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ABSTRACT 29 
MAC3A and MAC3B are conserved U-box containing proteins in eukaryotes. They are subunits of the 30 
MOS4-associated complex (MAC) that plays essential roles in plant immunity and development in 31 
Arabidopsis. However, their functional mechanisms remain elusive. Here we show that Arabidopsis 32 
thaliana MAC3A and MAC3B act redundantly in microRNA (miRNA) biogenesis. Lack of both 33 
MAC3A and MAC3B in the mac3b mac3b double mutant reduces the accumulation of miRNAs, causing 34 
elevated transcript levels of miRNA targets. mac3a mac3b also decreases the levels of primary miRNA 35 
transcripts (pri-miRNAs). However, MAC3A and MAC3B do not affect the promoter activity of genes 36 
encoding miRNAs (MIR genes), suggesting that they may not affect MIR transcription. This result 37 
together with the fact that MAC3A associates with pri-miRNAs in vivo indicates that MAC3A and 38 
MAC3B may stabilize pri-miRNAs. Furthermore, we find that MAC3A and MAC3B interact with the 39 
DCL1 complex that catalyzes miRNA maturation, promote DCL1 activity and are required for the 40 
localization of HYL1, a component of the DCL1 complex. Besides MAC3A and MAC3B, two other 41 
MAC subunits, CDC5 and PRL1, also function in miRNA biogenesis. Based on these results, we propose 42 
that MAC functions as a complex to control miRNA levels through modulating pri-miRNA transcription, 43 
processing and stability.  44 
 45 
 46 
INTRODUCTION  47 

microRNAs (miRNAs), ~ 21-nucleotide in size, are endogenous non-coding RNAs that mainly 48 

repress gene expression at post-transcriptional levels (Baulcombe, 2004; Axtell, 2013). They are 49 
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generated from the imperfect stem-loop residing in the primary miRNA transcripts (pri-miRNAs) 50 

(Voinnet, 2009), most of which are produced by DNA-dependent RNA polymerase II  (Xie et al., 51 

2005). In plants, the RNase III enzyme DICER-LIKE 1 (DCL1) slices pri-miRNAs at least two 52 

times in the nucleus to release a miRNA-containing duplex (Baulcombe, 2004; Axtell, 2013; 53 

Zhang et al., 2015). Then, the small RNA methyltransferase HUA ENHANCER1 (HEN1) 54 

methylates the miRNA duplexes to protect them from degradation and untemplated uridine 55 

addition (Zhai et al., 2013; Ren et al., 2014). Following methylation, the miRNA strand is 56 

incorporated into the effector called ARGONAUTE 1 (AGO1) with the assistance from HEAT 57 

SHOCK PROTEIN 90 and CYCLOPHILIN 40 and recognizes target transcripts through 58 

sequence complementarity (Baumberger and Baulcombe, 2005; Vaucheret, 2008; Smith et al., 59 

2009; Earley and Poethig, 2011). AGO1 cleaves target mRNAs or inhibits their translation, and 60 

therefore, represses gene expression.   61 

 62 

Pri-miRNAs may be co-transcriptionally processed since DCL1 associates with MIR loci (Fang 63 

et al., 2015a). In the past decades, protein factors that regulate miRNA biogenesis through 64 

influencing pri-miRNA transcription, processing and stability have been identified in plants. The 65 

transcriptional co-activator MEDIATOR (Kim et al., 2011), the CYCLIN-DEPENDENT 66 

KINASES (CDKs) (Hajheidari et al., 2012), the transcription factor NEGATIVE ON TATA 67 

LESS 2 (NOT2) (Wang et al., 2013), the DNA binding protein CELL DIVISION CYCLE 5 68 

(CDC5) (Zhang et al., 2013) and ELONGATOR (Fang et al., 2015a) are required for optimized 69 

Pol II activity at the MIR promoters.  Following transcription, the forkhead domain-containing 70 

protein DAWDLE (DDL) (Yu et al., 2008) and the WD-40 protein PLEIOTROPIC 71 

REGULATORY LOCUS 1 (PRL1) (Zhang et al., 2014) bind pri-miRNAs to prevent their 72 

degradation.   73 

 74 

To efficiently and accurately process pri-miRNAs, DCL1 forms a complex with the double 75 

stranded RNA (dsRNA)-binding protein HYPONASTIC LEAVES1 (HYL1), the Zinc-finger 76 

protein SERRATE (SE) and the RNA-binding protein TOUGH (TGH) (Fang and Spector, 2007; 77 

Fujioka et al., 2007; Song et al., 2007; Dong et al., 2008; Ren et al., 2012). The formation of the 78 

DCL1 complex requires NOT2 (Wang et al., 2013), ELONGATOR (Fang et al., 2015a), 79 

MODIFIER OF SNC1, 2 (MOS2, an RNA-binding protein) (Wu et al., 2013) and the DEAH-box 80 
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helicase PINP1 (Qiao et al., 2015). How MOS2 and PINP1 participate in the assembly of the 81 

DCL1 complex remains unclear, since they do not interact with the DCL1 complex (Wu et al., 82 

2013; Qiao et al., 2015).  Efficient loading of pri-miRNAs to the DCL1 complex requires TGH 83 

(Ren et al., 2012), the THO/TREX complex that is involved in nuclear RNA transport 84 

(Francisco-Mangilet et al., 2015), and the ribosome protein STV1 (Li et al., 2017).  Notably, 85 

several additional proteins including the CAP-BINDING PROTEINs (CBPs) (Gregory et al., 86 

2008; Laubinger et al., 2008), NOT2, ELONGATOR, DDL, CDC5 and PRL1 also associate with 87 

the DCL1 complex to enhance pri-miRNA processing. In addition, SICKLE (SIC, a proline-rich 88 

protein) (Zhan et al., 2012), RECEPTOR FOR ACTIVATED C KINASE 1 (RACK1) (Speth et 89 

al., 2013), STABILIZED1 (STA1, a pre-mRNA processing factor 6 homolog) (Ben Chaabane et 90 

al., 2013), REGULATOR OF CBF GENE EXPRESSION 3 (RCF3, also known as HOS5 and 91 

SHI1) (Chen et al., 2015; Karlsson et al., 2015) and GRP7 (a glycine-rich RNA-binding protein) 92 

(Koster et al., 2014) also regulate miRNA biogenesis. However, they do not associate with 93 

DCL1. Moreover, phosphorylation and dephosphorylation of HYL1 are crucial for pri-miRNA 94 

processing (Manavella et al., 2012). In addition, protein factors that act in miRNA biogenesis are 95 

also transcriptionally and post-transcriptionally regulated. For instance, DCL1 transcription is 96 

modulated by the histone acetyltransferase GCN5 (Kim et al., 2009), STA1 (Ben Chaabane et al., 97 

2013) and the transcription factor XAP5 CIRCADIAN TIMEKEEPER (XCT) (Fang et al., 98 

2015b). Notably, HYL1 protein levels are maintained by the SNF1-RELATED PROTEIN 99 

KINASE 2 (Yan et al., 2017) and the E3 ubiquitin ligase CONSTITUTIVE 100 

PHOTOMORPHOGENIC 1 (COP1) (Cho et al., 2014) through unknown mechanisms. Recently, 101 

KETCH1 (KARYOPHERIN ENABLING THE TRANSPORT OF THE CYTOPLASMIC 102 

HYL1)-mediated transportation of HYL1 from the cytoplasm to the nucleus was shown to be 103 

crucial for miRNA biogenesis (Zhang et al., 2017). Interestingly, pri-miRNA structures also 104 

influence the DCL1 activity (Mateos et al., 2010; Song et al., 2010; Werner et al., 2010; Bologna 105 

et al., 2013; Zhu et al., 2013). For instance, the internal loop below the miRNA/miRNA* within 106 

the stem-loop is important for the processing of some pri-miRNAs.  107 

 108 

Among proteins associated with the DCL1 complex, CDC5 and PRL1 are two core subunits of 109 

the MOS4-assoicated complex (MAC) (Monaghan et al., 2009). MAC is a conserved complex 110 

that associates with the spliceosome (Deng et al., 2016). Its homolog complexes in human and 111 
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yeast are known as the CDC5-SNEVPrp19-Pso4 (PRP19) complex and the Nineteen complex (NTC), 112 

respectively (Palma et al., 2007). Both PRP19 and NTC function in splicing, DNA repair, cell 113 

cycle and genome stability (Chanarat and Strasser, 2013). MAC contains three additional core 114 

subunits, MAC3A, MAC3B and MOS4, and at least 13 accessory proteins with diversified 115 

functions (Monaghan et al., 2009). Deficiency in MAC impairs plant immunity and development 116 

(Monaghan et al., 2009). However, related mechanisms still need investigation. We have 117 

previously shown that CDC5 and PRL1 have overlapping roles in regulating DCL1 activity, but 118 

distinct functions in pri-miRNA transcription and stability (Zhang et al., 2013; Zhang et al., 119 

2014). These results raise the possibility that other MAC components may also have diversified 120 

effects on miRNA biogenesis. Among core MAC components, MAC3A and MAC3B are two 121 

homologous U-box type E3 ubiquitin ligases (~ 82% identity and 90% similarity) (Monaghan et 122 

al., 2009). E3 ligase activity of MAC3B has been demonstrated in vitro (Wiborg et al., 2008). 123 

We previously showed that a loss-of-function mutation in MAC3A does not affect miRNA 124 

accumulation (Zhang et al., 2014). However, this result may reflect the redundant function of 125 

MAC3B with MAC3A.  126 

 127 

In this study, we found that lack of both MAC3A and MAC3B reduces the accumulation of 128 

miRNAs and impairs the localization of HYL1 in the D-body. MAC3A associates with the 129 

DCL1 complex and pri-miRNAs and promotes pri-miRNA processing.  MAC3A and MAC3B 130 

are also required for accumulation of pri-miRNAs. However, unlike CDC5, MAC3A neither 131 

interacts with Pol II nor affects MIR transcription. These results suggest that MAC3A/3B may 132 

stabilize pri-miRNAs and act as a co-factor to promote D-body formation and pri-miRNA 133 

processing.  In addition, we show that MAC3A is a phosphorylation-dependent E3 ligase and its 134 

E3 ligase activity is required for miRNA biogenesis. We propose that MAC may act as a 135 

complex to promote miRNA biogenesis and different MAC components may have distinct and 136 

cooperative effects on pri-miRNA transcription, stability and processing. 137 

 138 

  139 
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RESULTS 140 

 141 

MAC3A and MAC3B are required for miRNA biogenesis 142 

The fact that CDC5 and PRL1, two core components of MAC are required for miRNA 143 

biogenesis suggests that other MAC components may also function in miRNA biogenesis. 144 

However, we previously showed that a single mac3a mutation does not affect miRNA 145 

accumulation in Arabidopsis thaliana (Zhang et al., 2014). To evaluate if this result might reflect 146 

redundancy between MAC3A and MAC3B in miRNA biogenesis, we generated a mac3a mac3b 147 

double mutant through crossing mac3a (Salk_089300) to mac3b (Salk_050811) (Monaghan et 148 

al., 2009). Compared with Col (wild-type plant, WT), mac3a mac3b displayed pleiotropic 149 

development defects (Figure 1). For instance, the root length of mac3a mac3b is much shorter 150 

(Figure 1A and I).  Moreover, the size of the mac3a mac3b was smaller (Figure 1B).  Reduced 151 

cell number was likely responsible for the smaller size of mac3a mac3b, since the size of 152 

palisade cells from mac3a mac3b was comparable to that from Col (Figure 1C, 1D and 1J). In 153 

addition, mac3a mac3b leaves had three to four branch points (4–5 branches) on average, while 154 

most trichomes of Col had two branch points (three branches)(Figure 1E, 1F and 1K). 155 

Furthermore, the silique length of mac3b mac3b was shorter than that of Col (Figure 1G and 1L). 156 

Moreover, the amounts of aborted seeds were higher in the siliques of mac3a mac3b than those 157 

of WT (Figure 1H and 1M), suggesting that MAC3A and MAC3B also affect fertility.  158 

 159 

The pleiotropic growth defects of mac3a mac3b are consistent with the effect of miRNAs on 160 

plant development; we therefore examined the accumulation of miRNAs in mac3a mac3b and 161 

Col through RNA gel blot. The abundance of all nine examined miRNAs was reduced in mac3a 162 

mac3b relative to Col (Figure 2A). RT-quantitative PCR (RT-qPCR) analyses further confirmed 163 

that miRNA levels were decreased in mac3a mac3b (Figure 2B). We also examined the effect of 164 

MAC3A and MAC3B on trans-acting siRNAs (ta-siRNAs), which is another class of sRNAs that 165 

represses gene expression at post-transcriptional levels (Peragine et al., 2004; Allen et al., 2005; 166 

Yoshikawa et al., 2005; Axtell et al., 2006).  Similar to miRNAs, ta-siR255 was reduced in 167 

abundance in mac3a mac3b (Figure 2A). However, the effect MAC3A and 3B on ta-siR255 168 

might be indirect, since the production of ta-siRNAs depending on miRNAs, whose abundance 169 

was reduced in mac3a mac3b.  170 
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 171 

We further compared miRNA profile from inflorescences of mac3a mac3b with that of WT 172 

through deep sequencing. The abundance of many miRNAs was reduced in mac3a mac3b 173 

relative to WT (Supplemental Figure 1A and Supplemental Data Set 1), suggesting that MAC3A 174 

MAC3B may have a global effect on miRNA accumulation. We also compared the effect of 175 

mac3a mac3b on miRNA accumulation with that of dcl1-9 (a weak allele of dcl mutants) and 176 

cdc5.  As expected, cdc5 and dcl1-9 reduced the abundance of most miRNAs (Supplemental 177 

Figure 1B, 1C and Supplemental Data Set 1). Among significantly down-regulated miRNAs 178 

(P<0.1), DCL1, CDC5 and MAC3A/MAC3B showed overlapping effects on many of them 179 

(Supplemental Figure 1D).  However, some miRNAs were differentially affected by DCL1, 180 

CDC5 and MAC3A/MAC3B (Supplemental Figure 1D). These results suggest that these proteins 181 

may have overlapping and distinct roles in miRNA biogenesis.  182 
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 183 

Next, we evaluated the influence of mac3a mac3b on the transcript levels of ARF4, ARF8, CKB3, 184 

CUC1, MYB33, PHO2, PHV, PPR, and SPL9/10/13, which are targets of tasiR-ARF, miR167, 185 

miR397, miR164, miR159, miR399, miR166, miR400, miR156, respectively. The levels of these 186 

target transcripts were increased in mac3a mac3b compared with Col (Figure 2C), suggesting 187 

that MAC3A and 3B are required for optimal activity of miRNAs and ta-siRNAs. 188 

 189 

To determine if the lack of MAC3A and MAC3B was responsible for the observed phenotypes, 190 

we expressed a genomic copy of MAC3A fused with a GUS gene at its 3ʹ end under the control of 191 

its native promoter (proMAC3A:MAC3A-GUS) in mac3a mac3b. The expression of this 192 

transgene rescued the developmental defects of mac3a mac3b (Supplemental Figure 2A). In 193 
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addition, fusion constructs MAC3B-GFP (pro35S:MAC3B-GFP) or MYC-MAC3A 194 

(pro35S:MYC-MAC3A) under the control of the 35S promoter also complemented the 195 

developmental defects of mac3a mac3b (Supplemental Figures 2B and 2J). Consistent with this 196 

observation, miRNA and target transcript levels in the complementation lines were comparable 197 

to those in Col (Supplemental Figure 2K and 2L). We also examined the expression pattern of 198 

MAC3A in mac3a mac3b harboring proMAC3A:MAC3A-GUS through GUS histochemical 199 

staining. MAC3A was universally expressed and displayed high expression levels in primary 200 

root tip, lateral root, and young leaves (Supplemental Figure 2C-2I). These results demonstrate 201 

that MAC3A and MAC3B act redundantly to control development and miRNA accumulation of 202 

Arabidopsis. 203 

 204 

MAC3A and MAC3B do not affect MIR transcription 205 

We have previously shown that CDC5 and PRL1 regulate pri-miRNA levels through modulating 206 

pri-miRNA transcription and stability, respectively (Zhang et al., 2013; Zhang et al., 2014). This 207 

led us to test if pri-miRNA levels were also altered in mac3a mac3b. As expected, all examined 208 

pri-miRNAs were reduced in abundance in mac3a mac3b compared with Col (Figure 3A). We 209 

suspected that as in cdc5, this reduction could be caused by alteration in transcription. Thus, we 210 

evaluated the effect of mac3a mac3b on MIR promoter activity. The MIR promoter reporter 211 

construct, pMIR167a:GUS (Zhang et al., 2014), was crossed into mac3a mac3b. Histochemical 212 

staining and RT-qPCR analyses revealed that the expression levels of GUS in mac3a mac3b 213 

were similar to those in WT (Figure 3B and 3C), indicating that MAC3A and MAC3B may have 214 

no effect on MIR promoter activity. Furthermore, we tested the interaction between MAC3A and 215 

the second largest subunit of Pol II (RPB2) through co-immunoprecipitation assay (Co-IP) in the 216 

mac3a mac3b expression pro35S:MAC3A-GFP.  In MAC3A-GFP precipitates, we did not detect 217 

the presence of RPB2 (Figure 3D), suggesting that unlike CDC5 and PRL1, MAC3A does not 218 

associate with RPB2.  We also examined the occupancy of Pol II at the MIR promoters through 219 

chromatin immunoprecipitation (ChIP) assays in mac3a mac3b and Col performed using anti-220 

RPB2 antibody. qPCR analysis did not detect an obvious difference of Pol II occupancy at 221 

various MIR promoters between mac3a mac3b and Col (Figure 3E). Taken together, these results 222 

suggest that MAC3A and MAC3B do not affect MIR transcription.  223 

 224 
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MAC3A and MAC3B associate with the DCL1 complex  225 

To further understand how MAC3A and MAC3B affect miRNA biogenesis, we examined the 226 

effect of mac3a mac3b on the expression of DCL1, DDL, SE, HYL1, CBP20/80 and HEN1, 227 

which are known to function in miRNA biogenesis. The transcript levels of HYL1, and 228 

CBP20/80 were slightly increased, while the abundance of DDL transcripts was marginally 229 

reduced (Supplemental Figure 3A). In addition, the levels of DCL1, HEN1 and SE did not show 230 

significant change. Immunoblot analyses further showed that the protein levels of SE and DCL1 231 

were not changed in mac3a mac3b whereas the HYL1 protein was slightly increased in 232 

abundance (Supplemental Figure 3B). Moreover, we also examined the effect of mac3a mac3b 233 

on the splicing of DCL1, DDL, HEN1, HYL1 and SE using RT-PCR with primers targeting a 234 
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subset of introns (Supplemental Figure 3C). MAC3A and MAC3B did not have an obvious 235 

effect on the splicing of these introns (Supplemental Figures 3C and 3D). However, it is not clear 236 

if MAC3A and MAC3B affect the splicing of other introns in these examined genes.  237 

 238 

Since MAC3A and MAC3B are components of the MAC, we suspected that like CDC5 and 239 

PRL1, MAC3A and MAC3B might also interact with the DCL1 complex. We performed a 240 

bimolecular fluorescence complementation (BiFC) assay to test this possibility. In the leaves of 241 

N. benthamiana transiently co-expressing MAC3A or MAC3B fused with the C-terminal 242 

fragment of cyan fluorescent protein (cCFP) with CDC5, PRL1, DCL1 or SE fused with the N-243 

terminal fragment of Venus (nVenus), yellow fluorescence signals were observed (shown in 244 

green color; Figure 4A and Supplemental Figure 4). BiFC signals of MAC3A or MAC3B with 245 

PRL1, DCL1 and SE were localized at the discrete bodies (Figure 4A and Supplemental Figure 246 

4). Interestingly, the interaction between MAC3A/3B and CDC5 produced not only discrete 247 

signals but also diffused ones, agreeing with the role of MAC in mRNA splicing (Figure 4A and 248 

Supplemental Figure 4).  Co-expression cCFP-MAC3A or cCFP-3B with nVenus-HYL1 resulted 249 

in weak and diffused YFP signals (Figure 4A and Supplemental Figure 4), consistent with the 250 

observation that CDC5 and PRL1 do not co-immunoprecipitate with HYL1 (Zhang et al., 2014). 251 

 252 

Next, we used co-IP to confirm the interaction of MAC3A with CDC5, PRL1, DCL1 and SE.  253 

We first co-expressed MYC-MAC3A with CDC5-YFP, PRL1-YFP or YFP and performed IP 254 

with anti-YFP antibodies. MYC3A was detected in CDC5-YFP and PRL1-YFP precipitates, but 255 

not in YFP precipitates (Figure 4B and 4C), confirming the interaction of MAC3A with CDC5 256 

and PRL1. We next co-expressed MAC3A-GFP or GFP with MYC-DCL1 or MYC-SE and 257 

tested the interaction of co-expressed proteins.  MAC3A-YFP, but not YFP, co-IPed with MYC-258 

DCL1 and MYC-SE (Figure 4D and 4E).  Furthermore, RNAse A treatment did not disrupt the 259 

interaction of MAC3A with DCL1 and SE (Figure 4B-4D). These results suggest that MAC3A 260 

and MAC3B associate with the DCL1 complex in an RNA-independent manner.  261 

 262 

mac3a mac3b reduces pri-miRNA processing in vitro 263 

The association of MAC3A and MAC3B suggests that they may modulate DCL1 activity. 264 
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We used an in vitro pri-miRNA processing assay to test this possibility.  As previously described, 265 

we first generated a radiolabeled pri-miR162b (MIR162b) composed of the stem-loop of 266 
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miR162b with 6-nt arms at each end using in vitro transcription (Figure 5A). Processing of 267 

MIR162b was then tested in the protein extracts from young flowers of mac3a mac3b or Col. 268 

The production of miR162b from MIR162b was reduced in the protein extracts of mac3a mac3b 269 

relative to Col (Figure 5B). At 50 min and 100 min time points, the levels of miR162 generated 270 

in mac3a mac3b were ~ 20% of those produced in Col (Figure 5C). These results suggest that 271 

MAC3A/3B may be required for the optimal activity of the DCL1 complex.  272 

 273 

MAC3A binds pri-miRNAs in vivo  274 

The WD domain of MAC3A and MAC3B is known to mediate protein–protein interaction. 275 

However, it can also interact with RNAs (Lau et al., 2009).  Thus, it is possible that MAC3A and 276 
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MAC3B could bind pri-miRNAs. To test this hypothesis, we performed an RNA 277 

immunoprecipitation assay (RIP) on seedlings of the mac3a mac3b complementation line 278 

harboring the MYC-MAC3A transgene (Ren et al., 2012).  Following cross-linking, nuclear 279 

isolation, and immunoprecipitation, we examined the presence of pri-miRNAs in MAC3A IPs 280 

using RT-PCR. All examined pri-miRNAs, but not the control EIF4A RNAs, were enriched in 281 

the MAC3A IPs (Figure 5D). By contrast, pri-miRNAs were not detected in the no-antibody 282 

controls (Figure 5D). These results suggest that MAC3A/3B associates with pri-miRNAs in vivo. 283 

 284 

Next, we tested if MAC3A could directly bind pri-miRNA in vitro using the RNA pull-down 285 

assay (Ren et al., 2012). In this assay, MBP and recombinant MAC3A fused with maltose-286 

binding protein (MBP) at its N-terminus (MBP-MAC3A) were expressed in E. coli, purified with 287 

amylose resin, and then incubated with [32P]-labeled MIR162b (Supplemental Figure 5A and 288 

Figure 5E).  After washing, neither MBP-MAC3A nor MBP retained MIR162b (Figure 5E). 289 

MBP-MAC3A also did not interact with a ∼100-nt single-stranded RNA (ssRNA), which was 290 

generated through in vitro transcription using a N-terminal fragment of the UBIQUITIN 5 (N-291 

UBQ5), or a dsRNA generated through annealing of sense and anti-sense strands of N-UBQ5 292 

(Figure 5E). Because MAC3A activity needs phosphorylation (see below), we treated the 293 

recombinant MAC3A protein with extracts from Col (see below) to modify the protein and then 294 

tested its interaction with MIR162b. The modified MAC3A also did not interact with RNAs 295 

(Supplemental Figure 5B). These results suggest that MAC3A is not an RNA-binding protein. 296 

 297 

MAC3A and MAC3B are required for the localization of HYL1 in D-bodies 298 

The interaction of MAC3A/B with the DCL1 complex also prompted us to test the effect of 299 

mac3a mac3b on the formation of the D-body. We crossed a HYL1-YFP transgenic line, which 300 

has been used as a reporter for the D-body (Wang et al., 2013; Wu et al., 2013; Qiao et al., 2015), 301 

into mac3a mac3b and examined the percentage of cells containing D-bodies in the root tips and 302 

elongation region. As previously reported (Wu et al., 2013), the HYL1-containing D-bodies 303 

existed in most cells (~ 84%, Figure 6A, 6B and Supplemental Figure 6A and 6B) in WT. By 304 

contrast, D-bodies were observed in only ~ 26% of cells in mac3a mac3b. This result 305 

demonstrates that MAC3A and MAC3B are required for correct HYL1 localization, indicating 306 

their potential role in facilitating D-body formation.  307 
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 308 

MAC3A is a U-Box ubiquitin E3 ligase whose activity depends on phosphorylation  309 

Both MAC3A and MAC3B contain an N-terminal ligase U-box domain that confers E3 ubiquitin 310 

ligase activity and recruits the E2 conjugating enzyme, a coiled-coil region that exists in all 311 

Prp19 homologs, mediates the tetramerization of Prp19 and interacts with CDC5L and SFP27 in 312 

metazoans, and a C-terminal WD domain composed of seven WD repeats that is required for 313 

substrate recruitment (Figure 7A).  Homologous of MAC3A and MAC3B exist in all plants, 314 

while their copy numbers vary among different genomes (Supplemental Figure 7 and 315 

Supplemental Data Set 2).  316 

 317 
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Because MAC3A has considerable sequence difference from MAC3B, we tested if it is a 318 

ubiquitin E3 ligase using MBP-MAC3A (Supplemental Figure 5A). We examined the E3 ligase 319 

activity in the presence of ubiquitin, the ubiquitin-activating enzyme (E1) SlUBA and the 320 

ubiquitin-conjugating enzyme (E2) UBC8 (Zhou et al., 2017). However, MBP-MAC3A 321 

displayed only weak activity (Figure 7B). We suspected that like some other E3 ligases, MAC3A 322 

activity might depend on post-translational modification (Wang et al., 2015). Thus, we treated 323 

MBP-MAC3A and MBP protein with total protein extracts from inflorescences of mac3a mac3b. 324 

The use of mac3a mac3b was to avoid contamination from endogenous MAC3A/3B, since 325 

MAC3A potentially interacts with MAC3B.  The treatment greatly improved MAC3A activity 326 

(Figure 7B). Notably, Alkaline Phosphatase (Calf intestinal phosphatase, CIP) treatment of 327 

MAC3A after incubation with mac3a mac3b protein extracts completely eliminated MAC3A 328 

activity (Figure 7B). These results demonstrate that MAC3A is a bona fide ubiquitin E3 ligase 329 

and that its activity depends on protein phosphorylation.  330 
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 331 

The ubiquitin ligase activity of MAC3A is required for miRNA and pri-miRNA 332 

accumulation  333 

Since MAC3A is a ubiquitin ligase, we next asked if its function in miRNA biogenesis requires 334 

this activity. Based on the fact that the U-box domain of Prp19-like family is conserved in 335 

eukaryotes (Ohi et al., 2003), we generated two mutant versions of MAC3A in U-box domain 336 

through site-directed mutagenesis. In one mutant, the conserved amino acids of Tyrosine (Y) at 337 

position 23 and Glutamic acid (E) at position 24 were replaced with Glycine (G) and Alanine (A) 338 

(MAC3AMut1), respectively, while in the other one, the conserved amino acids of Histidine (H) at 339 

position 31 and Aspartic acid (D) at position 34 were replaced with Alanines (AA) (MAC3AMut2) 340 

(Figure 8A). These two mutations disrupted the ubiquitin ligase activity of MAC3A 341 

(Supplemental Figure 8A).  To evaluate the effect of MAC3AMut1 and MAC3AMut2 on miRNA 342 

biogenesis, we generated stable transgenic lines in mac3a mac3b expressing MAC3AMut1 or 343 

MAC3AMut2 under the control of 35S promoter. The expression MAC3AMut1 or MAC3AMut2 did 344 

not rescue the developmental defects of mac3a mac3b (Supplemental Figure 8B and Figure 8B). 345 

Agreeing with this observation, the accumulation of both pri-miRNAs and miRNAs in mac3a 346 

mac3b was not recovered by MAC3AMut1 or MAC3AMut2 (Figure 8C and 8D). These results 347 

suggest that the ubiquitin ligase activity of MAC3A is required for miRNA biogenesis.  348 

 349 

  350 
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DISCUSSION 351 

MAC3A and MAC3B are conserved U-box type ubiquitin E3 ligases. In plants, MAC3A and 352 

MAC3B play important roles in plant immunity and development, and their counterparts in other 353 

organisms are required for splicing. In Arabidopsis, the MAC also associates with the 354 

spliceosome. However, only a few genes display moderated splicing in defects in mac3a mac3b 355 

(Monaghan et al., 2010; Xu et al., 2012). Consequently, how MAC3A and MAC3B regulate 356 

development and immunity remains elusive.  In this study, we show that the accumulation of 357 

miRNA is reduced in mac3a mac3b. Furthermore, MAC3A and MAC3B associate with the 358 

DCL1 complex and pri-miRNAs. These results suggest that MAC3A and MAC3B are important 359 

players in miRNA biogenesis, in addition to their role in splicing. Impaired miRNA biogenesis 360 
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may partially explain the pleiotropic developmental defects of mac3a mac3b, since miRNAs 361 

target many genes that are required for proper development.  362 

 363 

There are at least three possible explanations for the decreased pri-miRNA levels in mac3a 364 

mac3b. First, mac3a mac3b may have reduced MIR transcription. The facts that mac3a mac3b 365 

does not show altered MIR promoter activity and that MAC3A does not co-IP with Pol II suggest 366 

that MAC3A and MAC3B may not affect MIR transcription. However, we cannot rule out the 367 

possibility that MAC3A and MAC3B influence MIR elongation or termination. Second, 368 

enhanced pri-miRNA processing in mac3a mac3b may also decrease pri-miRNA accumulation. 369 

However, reduced pri-miRNA processing is observed in mac3a mac3b, arguing against this 370 

possibility. Third, mac3a mac3b may have reduced stability of pri-miRNAs (Figure 9). We give 371 

this option more weight, given the observations that MAC3A associates with pri-miRNAs in vivo 372 

and interacts with PRL1, which protects pri-miRNAs from degradation. It is reasonable to 373 

speculate that MAC3A may stabilize pri-miRNAs through modulating the function of PRL1. 374 

Indeed, it has been observed that the interaction between PRP19 (a MAC3A ortholog) and the 375 

RNA-binding protein CWC2 is required for the stabilization of small nuclear RNAs (snRNAs) 376 

related to splicing in yeast (McGrail et al., 2009; Vander Kooi et al., 2010).  377 

 378 
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MAC3A/MAC3B interacts with DCL1 and SE but appears to have weak or no association with 379 

HYL1. Interestingly, a lack of MAC3A and MAC3B impairs the localization of HYL1 at the D-380 

body. How does this happen? One possibility is the decreased pri-miRNAs in mac3a mac3b may 381 

affect the formation of D-body. However, loss-of-function mutants mos2 and pinp1, in which the 382 

levels of pri-miRNAs are increased or unaltered, respectively, also display impaired HYL1 383 

localization or D-body assembly, arguing against this possibility. In human, PRP19-mediated 384 

ubiquitination regulates the protein–protein interaction of the spliceosome, which is important 385 

for the spliceosome assembly (Das et al., 2017). In addition, PRP19 also promotes the 386 

recruitment of ATRIP (a kinase) to the DNA damage site through modifying DNA replication 387 

protein A (Marechal et al., 2014). Thus, it is possible that MAC3A and MAC3B may influence 388 

the recruitment of HYL1 through modifying proteins involved in D-body assembly. 389 

Alternatively, they may co-transcriptionally facilitate the recruitment of the D-body to the 390 
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processing site of pri-miRNAs (Figure 9). The association of MAC3A/3B with the DCL1 391 

complex is consistent with these hypotheses.  392 

 393 

Pri-miRNA processing is also reduced in mac3a mac3b. This cannot be attributed to altered 394 

expression of genes involved in miRNA biogenesis, as the levels of these genes are either 395 

slightly increased or unaltered in mac3a mac3b. We have shown the CDC5 promotes DCL1 396 

activity through its interaction with the regulatory domains of DCL1 (Zhang et al., 2013), while 397 

PRL1 functions an accessory factor to facilitate CDC5 function in modulating DCL1 activity 398 

(Zhang et al., 2014). By analogy, MAC3A and MAC3B may function as components of the 399 

MAC to directly or indirectly enhance the DCL1 activity (Figure 9). Alternatively, impaired 400 

HYL1 localization or D-body formation may affect the DCL1 activity.  401 

 402 
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In summary, we find that MAC3A and MAC3B, two core components of the MAC, act 403 

redundantly in miRNA biogenesis. They associate with the DCL1 complex, positively modulate 404 

pri-miRNA accumulation, facilitate HYL1 localization at the D-body and enhance DCL1 405 

activity. More importantly, we show that MAC3A is a phosphorylation-dependent ubiquitin 406 

ligase and that this ligase activity is required for miRNA biogenesis. This result indicates that 407 

certain signals may modulate MAC3A activity through phosphorylation and thereby regulate 408 

miRNA accumulation. The involvement of four MAC core components in miRNA biogenesis 409 

suggests that the MAC functions as a complex to promote miRNA biogenesis. 410 

Besides core components, the MAC also contains at least 13 accessory components. The core 411 

and accessory components of the MAC are proteins with diversified functions, such as 412 

transcription factors, RNA-binding proteins, ubiquitin ligase, helicases, chromatin protein, WD 413 

proteins, protein–protein interaction regulators, coiled-coil domain-containing proteins and zinc-414 

finger-domain-containing proteins. Moreover, the accessory components are dynamically 415 

associated with the core complex, and sub-complexes with different functions are often formed. 416 

Thus, it is likely that various MAC components act individually and coordinately in miRNA 417 

biogenesis through influencing pri-miRNA transcription, processing, and stability and/or likely 418 

have a role in the assembly of D-body (Figure 9), which resembles the diversified function of 419 

PRP19 in splicing.  Consistent with this notion, CDC5 and PRL1 contribute differently to pri-420 

miRNA accumulation but act as a complex to regulate DCL1 activity.  It will be interesting to 421 

further determine the functional mechanism of these proteins as individual components and as a 422 

complex in miRNA biogenesis. The functions of the PRP19 complex from metazoans in 423 

splicing, transcription, chromatin stability and lipid droplet biogenesis have been well 424 

documented (Chanarat and Strasser, 2013). However, its function in metazoan miRNA 425 

biogenesis is unknown.  Given the fact that all four MAC components associate with SE, an 426 

ortholog of ARS2, which is a key component of miRNA biogenesis in metazoa, it will not be 427 

surprising if the PRP19 complex plays a role in metazoan miRNA biogenesis.  428 

 429 

  430 
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METHODS 431 

Plant materials and growth conditions  432 

SALK_089300 (mac3a) (Monaghan et al., 2009) and SALK_050811 (mac3b) were obtained 433 

from the Arabidopsis Biological Resources Center (ABRC). They are in the Columbia (Col) 434 

genetic background. Transgenic lines containing a single copy of proMIR167a:GUS or 435 

pro35S:HYL1-YFP were crossed to mac3a mac3b. In the F2 generation, WT plants or mac3a 436 

mac3b harboring proMIR167a:GUS or pro35S:HYL1-YFP were selected through PCR-based 437 

genotyping for mac3a, mac3b, GUS or GFP.  ~ 15 WT or mac3a mac3b plants were pooled for 438 

GUS transcript level analyses. All plants were grown at 22°C with 16 hour light  (cool white 439 

fluorescent lamps, 25-W Sylvania 21942 FO25/741/ECO T8 linear tube) and 8 hour dark cycles. 440 

 441 

Plasmid construction 442 

A DNA fragment containing 2066 bp promoter and 3841bp coding region of MAC3A was PCR 443 

amplified using DNAs from Col as templates with the primers of proMAC3A-4F and 444 

MAC3Acds-1R. The resulting PCR product was cloned into pENTR/D-TOPO vector and 445 

subsequently cloned into pMDC163 binary vector to generate the proMAC3A:MAC3A-GUS 446 

plasmid.  The MAC3A full-length cDNA was RT-PCR amplified with the primers of 447 

MAC3Acds-1F and MAC3Acds-1R, cloned into pENTR/D-TOPO vector and subcloned into 448 

pEarleyGate203 or pMDC83 to generate the pro35S:MYC-MAC3A construct or the 449 

pro35S:MAC3A-GFP construct. The MAC3B full-length cDNA was amplified with the primers 450 

of MAC3Bcds-1F and MAC3Bcds-1R by RT-PCR and cloned into pENTR/D-TOPO vector and 451 

subcloned into pMDC83 to generate the pro35S:MAC3B-GFP construct. To construct cCFP-452 

MAC3A or cCFP-MAC3B, MAC3A cDNA or MAC3B cDNA was PCR amplified using the 453 

primer pair MAC3A-3F/2R or MAC3B-3F/2R, respectively, and cloned into pSAT4-cCFP-C 454 

vector. Then, the pro35S:cCFP-MAC3A fragment or the pro35S:cCFP-MAC3B fragment was 455 

released by I-SceI restriction enzyme digestion and subcloned to pPZP-RCS2-ocs-bar-RI vector. 456 

The constructs cCFP-SE, nVenus-DCL1, nVenus-HYL1, nVenus-SE, and nVenus-AGO1 were 457 

described previously (Ren et al., 2012). To construct MBP-MAC3A, the MAC3A cDNA sequence 458 

was amplified with primer MAC3A-5F(Not1) and MAC3A-5R(Sal1) and subsequently inserted 459 

into the pMAL-C5X vector. Site-mutagenesis of MAC3A was performed according the protocol 460 

of QuikChange II Site-Directed Mutagenesis Kit (Agilent). The primers are list in Supplemental 461 
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Table 1. 462 

 463 

Plant complementation  464 

The proMAC3A:MAC3A-GUS, pro35S:MYC-MAC3A, pro35S:MAC3AMut1-GFP, 465 

pro35S:MAC3AMut2-GFP, and pro35S:MAC3B-GFP plasmids were transformed into mac3a 466 

mac3b using Agrobacterium-mediated floral dip method, respectively. The transgenic plants 467 

harboring proMAC3A:MAC3A-GUS, pro35S:MAC3AMut1-GFP, pro35S:MAC3AMut2-GFP, or 468 

pro35S:MAC3B-GFP were selected on MS medium containing hygromycin (30 μg/mL). 469 

pro35S:MYC-MAC3A transformants were selected by spraying seedlings with 120 mg/L BASTA 470 

solution.  471 

 472 

E3 ubiquitin ligase activity assay  473 

MBP- tagged fusion proteins were expressed in E. coli strain BL21 (DE3) and purified with 474 

Amylose Resin (E8021S; NEB) by following the protocol provided by the manufacturer. The 475 

purified proteins were further desalted and concentrated using the Amicon Centrifugal Filter 476 

(Millipore). The concentration of purified protein was determined using protein assay agent 477 

(Bio-Rad).  478 

 479 

The in vitro ubiquitination assay was performed as described (Zhou et al., 2017). Briefly, the 480 

components of 3 μg FLAG-ubiquitin, 40 ng E1 (GST-SlUBA1), 120 ng 6xHIS-AtUBC8 with 4 481 

μg MBP, MBP-MAC3A, MBP-MAC3AMut1, or MBP-MAC3AMut1 proteins were added to a 30 482 

μL reaction buffer [50 mM Tris-HCl pH7.5, 5 mM ATP, 5 mM MgCl2, 2 mM dithiothreitol 483 

(DTT), 3 mM creatine phosphate, 5 µg/ml creatine phosphokinase]. To detect the influence of 484 

protein modification on MAC3A activity, the recombinant proteins were treated as previously 485 

described with modifications (Wang et al., 2015). Briefly, 4 µg MBP, MBP-MAC3A, MBP-486 

MAC3AMut1, or MBP-MAC3AMut1-bound amylose resin were incubated with the total protein 487 

extracts from mac3a mac3b for one hour at room temperature followed by extensively washing 488 

for three times. Following treatment, half of protein-bound resin was treated with calf intestinal 489 

alkaline phosphatase (CIP; NEB) for 30 min, while the other half was incubated with reaction 490 

buffer without CIP. After washing, protein-bounded resins were used to perform ubiquitin assay 491 

as described above. The reaction was terminated by addition of SDS sample loading buffer with 492 
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100 mM DTT. FLAG-ubiquitin and MBP-MAC3A were then detected with a mouse monoclonal 493 

anti-FLAG M2-peroxidase-conjugated antibody (A8592, Sigma-Aldrich) and anti-MBP antibody 494 

(E8030, NEB), respectively.   495 

 496 

Co-IP Assay 497 

To test the interaction between MAC3A and RPB2, anti-RPB2 antibody was used to perform IP 498 

on the protein extracts from inflorescences of transgenic plants harboring pro35S:MAC3A-GFP 499 

(Ren et al., 2012). After IP, MAC3A-GFP and RPB2 were detected by immunoblot using an 500 

anti-GFP monoclonal antibody (B230720, Biolegend) and anti-RPB2 antibodies (ab10338, 501 

Abcam). To examine the co-IP of MAC3A with CDC5, and PRL1, MYC-MAC3A was co-502 

expressed with YFP, CDC5-YFP or PRL1-YFP in N. benthamiana as described (Ren et al., 503 

2012). To examine the co-IP of MAC3A with DCL1 and SE, MAC3A-YFP was co-expressed 504 

with MYC-DCL1 or MYC-SE in N. benthamiana.  IP was performed on protein extracts using 505 

anti-GFP or anti-MYC antibodies coupled to protein G agarose beads as described (Ren et al., 506 

2012). After IP, proteins were detected with immunoblotting using monoclonal antibodies 507 

against YFP (B230720, Biolegend) or MYC (06-340, Millipore). 508 

 509 

ChIP assay 510 

ChIP was performed using 14-d-old seedlings from Col-0 and mac3a mac3b as described  (Kim 511 

et al., 2011). Three biological replicates were performed. Anti-RPB2 antibody (ab10338, Abcam) 512 

was used for immunoprecipitation. qPCR was performed using primers listed in Supplemental 513 

Table 1. 514 

 515 

Dicer Activity Assay 516 

In vitro MIR162b processing assay was performed as described (Qi et al., 2005; Ren et al., 517 

2012). DNA templates used for in vitro transcription were generated through PCR with primers 518 

listed in Supplemental Table 1. In vitro transcription of MIR162b, N-UBQ5 and anti-sense N-519 

UBQ5 were performed using T7 RNA polymerase in the presence of [α-32P] UTP, ATP, CTP, 520 

GTP and unlabeled UTP. MIR162b was processed in reaction buffer (100 mM NaCl, 1 mM ATP, 521 

0.2 mM GTP, 1.2 mM MgCl2, 25 mM creatine phosphate, 30 μg/ml creatine kinase and 4 U 522 
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RNase inhibitor) containing 30 μg protein at 25 °C. After the reaction was stopped at 50 or 100 523 

minutes, RNAs were extracted and separated on a PAGE gel. ImageQuant was used to quantify 524 

the radioactive signals detected by a PhosphorImager.  525 

 526 

Morphological analyses and GUS histochemical staining  527 

Morphological and cellular analyses were performed according to the previously reported 528 

methods (Li et al., 2012). GUS staining was performed as described (Zhang et al., 2013). Briefly, 529 

tissues from plants of mac3a mac3b harboring proMAC3A:MAC3A-GUS or plants harboring 530 

proMIR167a:GUS were incubated with staining solution at 37 °C for 5 hours. 70% ethanol was 531 

used for tissue clearing before imaging.  532 

 533 

BiFC Assay 534 

BiFC assay was performed as described (Zhang et al., 2013). Paired cCFP and nVenus fusion 535 

proteins were co-expressed in N. benthamiana leaves. After 40 h expression, a confocal 536 

microscope (Fluoview 500 workstation; Olympus) was used to detect YFP and chlorophyll 537 

autofluorescence signals at 488 nm with a narrow barrier (505–525 nm, BA505-525; Olympus). 538 

 539 

RNA gel blot and RT-qPCR analyses 540 

RNA gel blotting was performed as described (Ren et al., 2012). ~15 μg total RNAs extracted 541 

from inflorescences were resolved on 16% PAGE gel and transferred to nylon membranes. 32P-542 

labelled antisense DNA oligonucleotides were used to detect small RNAs. Radioactive signals 543 

were detected with a Phosphorimager and quantified with ImageQuant. Inflorescences of plants 544 

grown on three different growth rooms at the same condition (22°C with 16 hour light and 8 hour 545 

dark cycles) were harvested as three replicates. The levels of pri-miRNAs, miRNA target 546 

transcripts and GUS mRNA were determined using RT-qPCR. 1 μg total RNAs from 547 

inflorescences were used to generate cDNAs using the SuperScript III reverse transcriptase 548 

(Invitrogen) and an oligo dT18 primer. cDNAs were then used as templates for qPCR on an 549 

iCycler apparatus (Bio-Rad) with the SYBR green kit (Bio-Rad). The primers used for PCR are 550 

listed on Supplemental Table 1.  551 

 552 

RNA immunoprecipitation (RIP) analyses 553 
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RIP was performed according to (Wierzbicki et al., 2008; Ren et al., 2012). ~ 2g seedlings of 554 

transgenic plants harboring the pro35S:MYC-MAC3A transgene were used to examine the 555 

association of MAC3A with pri-miRNAs in vivo. After crosslinking with 1% formaldehyde for 556 

10 min, glycine was added to quench the reaction for 10 min.  Nuclei were extracted and lysed in 557 

the buffer (50 mM Tris-HCl, pH8.0, 10 mM EDTA, 1% SDS) by sonication for five times. After 558 

debris was removed by centrifugation at 16,000g for 10 min, equal amounts of proteins from 559 

various samples were diluted with RIP dilution buffer and incubated with anti-GFP antibodies 560 

conjugated to protein-G agarose beads. The immunoprecipitates were then eluted with elution 561 

buffer (100 mM NaHCO3, 1% SDS) at 65 °C. Following reverse crosslinking with proteinase K 562 

(Invitrogen) and 200 mM NaCl at 65 °C, RNAs were extracted and used as templates for RT-563 

PCR analyses. All the primers are listed in Supplemental Table 1. 564 

 565 

In vitro RNA pull-down assay 566 

In vitro RNA pull-down assay was performed as described (Ren et al., 2012). The amylose resin 567 

beads containing MBP or MBP-MAC3A were incubated with [32P]-labeled probes at 4°C for 1 568 

hour. After the beads were washed for 4 times, RNAs were extracted and resolved on PAGE 569 

gels. Radioactive signals were detected with a PhosphorImager and quantified by ImageQuant.  570 

 571 

Small RNA sequencing  572 

Inflorescences of Col, mac3a mac3b and cdc5-1 grown on two separate growth rooms at the 573 

same condition (22°C with 16 hour light and 8 hour dark cycles) were harvested as two 574 

biological replicates and used for RNA extraction and small RNA library preparation following 575 

standard protocol. The data set was deposited into the National Center for Biotechnology 576 

Information Gene Expression Omnibus (Col accession #: GSM2829820, GSM2829821, mac3a 577 

mac3b accession # GSM2829822, GSM2829823; Col accession #: GSM2805383, GSM2805384, 578 

cdc5-1 accession #: GSM2805385, GSM2805386). The sequencing data  (Col access #: 579 

GSM2257315, GSM2257316, GSM2257317; dcl1 accession #: GSM2257321, GSM2257322, 580 

GSM2257323) generated by Wu et al., (Wu et al., 2016) were used to analyze the effect of 581 

DCL1 on miRNA accumulation.  After sequencing, miRNA analysis was performed after 582 

removing reads aligned to t/r/sn/snoRNA according to Ren et al (Ren et al., 2012). 583 

Normalization was done using the total numbers of perfectly aligned reads (Nobuta et al., 2010). 584 
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The mean values of miRNA abundance from biological replicates were compared by using 585 

EdgeR with trimmed mean of M values (TMM) normalization method (Robinson et al., 2010). 586 

Down-regulated miRNAs with confidence (P<0.1; folder < 0.7) were used to identify the 587 

overlapping effect of mac3a mac3b, cdc5-1 and dcl1-9.  The Venn diagram was plotted with the 588 

VennDiagram from the R package (Chen and Boutros, 2011).  589 

 590 
Accession Numbers 591 

Sequence data from this article can be found in the Arabidopsis Genome Initiative or 592 

GenBank/EMBL databases under the following accession numbers: MAC3A (AT1G04510), 593 

MAC3B (AT2G33340), CDC5 (AT1G09770), PRL1 (AT4G15900), DCL1 (AT1G01040), SE 594 

(AT2G27100), HYL1 (AT1G09700), DDL (AT3G20550), CBP20 (AT5G44200), CBP80 595 

(AT2G13540), HEN1 (AT4G20910), AGO1 (AT1G48410), ARF4 (AT5G60450), ARF8 596 

(AT5G37020), CKB3 (AT3G60250), CUC1 (AT3G15170), MYB33 (AT5G06100), PHV 597 

(AT1G30490), PHO2 (AT2G33770), PPR (AT1G62670), SPL9 (AT2G42200), SPL10 598 

(AT1G27370), SPL13 (AT5G50570), UBIQUITIN5 (AT3G62250). Protein sequences of MAC3 599 

homologs in other species can be obtained in National Center for Biotechnology Information 600 

under the following accession numbers: AAN13133 (MAC3A, AT1G04510, Arabidopsis 601 

thaliana), FJ820118 (MAC3B, AT2G33340, Arabidopsis thaliana), XP_009143870 (Brassica 602 

rapa), XP_009141306 (Brassica rapa), XP_004247768 (Solanum lycopersicum), 603 

XP_003555746 (Glycine max), XP_003535988 (Glycine max), XP_015614850 (Os10g32880, 604 

Oryza sativa), KXG38386 (SORBI_3001G226000, Sorghum bicolor), ONM06005 605 

(ZEAMMB73_Zm00001d032763, Zea mays), AQK65171 (ZEAMMB73_Zm00001d014078, 606 

Zea mays), XP_001701820 (Chlamydomonas reinhardtii), NP_055317 (HsPRP19, Homo 607 

sapiens), NP_598890 (MmPRP19, Mus musculus), CAB10135 (SpPRP19, Shizosaccharomyces 608 

pombe), and CAA97487 (ScPRP19, Saccharomyces cerevisae). Small RNA deep sequencing 609 

datasets are available from the National Center for Biotechnology Information Gene Expression 610 

Omnibus under the following reference numbers: Col accession #: GSM2829820, GSM2829821, 611 

mac3a mac3b accession # GSM2829822, GSM2829823; Col accession #: GSM2805383, 612 

GSM2805384, cdc5-1 accession #: GSM2805385, GSM2805386; Col access #: GSM2257315, 613 

GSM2257316, GSM2257317; dcl1 accession #: GSM2257321, GSM2257322, GSM2257323. 614 
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