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DPP6 regulation of dendritic morphogenesis
impacts hippocampal synaptic development
Lin Lin1, Wei Sun1,2, Ben Throesch1, Faith Kung1, Jameice T. Decoster1, Cory J. Berner1, Richard E. Cheney3,

Bernardo Rudy4 & Dax A. Hoffman1

Dipeptidyl-peptidase 6 is an auxiliary subunit of Kv4-mediated A-type Kþ channels that, in

addition to enhancing channel surface expression, potently accelerates their kinetics. The

dipeptidyl-peptidase 6 gene has been associated with a number of human central nervous

system disorders including autism spectrum disorders and schizophrenia. Here we employ

knockdown and genetic deletion of dipeptidyl-peptidase 6 to reveal its importance for the

formation and stability of dendritic filopodia during early neuronal development. We find that

the hippocampal neurons lacking dipeptidyl-peptidase 6 show a sparser dendritic branching

pattern along with fewer spines throughout development and into adulthood. In electro-

physiological and imaging experiments, we show that these deficits lead to fewer functional

synapses and occur independently of the potassium channel subunit Kv4.2. We report that

dipeptidyl-peptidase 6 interacts with a filopodia-associated myosin as well as with fibronectin

in the extracellular matrix. dipeptidyl-peptidase 6 therefore has an unexpected but important

role in cell adhesion and motility, impacting the hippocampal synaptic development and

function.
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A
-type voltage-gated Kþ currents in the hippocampal
CA1 pyramidal neurons act to dampen action potential
initiation and frequency. Due to their high expression and

hyperpolarized voltage for activation in dendrites, they control
action potential back propagation into dendrites, contributing
to synaptic integration and plasticity1. Somatodendritic A-type
Kþ channels in the CA1 hippocampal pyramidal neurons
are primarily composed of pore-forming Kv4.2 subunits2,3,
which undergo activity-dependent trafficking in the hippo-
campal neurons4. Reconstitution of native A-current properties
in heterologous systems appears to require the co-expression
of Kv4.2 along with two auxiliary subunits: the Kv channel-inter-
acting proteins and dipeptidyl aminopeptidase-like proteins5,6.
Immunohistochemical staining studies suggest that CA1 pyra-
midal neurons primarily express KChIP2, KChIP4 and
dipeptidyl-peptidase 6 (DPP6) proteins7,8.

Recently genomewide-association studies have implicated
DPP6 in autism spectrum disorders and other neuropsychiatric
pathologies9,10. DPP6 interacts with Kv4 channels to dramatically
increase Kv4 surface expression and accelerate many properties of
A-type channels including their activation, inactivation and
recovery from inactivation11,12. Recently, we found DPP6 to be
particularly important for the localization of Kv4 channels to the
distal CA1 dendrites13. Structurally, the DPP6 protein has a single
transmembrane domain with a short intracellular amino terminus.
The vast majority of the protein, however, consists of a large extra-
cellular carboxy terminal domain14,15. The extracellular domain of
a related family member, DPPIV (also termed CD26), binds to
components of the extracellular matrix (ECM), like collagen,
fibronectin and integrin b1 (refs 16,17) and mediates roles in cell
adhesion, cellular trafficking and T-cell activation18–20. DPP6 has
approximately 50% similarity to CD26 (ref. 21), and also has a
cysteine-rich domain that may bind to components of the ECM.
The function of DPP6’s extracellular domain is unknown but
based on its prominence and similarity to that of DPPIV, it
seemed possible that DPP6 may have a role in cell adhesion,
subcellular recognition and/or trans-synaptic signalling.

Here we show that the initiation and stability of dendritic
filopodia are greatly reduced in DPP6 knockout (DPP6-KO)
mouse hippocampal neurons. Moreover, dendritic tree size, spine
density and functional synapse numbers are reduced throughout
development and in adulthood in these mice. These deficiencies
are rescued by expression of DPP6. While a profusion of
recent research has greatly added to our comprehension of the
molecules involved in the formation, maintenance and remodel-
ling of spines, relatively little is known about the molecular and
cellular mechanisms underlying the formation and maintenance
of dendritic filopodia. Our findings demonstrate that DPP6,
in addition to its role as a Kv4 partner regulating dendritic
excitability in hippocampal CA1 pyramidal neurons, has an
important developmental role by promoting dendritic filopodia
formation and stability, subsequently affecting synapse develop-
ment and function.

Results
DPP6 is important for filopodia formation and stability. We
found that labelled DPP6 localizes to dendritic filopodia and
spines (Supplementary Fig. S1), suggesting a potential role in
synaptic development. To investigate this possibility, we first
measured dendritic filopodia formation in the hippocampal
neurons cultured from P0 wild type (WT) and DPP6-KO
mice. The density of immature dendritic filopodia at DIV3 in
cultured hippocampal neurons obtained from DPP6-KO mice
was significantly decreased, to about 45% of that found for
WT (Fig. 1a,b; Po0.05, unpaired Student’s t-test). In a second
experiment, we expressed either green fluorescent protein (GFP)
or GFP-tagged DPP6 (DPP6-GFP) in P0 DPP6-KO mouse
hippocampal neurons and counted the number of immature
dendritic filopodia at DIV3. DPP6-GFP-expressing neurons
showed a significantly increased density of immature dendritic
filopodia compared with the GFP control demonstrating a
specific role for DPP6 in regulating filopodia number (Fig. 1c,d;
Po0.05, unpaired Student’s t-test). We also measured the density
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Figure 1 | Dendritic filopodia formation is reduced in DPP6-KO hippocampal neurons and rescued by DPP6 expression. (a,b) DIV3 WT or DPP6-KO

hippocampal neurons visualized for actin filaments with TRITC-phalloidin (1:1000, Sigma) and for axons with marker Tau-1 (1:1000, Millipore). The density

of immature dendritic filopodia (arrowheads) is decreased in the DPP6-KO neurons (n¼ 77) compared with the WT (n¼44). (c,d) DIV3 DPP6-KO

hippocampal neurons expressing either GFP control or DPP6-GFP cultured for 3 days, and visualized for actin filaments with TRITC-phalloidin. The density

of filopodia is increased in the DPP6-KO neurons that expressed DPP6-GFP (n¼ 62) compared with the GFP controls (n¼ 56). Scale bars, 10mm.

Error bars represent the mean±s.e.m. *Po0.05, unpaired Student’s t-test.
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of filopodia in identified axons (Tau-1 positive) in cultured
neurons at DIV3. Unlike our results for immature dendritic
filopodia, we found no significant difference in the number
of axonal filopodia between DPP6-KO and WT neurons
(WT¼ 1.81±0.16 filopodia per 20 mm axon length, n¼ 64;
DPP6-KO¼ 1.40±0.13 filopodia per 20 mm axon length, n¼ 85,
P40.05, unpaired Student’s t-test). Although the density
of filopodia in the identified dendrites of DPP6-KO-cultured
neurons is significantly decreased compared with WT, we did
not find a significant difference between the density of
dendritic branches of DIV3 WT and DPP6-KO-cultured
neurons (WT¼ 0.08±0.02 branches per 20 mm, n¼ 44; DPP6-
KO¼ 0.07±0.01 branches per 20 mm, n¼ 77, P40.05, unpaired
Student’s t-test).

These results, showing a role for DPP6 in regulating filopodia
number, could indicate either an effect on filopodia formation,
the stability of filopodia once formed, or both. To determine this,

we performed live imaging experiments to monitor filopodia in
DIV3 hippocampal neurons from WT and DPP6-KO mice
(Fig. 2). First we measured the mean lifetime of existing filopodia
over 1 h at 30-s intervals. Fig. 2a,b shows that filopodia in WT
neurons are very stable, withB75% of 78 total filopodia lasting
the full 60 min of time-lapse recording. In DPP6-KO neurons,
however, only B57% of 80 total filopodia lasted the full hour.
Next, we measured the effect of transfecting either GFP or
DPP6-GFP into DPP6-KO P0 hippocampal neurons. Results
showed that filopodia in DPP6-GFP-expressing neurons were
more stable (B70% survival for 1 h) compared with the GFP
control (B59% survival, Fig. 2c,d). This rescue of filopodia
stability in DPP6-KO neurons to WT levels by DPP6-GFP
expression suggests a fundamental role for the DPP6 protein in
maintaining filopodia in developing hippocampal neurons.

In these live imaging studies, we also counted the number
of new filopodia initiated during the 1 h recording (Fig. 2e,f).

N
ew

 fi
lo

po
di

a/
ne

ur
on

*

n 
=

 1
0

n 
=

 1
1

WT DPP6-KO 

b

d

f

n 
=

 1
2

GFP DPP6

n 
=

 1
1

*

0
2
4
6
8

10
12
14

h

a

c

e

g DPP6-KO

N
ew

 fi
lo

po
di

a/
ne

ur
on

0
2
4
6
8

10
12
14

Time (min)

20

60
40

80
100

F
ilo

po
di

a 
 s

ta
bi

lit
y 

(%
) WT

DPP6-KO 

* *
*
* * * * *

0

Time (min)

20

60
40

80
100

F
ilo

po
di

a 
st

ab
ili

ty
 (

%
) 

DPP6-KO+GFP 
DPP6-KO+DPP6

* * * *

0

1 min 30 min 60 min

WT

DPP6-KO

1 min 30 min 60 minDIV3

1 min 48 min 60 min

1 min 30 min 60 min

WT

DPP6-KO

DIV3

1 min 30 min

1 min 36 min 60 min

DPP6-KO

+GFP

DPP6-KO

+DPP6-GFP

DPP6-KO

+GFP

DPP6-KO

+DPP6-GFP

1 min 30 min 60 min

1 min 30 min 60 min

DIV3

DIV3

60 min

10 20 30 40 50 60

10 20 30 40 50 60

Figure 2 | Dendritic filopodia are less stable and fewer new filopodia are initiated in DPP6-KO neurons than in WT hippocampal neurons. The lifetimes

of individual filopodia were assayed for 1 hr in phase-contrast, time-lapse sequences of transfected neurons (n¼ 10 neurons for each condition).

(a,b) Images of WTand DPP6-KO neurons showing filopodia (arrowheads). The graph shows the percentage of stable (lifetime of at least 60 min) filopodia

for WT and DPP6-KO neurons. (c,d) Images of DIV3 DPP6-KO neurons expressing either GFP or DPP6-GFP. Arrowheads point out filopodia. The graph

shows the percentage of stable (lifetime of at least 60 min) filopodia for each condition. (e,f) DPP6-KO mice showed less initiation of new filopodia

(arrow) over the course of 1-hr recordings compared with WT. (g,h) Expression of DPP6 in DPP6-KO mice increased the number of filopodia initiated. Scale

bars, 10mm. Error bars represent the mean±s.e.m. *Po0.05, unpaired Student’s t-test.
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We found DPP6-KO neurons to produce about 60% fewer
filopodia than WT (Po0.05, unpaired Student’s t-test). In
DPP6-GFP-expressing DPP6-KO hippocampal neurons, we
found that DPP6-GFP increased the initiation of filopodia
about threefold compared with the GFP control, nearly restoring
the rate of filopodia formation to WT levels (Fig. 2g,h;
Po0.05, unpaired Student’s t-test). Taken together, the live
imaging measurements suggest that the decreased density of
filopodia in DPP6-KO hippocampal neurons is due to a combi-
nation of both decreased stability and initiation of filopodia
by DPP6.

Spine density is reduced in developing DPP6-KO neurons. As
filopodia can transform into spines22, we looked for a
corresponding effect on spine number at a later developmental
stage. To detect and count spines in dendrites, cultures were
immunostained for mitogen-activated protein 2 to highlight the
dendritic arbor, and PSD-95 to visualize spines at postsynaptic
sites (see Methods). Figure 3a shows images of cultured WT and
DPP6-KO hippocampal neurons at DIV14. The density of the
spines (number per 20 mm length) was reduced in DPP6-KO
neurons B30% compared with those from WT mice (Fig. 3b;
Po0.05, unpaired Student’s t-test). As found for dendritic
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Figure 3 | Dendritic spine formation is reduced in DPP6-KO hippocampal neurons. (a,b) P0 WT or DPP6-KO neurons were cultured until DIV14,

then immunostained with MAP2 (green, 1:1000, Chemicon) to highlight the dendritic arbor, and PSD-95 (red, 1:200, NeuroMab) as a spine marker. Inset

in the right-hand panel is an enlargement of the boxed area. Arrowheads indicate examples of spines. Graph showing that the density of spines in

DPP6-KO mice hippocampal neurons (n¼45) is decreased compared with WT (n¼49). Scale bar, 10 mm. (c,d) DIV14 DPP6-KO hippocampal neurons

expressing either GFP or DPP6-GFP. Inset in the right-hand panel is an enlargement of the boxed area. Arrowheads indicate examples of spines. Graph

shows that DPP6-GFP (n¼ 38) increased spine density compared with GFP controls (n¼45). Scale bar, 10mm. mEPSC frequency, but not amplitude, is

decreased in DPP6-KO hippocampal neurons. (e,f) Sample mEPSC traces from WT and DPP6-KO cultured hippocampal neurons recorded at DIV14

and 15. Scale bars: 10 pA, 250 ms (e) and 4 pA, 20 ms (f). (g) Average mini frequency is decreased in DPP6-KO (n¼ 23) versus WT (n¼ 16) cultured

hippocampal neurons, whereas amplitude is not affected. Error bars represent the mean±s.e.m. *Po0.05, unpaired Student’s t-test.
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filopodia (Figs 1 and 2), expression of DPP6-GFP in DPP6-KO
mouse P0 hippocampal neurons enhanced spine density
compared with GFP controls when measured at DIV 14
(Fig. 3c,d; Po0.05, unpaired Student’s t-test). To determine the
functional impact of spine density decrease in DPP6-KO neurons,
we measured miniature excitatory synaptic currents in DIV14-
cultured WT and DPP6-KO neurons. While no differences
between the two groups were found for mEPSC amplitude,
mEPSC frequency was significantly decreased in DPP6-KO
neurons (Fig. 3e,g, Po0.05, unpaired Student’s t-test). There-
fore, in addition to regulating filopodia number early in
development, DPP6 subsequently impacts spine formation and
synapse number in the hippocampal neurons.

Developmental effects of DPP6 knockdown. To see if DPP6’s
role in regulating dendritic spine formation impacted synapto-
genesis, we used RNA interference against DPP6 in the hippo-
campal neuron cultures over a period of rapid synapse formation
and a decrease in dendritic filopodia density. E18 rat hippo-
campal neurons were transfected with either RNA interference
targeting DPP6 (‘siDPP6’)23 or control RNA interference (siCtrl)
at plating. As a control, we measured the effect of siDPP6
expression on filopodia number in neurons cultured from DPP6-
KO mice. Neither siDPP6 nor siCtrl affected the number of
filopodia in DPP6-KO neurons (DPP6-KOþ siCtrl¼ 1.49±0.24
filopodia per 20 mm, n¼ 12; DPP6-KOþ siDPP6¼ 1.35±0.26
filopodia per 20 mm, n¼ 14, P40.05, unpaired Student’s t-test).

At DIV7, 14 and 21 cultured neurons were fixed and
immunostained with mitogen-activated protein 2 to highlight
the dendritic arbor, and with phalloidin to highlight actin-based
protrusions. To measure the density of synapses, we co-labelled
neurons with the presynaptic marker synaptophysin and the post-
synapse marker PSD-95. Puncta where synaptophysin and PSD-95
labelling overlapped were counted as synapses. To determine the
effect of DPP6 knockdown on the formation of filopodia, spines
and synaptogenesis, we detected and counted the density of
filopodia, spines and synapses in maturing WT hippocampal
neurons and transfected neurons either with siCtrl-GFP or
siDPP6-GFP. WT hippocampal neuronal cultures displayed a
progressive decrease in the density of filopodia between DIV7 and
DIV21, and a corresponding increase in the density of spines and
synapses during maturation (Supplementary Fig. S2). In siDPP6-
expressing neurons, we found the density of filopodia was
significantly reduced by B42% at DIV7 and B30% at DIV14
compared with siCtrl (Fig. 4a,b,e; Po0.05, unpaired Student’s
t-test). The number of filopodia was negligible in both groups by
DIV21 (Fig. 4c,e). We also found siDPP6 to cause a corresponding
decrease in the spine density by B40% at DIV14, and B50% at
DIV21 compared with siCtrl (Fig. 4b,c,f; Po0.05, unpaired
Student’s t-test) while the density of synapses was reduced by
B20% at DIV14 and 40% in DIV21 neurons expressing siDPP6
compared with siCtrl (Fig. 4c,g; Po0.05, unpaired Student’s
t-test). Accordingly, mEPSC frequency was reduced in siDPP6-
expressing neurons compared with control (siCtrl¼ 105.7±28.1
events min� 1, n¼ 20; siDPP6¼ 43.3±9.0 events min� 1, n¼ 17,
Po0.05, unpaired Student’s t-test). No difference in mEPSC
amplitude was found, however (siCtrl¼ 15.4±1.3 pA, n¼ 20;
siDPP6¼ 13.8±1.5 pA, n¼ 17, P40.05, unpaired Student’s
t-test). Moreover, expression of DPP6-GFP in mature DPP6-KO
neurons increased the number of spines compared with control
DPP6-KO neurons expressing only GFP controls (DPP6-KOþ
GFP¼ 5.26±0.23 spines per 20mm, n¼ 45; DPP6-KOþDPP6-
GFP¼ 7.11±0.31 spines per 20mm, n¼ 38, P40.05, unpaired
Student’s t-test). These results show that DPP6 is important in
regulating the development of synapses in hippocampal neurons.

DPP6 effects are independent of Kv4.2. DPP6 is important in
regulating Kv4.2 dendritic expression and function13. To see if the
effects of DPP6 loss on synaptic development involved its role as
a Kv4.2 auxiliary subunit, we repeated the above experiments
using DIV3 Kv4.2-KO cultured neurons. However, unlike for
DPP6-KO neurons, results showed that the density of filopodia
in the axon and immature dendrites are not significantly different
between Kv4.2-KO and WT neurons (Fig. 5; for dendritic
filopodia, WT¼ 2.33±0.24 filopodia per 20 mm, n¼ 44; Kv4.2-
KO¼ 2.11±0.19 filopodia per 20mm, n¼ 45, P40.05; for
filopodia in the axon, WT¼ 1.81±0.16 filopodia per 20 mm,
n¼ 64; Kv4.2-KO¼ 1.87±0.32 filopodia per 20 mm, n¼ 58,
P40.05, unpaired Student’s t-tests). We also observed no
differences in the number of immature dendritic branches
(WT¼ 0.08±0.02 branches per 20 mm, n¼ 44; Kv4.2-KO¼
0.09±0.01 branches per 20 mm, n¼ 45, P40.05, unpaired
Student’s t-test). At DIV14, we found that the number of
spines are unchanged in Kv4.2-KO neurons compared with WT
(WT¼ 7.66±0.29 spines per 20mm, n¼ 49; Kv4.2-KO¼ 6.88±
0.27 spines per 20 mm, n¼ 47, P40.05, unpaired Student’s t-test)
and neither mEPSC frequency (WT¼ 58.2±11.8 events min� 1,
n¼ 25; Kv4.2-KO¼ 43.3±8.9 events min� 1, n¼ 25, P40.05,
unpaired Student’s t-test) nor amplitude (WT¼ 16.4±0.9 pA,
n¼ 25; Kv4.2-KO¼ 15.7±1.2 pA, n¼ 25, P40.05, unpaired
Student’s t-test) differed. Therefore, we conclude that the effect of
DPP6 on filopodia formation and stability occurs independent of
its role as a Kv4.2 auxiliary subunit.

Consequences of DPP6-deficiency in adult neurons. To deter-
mine if the developmental effects described above are functionally
relevant into adulthood, we used biocytin staining to isolate
single CA1 pyramidal neurons from both 6–8-week-old WT and
DPP6-KO mice. Compared with WT controls, pyramidal cells
from adult DPP6-KO mice exhibited a significant reduction in
spine density in both apical and basal dendritic locations
(Fig. 6a,b). When the data were subdivided into distinct parts
of the apical dendrite, it was apparent that DPP6-KO mouse
spine density decreased dramatically (B52%) in distal dendrites
(B240mm) compared with WT (n¼ 10 for DPP6-KO, n¼ 10 for
WT, Po0.05, unpaired Student’s t-test), whereas only a small
reduction (B15%) in spine number was observed in proximal
dendrites (B40 mm, n¼ 10 for DPP6-KO, n¼ 10 for WT).

To determine if this loss of spines leads to functional
impairments, we performed electrophysiological recordings from
WT and DPP6-KO adult acute hippocampal slices. Genetic loss
of DPP6 resulted in a significant decrease of mEPSC frequency in
both P14 young mice (Fig. 6c,d; WT n¼ 8; DPP6-KO n¼ 7;
Po0.05, unpaired Student’s t-test) and adult mice compared
with WT (Fig. 6c,d; WT n¼ 6; DPP6-KO n¼ 7; Po0.05,
unpaired Student’s t-test). mEPSC amplitude was not signifi-
cantly affected by DPP6 loss at either developmental stage
(Fig. 6c,d; P14 amplitude for WT n¼ 8, DPP6-KO n¼ 7;
adult amplitude for WT n¼ 6, DPP6-KO n¼ 7; P40.1). No
differences were found between genotypes in paired-pulse
facilitation experiments (Supplementary Fig. S3) indicating a
postsynaptic effect of DPP6 loss.

Taken together, the reduction of mEPSC frequency but not
amplitude, along with the lack of paired pulse facilitation change
suggests that DPP6-KO mice have fewer functional excitatory
synapses in CA1 neuron dendrites. We therefore investigated
dendritic morphology in the biocytin-stained hippo-
campal CA1 pyramidal neurons in both WT and DPP6-KO
mice (Fig. 6e,g). Sholl analysis revealed a simpler dendritic
branching pattern in neurons from DPP6-KO mice compared
with WT controls (Fig. 6f,g). We found in DPP6-KO mice, less
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dendritic intersections at locations greater than 40 mm from the
soma throughout the dendritic tree compared with WT (Fig. 6g;
n¼ 10 for DPP6, n¼ 10 for WT, Po0.05, unpaired Student’s t-
test). In DPP6-KO neurons, apical dendrite trunk length was
not different from WT (WT¼ 232.1±17.0 mm, DPP6-KO¼
225.1±19.3 mm, n¼ 10, P40.05), but the total apical dendritic
length of DPP6-KO is significantly decreased (WT¼ 781.6±46.4
mm, DPP6¼ 488.6±51.0 mm, n¼ 10, Po0.05, unpaired Stu-
dent’s t-test). The decrease in functional excitatory synapses in
DPP6-KO CA1 neurons compared with WT may then be
accounted by their sparse dendritic arbor as well as their reduced
spine density per unit length of remaining apical dendrites. This
finding differs from that reported above for DIV3 DPP6-KO
neurons where we did not find a difference from WT in the

number of dendritic branches at this young stage, indicating a
developmental impact of DPP6 on branch complexity. As
described above (Fig. 5), we determined that DPP6 acts
independent of its role as a Kv4.2 auxiliary subunit in developing
neurons, as filopodia formation and stability were not affected in
Kv4.2-KO neurons. Consequently, in adult mice, we also found
no effect of Kv4.2-KO on dendritic branching compared with WT
(Supplementary Fig. S4).

Mechanism of DPP6 effects on filopodia. Our results indicate
that DPP6 has a role in regulation of synaptic development and
function including filopodia formation and stability. Protrusion
of filopodia involves the reorganization of the actin cytoskeleton.
To understand the molecular mechanisms underlying DPP6’s
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effects on synaptic development, we immunoprecipitated DPP6
from lysates of the hippocampal neurons to identify DPP6
interacting proteins (Fig. 7a). Mass spectrometry of bands that
were immunoprecipitated from WT but not DPP6-KO neurons
led to the identification of Myosin-X as a DPP6 interacting
protein. Myosin-X is an unconventional myosin known to be
important in the formation and elongation of filopodia24.
Myosin-X is also thought to transport cargo molecules within
filopodia and provides a motor-base link between integrins and
the cytoskeleton25.

For further confirmation, on DPP6–Myosin-X interaction, we
found that endogenous DPP6 and Myosin-X co-immunopreci-
pitate in lysates from mouse brain (Fig. 7b). DPP6 and Myosin-X
also co-immunoprecipitated when transfected into COS7 cells
(Fig. 7c). As one of the most intriguing features of Myosin-X is its
localization at the tips of filopodia26,27, we also tested if DPP6 is
present in this location. As shown in Fig. 8d, DPP6 and Myosin-X
are both present at the tips of filopodia (Fig. 7d). HEK cells, co-
expressing the membrane protein marker, membrane-mCherry,
along with DPP6-GFP showed clear colocalization suggesting
membrane expression of DPP6-GFP (Supplementary Fig. S5).

DPP6 induces filopodia formation through cell adhesion. As
with other DPPs, the extracellular domain of DPP6 consists of a
b-propeller and an a/b-hydrolase domain15. b-propellers provide
excellent platforms for protein–protein interactions, and in
DPPIV (also termed CD26) the extracellular domain binds to
components of the ECM like collagen, fibronectin and integrin
b116,17,28. DPP6 has approximately 50% similarity to CD2621 and
also has a cysteine-rich domain that may bind to components of
the ECM function in cell adhesion. We investigated the effects of
DPP6 transfection on adhesion of COS7 cells to the culture
substratum poly-L-lysine. We found that COS7 co-expressed with
DPP6-enhanced cell adhesion about twofold compared with the

control cells transfected with vector only (Fig. 8a,b; Po0.05,
unpaired Student’s t-test), indicating that DPP6 promotes cell
adhesion to the substratum.

Integrins form a large family of heterodimeric (a/b-subunits)
membrane-spanning ECM receptors29,30, which bind to an
arginine-glycine-aspartate (RGD) motif found in many ECM
proteins. As this short peptide sequence is able to interact with
integrin receptors on the cell surface by itself, the RGD motif has
frequently been introduced into various polymeric materials to
enhance their cell adhesive abilities for use in tissue engineering.
To determine whether DPP6 has a role in cell adhesion by
binding to RGD motifs in ECM proteins, we mimicked the effects
of ECM on integrin signalling in the cultured hippocampal
neurons by applying an RGD-containing peptide and then
examined its effects on filopodia formation. The cultured P0
DPP6-KO hippocampal neurons expressing either GFP or DPP6-
GFP were treated at DIV3 with either control RAD or RGD-
containing peptides (250 mM, 60 min). The neurons were then
fixed and their actin filaments visualized with TRITC-phalloidin.
We counted the number of filopodia per dendrite length and
found that, upon RGD treatment, the density of filopodia is
slightly but not significantly increased in DPP6-KO neurons
compared with the control RAD peptides treatment (Fig. 8e,f
P40.1). However, with the same RGD treatment in DPP6-GFP-
expressing DPP6-KO neurons, filopodia were significantly
increased by B40% compared with the control RAD (Po0.05,
unpaired Student’s t-test).

These results are compatible with that of Shi and Ethell31 who
showed that RGD treatment induced elongation of existing
dendritic spines and promoted formation of new filopodia,
suggesting that the RGD peptide acts as a substrate to enhance
stability. ECM–DPP6 interactions thus likely support filopodia
formation and stability through binding to the RGD motif of the
ECM to enhance cell adhesion. We performed an ECM binding
assay to look for potential ECM protein partners for DPP6.
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Figure 5 | Dendritic filopodia and spine density unaltered in Kv4.2-KO hippocampal neurons. (a,b) DIV3 WT or Kv4.2-KO hippocampal neurons

visualized for actin filaments with TRITC-phalloidin (1:1000, Sigma) and for axons with marker Tau-1 (1:1000, Millipore). The density of filopodia

(arrowheads) is not significantly different in Kv4.2-KO neurons compared with WT (P40.05). (c,d) DIV14 WT or Kv4.2-KO neurons were cultured and

immunostained with MAP2 (green, 1:1000, Chemicon) to highlight the dendritic arbor, and PSD-95 (red, 1:200, NeuroMab) as a spine marker. Inset

in the right-hand panel is an enlargement of the boxed area. Arrowheads indicate examples of spines. Graph showing that the density of spines in Kv4.2-KO

mouse hippocampal neurons is not changed compared with WT. Scale bars, 10 mm. Error bars represent the mean±s.e.m.
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Results presented in Fig. 8c,d show such an interaction of DPP6,
specifically with fibronectin. We did not, however, find evidence
for DPP6 interaction with collagen type 1, 4 or laminin.

Discussion
In this study, we identify a novel role for DPP6 in the regulation
of dendritic filopodia formation and stability. Knockdown or
genetic deletion of DPP6 resulted in fewer filopodia noted early in
development. Moreover, live imaging experiments showed that

the filopodia, in DPP6-lacking neurons, were unstable compared
with those from WT neurons. These deficits could be rescued
by exogenous expression of DPP6 and were not replicated in
Kv4.2-KO neurons demonstrating a specific role for DPP6 in
neuronal development independent of its role as a Kv4.2 auxiliary
subunit in the hippocampal neurons. In the adult, DPP6-KO
neurons showed fewer functional synapses and a sparser
dendritic arbor. DPP6 appears to be acting postsynaptically, as
decreased synaptic transmission was observed without affecting
presynaptic properties. In addition, we provide evidence showing
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Figure 6 | DPP6 loss affects the excitatory synaptic function and dendritic branch complexity in adult hippocampal CA1 pyramidal neurons.

(a) Representative dendritic spine (arrowheads) images of CA1 neurons from WT and DPP6-KO mice at specific distances. Scale bar, 5mm.

(b) Quantification of spine number (n¼ 10 for DPP6-KO, n¼ 10 for WT). (c) Representative mEPSC recordings from WT and DPP6-KO CA1 hippocampal

pyramidal neurons from P14 (left traces) and 6–8-week-old mice (right traces). Sweep scale bar, 10 pA, 20 ms. Average mEPSC scale bar, 1 pA,

10 ms. (d) mEPSC frequency (P14 mice WT n¼ 8, DPP6-KO n¼ 7; adult mice n¼ 10 each WT and DPP6-KO), but not peak amplitude in P14 and adult mice

(P40.1) is altered in DPP6-KO neurons. Error bars represent the mean±s.e.m. (e) A simpler dendritic branching pattern is observed in neurons from

DPP6-KO mice. Images showing biocytin-filled neurons labelled with Alexa-488 conjugated streptavidin in 6–8-week-old WT and DPP6-KO mice.

Scale bar, 50mm. (f) Traced confocal stack images from WT and DPP6-KO mice CA1 hippocampal neurons. (g) Number of dendritic intersections of WT

and DPP6-KO neurons plotted versus distance for apical and basal dendrites (n¼ 10 for WT, n¼ 10 for DPP6-KO, Po0.05, unpaired Student’s t-test).

Error bars represent the mean±s.e.m. *Po0.05, unpaired Student’s t-test.
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an interaction between DPP6 and Myosin-X, a molecular motor
that functions in filopodia formation32. Finally, we showed that
DPP6 interacts with the ECM protein fibronectin to enhance cell
adhesion to the substratum. In total, these data present a
structural role for DPP6 impacting dendritic morphology and
synapse numbers beginning early in development and persisting
into adulthood. The strong developmental role for DPP6 suggests
a potential pathophysiological link to its genetic association with
autism susceptibility9, highlighting the importance of further
study into the role of DPP6 during normal circuit formation and
synaptic development.

Myosin-X is a plus-end-directed, high-duty-ratio myosin32,33

that uses its motor activity to transport itself and its cargos to the
tips of filopodia. Recent biochemical data demonstrate that
Myosin-X can be converted from an inactive monomer to an
active dimer34, which suggests that in cells, its ability to transport
cargos to filopodia is regulated. Together with crystal structure
data suggesting a conspicuously large extracellular domain for
DPP615 and previously reported ECM binding role for the related
family member, DPP4/CD2619,20, our results suggest a model
where Myosin-X delivers DPP6 to the tips of filopodia where its

extracellular domain interacts with fibronectin in the ECM to
provide mechanical stability and aid in filopodial elongation,
perhaps by preventing the retrograde flow of Myosin-10 and/or
actin.

The finding that DPP6 interacts with proteins in the ECM is
also significant because it provides a function for its large
extracellular domain. This domain of DPP6 (like that of DPP10
and other transmembrane DPPs) constitutes an overwhelming
proportion of the protein. Yet, experiments with chimeric
proteins lacking the extracellular domain of DPP6 (which was
replaced by a series of Myc tags), showed that these mutants
produce changes in expression and biophysical properties of Kv4
channels that were similar to those produced by the whole
protein8. Here we found that the hippocampal neurons cultured
from Kv4.2-KO mice do not show similar effects on filopodia
formation and stability as reported here for those of DPP6-KO
(Fig. 5). Therefore, it appears that DPP6 has functions indepen-
dent of its role as a Kv4 auxiliary subunit during development.
These results support those showing that DPP6 does not require
complex formation with Kv4 channels for intracellular trafficking,
membrane expression and recycling35,36.
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(b) Native co-IP from mouse brain shows that endogenous DPP6 interacts with Myosin-X. IgG as nonspecific control. (c) DPP6 binds with Myosin-X in

COS7 cells co-transfected with DPP6 and Myosin-X in a co-IP assay. A DPP6 antibody was used for pull-down and lysates are probed with an anti-Myosin-

X antibody (1:4000, Sigma) or anti-DPP6 antibody (1:2000, Abcam), then visualized by anti-rabbit Alexa Fluor 680 and anti-rabbit Alexa Fluor 800

secondary antibody, respectively. Scale bar, 50mm. (d) Images of Myosin-X-GFP (green) and DPP6-Cherry (red) expressed in COS7 cells, showing their
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In addition to impacting filopodia stability, loss of DPP6
had consequences for spine number and dendritic branching
patterns in CA1 neurons in adult neurons. As no differences in
branch numbers were found at DIV3, the sparser dendritic
branching pattern in adulthood is likely a developmental effect. A
sparse tree would be expected to produce a reduction in total
spine number, but we also found that the remaining dendrites
of adult DPP6-KO neurons exhibited decreased spine density
compared with WT. This may too be the consequence of aberrant
development in the absence of DPP6 or, perhaps, indicate that

DPP6 functions in synapse stability throughout development and
into adulthood. Interestingly, the loss of spine density in DPP6-
KO dendrites was most prominent in distal dendrites, which
corresponds to the effect of DPP6 on A-type Kþ current
amplitudes; the loss was also most prominent in distal CA1
dendrites. Future studies will be necessary to determine if this
indicates subcellular recognition and/or trans-synaptic signalling
roles for DPP6 and, if so, whether or not DPP6 proteins
functioning in this manner are also acting independent of Kv4
channels.
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Methods
Constructs. DPP6-GFP or DPP6-mCherry constructs were prepared by PCR on
construct rat pcDNA3-DPP6 (ref. 21) and subcloned into the pEGFP-N1 or
pmCherry-N1 vector (Clontech, Mountain View, CA). Myosin-X-GFP constructs
are previously described and characterized (Berg and Cheney27). Additional details,
including construction specifics and primer sequences, are given in the
Supplementary Methods.

Rat and mouse hippocampal neuron culture and transfection. For details on
the preparation of the primary hippocampal neuron cultures from E18-19 WT,
DPP6-KO and Kv4.2-KO mice or Sprague–Dawley rats, please see Supplementary
Methods. These methods were approved by NICHD’s Animal Care and Use
Committee.

Immunocytochemistry. The cultured hippocampal neurons were fixed with freshly
prepared 4% paraformaldehyde plus 4% sucrose in phosphate-buffered saline (PBS).
Neurons were blocked with 10% normal goat serum in PBS and permeabilized with
0.2% Triton X-100 PBS for 10 min, immunostained with rabbit anti-MAP2 (1:1000,
Chemicon), mouse anti-PSD-95 (1:200, NeuroMab), mouse anti-Synaptophysin
(1:500, Millipore), mouse anti-Tau-1 (1:1000, Millipore) for 1 h at 37 �C, washed
with PBS and incubated with Alexa Fluor 488 conjugated goat anti-rabbit (1:500,
Invitrogen), Alexa Fluor 555 conjugated goat anti-mouse or Alexa Fluor 633 goat
anti-rabbit for 1 h at 37 �C. Some neurons were counterstained with TRITC-phal-
loidin (1:500, Invitrogen) to visualize actin filaments. Cells were imaged with a Zeiss
Axioplan 2 microscope or a Zeiss LSM510 confocal microscope (Carl Zeiss, Ger-
many) using a 63� objective with a 1.4 numerical aperture. Imaging and mea-
surements are described in full in Supplementary Information.

Time-lapse light microscopy. To make time-lapse sequences, the WT or DPP6-
KO P0 mouse13 hippocampal neurons, in some cases expressing DPP6-GFP or
GFP as a control, were cultured for 3–4 days on 25 mm round coverslips. Time
series were acquired in differential interference contrast mode using 0.5%
transmission of the 561 nm laser on the transmission path of a Zeiss Live Duo scan
microscope. The neurons were maintained at 37 �C with 5% CO2 in a humidified
environment. The cells were exposed to light only during image acquisition (5–7 s
per image). We used a � 63 per 1.40 Oil differential interference contrast M27
Plan-Apochromat objective. Time-lapse recordings of dendrites were carried out
for 60 min during which time images were collected at a rate of one image every
30 s. Filopodia detected during the recording period and which remained for the
duration were counted as new filopodia. All images were analysed using
MetaMorph software.

Staining and imaging analysis. Six to eight-week-old male WT C57BL/6 and
DPP6-KO mouse brain slices (250mm thick) were prepared using a vibrating tissue
slicer as described for the whole-cell electrophysiological recording methods listed
below. Two milligrams of biocytin was added to 1 ml internal solution containing
(in mM): 20 potassium chloride, 125 potassium gluconate, 10 HEPES (4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid), 4 NaCl, 0.5 EGTA (ethylene glycol
tetraacetic acid), 10 phosphocreatine, 4 ATP, 0.3 TrisGTP (pH 7.2 with NaOH) and
was passively perfused into CA1 neurons. Somatic patches were maintained for
20 min to let biocytin diffuse throughout the neuron. Access (5B10 MO) was
carefully monitored during all injections. After slowly withdrawing injection pip-
ettes, slices were rapidly transferred to PBS containing 4% PFA. Tissue was fixed for
24 h before IHC staining. Biocytin-filled slices were single labelled with Alexa-488
conjugated streptavidin (1:500, Invitrogen) overnight at 4 �C after being permea-
bilized with 0.3% Triton X-100 in PBS. Following 4� washes in PBS, slices were
then cryoprotected using a 25% sucrose/PBS solution, and subsectioned into 70-mm
thick slices using a freezing microtome, washed in PBS at 4 �C for 2–3 h and
mounted on gelatin-coated slides using Mowiol mounting medium (Calbiochem, La
Jolla, CA).

Confocal image stacks of stained cells were performed at the NICHD
Microscopy & Imaging Core facility using a Zeiss LSM 510 Inverted Meta with
� 63 oil objective lens. Branching complexity was analysed by Sholl analysis37.
Neurons were traced with the center of the soma as a focal point. Sholl
measurements were obtained by quantifying the number of dendritic intersections
crossing each 20-mm radius from soma. To calculate spine density, all dendrites
located at a specific distance (40, 120, 240 mm from soma) were counted, and the
number of spines along the length was counted to give a measure of spine per
20mm length.

Co-immunoprecipitation and western blotting. To confirm an interaction
between DPP6 and Myosin-X, we performed co-IP experiments either in native,
detergent-solubilized mouse brain extracts or COS7 cells co-transfected with var-
ious DPP6 and Myosin-X constructs for 24–48 h. Mouse brain or cells were lysed in
lysis buffer: 150 mM NaCl, 20 mM Tris-HCl, 1% NP40, 0.5% SDS and protease
inhibitor mixture (Roche, Indianapolis, IN). Anti-DPP6 (2 mg per 500mg protein,
Abcam, Cambridge, MA), IgG (Invitrogen) as nonspecific control was then added
to the lysate. The mixture was then incubated and rotated at 4 �C overnight. The

antibody–antigen complex was immobilized by adsorption onto 50 ml of immo-
bilized protein A (Pierce, Rockford, IL) and incubated for 2 h at room temperature.
The protein-bead mixtures were washed 6� with lysis buffer. The beads were
resuspended in reducing SDS sample buffer and analysed on 3–8% Tris-acetate
SDS polyacrylamide gels. The separated proteins were immunoblotted using DPP6
(1:2000) or Myosin-X antibody (1:4000, Cat# HPA024223, Sigma) and visualized
by Alexa Fluor 680 secondary antibody (1:10,000, Invitrogen) and Alexa Fluor 800
secondary antibody (1:10,000, Rockland, Gilbertsville, PA). Immunoreactivity was
detected with the Odyssey infrared imaging system (LI-COR Biosciences, Lincoln,
Nebraska).

Cell adhesion and ECM binding assay. Adhesion of COS7 cells to a substratum
was assayed as described38,39. Ninety-six-well plates coated with 0.1 mg ml� 1 poly-
L-lysine overnight at 4 �C were used for cell adhesion assay; ECM-coated 96-well
plates (BD BioCoat, Bedford, MA) were used for binding assay. Plates were blocked
with DPBS containing 2% BSA for 2 h. Transfected cells were harvested with
enzyme-free cell dissociation buffer (Invitrogen), and then plated in DMEM with
1% BSA at a density of 60,000 cells per well. Cells were allowed to attach to the
wells for 60 min at 37 �C, then non-adherent cells were washed away. The
remaining adherent cells were fixed with 5% glutaraldehyde for 30 min and stained
with 5 mg ml� 1 crystal violet in 20% methanol for 30 min, washed with PBS and
extracted with 0.2% Triton X-100 for 30 min. Microplates were colorimetrically
evaluated at 576 nm.

RGD or RAD treatment. DIV3 mouse hippocampal neurons were treated with
250 mM RGD-containing peptide [Gly-Arg-Gly-Asp-Thr-Pro (GRGDTP)] (EMD
Biosciences, San Diego, CA) or the control RAD-containing peptide [Gly-Arg-Ala-
Asp-Ser-Pro (GRADSP)] (EMD Biosciences) for 1 h at 37 �C with 5% CO2, then
neurons were fixed and immunostained with TRITC-phalloidin and density of
filopodia quantified.

Electrophysiology. Six- to eight-week-old male C57BL/6 WT, Kv4.2-KO and
DPP6-KO mice were anaesthetized by isoflurane prior to decapitation according
to the methods approved by NICHD’s Animal Care and Use Committee. Acute
brain slices (250-mm thick) were prepared using a vibrating tissue slicer as
described previously13. The cultured hippocampal neurons were recorded on
DIV 14–16. During recording, cultured neurons were bathed in extracellular
solution containing (in mM) 145 NaCl, 3 KCl, 10 HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid), 8 dextrose, 2 CaCl2, 2 MgCl2. Somatic whole-cell
recordings were performed at 32–33 �C for slices and 20 �C for cultured neurons,
and were made from visually identified CA1 pyramidal neurons using differential
interference contrast optics. Recording pipettes had tip resistances of 3–5 MO.
Series resistance varied between 6 and 15 MO, and was carefully monitored
throughout the experiments. No compensation for series resistance was employed.
Neurons showed a resting membrane potential lower than � 60 mV. Recordings in
which the resting potential changed by more than ±5 mV of the initial value were
excluded from the analysis. All electrophysiological data were recorded using a
Multiclamp 700B amplifier. Signals were digitized at 10 kHz with a Digidata 1440 A
and filtered at 2 kHz for miniature excitatory synaptic currents and at 4 kHz for
PPF recordings.

For recording miniature excitatory synaptic currents, recording pipettes were
filled with intracellular solution containing (in mM) 100 Cs-gluconate, 5 MgCl2, 0.6
ethylene glycol tetraacetic acid, 8 NaCl, 40 HEPES (4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid), 2 NaATP, 0.3 TrisGTP (pH 7.2 with KOH). TTX
(1 mM), Bicuculline (20 mM) were included in the external solution during all
mEPSC recordings. After whole-cell formation, a 5-min recovery period elapsed
before data collection. Membrane potential was held at � 65 mV. Each neuron was
recorded continuously for 10 min. Synaptic currents were analysed with the Mini
Analysis program (Synaptosoft Inc.). Only events showing a rise time and decay
time less than 2 and 10 ms, respectively, and amplitude greater than 8 pA, were
analysed. For PPF recordings, the patch electrode solution contained the same
internal solution listed above for mEPSC recordings. Experiments were performed
in 20 mM Bicuculline. A 50-ms interval elapsed between the 1st and 2nd stimulus
pulse. Paired-pulse ratios are the ratio of the amplitude of the second EPSC to the
first. All PPF recordings were analysed using Clampfit 10.1 and Microsoft Excel.
Statistical significance was evaluated using Student’s t-test (unpaired, two tails).
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Supplementary Figure S2 

 

Number of filopodia, spines and synapses during development in WT hippocampal culture 
neurons. At DIV7, 14 and 21 cultured neurons were fixed and immunostained with MAP2 
to highlight the dendritic arbor, and with Phalloidin to highlight actin-based protrusions.  To 
measure the density of synapses, we co-labeled neurons with the presynaptic marker 
synaptophysin and the post-synapse marker PSD-95.  
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No change in paired pulse faciliation is observed in neurons from DPP6-KO mice.
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SUPPLEMENTARY METHODS 
 
Constructs  

DPP6 constructs were based on the rat DPP6 cDNA sequence (M76424).  DPP6-GFP or 

DPP6-mCherry constructs was prepared by PCR using the primers 

5’GGTGGTCTCGAGATGACCACGCCCAAGGAGC (forward) 

/5’GGTGGTCTGCAGGTCCTCCTCCTCGTCCTCTTTC (reverse) or 

5’GGTGGTCTCGAGATGACCACCGCCAAGGAGC (forward) / 

5’GGTGGTGTCGACTGGTCCTCCTCCTCGTCCTCTTTC (reverse) on construct rat 

pcDNA3-DPP6 21 and subcloned into the XhoI-PstI sites of the pEGFP-N1 or XhoI-SalI 

sites of the pmCherry-N1 vector (Clontech, Mountain View, CA), and confirmed by 

sequencing analysis. Myosin X-GFP constructs are previously described and 

characterized (Berg and Cheney, 2002).  

 

Rat and mouse hippocampal neuron culture and transfection 

Primary hippocampal neuron cultures from E18-19 WT, DPP6-KO and Kv4.2-KO mice 

or Sprague-Dawley rats were prepared as previously described 4, 39.  Briefly, hippocampi 

from E18–19 mice or rat embryos were triturated after trypsinization and suspension with 

MEM plus 10% FBS plating media following by plating on poly-D-lysine and Laminin 

coated glass coverslips in a 6 or 24-well plate. To maintain the cultured neurons, half of 

the medium was replaced with fresh Neurobasal plus 1% B27 (Invitrogen). Neuronal 

transfections were performed either with the Nucleofector System (Lonza-Amaxa, 

Walkersville, MD) or Lipofectamine 2000 (Invitrogen).  Cultured hippocampal neurons 

(6x106) were resuspended in 100 μl of rat neuron Nucleofector solution with 10 μg of 

DNA, electroporated using the O-03 program. Transfected neurons were suspended with 

MEM plus 10% FBS plating media and then plated on poly-D-lysine and laminin coated 

glass coverslips in a 24-well plate in Minimum Essential Medium (MEM) (Invitrogen) 

supplemented with 10% FBS.  After 5-6 h, the medium was replaced with Neurobasal 

medium plus B27 supplements (Invitrogen). For mature neurons, neurons were 

transfected at DIV10 by Lipofectamine 2000 with 1:1.5 ratio of DNA and Lipofectamine 

reagent.  Cultures were maintained at 37oC with 5% CO2.  



 

To measure the prevalence of interneurons in our cultures, we used GAD67 (glutamic 

acid decarboxylase 67) as an interneuron marker, and NeuN as marker for neurons. At 

both DIV3 and DIV 14 about 12-13% of all neurons were GAD67 positive in our culture 

conditions in both WT and DPP6-KO neurons.     

 

Imaging and Measurements 

Digital images of fixed, immunostained cells were acquired and analyzed with a CCD 

camera and MetaMorph software (Universal Imaging Corp, Downingtown, PA).  

Protrusions were scored based on their morphology. Protrusions that ranged from 2–10 

μm without a visible head were counted as filopodia. Dendritic spines were identified as 

PSD95-positive protrusions that had mushroom shaped heads wider than its base 40.  In 

order to quantify filopodia, spines and synapses, all neurites of a given cell were 

measured and the number of filopodia, spines and synapses counted per neuron, and then 

these were divided by the length of the neurites to give the density of filopodia, spines 

and synapses per 20 μm neurite length.  Mean values from three experiments were 

calculated.  Statistical significance of differences between mean values was determined 

by a two-tailed, unpaired t-test.   
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