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a b s t r a c t

Improved understanding of the water balance in the Blue Nile is of critical importance because of increas-
ingly frequent hydroclimatic extremes under a changing climate. The intercomparison and evaluation of
multiple land surface models (LSMs) associated with different meteorological forcing and precipitation
datasets can offer a moderate range of water budget variable estimates. In this context, two LSMs,
Noah version 3.3 (Noah3.3) and Catchment LSM version Fortuna 2.5 (CLSMF2.5) coupled with the
Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme are used to produce hydro-
logical estimates over the region. The two LSMs were forced with different combinations of two
reanalysis-based meteorological datasets from the Modern-Era Retrospective analysis for Research and
Applications datasets (i.e., MERRA-Land and MERRA-2) and three observation-based precipitation data-
sets, generating a total of 16 experiments. Modeled evapotranspiration (ET), streamflow, and terrestrial
water storage estimates were evaluated against the Atmosphere-Land Exchange Inverse (ALEXI) ET, in-
situ streamflow observations, and NASA Gravity Recovery and Climate Experiment (GRACE) products,
respectively. Results show that CLSMF2.5 provided better representation of the water budget variables
than Noah3.3 in terms of Nash-Sutcliffe coefficient when considering all meteorological forcing datasets
and precipitation datasets. The model experiments forced with observation-based products, the Climate
Hazards group Infrared Precipitation with Stations (CHIRPS) and the Tropical Rainfall Measuring Mission
(TRMM) Multi-Satellite Precipitation Analysis (TMPA), outperform those run with MERRA-Land and
MERRA-2 precipitation. The results presented in this paper would suggest that the Famine Early
Warning Systems Network (FEWS NET) Land Data Assimilation System incorporate CLSMF2.5 and
HyMAP routing scheme to better represent the water balance in this region.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Water balance has been a critical issue throughout the Nile river
basin, especially associated with intense hydroclimatic extremes
and the impacts on natural and human systems (Senay et al.,
2009; FAO, 2011; Bastiaanssen et al., 2014). Studying water budget
variables, such as precipitation (P), evapotranspiration (ET),
streamflow and terrestrial water storage (TWS), provides improved
understanding of water resources under a changing climate system
(Simane et al., 2012; Tekleab et al., 2013; Berhane et al., 2014). In
the Ethiopian portion of the Blue Nile basin (i.e. the upper Blue

Nile), hydrological variability has had major implications for trans-
boundary water supply (e.g. Mellander et al., 2013), periodic
drought (e.g. Tadesse et al., 2014; Taye et al., 2015), regional food
security (e.g. Shukla et al., 2014; Tadesse et al., 2015; McNally
et al., 2016) and land use management (e.g. Gebrehiwot et al.,
2011).

Several studies have shown that the water balance in East Africa
is likely to shift under a changing climate (Lyon and DeWitt, 2012;
Williams and Funk, 2011). The upper Blue Nile basin is vulnerable
to negative climate change impacts along with significant interan-
nual climate variability, complex topography, land cover modifica-
tion, and continued population growth (Taye et al., 2015; Zaitchik
et al., 2012). Over the past century, Ethiopia has become warmer
with an increasing temperature over time (0.37 �C/decade) and
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experienced periodic droughts (Simane et al., 2012; Funk et al.,
2014). Thus, the application of enhanced land surface models
(LSMs) has been motivated by the need to provide enhanced sea-
sonal prediction of hydro-climatic extremes and support adapta-
tion strategies under evolving climate conditions (e.g. Simane
and Zaitchik, 2014; Tadesse et al., 2014).

Previously, more streamflow and water balance studies in this
region have been conducted relative to data sparse regions of
Africa. The upper Blue Nile basin has two favorable conditions
for hydrological modeling. First, the Ministry of Water and Energy
of Ethiopia has been monitoring more than two dozen flow gaug-
ing stations and four dozen rainfall stations (Awulachew et al.,
2008; Gebrehiwot et al., 2011; Taye et al., 2015). Second, this
basin’s local hydrology is less influenced by reservoirs when com-
pared to the lower Blue Nile basin which includes Roseires Dam in
Sudan, the White Nile basin which includes Lake Victoria, and the
main Nile basin which includes Merowe Dam in Sudan and Aswan
Dam in Egypt (FAO, 2011). Also, rain-fed agriculture is more dom-
inant than irrigated cropland in the upper Blue Nile basin
(Gebremicael et al., 2013). Therefore, incorporation of reservoir
operation rules and irrigation impacts are less important for this
regional hydrological modeling system.

Intercomparing models and datasets is an effective way to iden-
tify strengths and weaknesses of LSMs and meteorological forcings
in different regions of the globe and at different spatio-temporal
scales. In that sense, numerous model intercomparison initiatives
have been created in the past (e.g. Henderson-Sellers et al., 1995;
Boone et al., 2004, 2009a,b; van den Hurk et al., 2011; Dirmeyer
et al., 2006; Drobinski et al., 2014), providing guidance to the
development of future generations of LSMs and improvements
for Earth observing systems. In particular, coupling LSMs with river
routing schemes allows us to use in situ streamflow observations
to evaluate the water budget at the basin scale (e.g. Oki et al.,
1999; Getirana et al., 2014a,b, 2017; Li et al., 2015; Zubieta et al.,
2015).

However, little is known from comprehensive model intercom-
parisons and evaluations in the upper Blue Nile basin. Tekleab et al.
(2011) calibrated a simple water balance model against observed
streamflow time series and provided the water balances of twenty
catchments in the upper Blue Nile basin. The catchment water bal-
ance was analyzed using an empirical relationship between the
ratio of mean annual actual evaporation to mean annual rainfall
and dryness index of the catchment. Bastiaanssen et al. (2014) cal-
culated the annual water balance of 15 catchments in the Nile
basin using rainfall data from Tropical Rainfall Measurement Mis-
sion (TRMM) and the National Oceanic and Atmospheric Adminis-
tration (NOAA) Climate Prediction Center (CPC) RainFall Estimates
(RFE) products in conjunction with actual evapotranspiration from
the Operational Simplified Surface Energy Balance (SSEBop) and
ETLook models. Also, Senay et al. (2009) estimated water balance
components using annual satellite-derived variables such as runoff
and evapotranspiration as a percent of rainfall albeit without
model validation. Some studies focused on the small-scale water
balance of the Lake Tana sub-basin in this region (e.g. Kebede
et al., 2006; Setegne et al., 2008, 2010; Wale et al., 2009; Dessie
et al., 2015). Other studies have provided parameter estimations
for water balance models (e.g. Kim and Kaluarachchi, 2008) and
the analysis of runoff and sediment fluxes (e.g. Gebremicael
et al., 2013; Steenhuis et al., 2009) in the upper Blue Nile.

The objectives of this study are to 1) identify the most suitable
combination of LSMs, reanalysis and precipitation data for a water
balance study in the upper Blue Nile basin; and 2) support the
Famine Early Warning Systems Network (FEWS NET) Land Data
Assimilation System (FLDAS; McNally et al., 2017) by evaluating
water budget components to ensure high quality of drought mon-
itoring products. This study provides comparisons of multi-model

inputs (i.e. precipitation) and output estimates (i.e. streamflow,
terrestrial water storage anomaly, evapotranspiration) and evalua-
tion of the water budget variables using in-situ measurements and
satellite-based products. We run retrospective simulations to offer
baseline knowledge for an improved modeling framework such as
data assimilation or ensemble streamflow prediction. This study
relies on remotely sensed data and the NASA Land Information Sys-
tem (LIS; Kumar et al., 2006).

This paper is organized as follows. Section 2 briefly introduces
the design of this study, including the study area, land surface
models, meteorological forcing data sets, observation-based pre-
cipitation data, the river routing scheme, and model setup. Sec-
tion 3 describes how we evaluate our experiments using in-situ
observations, satellite based measurements, and statistical indices.
Section 4 presents results and discussion about the model inter-
comparison and evaluation. The last section summarizes our con-
clusions from this study.

2. Models and datasets

2.1. Study area

The Blue Nile River is the largest tributary of the main Nile
River, and its upper part is fully located in Ethiopia (Fig. 1). The
upper Blue Nile River basin contributes about 60% of the annual
streamflow to the main Nile River (UNESCO, 2004; Conway,
2005; Senay et al., 2014). The size of the basin (i.e. a drainage area
upstream of the El Diem gaging station) is about 175,000 km2 as
compared to the whole Blue Nile basin area, which is about
325,000 km2. Over 95% of the land cover in the basin consists of
rain-fed cropland, grassland, wooded grassland, wood land, shrubs
and bushes (Gebremicael et al., 2013). The headwater starts at Lake
Tana in the Ethiopian highlands, and most of the flow originates
from a large number of downstream tributaries. The river has cut
a deep canyon through the highlands and drains a large portion
of western Ethiopia (Elshamy et al., 2009). Elevations range from
�4000 m in the Ethiopian highlands to �500 m at the Ethiopia-
Sudan border. The precipitation in the upper Blue Nile basin is
highly seasonal and subject to a tropical highland monsoon. Its
main rainy season (i.e. Kiremt) occurs from June to September, a
short rainy season (i.e. Belg) from March to May, and a dry season
from October to May (Taye et al., 2015; Mellander et al., 2013;
Zaitchik et al., 2012).

Fig. 1. Study area of the upper Blue Nile river basin with river networks, country
borders, and location of the streamflow station at the El Diem site.
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2.2. Land surface models

The NASA Land Information System (LIS; Kumar et al., 2006)
was used as the modeling platform in order to simulate land sur-
face processes in the upper Blue Nile basin. LIS employs the use
of high performance terrestrial hydrologic Modeling with develop-
ment led by the Hydrological Sciences Laboratory at NASA Goddard
Space Flight Center (GSFC). The LIS framework includes several
community land surface models (LSMs) and supports their applica-
tion at varying spatial and temporal scales over regional, continen-
tal and global domains. Two LSMs, the Noah land surface model,
version 3.3, (Noah3.3) and Catchment Land Surface Model, version
Fortuna 2.5 (CLSMF2.5), were used to drive the Hydrological
Modeling and Analysis Platform (HyMAP; Getirana et al., 2012)
river routing scheme and to simulate the hydrological processes
in this study area.

The Noah LSM is maintained and released by the National Cen-
ter for Atmospheric Research (NCAR) and applies finite difference
spatial discretization methods and numerically solves the govern-
ing equations of the soil-vegetation-snowpack medium to simulate
surface energy and water fluxes [more details can be found in Chen
et al. (1996) and Ek et al. (2003)]. Noah is operationally used as the
land model at the National Centers for Environmental Prediction
(NCEP) for weather forecasts and the FLDAS simulation for use in
hydro-climate studies and early warning applications.

The Catchment land surface model (CLSM) has been developed
by the NASA Global Modeling and Assimilation Office (GMAO) and
is the land-surface component of the Goddard Earth Observing Sys-
tem Model, Version 5 (GEOS-5) General Circulation Model (GCM).
In contrast to the traditional gridded delineation, CLSM divides
areas into irregularly shaped topographic catchments, which each
contain a saturated fraction, a sub-saturated fraction, and a wilting
fraction. These fractions evolve over time, and are used to deter-
mine fluxes and soil states within the catchment [more details
can be found in Koster et al., 2000; Reichle et al., 2011; Houborg
et al., 2012]. The soil profile depths were compiled from the FAO/
UNESCO Soil Map of the World (Webb et al., 1991).

While default values were used for most model parameters,
some parameters were commonly used in both LSMs such as the
NCEP monthly albedo, the NCEP monthly greenness, the combined
Pennsylvania State University STATSGO and Food and Agriculture
Organization of the United Nations (FAO) 16-category soil texture
(Reynolds et al., 2000; Tegen et al., 2002), the Shuttle Radar Topog-
raphy Mission (SRTM) topography elevation, and the Advanced
Very High Resolution Radiometer (AVHRR) global land cover clas-
sification from the University of Maryland (Hansen et al., 2000).

2.3. Meteorological and precipitation datasets

LSMs require meteorological forcing datasets (e.g. temperature,
humidity, downward shortwave and longwave radiation, wind,
and surface pressure). The Modern-Era Retrospective analysis for
Research and Applications (MERRA) data product is a NASA atmo-
spheric reanalysis for the satellite era using the Goddard Earth
Observing System model (GEOS-5) and its associated data assimi-
lation system (Reichle et al., 2011; Reichle, 2012). Our experiments
were forced with two different MERRA versions: MERRA-Land and
MERRA-2. MERRA-Land is a supplemental land surface data pro-
duct of MERRA. MERRA-2 is the second version of MERRA with sev-
eral major upgrades, including observation-based precipitation
corrections over Africa (Reichle et al., 2017). Both products are
available globally at the hourly time step and horizontal resolution
of 2/3� longitude by 1/2� latitude. These products begin in 1980,
but only MERRA-2 system continues to be produced after January,
2017. MERRA-2 is updated operationally with a latency of about
one week.

To examine the impact of observation-based precipitation prod-
ucts, three different satellite precipitation datasets were used as
inputs to our simulations to compare with the MERRA-based pre-
cipitation reanalysis, generating several simulations. These
observed products include: 1) the Climate Hazards group InfraRed
Precipitation with Stations (CHIRPS), 2) the research-grade Tropi-
cal Rainfall Measuring Mission (TRMM) Multi-Satellite Precipita-
tion Analysis version 7 (TMPA; referred to here as TMPA3B42),
and 3) the near real-time version of the TMPA3B42 product
(TMPA3B42RT).

CHIRPS is a quasi-global (50� S–50� N) rainfall dataset based on
infrared Cold Cloud Duration (CCD) observations, used for seasonal
drought monitoring (Funk et al., 2015). The data is temporally dis-
aggregated from daily to 6-hourly at 0.05� spatial resolution and
from 1981 to present. CHIRPS incorporates station data with about
a three week latency (Funk et al., 2015).

TMPA3B42 is a quasi-global (50� S–50� N) precipitation product
at 0.25� spatial resolution and 3-hourly temporal resolution, using
the multi-channel microwave and infrared observations obtained
from satellites (Huffman et al., 2007). The TMPA3B42 algorithm
uses infrared (IR) and passive microwave (PM) sensors and rescales
the data based on gauge observations. TMPA3B42 is available from
1998 to present, usually with two months latency. TMPA3B42RT
has spatial coverage (60� S–60� N) and is available from 2000 to
present. TMPA3B42RT is available with a latency of about 6 h
and without the gauge based adjustment. Dinku et al. (2007)
showed that TMPA3B42RT in Ethiopia performs as well as
TMPA3B42 in terms of correlation coefficient and mean error
against gauge rainfall data. TMPA3B42RT even performs better
than the NOAA Climate Prediction Center (CPC) African Rainfall
Estimation Algorithm (RFE), version 2, which includes use of in-
situ rainfall data from the Global Telecommunication System
(GTS) stations.

2.4. River routing scheme

In this study, HyMAP is driven with both Noah3.3 and
CLSMF2.5. Surface runoff and baseflow are converted into stream-
flow along the river network using a kinematic wave formulation,
allowing the comparison against in-situ observations [more details
can be found in Getirana et al., 2012]. In river routing schemes,
channel geometry, floodplain topography, and roughness coeffi-
cient are an acknowledged source of uncertainty (Decharme
et al., 2012; Yamazaki et al., 2011; Getirana et al., 2013; Luo
et al., 2017). We implemented the HyMAP’s global standard
parameters except for river width in this study.

Generally, HyMAP defines river width for each grid cell based
on an empirical relationship between river width and the mean
annual discharge from the global runoff database (Cogley, 2003).
In this study, we modified the HyMAP-based river width with
the Global Width Database for Large Rivers (GWD-LR) (Yamazaki
et al., 2014). GWD-LR calculates effective bank-to-bank river width
using the SRTM Water Body Database and the HydroSHEDS flow
direction map (Lehner et al., 2008). While GWD-LR shows discon-
tinuities of river width data in small tributaries, this data provides
better estimates on the mainstem (greater than �150 meter in
river width) of our study area. Thus, we computed the ratio of
GWD-LR to HyMAP defined river width on the mainstem, multi-
plied the HyMAP defined river width by the ratio, and updated
river width input in the river routing scheme.

2.5. Model setup

Both Noah3.3 and CLSMF2.5 were each driven with the two
MERRA-based meteorological forcing datasets. Additional model
experiments were conducted with each of the three additional pre-
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cipitation datasets (i.e. CHIRPS, TMPA3B42, and TMPA3B42RT),
replacing the MERRA-Land and MERRA-2 precipitation fields but
still retaining the other meteorological forcing fields (e.g. air tem-
perature, wind fields, etc.). Table 1 lists the details of the 16 model
experiments. The simulations were performed from 1981 to 2010.
All experiments used a constant model time step of 15 min and
produced on a 0.1� spatial resolution domain with daily-averaged
output fields. Bilinear interpolation was applied to the coarser
scale meteorological datasets to match the 0.1� resolution required
by the LSMs. The first 25 years of simulation were used for model
spinnup for LSM variables to reach equilibrium (Rodell et al., 2005)
and were not considered in the evaluation. The water budget eval-
uation was carried out for the 2006–2010 period when evaluation
datasets (i.e. ET, Q, TWS; see the details in Section 3) are most
available. The selected LSMs are physically-based models, meaning
that the accuracy of results will depend on the quality of input
data. Model calibration is beyond the scope of this study.

3. Evaluation approach

3.1. Evapotranspiration

Monthly model-based evapotranspiration estimates were com-
pared and evaluated against the Atmosphere-Land Exchange
Inverse (ALEXI) (Yilmaz et al., 2014) and the Global Land Evapora-
tion Amsterdam Model (GLEAM) v3.0a (Martens et al., 2016).

ALEXI was developed as a robust regional framework for a two-
source (soil + vegetation) time-integrated model to evaluate the
surface energy balance (Anderson et al., 1997). Yilmaz et al.
(2014) demonstrated that ALEXI outperformed Noah LSM and the
Moderate Resolution Imaging Spectroradiometer (MODIS)
MOD16 ET product to estimate ET over the Nile river basin. In this
study, ALEXI ET rates are used as the reference for our evaluation.
ALEXI is a daily product at 3 km spatial resolution and available
from 2007 to 2012 in the Middle East and North Africa (MENA)
region.

GLEAM is currently the only global evaporation model driven by
microwave remote sensing observations (Miralles et al., 2011). The
GLEAM v3.0a used in this study is a global dataset available from
1980 to 2014, dedicated to providing terrestrial evaporation and
soil moisture from reanalysis net radiation and air temperature, a
combination of gauge-based reanalysis, satellite-based precipita-
tion, and satellite-based vegetation optical depth (Martens et al.,
2016). GLEAM datasets are provided on a 0.25� spatial resolution
grid and with a daily temporal resolution.

3.2. Streamflow

We evaluated monthly streamflow estimates from our LIS-
HyMAP coupled modeling runs using available daily streamflow
observations at the El Diem site (Fig. 1), monitored by the Ministry
of Water and Energy of Ethiopia (Uhlenbrook et al., 2010;
Gebrehiwot et al., 2011), where the station is located at the basin
outlet of this study domain. More than three and half years of
observations within 2006–2009 at this station are referenced to
evaluate our model streamflow estimates. This study focuses on
basin scale water budget variables, but the other streamflow
gauges in the study area are mostly located at tributaries with
small drainage areas (<103 km2) or do not have valid observations
during the evaluation period.

3.3. Terrestrial water storage anomaly

The GRACE mission provides measurements of the spatiotem-
poral changes in Earth’s gravity field. We examined monthly
basin-averaged TWS anomalies using three GRACE spherical har-
monic products from the Center for Space Research at the Univer-
sity of Texas (CSR), the NASA Jet Propulsion Laboratory (JPL), and
the German Research Centre for Geosciences (GFZ). We used the
latest dataset release, RL05 from GFZ and CSR and RL05.1 from
JPL. These products are available from April 2002 to end of 2016.
In this study, the land grid scaling coefficients were applied to
the GRACE data when generating the time series of TWS anomalies
(Landerer and Swenson, 2012).

When analyzing GRACE data, there is a trade-off between spa-
tial resolution and accuracy, such that the fundamental temporal
and spatial resolution of the GRACE data is 10 days and 400 km
(Rowlands et al., 2005; Swenson et al., 2006). Our study area
(�175,000 km2) is slightly greater than the approximate minimum
area (�160,000 km2) that can be resolved before errors overwhelm
the signal. TWS estimates were calculated using the continuity
equation adapted for watersheds:

TWSðtÞ ¼
Z

ðPðtÞ � ETðtÞ � QðtÞÞdt ð1Þ

where P is the input precipitation and ET is LSM-based evapo-
transpiration. Q is derived from HyMAP at the basin outlet. We cal-
culated both the GRACE and model-based TWS anomalies with a
linear trend removal of years 2006–2010. The model performance
statistics were computed against the mean of three GRACE spher-

Table 1
List of land surface models (LSMs), reanalysis-based meteorological forcing, and satellite-based precipitation data sets.

Simulation (No.) LSM Base meteorological forcing data Precipitation source

1 Noah3.3 Chen et al. (1996); Ek et al. (2003) MERRA-Land (ML; Reichle et al. (2011)) MERRA-Land (ML)
2 CHIRPS (CH; Funk et al. (2014))
3 TMPA3B42 (TM; Huffman et al. (2007))
4 TMPA3B42RT (TR; Huffman et al. (2007))
5 MERRA2 (M2; Reichle et al. (2017)) MERRA2 (M2)
.6 CHIRPS (CH)
7 TMPA3B42 (TM)
8 TMPA3B42RT (TR)
9 CLSMF2.5 Koster et al. (2000); Reichle et al. (2011) MERRA-Land (ML) MERRA-Land (ML)
10 CHIRPS (CH)
11 TMPA3B42 (TM)
12 TMPA3B42RT (TR)
13 MERRA2 (M2) MERRA2 (M2)
14 CHIRPS (CH)
15 TMPA3B42 (TM)
16 TMPA3B42RT (TR)

. FLDAS operationally runs and provides model outputs from Noah3.3-MERRA2-CHIRPS.
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ical harmonic products. The mean absolute error of each of the
GRACE products against the mean of the three is equivalent to 1
cm.

3.4. Evaluation indices

The performance of LIS-HyMAP simulations is assessed using
commonly used statistical indices. For statistical goodness of fit
between observed and simulated values, the Nash-Sutcliffe (NS),
the Pearson Correlation (r) coefficients, and the root-mean-
square error (RMSE) are calculated as:

NS ¼ 1�
P ðOBSt � SIMtÞ2P ðOBSt � OBSÞ2

ð2Þ

r ¼
PðOBSt � OBSÞðSIMt � SIMÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðOBSt � OBSÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðSIMt � SIMÞ2
q ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
X

ðOBSt � SIMtÞ2Þ=N
q

ð4Þ

where OBSt and SIMt are, respectively, observed and simulated val-
ues at time step t, and OBS and SIM are averages of their respective
time series. NS ranges from �1 to 1, where 1 is the optimal case
and zero is when simulations are as accurate as the long-term aver-
age of the observed values. If NS is lower than zero, then the model
provides less skill than using the observed mean as a predictor. NS
is more sensitive to large differences between OBSt and SIMt rather
than r, thus NS can be a better evaluation index to assess the timing
of peak values in ET and Q hydrological variables. RMSE is calcu-
lated only for TWS and not for ET and Q estimates.

For error assessment, relative error (RE) and the ratio of stan-
dard deviations (RSD) are calculated.

RE ¼
P

SIM�P
OBSP

OBS
ð5Þ

RSD ¼ rSIM

rOBS
ð6Þ

where r is standard deviation. RE determines how SIMt is
under- or overestimated in comparison to OBSt for the period stud-
ied. When used to evaluate simulated TWS, RSD of simulated and
GRACE-based TWS is calculated. RSD compares the amplitudes of
the simulated TWS time series against GRACE-based estimates,
where values above 1 indicate that SIMt overestimates the
amplitude.

4. Results and discussion

4.1. Comparison of model precipitation estimates

The spatial and temporal distributions of precipitation fields
have important roles in the water budget. Fig. 2 shows total annual
and mean monthly rates of basin-averaged precipitation from
MERRA-Land (ML), MERRA-2 (M2), CHIRPS (CH), TMPA3B42
(TM), and TMPA3B42RT (TR) datasets for years 2006–2010. In
Fig. 2a, the mean annual rates vary from 1071 mm/yr for ML to
1426 mm/yr for M2. The standard deviations vary from 101 mm/
yr for CH to 187 mm/yr for ML. While M2 appears to follow a sim-
ilar annual trend in the time series as ML, M2 is 33% higher than
ML during the years 2006–2010. It implies that when compared
to ML, a merged satellite-gauge precipitation product M2 was
improved by its precipitation correction algorithm (Reichle et al.,
2017). The other three datasets CH, TM, and TR agree well with
annual rates within the range of the two MERRA precipitation
products. In Fig. 2b, mean monthly precipitation values are plotted
for the years, 2006–2010. The mean monthly rates vary from 2.93
mm/day for ML to 3.91 mm/day for M2. A larger deviation among
the different precipitation data sets is shown for the rainy months
from May to August versus the non-rainy months. The peak month
of the precipitation datasets is July except TR in which August is
slightly higher than July.

Fig. 3 shows the spatial distribution of precipitation datasets,
temporally averaged at each grid cell for years, 2006–2010. The
order of mean daily rates from highest to lowest is M2, CH, TM,
TR, and ML, which is similar to the order shown with Fig. 2. Though
ML shows the highest standard deviation in the time series of
annual rates among five precipitation datasets in Fig. 2a, ML has
the lowest standard deviation in its spatial distribution. M2 seems
to have a local effect at longitudes between 36� and 38�, showing
higher rates than the other areas. Overall, the average precipitation
rates decrease towards the northeast, which is consistent with iso-
hyet lines that Mellander et al. (2013) estimated for the same
region. The highest mean daily precipitation rates are found in
the southern region of the study area. The maximum rates vary
from 4.19 mm/day for ML to 5.95 mm/day for M2.

It is noteworthy in Figs. 2 and 3 that M2 and TM precipitation
values increase when incorporating station-based observations
compared to ML and TR, respectively. Modeled ET and total runoff
present similar spatial distribution patterns (not shown) as those
observed in the precipitation datasets. Thus, higher ET and total
runoff rates usually occur in the southern region, coinciding with
the higher precipitation rates described above.

Fig. 2. (a) Annual and (b) mean monthly precipitation rates from MERRA-Land (ML), MERRA-2 (M2), CHIRPS (CH), TMPA3B42 (TM), and TMPA3B42RT (TR) datasets in the
upper Blue Nile basin for 2006–2010.
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4.2. Evaluation of model evapotranspiration estimates

The 16 model-based monthly ET rates in the upper Blue Nile
basin were evaluated from January 2007 to December 2010. This
period is limited by the availability of the ALEXI ET data. Table 2
provides the summary of evaluation indices of NS, RE, and r for
the model monthly ET analyses against the ALEXI ET rates. A com-
parison of just the ML and M2 forced experiments (without replac-
ing their precipitation data with the observation-based datasets)
showed better ET estimates, with lower RE and higher r values,
for M2 (compare ML-ML and M2-M2 in Table 2). However, model
experiments forced with M2 and the observation-based precipita-
tion datasets (M2-CH, M2-TM, M2-TR) did not make a significant
improvement from those with ML (ML-CH, ML-TM, ML-TR) as
much as an improvement between ML-ML and M2-M2. This indi-
cates that the other meteorological variables (e.g. air temperature)
of ML and M2, except for precipitation, had little influence on the
performance of ET estimates (more detailed results and discussion
are provided in Section 4.5).

Fig. 4 shows monthly modeled ET estimates from 8 simulations
forced with the M2 meteorological forcing dataset (i.e. see simula-
tion numbers 5–8 for Noah3.3 and 13–16 for CLSMF2.5 in Table 1).
Overall, CLSMF2.5 is more consistent with ALEXI than Noah3.3,
whereas GLEAM shows a distinct difference from the other data-
sets with overall lower values. All datasets show the highest ET val-
ues in September–October and the lowest ET values in February–
March (Fig. 4b,e). The major difference between the two LSMs
occurs during lowest period from December to March. CLSMF2.5
agrees well with ALEXI during both high and low periods, whereas
Noah3.3 has decreased ET values, close to GLEAM values during
those low periods. Yilmaz et al. (2014) also demonstrated that
Noah3.2 captures ET well during the rainy season, but it underes-

timated ET during the winter months over agricultural areas or
regions with shallow ground water tables in the Nile Basin. In this
sense, the Noah-MP LSM (Niu et al., 2011) may better represent ET
values in this region due to being coupled with an underlying
water table scheme, which is not supported in Noah3.3. On the
other hand, ET estimates from CLSMF2.5 are close to ALEXI with
high NS and r values. ET estimates from Noah3.3 show similarly
high r values to CLSMF2.5, but low NS values (see Table 2). This
supports that CLSMF2.5 better captures the timing of the low sea-
son values in monthly ET variability than Noah3.3.

Along with different precipitation datasets, CLSMF2.5 generates
a wider range of ET estimates than Noah3.3. The rate of modeled ET
from highest to lowest follows the same order of the precipitation
rate as M2, CH, TM, and TR. Generally, Noah3.3 overestimates high
values and underestimates low values with all precipitation data-
sets (Fig. 4b,c). CLSMF2.5 simulations when forced with M2 and
CH generate higher ET estimates with positive RE values, whereas
those with TM and TR generate lower ET estimates with negative
RE values (Fig. 4e,f).

The mean annual rates of Noah3.3-M2 averaged (Fig. 4a),
CLSMF2.5-M2 averaged (Fig. 4d), ALEXI, and GLEAM ET data are
909, 1010, 979, and 675 mm/yr, respectively, in the upper Blue Nile
basin for 2007–2010. Previous ET studies in the Blue Nile basin
have provided mean ET estimates at different periods. The Food
and Agricultural Organization of the United Nations (FAO)-Nile
program estimated mean ET as 863 mm/yr for 1960–1990
(Hilhorst et al., 2011). Bastiaanssen et al., (2014) estimated mean
ET as 737 mm/yr for years, 2005–2010, using the adjusted Opera-
tional Simplified Surface Energy Balance (SSEBop) model. Senay
et al. (2009) calculated mean ET as 500 mm/yr for 2001–2007,
based on standard water balance principles in the upper Blue Nile
basin.

Fig. 3. Spatial distribution of mean daily precipitation rates (mm/day) in the upper Blue Nile basin for 2006–2010. Gray lines represent the mainstem and tributaries.

Table 2
Summary of evaluation indices for monthly evapotranspiration (ET), streamflow (Q), and total water storage (TWS) anomaly from the 16 LSM simulations. The best statistical
results in each column are in boldface.

LSM Met. Precip. ET Q TWS

NS RE r NS RE r NS RSD r RMSE (mm)

Noah3.3 ML ML �0.18 �0.16 0.90 0.53 �0.46 0.84 0.78 0.80 0.89 54
CH �0.15 �0.08 0.90 0.64 0.20 0.98 0.73 0.89 0.86 60
TM 0.18 �0.11 0.91 0.63 0.30 0.98 0.73 0.83 0.86 60
TR 0.13 �0.12 0.90 0.69 0.18 0.95 0.71 0.84 0.85 62

M2 M2 0.16 �0.01 0.93 0.37 0.26 0.97 0.75 0.91 0.87 57
CH �0.04 �0.07 0.93 0.64 0.16 0.98 0.74 0.93 0.86 59
TM 0.27 �0.09 0.94 0.64 0.26 0.98 0.74 0.87 0.86 59
TR 0.23 �0.11 0.94 0.72 0.13 0.96 0.72 0.89 0.85 61

CLSMF2.5 ML ML 0.41 �0.14 0.89 0.38 �0.55 0.90 0.82 0.95 0.91 49
CH 0.74 0.05 0.92 0.79 �0.22 0.93 0.91 1.16 0.97 35
TM 0.78 �0.05 0.92 0.77 0.04 0.88 0.95 0.96 0.97 27
TR 0.76 �0.07 0.93 0.67 �0.04 0.82 0.91 0.95 0.96 35

M2 M2 0.28 0.17 0.92 0.74 �0.35 0.94 0.78 1.35 0.96 54
CH 0.67 0.06 0.95 0.76 �0.26 0.92 0.91 1.17 0.98 35
TM 0.79 �0.04 0.94 0.77 0.01 0.88 0.95 0.96 0.98 26
TR 0.79 �0.06 0.95 0.67 �0.06 0.82 0.92 0.95 0.96 33
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4.3. Evaluation of model streamflow estimates

Monthly streamflow time series of the 16 model experiments
were evaluated against gauge observations at the El Diem site
(Fig. 5). NS, RE, and r have been calculated from January 2006 to
September 2009, when observations are available (see Table 2).
Overall, all modeled streamflow estimates are consistent with
observations, resulting in high r values (>0.82). Similar to the ET
evaluation, the choice of the other meteorological variables
between ML and M2, except for precipitation, made little impact
on the model Q estimates.

The choice between Noah3.3 and CLSMF2.5, along with differ-
ent precipitation data, has a significant influence on the accuracy
of model streamflow estimates. Generally, Noah3.3 produced
higher streamflow estimates with positive RE values, whereas
CLSMF2.5 produced lower streamflow with negative RE values,
except those when forced with TM. This is mostly explained by
the fact that Noah3.3 generates lower ET rates and higher total
runoff, resulting in higher streamflows than CLSMF.2.5. More
specifically, though both LSMs underestimate low streamflow peri-
ods (see Fig. 5c,f), Noah3.3 simulations provide much higher peak
flows, whereas those from CLSM2.5 provide lower peak flows. Sim-
ulations from Noah3.3 show higher r values, whereas simulations
from CLSMF2.5 show higher NS values except those forced with
TR. The high peaks of all 16 model experiments’ streamflow time
series occur in August (Fig. 5b,e), lagging by one month behind

the high peaks of the precipitation rates, which occur in July
(Fig. 2b).

Interestingly, simulations from CLSMF2.5 show streamflow val-
ues rising earlier than those from Noah3.3 and the gauge observa-
tions (Fig. 5e). This is likely due to the fact that CLSMF2.5 produces
little baseflow and makes the routing scheme convert most of the
surface runoff to streamflow (Getirana et al., 2017). Baseflow cor-
responds to longer infiltration processes and slower runoff gener-
ation than surface runoff.

In terms of amplitude (see RE values in Table 2), the order of
modeled Q from highest to lowest is different between Noah3.3
(M2-TM-CH-TR) and CLSMF2.5 (TM-TR-CH-M2). M2 produces the
highest Q with Noah3.3, but the lowest Q in CLSMF2.5. This can
be explained by noting that the different spatial distributions of
the precipitation datasets produced different ratios of total runoff.
These differences are also LSM-dependent.

4.4. Evaluation of model terrestrial water storage anomaly estimates

The 16 different model TWS estimates were compared to
GRACE data for January 2006 to December 2010. Fig. 6 shows the
16 model basin-averaged TWS time series, and Table 2 highlights
the evaluation indices when compared with the mean of the
three GRACE spherical harmonic products. GRACE-based TWS
time series show that the equivalent water height anomalies range
�±200 mm. If we convert this to storage change by multiplying it

Fig. 4. Monthly evapotranspiration (ET) rates from Noah3.3-MERRA2 (a–c) and CLSMF2.5-MERRA2 (d–f) simulations for years, 2006–2010. The seasonality (b, e) and
scatterplot (c, f) of the model monthly ET rates were evaluated against ALEXI ET rates from January 2007 to December 2010.
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by the basin area (�175,000 km2), we get approximately �±35 km3

which is stored and then leaves the upper Blue Nile basin every
year. Generally, the model outputs agree with GRACE estimates
with high NS (>0.71) and r (>0.85) as well as RSD being close to
1 (0.80–1.35). Similar to the ET and Q evaluations, the choice
of the other meteorological variables between ML and M2,
except for precipitation, made little impact on the model TWS
estimates.

For a comparison of the two LSMs, simulations from Noah3.3
show that the TWS anomalies peak in August one month earlier
than those from CLSMF2.5 and GRACE. This is related to the fact
that Noah3.3 underestimates ET during winter season and pro-
duces much high Q peak values. This leads to CLSMF2.5 having
higher NS and r values than Noah3.3. Also, CLSMF2.5 shows higher
RSD than Noah3.3 in the TWS anomaly evaluation. This implies
that Noah3.3 produces higher streamflow values and results in
lower amplitudes of TWS anomalies, despite lower ET rates than
CLSMF2.5 (see Eq. (1)).

The RMSE for TWS for all experiments, except for Noah3.3-ML-
TR, are less than 61 mm, which is the sum of the leakage error and
the residual error in the scaled GRACE data for this region
(Swenson and Wahr, 2002).

4.5. A comparative analysis of water budget variables

A comparative analysis of the three water budget variables (i.e.
ET, Q, and TWS) was performed with the 16 LSM experiments and

with the HyMAP routing scheme, and the results are shown in
Fig. 7. The indicated values for each shaded bar in the graph repre-
sents the average of the three water budget variables and for each
derived evaluation index and for each experiment. The NS and cor-
relation (r) coefficients were calculated for all model water budget
variables. While relative errors (RE) were calculated for both Q and
ET, the ratio of standard deviations (RSD) was calculated for TWS
anomaly. When averaging the RE and RSD evaluation indices
together, we subtracted 1 from RSD and calculated the average of
the rescaled index with RE.

In terms of NS, CLSMF2.5 shows better performance than
Noah3.3 in each evaluation index of the three water budget vari-
ables. CLSMF2.5 produces Q and TWS estimates with slightly
higher NS values than Noah3.3. For ET estimates, CLSMF2.5 outper-
forms Noah3.3 because Noah3.3 underestimates ET rates during
the winter months. When CLSMF2.5 was forced with the ML or
M2 meteorological forcing dataset and CH, TM, TR precipitation
datasets, the average of the three evaluation indices is about 0.8.
CLSMF2.5 when forced with M2-M2 produces high NS values for
Q and TWS, but shows lower NS than one for ET with the other pre-
cipitation datasets.

In terms of RE or RSD-1, all experiments show the average val-
ues within ±0.06 except those when forced with ML-ML. In ET, all
experiments show negative RE values except CLSMF2.5 when
forced with CH and M2 precipitation datasets. Overall, Noah3.3
provides lower RE in ET, higher RE in Q, and lower RSD values in
TWS than CLSMF2.5.

Fig. 5. Monthly streamflow rates (Q) at the EL Diem site from Noah3.3-MERRA2 (a–c) and CLSMF2.5-MERRA2 (d–f) simulations for years, 2006–2010. The seasonality (b, e)
and scatterplot (c, f) of the model monthly streamflow rates were evaluated against gauge observations at the El Diem site from January 2006 to September 2009.
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In terms of r, all experiments show high average r (>0.88) val-
ues. CLSMF2.5 when forced with TR precipitation shows lower r
values than simulations with the other precipitation datasets.
Overall, Noah3.3 shows higher correlation values in Q and lower
correlation values in TWS than CLSMF2.5.

Simulations forced with CH, TM or TR precipitation datasets
outperform those with either the ML or M2 precipitation fields,
as shown in the average evaluation indices of these water budget
variables. For r, CH has the highest correlation values in both LSMs,
whereas TM performs well with Noah3.3. For the evaluation of RE
or RSD, CH has lower errors in both LSMs’ set of experiments. For
the evaluation of NS, TM is the best with both LSMs, whereas CH
performs well with CLSMF2.5.

5. Conclusions

This study focuses on the evaluation of the water budget over
the upper Blue Nile basin from a modeling perspective. We gener-
ated 16 different model experiments including two LSMs (Noah3.3
and CLSMF2.5), two reanalysis forcing datasets (MERRA-Land and
MERRA2), and three additional observation-based precipitation
datasets (CHIRPS, TMPA3B42, and TMPA3B42RT). The HyMAP
model was used to route surface runoff and baseflow in the river
network to generate streamflow. These particular models and forc-
ing datasets were chosen in the existing framework of NASA’s LIS
software. The spatial and temporal distributions of precipitation

(P) fields were investigated. Three water budget variables (i.e.
evapotranspiration (ET), streamflow (Q), and terrestrial water stor-
age (TWS) anomaly) were compared and evaluated using in-situ
and satellite observations. The intercomparison and evaluation of
these models and datasets offered improved understanding and
modeling of basin scale water budget variables in the upper Blue
Nile basin.

Among the five different precipitation datasets, the gauge-
adjusted products such as MERRA-2, CHIRPS, and TMPA3B42 were
expected to provide better spatial and temporal distributions of
precipitation over the basin. While precipitation from MERRA-2
showed improved precipitation relative to precipitation from
MERRA-Land, little improvement in the other meteorological vari-
ables was seen in the evaluation of modeled ET, Q, and TWS anom-
aly estimates. The spatial distribution of precipitation from
MERRA-2 appears to include a local bias and needs to be modified.
In the upper Blue Nile basin, a real-time version of TMPA3B42 (i.e.
TMPA3B42RT) outperformed MERRA2 and MERRA-Land with the
evaluation of NS and RE.

Significant uncertainty in evapotranspiration analyses has been
a known issue in the region (Yilmaz et al., 2014). In this study, we
evaluated the 16 modeled ET estimates against ALEXI data, which
have also been used to validate actual ET estimates in this region
(Allam et al., 2016). The results showed that Noah3.3 produces
lower ET and higher total runoff (or streamflow) than CLSMF2.5
when using the same precipitation data. This is likely caused by
low baseflow produced by CLSMF2.5. The evaluation of Q was per-

Fig. 6. Monthly terrestrial water storage (TWS) anomalies of the upper Blue Nile River Basin from Noah3.3-MERRA2 (a–c) and CLSMF2.5-MERRA2 (d–f) simulations for 2006–
2010. The seasonality (b, e) and scatterplot (c, f) of the model monthly TWS anomalies were evaluated against the average of three GRACE spherical harmonic products from
CSR, JPL, and GFZ.
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formed against in-situ observations at the Ethiopia-Sudan border.
All experiments forced with the CH, TM and TR observation-
based precipitation datasets showed high model streamflow per-
formances. In further studies, more streamflow gauge stations
along the upstream tributaries can be analyzed to explore smaller
scale hydrological and hydraulic processes related to forcing error,
limited representation of physical processes, and inaccurate
parameterization of the routing scheme. Simulated TWS anomalies
were compared against the mean of three GRACE spherical har-
monic products. All experiments, except for Noah3.3-ML-TR, pro-
vide TWS errors that are less than the published leakage error for
this region (Swenson and Wahr, 2002).

The comparative analysis shows that CLSMF2.5 provided better
representation of the water budget variables in terms of Nash-
Sutcliffe coefficient, though CLSMF2.5 produces little baseflow in
the runoff generation process. In the upper Blue Nile basin, simula-
tions forced with CHIRPS or TMPA3B42 precipitation data show
better modeled ET, Q, and TWS anomaly estimates than the other
precipitation datasets. Currently, FLDAS operationally runs
Noah3.3 forced with MERRA2 and CHIRPS and provides these
model outputs to a public archive server. However, FLDAS does
not currently include CLSMF2.5 and HyMAP routing scheme out-
puts in its routine production. In regards to this, the results from
this study could suggest that by including CLSM and HyMAP in
the FLDAS production suite in the future, additional information
would be provided for enhancing the drought monitoring for FEWS
NET applications.

The evaluation can be sensitive to different temporal and spatial
model resolutions. In this study, monthly modeled ET, Q, TWS esti-
mates at 0.1� grid scale are evaluated. The temporal resolution is
constrained by the availability of GRACE products. The spatial res-
olution is matched with the FLDAS outputs. Further studies are
needed to carry out the evaluation at different resolutions and
reveal the impact of the scales onto the comparative analysis of
water budget variables in this region.

In this study, we didn’t attempt to evaluate different precipita-
tion datasets as compared to the other three water budget vari-
ables. Previous studies (Funk et al., 2014; Huffman et al., 2007;
Reichle et al., 2017) have already demonstrated that by incorporat-
ing in situ observation, precipitation datasets CHIRPS, MERRA-2,
TMPA3B42 are better than CHIRP, MERRA-Land, TMPA3B42RT,
respectively. Besides, ground observations are generally point data
whereas these satellite- and/or model-based precipitation datasets
represents averages in large scale. Therefore, we focus on the eval-
uating the impact of precipitation datasets on modeled ET, Q and
TWS estimates rather than directly evaluating each of the five dif-
ferent precipitation datasets.

These results are essential to continue to make potential
improvements in the parametrizations, physics, calibration of the
LSMs being used. Also, these analyses are useful for future applica-
tions such as seasonal forecast modeling, agricultural production
estimates, water resource management, and model algorithm
development (e.g. data assimilation, irrigation, etc.) within the
NASA LIS framework.

Fig. 7. A comparative analysis of three water budget variables (i.e. ET, Q, and TWS) from the 16 LSM simulations and the HyMAP river routing scheme (. These Noah3.3-M2-
CH model output fields are operationally generated by FLDAS).
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