
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

4-1997

MLPQ: A LINEAR CONSTRAINT DATABASE
SYSTEM WITH AGGREGATE OPERATORS
YiMing Li
University of Nebraska - Lincoln

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Li, YiMing, "MLPQ: A LINEAR CONSTRAINT DATABASE SYSTEM WITH AGGREGATE OPERATORS" (1997). Computer
Science and Engineering: Theses, Dissertations, and Student Research. 144.
https://digitalcommons.unl.edu/computerscidiss/144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/188123464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/144?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F144&utm_medium=PDF&utm_campaign=PDFCoverPages

MLPQ: A LINEAR CONSTRAINT DATABASE SYSTEM

WITH AGGREGATE OPERATORS

by

YiMing Li

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Peter Revesz

Lincoln, Nebraska

April, 1997

MLPQ: A LINEAR CONSTRAINT DATABASE SYSTEM

WITH AGGREGATE OPERATORS

YiMing Li, M.S.

University of Nebraska, 1997

Adviser: Peter Revesz

In this project report, I will discuss a Multiple Linear Programming Query (MLPQ)

system and the theoretical background of this system.The MPLQ system is developed

to solve some realistic problems involving both linear programming (UP) techniques

and linear constraint databases (LCDBs) theory. The MLPQ system is aimed at pro-

viding a mechanism of bridging these two important areas. system basically consists

of three parts which are a linear constraint database, an LP solver, and an interface

between the LCDB and the LP solver. The LCDB of the MLPQ system contains

multiple linear programming problems. The LP solver used in the MPLQ is an im-

plementation Of the SIMPLEX method.An important feature of the MLPQ system

is that it can handle the SQL aggregate Operators, such as minimum Min, maximum

Max, summation Sum, and average Avg. The MLPQ system provides an efficient way

of evaluation of aggregate operators for linear constraint databases.

iii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor Dr. Peter Revesz

for his guidance and encouragement on this research project. I also thank Dr.Istvan

Bogardi and Dr.Jean-Camille Birget for serving on my advisory committee and for

their time and counsel.

I would like to dedicate my thesis to my parents, my wife Ping and my son George

for their love, encouragement and support throughout my life. They always believed

in me and I can never be grateful enough.

iv

Table of Contents

1 Introduction 1

1.1 Constraint Database . 1

1.2 Linear Programming . 4

1.3 Objectives . 5

2 Linear Programming and Constraint Databases 6

2.1 The Motivation for Linear Programming in Databases 6

2.2 The Motivation for Databases in Linear Programming 9

2.3 Combining Constraint Databases and Linear Programming 13

3 Constraint SQL Query Language in the MLPQ System 14

3.1 Constraint SQL . 14

3.2 The Query Language of MLPQ . 16

3.3 The Constraint Databases of MLPQ 17

4 Implementation of the MLPQ System 18

4.1 Linear Programming Method in the MLPQ 18

4.2 Interface of LP with LCDB in the MLPQ System 19

4.3 Testing Results . 21

5 Discussion and Conclusion 24

v

Bibliography 27

1

Chapter 1

Introduction

1.1 Constraint Database

The databases most widely used today are the unrestricted relational databases in

which the databases are presented in a set of tables. The limitation of the relational

databases is that they cannot store the data presented as arithmetical expressions.

However, in real world practice it is often necessary to present the data containing

arithmetical expressions. For instance, if we want to store the information of an area

occupied by a house in a database, it will be quite convenient to present the area

using four arithmetical line equations for the four sides of the house. To store such

arithmetical expression,we need a new type of database called constraint database

[6], [11]. In the following I will use an example to discuss why we need constraint

databases to handle the data involving arithmetical computation.

Let us consider a postage example. Mr. Johnson is a sales man for an electronic

hardware company in Omaha, Nebraska. He wants to send three packages of elec-

tronic components to three customers who live in Boston, Chicago, and Dallas. The

weights of the packages are 12.6, 27.3 and 37.5 ounces respectively. Mr. Johnson

would like to know how much he should pay for his packages if he sends those pack-

2

ages through a post office.

Assuming a postage fee charged for a domestic package can be computed based

on the weight of a package and the postage rate associated with the weight, we may

Construct two relational database tables and one SQL query to present this problem.

The package information including weight, origin and destination of the package is

stored in a relational table called Package.

Package

Origin Destination Weight

Omaha Boston 12.6

Omaha Chicago 27.3

Omaha Dallas 37.5

Assuming the postage charge is $0.53 per ounce for a package up to 5 ounce, and

$0.45 per ounce for the weight above 5 ounce but below 15 ounce, and so on. The

maximum be sent is 50 ounce. The postage rate information based on package weight

can be stored in the table called Postage such that

Postage

Weight Fee

5 2.65

· · · · · ·

50 16.65

Mr. Johnson’s query can be expressed in SQL such that

SELECT Sum(Fee)

FROM Package, Postage

3

There is a serious problem with the above database construction. The weight in-

cluded in the Package can be any real number between 0 and 50 ounces. To match the

weight in the Package, the Postage table has to include an infinite number of tuples.

So it will be unreasonable to present the postage information using the traditional

relational database. One approach to this problem is to allow some mathematical

expressions in the stored data, For instance, to present the Postage table in a finite

format, we can construct a new postage rate relation called Postage1. In Postage1, the

attributes of the relation are specified by variables and constraints involving arith-

metical computations Assuming that postage’ rate increases with weight piecewise

linearly, the relation Postage1 will be presented as follows.

Postage1

Weight Fee

w f 0 <=w, w <=5, f=w * 0.53

w f 5 <w, w <=15, f=2.65 + (w - 5) * 0.45

w f 15 <w, w <=30, f=7.15 + (w - 15) * 0.3

w f 30 <w, w <=50, f=11.65 + (w - 30) * 0.25

Mr. Johnson’s query can be constructed the same way as before by substitution

of relation Postage1 for table Postage. The query will return a total fee of 27.785 for

the three packages.

The database presented by the relation Postage1 is called constraint database

[6], [11] Constraint databases are the databases in which any attributes are specified

using variables and constraints. One specific type Of constraint databases is called

linear constraint database (LCDB). LCDB was developed in recent years to include

linear constraint mathematical expressions in relations and queries [1], [5]. The linear

constraint database knowledge is particularly important in enhancing the capabil-

4

ity of traditional databases, constraint databases and constraint logic programming

systems.

1.2 Linear Programming

Linear programming is a mathematical technique widely used in engineering, manage-

ment, planning and economics to optimize (minimize or maximize) single or objective

functions based on given number of linear constraints. The linear programming prob-

lem can be described in its standard format such that

Minimize z = cx

Subject to Ax = b

and x ≥ 0

where z is an objective function, x is the vector of variables need to be solved for, A is

a coefficient matrix, and b and c are vectors of known constants. The most often used

LP solving technique is called the SIMPLEX method, which was developed in the

1940s and thereafter. The method is a very efficient and uses only basic arithmetical

operations [14]. It also has advantage to produce the dual values for the constraints

along with the best values of the decision variables. The problem with the SIMPLEX

method is that it has difficulty to handle problems in which the variables must be

integer values [13]. Many other LP solving methods developed since 1950s include

”cutting-plan algorithms” for solving integer problem [4], ”branch-and-bound method

[8],” and the polynomial time algorithm developed by Kachiyan in 1979 [7]. A family

of LP techniques called Interior-Point method has been developed in late 80s. The

methods using nonlinear programming approach can be used to solve many large scale

problems. Different from SIMPLEX method which always stays on the boundaries,

5

the Interior-Point methods construct a sequence of trial solutions that go through

the interior of the solution space. ”Although more and more algorithms have been

developed in the past, for practical, real life problems, the SIMPLEX method is still

remain the dominant linear programming algorithm for at least the near future [2].”

The theory behind the SIMPLEX method is that only the corner points Of the

feasible region can be optima. No point in the feasible region can ever be better than

all corner points. Those corner points will give basic feasible solution to the problem.

The basic procedure of the SIMPLEX method is to obtain any basic feasible solution

to start with. Then it checks the neighboring solutions to see if they are better. If

there is better solution, move to it. It repeats the procedure until no improvement

can be found.

1.3 Objectives

This project is aimed at producing a system combining the linear programming tech-

niques and the linear constraint databases together through an interface. The system

is required to handle some SQL aggregator operators over linear constraint databases

which contain multiple linear programming problems.

6

Chapter 2

Linear Programming and Constraint Databases

2.1 The Motivation for Linear Programming in Databases

The motivation for using linear programming in linear constraint databases can be

traced to Brodsky et al. [3]. In their paper, they suggested a merger of linear

programming techniques and linear constraint databases. What they found is that the

linear programming technique will be very helpful in retrieve boundaries of variables in

LCDBs. However, they did not detail how they use the linear programming technique

in LCDBs and they also did not talk about the aggregator operators in the constraint

SQL.

The following is a motivation example [12] to answer why we need linear program-

ming in constraint databases. Let us consider a food production company which has

manufacturing plants in four cities A, B, C, and D around the world. The company

produces candies, chocolate bars, ice cream, and yogurt. For producing a unit of

each of these four items in the city A, the company needs 15, 8, 10, and 15 units of

sugar, 30, 25, 5, and 10 units of milk, and 0, 50, 25, 0 units of chocolate respectively.

Further, each unit of these four items yields a profit of 300, 250, 100, and 150 respec-

tively. In city A the company has on store 3,000 units of sugar, 8,000 units of milk,

and 2,000 unit of chocolate, Similar data is also available for the other three cities.

7

LCDBs can conveniently represent the above sort of data in a constraint relation

called Food. In relation Food, chocolate-bar and ice cream are abbreviated as C-B

and I-C.

Food

City Candy C-B I-S Yogurt Profit

A x1 x2 x3 x4 z 300x1+250x2+100X3+150x4=z

15x1+8x2+10x3+15x4 ≤ 3000

30x1+25x2+5x3+10x4 ≤ 8000

50x2+25x3 ≤ 2000

B x1 x2 x3 x4 z 170x1 + 230x2 + 100x3 = z

20x1 + 30x2 = 10000

14x1 + 12x2 + 30x3 ≤ 10000

C x1 x2 x3 x4 z 290x2+160x3+200x4 = z

30x2 + 10x3 + 25x4 ≤ 6500

35x2 + 16x3 ≤ 2000

D x1 x2 x3 x4 z 230x1+150x2+190X3+350x4=z

25x1 + 18x2 + 23x3 + 9x4 ≤ 2300

36x1 + 10x2 + 20x3 + 5x4 = 4200

75x2 + 25x3 ≤ 3800

There are some very natural questions that one may ask considering the above

data. For example, an investor may want to know what is the maximum amount of

total profit that the company can produce in a particular city or in all the cities. The

CEO of the company may want to expand the company, and he/she would like to

know the location of the most profitable company plant? The above problem can be

considerably more complicated in real life examples. For example, we would have to

8

consider taxes, tariffs, labor wages, costs of supplies and plant facilities, plant storage

capacity, etc. However, the above example already illustrates, we believe, the main

benefits of the query language extension that we propose in this paper and that we

implemented in the MLPQ constraint database system. The chief advantage is the

ability to use aggregate operators, which is needed in expressing both the investor’s

or the CEO’s query,

To answer the previously mentioned investor’s query, we need to find the maxi-

mum profit Max(profit) for each plant first, then we will have sum up all the maximum

values to find the maximum of total profits. We construct a constraint SQL as follows:

SELECT Sum(Profit)

FROM Food

WHERE Profit = (SELECT Max(Profit)

FROM Food)

The CEO’s query is similar to the investor’s query. The only difference it that

the query should return the city name associated with the maximum profit found in

above query. Thus, the CEO’s query can be written as follows:

SELECT City

FROM Food

WHERE Profit = (SELECT Max(Profit)

FROM Food)

The food relation provides a perfect example of linear programming type of the

problems in a constraint database domain. To solve such a problem we need the

linear programming technique There is currently no database system solving such a

9

problem.

2.2 The Motivation for Databases in Linear Programming

In the previous section, I have presented a motivation example for linear program-

ming in LCDBs. In this section, I will present the motivation for extending LCDBs in

the linear programming domain. Let us consider a real world example. The following

problem is a simplified version Of a management problem for the street maintenance

department in the city of Lincoln. It is a typical linear programming problem. There

are currently three facilities f1, f2, and f3 in Lincoln offering three maintenance ser-

vices s1, s2, and s3. Each service will be performed by a certain number of crews

(x1, . . . , x9) from the three facilities and each facility has its own capacity for station-

ing a number of crews. Facility f1 has a capacity of 3 crews, f2 has a capacity of 3

crews and f3 has a capacity of 2. Service s1 is performed by 3 crews, s2 is performed

by 2 crews and s3 is performed by 3 crews. There is a service cost associated with

each service performed from each facility. The number of crews from a facility to

perform a service needs to be decided. The aim is to find the minimum service cost

based on the facility and service constraints. Below is a table representation of the

problem:

Maintenance

Weight s1 s2 s3 constraint

f1 x1 x2 x3 ≤ 3

f2 x4 x5 x6 ≤ 3

f3 x7 x8 x9 ≤ 2

constraint =3 =2 =3

10

In the maintenance table, x1, . . . , x9 are variables representing number of crews

from a facility to perform a service. Due to different travel distances and other factors,

costs for crews performing s1, s2 and s3 are different among the three facilities. By

introducing cost data associated with crew variables, x1, . . . , x9 we can obtain an LP

problem.

Minimize

z = x1 + x2 + 1.1x3 + 1.1x4 + 1.2x5 + 1.2x6 + x7 + 1.3x8 + x9

subject to the constraints:

x1 + x2 + x3 ≤ 3

x4 + x5 + x6 ≤ 3

x7 + x8 + x9 ≤ 2

x1 + x4 + x7 = 3

x2 + x5 + x8 = 2

x3 + x6 + x9 = 3

x1, . . . , x9 ≥ 0

11

This linear programming problem can also be presented in constraint databases.

The advantage of doing so will be shown later on. For instance, we may have a

facility-constraint relation to present the number of crews that can be provided from

each facility.

Facility-Constraint

Facility F1-S1 F1-S2 F1-S3 F2-S1 F2-S2 F2-S3 F3-S1 F3-S2 F3-S3

f1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x1+x2+x3≤3

x4, ..., x9 = 0

f2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x4+x5+x6≤3

x1,x2,x3=0

x7,x8,x9 = 0

f3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x7+x8+x9≤2

x1, ..., x6 = 0

The attribute F1-S1 means the number of crew from facility f1 to perform a service

s1, and same for the Other attributes. Similarly, a service-constraint relation gives

us the demand constraint for each service.

Service-Constraint

Service F1-S1 F1-S2 F1-S3 F2-S1 F2-S2 F2-S3 F3-S1 F3-S2 F3-S3

s1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x1+x4+x7≤3

x2,x3,x5,x6,x8,x9 = 0

s2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x2+x5+x8≤2

x1,x3,x4,x6,x7,x9 = 0

s3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x3+x6+x9≤3

x1,x2,x4,x5,x7,x8 = 0

A cost relation presents a way to calculate the total service cost based on the cost

coefficient associated and the corresponding of crew variables.

12

Maintenance-Cost

F1-S1 F1-S2 F1-S3 F2-S1 F2-S2 F2-S3 F3-S1 F3-S2 F3-S3 Cost

x1 x2 x3 x4 x5 x6 x7 x8 x9 z z=x1+x2+1.1x3+

1.1x4+1.2x5+1.2x6

+x7+1.3x8+x9

Now, we may use constraint SQL to construct a query to find the minimal value

of cost when we use all three facilities to perform the three services such that

SELECT Min(cost)

FROM Facility-Constraint, Service-Constraint, Maintenance-Cost

WHERE Service=s1

AND Service=s2

AND Service=s2

AND Service=s3

AND Facility=f1

AND Facility=f2

AND Facility=f3

This database presentation is equivalent to the LP formulation discussed previ-

ously. However, since we present the above maintenance management problem in

linear constraint databases, we can construct many more queries. For instance, we

may want to eliminate one facility to increase economy of scale. We can easily con-

struct a different constraint SQL query which only includes two facilities. Or, later on

the city may decide to contract a service to outside source, the maintenance depart-

ment will only provide two services. In that case, the constraint SQL query can be

constructed that only two services are included. Hence, we turn the original single ob-

jective linear programming problem into a wide range linear programming problems

13

This example shows that linear constraints databases can be a powerful extension of

the traditional linear programming techniques.

2.3 Combining Constraint Databases and Linear Program-

ming

The previous two sections stress the importance and advantage of combining linear

programming and linear constraint database. Although combining these two domain

seems important in applications, the area has not been seriously investigated. Recent

linear constraint database research focuses on developing strategies for elimination

and simplification of redundant linear arithmetic constraints [9], query optimization

[3], and evaluation efficiency [5]. Although Brodsky et al. [3] consider some SQL

like queries for LCDBs, they do not consider aggregate operators within the query

language. This turns out to be an important issue, which can be solved very naturally

by calling upon existing techniques in the area of linear programming.

14

Chapter 3

Constraint SQL Query Language in the MLPQ System

3.1 Constraint SQL

As discussed by Brodsky et al. [3], the constraint tuples of LCDBs have the form:

(x1,...,xn) WHERE Con

where the xi’s are variables or constants and Con is a set of constraints associated

with the variables xi’s. Con will take a form:

a1x1 + ...+ anxnθp

where ai and p are constants, θ is an operator such as =, <,>,≤,≥, and the xi are

variables larger than or equal to zero. The constraint SQL queries in LCDBs can be

generally presented as follows.

SELECT x1, ..., xn

FROM B1, ..., Bj

WHERE Con1

OR

WHERE C1, ..., Cj

WHERE Con2

OR ...

15

where the set {x1, ..., xn} is a subset of {x1, ..., xn, ..., xm} for relations B1, ..., Bj and

C1, ..., Cj. This query is to select a number of tuples of a set of variables of (x1, ..., xn)

that occur in relations B’S and satisfy Con1, or occur in relations C’s and satisfy

Con2, and so on.

Implementation of basic SQL operators such as selection, projection and join in

LCDBs are described by Brodsky et al. [3]. The constraint SQL for those basic op-

erators are as follow.

For a selection, the query of constraint SQL will be of the form

SELECT x1, ..., xn

FROM B

WHERE Con

where relation B and Con have variables (x1, ..., xi, ..., xn). Each tuple of variables

(x1, ..., xn) is selected by taking a conjunction of a constraint tuple from B and Con,

testing whether it is satisfiable.

For a simple projection, the query is of the form:

SELECT x1, ..., xn

FROM B(x1, ..., xn, ..., xm)

where relation B has variables of (x1, ..., xn, ..., xm). The projection will involve the

elimination Of variables (xn+1, ..., xm).

For a constraint SQL join, the query can be constructed as follows.

16

SELECT x1, ..., xi, ..., xj, ..., xn

FROM B,C

where relation B has variables (x1, ..., xj) and relation C has variables (xi, ..., xn).

In the join query, each tuple is computed from conjunction of a tuple from B and a

tuple from C.

3.2 The Query Language of MLPQ

The aggregator operators in constraint SQL of LCDBs are not mentioned by Brodsky

et al. The query language in MLPQ is constructed to include those aggregate opera-

tors such as Mar, Min, Avg, and Sum. The General format of MLPQ query language

may be expressed as follows.

SELECT opt(z)

FROM A

WHERE z = (SELECT opt(z)

FROM A)

where opt is an aggregate operator such as Mar, Min, Avg, or Sum, A is a relation

that contains a set of variables {x1, ..., xi, z}, and z represents the objective function.

The above query selects an objective value of z from a relation A. The value of z

may be obtained by satisfying a number of constraints stored in a linear constraint

database. To find the objective value of z satisfying each set of constraints, we need

some optimization technique. Here, we use a linear programming method to find such

an optimum value of the objective function.

17

3.3 The Constraint Databases of MLPQ

The linear constraint database Of MLPQ is basically a number Of linear programs

stored in a predefined format. The LCDB will treat each linear programming prob-

lem as a tuple Of the database. The LCDB of MLPQ can also store some attribute

information which do not involving with linear arithmetic computation. These at-

tributes are equally important since they will be used to distinguish different tuples.

The constraint SQL aggregator operators are performed for those tuples. The LCDB

of MLPQ will connect with LP solver through an interface. The format of storing

linear constraint data can be improved late on to enable some basic constraint SQL

queries.

18

Chapter 4

Implementation of the MLPQ System

4.1 Linear Programming Method in the MLPQ

As described previously, the optimization of objective value in MLPQ is implemented

using a linear programming technique. The linear programming method used in

the MLPQ is the SIMPLEX method. Although the SIMPLEX method may not be

suitable for linear programming problems with a large amount of variables, it should

be good enough for dealing with a normal constraint database query. In fact, in a

linear constraint database System, we may not require to solve for huge amounts of

variables. Often we are only interested in finding solutions for relative small scale LP

problems and performing necessary queries, Thus the SIMPLEX method is adequate

to serve as a computational mechanism for n linear constraint database.

There are various source codes available for the SIMPLEX method. Most of them

are written in FORTRAN programming language. The source code used in the MLPQ

system is obtained from Press et al.’s book ”Numerical Recipe [10].” The source code

is written in C which include simp1.c, simp2.c, simp3.c, and simplx.c . I have written

an LP computation routine called compute() to call those SIMPLEX programs to

optimize (maximize or minimize) the objective function of each LP problem in the

linear constraint database.

19

4.2 Interface of LP with LCDB in the MLPQ System

To use linear programming method in order to solve a constraint database query, we

need a good interface Of the two, First one needs to define the syntax of a linear con-

straint database which contains multiple linear programming problems. Second, an

interface program needs to be written so the linear programming solver will recognize

the input of the database.

The syntax of the MLPQ constrain database is similar to the linear mathematical

expressions. Let’s use the previously discussed relation Food as an example. The

tuples where City = ”A” and ”B” can be stored as such

%filename.out%

Qmax()

$City=A

O(x1,x2,x3,x4):-max(300,250,100,150)

C(x1,x2,x3,x4):- (15,8,10,15) <3000,

(30,25,5,10) <8000,

(0,50,25,0) <2000)

$City=B

O(x1,x2,x3):-max(170,230,100)

C(x1,x2,x3):-{(20,30,0)=10000,(14,12,30)¡5200}

%end%

where

%filename.out%=output file name.

%end% = end of file.

$ = attribute name.

Qmax(), Qmin(), Qavg(), Qsum() = aggregator operator.

20

O(...) = objective function.

C(...) = linear constraints.

The data after the ”$” sign (e.g. City = A) will Store attributes do not involve with

linear arithmetical computation. The variables names in objective function and con-

straint functions will be include in the bracket after ”O” Or ”C” (e.g. O(x1,x2,x3,x4),

C(x1,x2,x3,x4)). The max or min in the objective function specifies what kind of lin-

ear programming optimization is expected, The linear arithmetical expressions in

MLPQ are expressed with taking the variables out (e.g. 15x1+8x2+10x3+5x4 ≤

3000 is equivalent to (15,8,10,5)<3000).

Currently the aggregator operator is stored on the top of the LCDB. The syntax

of the aggregator operators are Qmax() for maximum query, Qmin() for minimum

query, Qavg() for average query and Qsum() for summation query. The aggregator

operator can join other basic constraint SQL to build a complete query language for

the MLPQ system.

The syntax of the constraint database can be changed late on in order to store more

information, It could also be changed to provide convenience for the join, selection,

and projection operations. The current syntax is relative easy to be converted into a

matrix format which is required by the SIMPLEX method used as a LP solver.

Since the LP solver only recognize the matrix input, an interface between the

linear constraint database and the LP solver need to be created. The interface is

programmed in C++ code. program name is mlpq.C. The program will convert

the previous discussed linear constraint database format into a matrix and call the

function compute() which will calculate the objective function for each individual

linear program, For each LP problem, the LP solver will compute the optimized

objective function and solutions for all variables. Then, the aggregator operator

query will be made on the values cf objective functions.

21

4.3 Testing Results

A compiled executable file called mlpq is created. It can run on both UNIX and PC

platforms. TO run this program on a constraint database input, one only need type

in the filename after the mlpq command. The testing results of the MLPQ system

are quite encouraging. Let’s 100k at the previously discussed Food example, the

investor’s query is Sum(Max(z)) and the CEO’s query is the name of city WHERE

Max(z). They both could be conveniently run in the MLPQ system. To satisfy

the investor’s query on Food, the system will first find the maximum profit at each

plant using the SIMPLEX LP solver. The system will compute the values of z’s for

the plants in the four cities, A, B, C, and D. The results are 63,600.00, 80,667.67,

62,000.00, and 61,577.78, respectively, Then, the MLPQ will perform the query of

Sum() which will return the summation of the four values, Here, the maximum of

total profit will be 267,844.45, For CEO’s query, the MLPQ system will return the

name of city where the plant produce the maximum profit. In this case, the CEO

query will give us the city name ”B” because the plant in this city has the highest

profit among all four cities.

It would be more interesting to see how the MLPQ system functions when dealing

with large quantity of linear constraint problems. For instance, we may want to know

if there are 400 or 1000 LP problems in a linear constraint database, how long it is

going to take to perform a query such as Max, Min, etc. To make such an experiment,

we uniformly randomly generate values of coefficients and constants for a four-variable

with two-constraint linear programming problem. The linear programming problem

can be expressed as follows.

22

Maximize z = c1x1 + c2x2 + c3x3 + c4x4

Subject to a1x1 + a2x2 + a3x3 + a4x4 ≤ q1

b1x1 + b2x2 + b3x3 + b4x4 ≤ q2

all subject to x1, x2, x3, x4 ≥ 10

The ranges of those random generated values are presented in following table.

Range of Random Generated Coefficients

a1 a2 a3 a4

(100,350) (150,300) (0,100) (50,200)

b1 b2 b3 b4

(0,35) (0,45) (0,55) (0,35)

c1 c2 c3 c4

(0,65) (0,55) (0,25) (0,45)

q1 q2

(2000,5000) (4000,8000)

Seven linear constraint databases are generated to test the MLPQ system. Each

of them includes 50, 100, 200, 300, 400, 700, and 1000 number of LP problems,

respectively. The run-time results are reported in the following table.

23

Run-Time Test

Number of LPs Time Used (s)

50 2

100 3

200 6

300 9

400 12

700 20

1000 28

Plotting the run-time test results shows that the run-time increases linearly with

the number Of LP problems in its input table. It is easy to see that using LP solving

mechanism to perform such kind query is extremely efficient.

24

Chapter 5

Discussion and Conclusion

At the present time, there is no query language that allows solutions Of multiple

linear programming problems, although it occurs frequently in practice. There are

many algorithms for one single instance of linear programming, but not for multiple

ones. The traditional LP data does not allow joining and union, which are com-

mon practices in database operations, The MLPQ system is a contribution for the

problem of convenient expression and evaluation of these problems. Since it accepts

query language, it can be completely integrated with other query capabilities, and it

is convenient to take joins, etc. To extend the MLPQ query language to include a

join operation will make it looks as follows:

SELECT opt(z)

FROM A,B

WHERE z = (SELECT opt(z)

FROM A,B)

The query will join two relations A and B and then perform an aggregate opera-

tor opt on the objective functions. Note how convenient it was here to extend the

problem from considering one to four different subclasses of sugars. This would be

25

simply impossible to do in the LP standard format representation. The current MLPQ

system can only perform aggregator operator on a linear constraint database. What

the MLPQ system lacks now is the implementation of basic SQL operations such as

join, projection, and selection as discussed previously. Those operations are certainly

can be implemented in the MLPQ. One approach is to perform those queries on the

LCDB relations first to generate some new relations. Then allow LP solver to be

interfaced with the newly created new relations. To include those basic SQL opera-

tions on top of the aggregator operators will make the MLPQ a more complete linear

constraint database system.

Another subject that needs to be studied further is the input format of the linear

programming problem. The currently used SIMPLEX LP solver recognize the matrix

input format. The most widely used LP solvers take the MPS format as their input

format, The MPS format is an old format and is column oriented. It is set up as

though you were using punch cards. More importantly, it is not a free format. Some

other commercialized codes have their own input formats. If we want to built a

more powerful LP algorithm in a constraint database query system, we need put

some efforts to make the interface work between the LP algorithm and the constraint

database input format.

The research discussed in this project report mainly focuses on the significance

of combining linear programming and linear constraint databases technologies. Com-

bining linear constraint database and linear programming techniques will make the

LP technique more flexible to accommodate the combination of the variables and

variation of queries in wide ranging applications. The traditional linear programming

targets to solve single LP problem. Combination of linear programming and linear

constraint database will make it more efficient in solving multiple LP problems and

making multiple queries. On the other hand, using linear programming in linear con-

26

straint databases will also strongly enhance capability of a database to handle linear

constraint data information.

27

Bibliography

[1] F. Afrati, S. Cosmadakis, S. Grumbach, and G. Kuper. Linear versus polynomial

constraints in database query languages. In A. Borning, editor, International

Workshop on Principles and Practice of Constraint Programming, volume 874 of

Lecture Notes in Computer Science, page 181192. Springer, 1994.

[2] B. Aspvall and R.E. Stone. Khachian’s linear programming algorithm. Journal

of Algorithms, 1(1):113, 1980.

[3] A. Brodsky, J. Jaffar, and M.J. Maher. Towards Practical Constraint Databases.

In International Conference on Very Large Data Bases, pages 567–580, Dublin,

Ireland, 1993.

[4] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.

Bulletin of the American Mathematical Society, 64(5):275–278, 1958.

[5] S. Grumbach, J. Su, and C. Tollu. Linear constraint query languages: Expressive

power and complexity. In D. Leivant, editor, Logic and Computational Complex-

ity, volume 960 of Lecture Notes in Computer Science, pages 426–46. Springer,

1995.

[6] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint query languages.

Journal of Computer and System Sciences, 51(1):26–52, 1995.

28

[7] L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady

Akademii Nauk SSR, 20:191–4, 1979.

[8] A. H. Land and A. G. Doig. An automatic method of solving discrete program-

ming problems. Econometrica, 28(3):497–520, 1960.

[9] J-L. Lassez, T. Huynh, and K. McAloon. Simplification and elimination of redun-

dant linear arithmetic constraints. In E. L. Lusk and R. A. Overbeek, editors,

Proc. North American Conference on Logic Programming, pages 35–51. MIT

Press, 1989.

[10] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in

C. Cambridge University Press, Cambridge, UK, 1992.

[11] P. Z. Revesz. Introduction to Constraint Databases. Springer, New York, NY,

2002.

[12] P. Z. Revesz and Y. Li. MLPQ: A linear constraint database system with aggre-

gate operators. In Proc. 1st International Database Engineering and Applications

Symposium, pages 132–7. IEEE Press, 1997.

[13] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

[14] M. Wilkes. Operational Research Analysis and Applications. McGraw-Hill, 1989.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-1997

	MLPQ: A LINEAR CONSTRAINT DATABASE SYSTEM WITH AGGREGATE OPERATORS
	YiMing Li

	tmp.1517946234.pdf.fmiwn

