF and the lack 
of fitness penalty in GR giant ragweed makes it ideal for spreading the glyphosate resistance trait. A recent survey 
reported that herbicide-resistant giant ragweed is widespread in the eastern Corn Belt of the United States and did 
not remain confined to sites where it first evolved65. It is possible that its widespread occurrence is not only due to 
seed movement, and that pollen movement may have contributed significantly.

This is the first report of the long-distance dispersal of GR alleles in giant ragweed under field conditions. The 
results of this study are critical to explaining the widespread occurrence of GR giant ragweed in the Midwest and 
may be useful in developing a simulation model to predict the spread of resistant alleles or the dissemination of 
multiple herbicide resistance alleles from their point of origin. PMGF enhances genetic variance in a population 
and increases the frequency of multiple or polygenic herbicide resistance and the evolutionary dynamics of a 
species7,66. For example, two distinct GR phenotypes— the rapid necrosis response and slow response biotypes—
have been reported in giant ragweed50,67, supporting the possibility that different mechanisms of resistance are 
involved. Though the precise mechanism(s) of herbicide resistance in giant ragweed is unknown67, the partial role 
of altered translocation has been suggested68,69. It is possible that PMGF may bring rapid and slow response mech-
anisms together and result in the evolution of GR populations with more complex mechanism(s) of resistance. 
Similarly, it is also possible that giant ragweed biotypes resistant to ALS-inhibitors and glyphosate might have 

Direction

2014 2015

O50 CI O90 CI O50 CI O90 CI

m

N 1.3 0.4; 4.1 45.6 32.1; 64.4 0.4 0.3; 0.5 106.5 79.3; 142.2

S 2.8 0.8; 4.3 28.6 20.5; 40.1 0.4 0.3; 0.4 37.1 27.3; 49.6

E 4.5 3.4; 5.4 27 22.7; 32.2 1.1 0.8; 1.5 19 16.6; 21.6

W 7.0 5.8; 8.3 49.5 42.7; 57.5 2.4 2; 2.8 26.4 24; 29.1

NE 1.3 0.5; 2.6 35.1 25.4; 48.3 0.5 0.4; 0.6 4.4 3.6; 5.4

NW 1.4 1.3; 1.6 4.9 4.2; 5.6 0.3 0.3; 0.4 46.9 34.5; 63.5

SE 2.5 0.7; 3.9 25.5 20.2; 32.3 0.6 0.4; 0.7 29.4 24.5; 35.3

SW 5.1 4.7; 5.4 17.5 16.1; 19.0 0.3 0.2; 0.3 26 13.6; 53.6

Table 4.  Estimates of the distances where the frequency of gene flow reduced by 50% (O50) and 90% 
(O90) in 2014 and 2015 and their respective confidence intervals from logistic regression analysis*. *O50 
and O90 are the predicted distances for 50% and 90% reduction in gene flow; CI is the 95% confidence 
interval, which includes the lower and upper limits. O50 and O90 were determined from the final model 
[logit(pi) = β0 + exp[β1 + γ1 × Distance] + exp[β2(Direction:Year) + γ2(Direction:Year) × Distance] using the 
prediction function in R.
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evolved due to PMGF, and more such cases should be expected in the future due to the widespread occurrence 
of ALS- and glyphosate-resistant giant ragweed in the Midwestern United States. In a recent survey, Regnier 
et al.65 also reported that herbicide resistance to ALS-inhibitors and glyphosate in giant ragweed were concen-
trated in the same counties and clusters of counties with multiple modes of resistance in Ohio, Indiana, Illinois, 
Missouri, Iowa, Nebraska, and Minnesota. The same study reported that out of 15 states surveyed, resistance to 
ALS-inhibitors, glyphosate, and both (ALS + glyphosate) modes of action occurred in 13, 14, and 12 states in 
contrast to confirmed reports from 5, 12, and 3 states, respectively.

For pollen to be effective in fertilizing over long-distance gene dispersal, extended pollen viability is required70. 
The characteristics of giant ragweed pollen, including its nearly spherical shape, the presence of numerous 
spine-like projections on its surface, its small pollen size varying from 18 to 25 µm, and its low velocity of dep-
osition (0.02 to 0.06 m s−1), likely favor long-distance pollen dispersal71–73. However, scientific literature on the 
duration of pollen viability in giant ragweed is not known. Additionally, since this study was conducted under 
non-crop conditions with a small pollen source relative to the natural stands of GR giant ragweed under field con-
ditions, the results may vary compared to field conditions with crops or other weed species acting as vegetation 
barriers that result in a different ratio of GR to GS plants. Therefore, future studies should consider evaluating the 
duration of pollen viability and the landscape-level dissemination of the GR trait in giant ragweed.

Practical Implications of PMGF in Glyphosate-Resistant Giant Ragweed Management.  Based 
on the results of this study, it is evident that pollen-mediated dissemination of the GR trait is possible in giant 
ragweed and depends on multiple factors, including distance from the pollen source, wind speed, and wind direc-
tion. Therefore, necessary adjustments in management approach are needed, including the control of giant rag-
weed escapes before flowering and communication and collaboration among growers to avoid the farm-to-farm 
spread of herbicide resistance. Further awareness among growers about the significance of PMGF in the spread 
of resistance genes from herbicide-resistant to -susceptible weed species is needed41,42. The adoption of integrated 
weed management approaches with diversified strategies should be encouraged to avoid the widespread dispersal 
of existing herbicide resistance traits as well as to delay the evolution of new herbicide-resistant weeds74,75, and 
mitigate transgene flow39.

Figure 5.  Aerial view of the field experiment conducted to quantify pollen-mediated gene flow from 
glyphosate-resistant to -susceptible giant ragweed at South Central Agricultural Laboratory (SCAL), Clay 
Center, Nebraska, USA. Glyphosate-resistant giant ragweed plants were transplanted in the pollen-donor block 
of 10 m diam in the center of the field. The surrounding pollen-receptor area (80 m × 80 m) was divided into 
eight directional blocks where glyphosate-susceptible giant ragweed plants were transplanted. Giant ragweed 
seeds were harvested at maturity from specific distances along the eight directional arms. Aerial image is 
courtesy of Dr. Richard Ferguson, University of Nebraska-Lincoln.
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Materials and Methods
Plant Material.  Seed heads of the GR giant ragweed biotype were collected in 2013 from a grower’s field near 
David City, Nebraska (NE) (41.26 °N, 97.14 °W). The level of glyphosate resistance in this biotype was 14-fold 
compared to a known susceptible biotype76. Similarly, seed heads were collected from a known GS giant rag-
weed biotype from the South Central Agricultural Laboratory (SCAL), University of Nebraska-Lincoln near Clay 
Center, NE (40.58 °N, 98.14 °W). Seed heads were manually threshed using a handheld roller and cleaned using 
a seed blower (South Dakota Seed Blower, Seedburo Equipment Co., 1022 W. Jackson Blvd., Chicago, IL). To 
overcome dormancy, giant ragweed seeds were packed in mesh bags, placed between moistened layers of soil in 
plastic boxes, and stored in a freezer at −8 °C for 3.5 months for use in this study77.

Seeds from the GR and GS biotypes were germinated in 72-celled plastic germination trays containing pot-
ting mix (Berger BM1 All-Purpose Mix, Berger Peat Moss Ltd., Saint-Modeste, Quebec, Canada). One plant 
per cell was maintained after two weeks and extra plants were transplanted to additional germination trays to 
raise vigorous seedlings for transplanting. Plants were maintained in the greenhouse with a daytime temper-
ature of 25 ± 2 °C, a nighttime temperature of 18 ± 3 °C, and a relative humidity of 70 to 75%. Sodium halide 
lamps were used as a supplemental light source to ensure a 15-h photoperiod. Plants were supplied with adequate 
nutrients [0.075% w/v solution of Miracle-Gro Water Soluble All Purpose Plant Food (N-P2O5-K2O:24-8-16), 
Scotts Miracle-Gro Products Inc., 14111 Scottslawn Road, Marysville, OH 43041] every two weeks and watered 
daily, except during the week before transplanting when water was added alternately to acclimatize the plants. 
Glyphosate response of the GR and GS biotypes was further verified in both years by treating a randomly selected 
sample of 100 plants from each biotype with 1 × (1,260 g ae ha−1) rate of glyphosate (Fig. S2); however, no anom-
alous plants were observed. The seedlings of both biotypes were then transplanted to the field when the majority 
of plants had attained an 8 to 12 cm height.

Field Experiments.  A field experiment was conducted in 2014 and 2015 at South Central Agricultural 
Laboratory (SCAL), University of Nebraska-Lincoln at Clay Center. The soil texture at the experimental site was 
Crete silt loam (fine, montmorillonitic, mesic, Pachic Argiustolls) consisting of 17% sand, 58% silt, 25% clay, 
2.5% organic matter, and a pH of 6.5. The primary weed species observed at the experimental site were common 
lambsquarters, common waterhemp, green foxtail [Setaria viridis (L.) Beauv.], Palmer amaranth (Amaranthus 
palmeri S. Wats.), and velvetleaf (Abutilon theophrasti Medik.). There was no suspicion or report of any GR weed 
species on or around the experimental site. Field preparation began in early May with tillage using a tandem 
disk harrow followed by an application of micro-encapsulated acetochlor (1.68 kg ai ha−1) (Warrant®, Monsanto 
Company, 800 N, Lindbergh Blvd., St. Louis, MO 63167) tank-mixed with glyphosate (0.87 kg ae ha−1) (Roundup 
PowerMax®, Monsanto Company, 800 N, Lindbergh Blvd., St. Louis, MO 63167) to control early-season weeds. 
Later in the season, the experimental site and its surrounding area (up to 60 m) was kept weed-free either by 
hand-weeding or cultivation. The experiments were conducted under non-crop conditions without any physical 
barriers to obstruct natural wind or pollen movement.

Field experiments were conducted using a modified Nelder wheel design17,78,79 with the pollen source (GR 
giant ragweed) planted in the center and the pollen receptors (GS giant ragweed) planted around the center. The 
experimental area was 80 m × 80 m with a central circle of 80 sq m (10 m diameter) for the pollen-donor block 
(Fig. 5). Each year about 377 GR giant ragweed plants were transplanted in the pollen donor block in East-West 
and North-South directions in a grid pattern with a 0.46 m plant to plant distance. The transplanting was per-
formed on June 9 in 2014 and May 26 in 2015.

The receptor area was divided into eight directional blocks (cardinal: N, S, E, and W; and ordinal: NE, NW, SE, 
and SW) and six plants of the GS biotype were transplanted with a plant to plant spacing of 0.3 m at each of the 
specified distances (0.1, 0.5, 1, 2, 4, 10, 15, 25, 35 m for all cardinal and ordinal directions; and an additional 50 m 
only for the ordinal directions) from the pollen-donor block (Fig. 5).

Meteorological Data.  Hourly surface meteorological data including air temperature, precipitation, rela-
tive humidity, wind speed, and wind direction were recorded by installing a weather station (Onset Computer 
Corporation, 470 MacArthur Blvd., Bourne, MA 02532) at the experimental site. Wind frequency (frequency of 
time during which the wind blows in a certain direction), wind speed, and wind run (calculated by multiplying 
the average wind speed by the wind frequency)11 data were used for modeling PMGF, while other meteorological 
data such as temperature, humidity, and precipitation were also recorded due to their effect on pollen viability 
and dispersal80.

Flowering Period and Seed Harvesting.  The percentage of flowering plants was noted at 5 d intervals 
for the pollen-donor and -receptor blocks, and flowering synchrony was evaluated for each direction using the 
equation45:

∑= ×Flowering synchrony
n

A
B

(%) 1 ( %)
( %)

100i
n i

where n is the total number of distances in each direction, Ai% is the percentage of flowering plants at the ith 
observation (distance) in the pollen-receptor blocks, and B% is the percentage of plants shedding pollen in the 
pollen-donor area at that particular time. A ≥ B indicates fully synchronized flowering (i.e., 100%) in the pollen 
receptor.

At maturity, the seed heads of the GS giant ragweed plants from each distance and direction were 
hand-harvested, bagged, and separately labeled. The harvested seeds were cleaned thoroughly, and stratified to 
break seed dormancy using the same procedure described previously.
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Resistance Screening.  Greenhouse dose-response bioassays for the parent biotypes (GR and GS) were 
conducted and the effective doses of glyphosate required for 50% (ED50) and 90% (ED90) injury of the parent 
biotypes were determined using the drc package in R software (R statistical software, R Foundation for Statistical 
Computing, Vienna, Austria)81. Control was visually estimated and recorded at 21 d after treatment using 0% to 
100% scale with 0% meaning no control or injury and 100% meaning complete mortality of the treated plant. 
Percent control of treated plants was assessed based on comparison with the nontreated control plants with 
respect to symptoms such as chlorosis, necrosis, stand loss, and stunting. The ED50 values for the GR and GS 
biotypes were 1,722 and 112 g ae ha−1, respectively, whereas the ED90 values were 14,254 and 468 g ae ha−1, respec-
tively (Fig. S3).

Seeds collected from the GS giant ragweed plants were germinated separately for each distance and direction 
in the greenhouse and evaluated for glyphosate resistance. Plastic trays (51 cm × 38 cm × 10 cm) containing pot-
ting mix (described previously) were used for growing the plants. A maximum of 130 plants were allowed per 
tray to ensure sufficient glyphosate coverage on the leaf surface. The plants were sprayed at an 8–10 cm height 
with 2 × the recommended rate of glyphosate (Touchdown HiTech®, Syngenta Crop Protection, LLC, P.O. Box 
18300, Greensboro, NC 27419–8300), where 1 × =1,260 g ae ha−1. The resistance screening was performed at the 
2× rate (2,520 g ae ha−1) of glyphosate to obtain more consistency in the glyphosate response of the giant ragweed 
plants with complete mortality of all susceptible plants present, and to assure the survival of any GR plant (as the 
ED90 value for the GR parent plants was 5.6-times higher than the 2× rate of glyphosate; Fig. S3). The number of 
seedlings surviving glyphosate treatment were recorded at 21 d after application and the frequency of gene flow at 
each distance/direction was calculated using the equation:

=Frequency of gene flow Number of surviving plants
Number of plants screened (2)

Sampling Strategy.  A sampling strategy suggested by Jhala et al.17 was followed to select a sample size for 
screening giant ragweed plants to quantify the PMGF with a power of ≥0.8. Power analysis with binomial prob-
abilities was used to determine the minimum sample size needed to accept the results of a statistical test with a 
particular level of confidence. Following the procedure of Jhala et al.17 minimum sample sizes were estimated for 
different theoretical frequencies at three different confidence intervals (α) and power values (1−β). The observed 
frequencies from the study were then compared with the theoretical frequencies, and the gene flow was consid-
ered significant if the observed frequencies were greater than the theoretical frequencies.

Statistical Analysis.  An information-theoretic approach82–84 of the model selection was used to select the 
best model for analyzing the PMGF between GR and GS giant ragweed. Unlike traditional null hypothesis testing, 
the model selection approach allows simultaneous evaluation of multiple competing hypotheses (models) rather 
than only two hypotheses (the null and a single alternative hypothesis)84,85.

Frequency of gene flow usually follows a binomial distribution, and the two possible outcomes in this study 
were either dead (susceptible) or live (resistant) giant ragweed seedlings after screening with glyphosate. A char-
acteristic of binomial distribution is that mean and variance are equal and dependent on the underlying prob-
ability function, pi. A set of 43 possible models were constructed to explain the frequency of PMGF using an 
exponential decay function with distance from the pollen source, direction of the pollen-receptor blocks, average 
wind speed, wind frequency, and/or wind run as the explanatory variables in different logically possible combi-
nations without collinearity. The nonlinear regression models were fit using the Generalized Nonlinear Models 
(gnm) package in R software. The advantage of using the gnm compared to the nonlinear least square (nls) func-
tion is that responses with non-Gaussian distribution can be fitted, in addition to their convenience in represent-
ing a model with a large number of parameters through symbolic model specification86. Similarly, correlation 
analysis between PMGF and wind parameters was conducted in R software using cor and cor.test functions.

Model Selection.  The Akaike’s Information Criterion (AIC) was followed to compare the candidate models 
and select the best model using the equation87:

= − +AIC LL K2 2

where LL is the log-likelihood function for the models and K is the number of parameters estimated. The lower 
the AIC value, the better the model; therefore, the model with the lowest AIC value was considered the best can-
didate model88.

Best Model.  The best fit to the data was provided by a double exponential decay model (Equation 4; 
Table 4) where the frequency of the PMGF varied with the distance from the pollen source, the direction of the 
pollen-receptors, and the year:

β β γ β

γ

= + + × +

+ ×

logit p distance direction year
direction year distance

( ) exp[ ] exp[ ( : )
( : )

i 0 1 1 2

2

where pi is the frequency of gene flow of the ith observation; β0 is the overall intercept; β1, β2 are the intercepts for 
the first and second instances, respectively; and γ1, γ2 are the decay rates where γ1 > γ2. Here, β2 and γ2 vary with 
the direction and the year.
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In binomial distribution, probability (pi) is the function of the covariate (γixi) (x is the distance from the pol-
len source) that can take any real value. Because the pi ranges between 0 and 1 (0 ≤pi ≤ 1), transformation of the 
probability becomes important in removing the range and floor restrictions. Logit, or log-odds were calculated 
using the transformation methods described by Cramer89, whereas the back-transformed data were presented:
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The distances where the frequency of gene flow was reduced by 50% (O50) and 90% (O90) of the frequency 
predicted at the closest distance were estimated from the final model (Equation 4).

Model Goodness of Fit.  The goodness of fit statistic was estimated for the best model by measuring the dif-
ference between the observed and fitted values. Model goodness of fit was determined by Pearson’s chi − squared 
statistic, which can be written for binomial data as [Equation 6]

ˆ
ˆ ˆ∑χ

µ

µ µ
=

−

−− −

n y
n

( )
( )n k i

i i i

i i i

2
( 1)

2

where the sum of the squared differences between yi (observed values) and µ̂i (fitted values for the ith group of 
observations) was divided by the variance of yi that was μi(ni − μi)/ni (with μ1 estimated using µ̂i), and ni is the 
sample size for the ith group. The degree of freedom for Pearson’s chi-squared statistic was n − k − 1, where n refers 
to the total number of groups and k refers to the number of parameters.

Data availability.  Raw data of this manuscript is available to download at https://unl.box.com/s/
frkna57a9dncbqozly7zq17rogrnuao9.

Significance.  Glyphosate-resistant giant ragweed was first reported in Ohio, USA and has now been con-
firmed in 12 other states in the United States, including Nebraska. About 0.45 million hectares of corn and 
soybean fields in Nebraska are infested with glyphosate-resistant giant ragweed, in addition to several million 
hectares infested in other states of the Midwestern United States. It is an anemophilous facultative outcrossing 
species; therefore, evaluation of pollen-mediated gene flow (PMGF) and the role of wind are crucial for under-
standing the occurrence, and spread of this species. Modeling gene flow in giant ragweed provided useful infor-
mation about the possibility of PMGF in disseminating resistance genes and the role of wind parameters.
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