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Implementation of a Database System with Boolean Algebra Constraints

Andr�as Salamon, M.S.
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Advisor: Peter Z. Revesz

This thesis describes an implementation of a constraint database system with

constraints over a Boolean Algebra of sets. The system allows within the input

database as well as the queries equality, subset-equality and monotone inequality

constraints between Boolean Algebra terms built up using the operators of union,

intersection and complement. Hence the new system extends the earlier DISCO

system, which only allowed equality and subset-equality constraints between Boolean

algebra variables and constants.

The new system allows Datalog with Boolean Algebra constraints as the query lan-

guage. The implementation includes an extension of Naive and Semi-Naive evaluation

methods for Datalog programs and algebraic optimization techniques for relational

algebra formulas.

The thesis also includes three example applications of the new system in the area

of family tree genealogy, genome map assembly, and two-player game analysis. In

each of these three cases the optimization provides a signi�cant improvement in the

running time of the queries.
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Introduction

Although among the database systems the relational database systems are the wide-

spreadest systems at this moment, constraint databases is a very perspective approach

to change them.

Constraint databases can contain quanti�er-free �rst-order formulas. With the

help of these formulas constraint databases are able to express more than traditional

relational databases. For instance one tuple can contain in�nite number of traditional

tuples.

Constraint database systems can be categorized according to the type of the con-

straint. Some of the well-known constraint types are for instance: linear constraints,

polynomial constraints, integer gap constraints.

In this system the constraints are Boolean Constraint, hence the name of the

system is Datalog with Boolean Constraint. This system extends the possibilities of

a previous system (Datalog with Integer Set COnstraint = DISCO) which was im-

plemented in the department. DISCO system allows only subset-equality constraints

between Boolean Algebra variables and constants, this system allows subset-equality,

equality, and monotone inequality constraints between Boolean Algebra terms. A

description of the DISCO system can be found in [2].

First there is a theoretical overview (Chapter 1) based on [6], then a chapter
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about the current implementation (Chapter 2), what kind of Boolean Algebra is

implemented, the main structure of the program.

Because one really important part of the program is related to Relational Alge-

bra, Chapter 3 describes the Relational Algebra formulas, how to store, convert and

optimize these formulas.

The name of the implemented program is GreenCoat, Chapter 4 gives informa-

tion about the user interface of the program. The predecessor of this program was

implemented in the previous semester by Song Liu and I.

Chapter 5 describes some examples and try to demonstrate the possibilities of the

system.

The system also supports the use of some multiset operators. Chapter 6 contains

more information about the multisets.
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Chapter 1

Datalog with Boolean Algebra

Constraints

In this chapter I give an overview of the 'Datalog with Boolean Algebra Constraint'.

This was introduced by Kanellakis et al. [4] and extended by Peter Z. Revesz [6].

First I present the basic de�nitions necessary to understand the concept. Later I

de�ne the syntax methods.

1.1 Boolean Algebra

The following de�nition is taken from [6], more information can be found about

Boolean Algebras in [1].

A Boolean algebra is a sextuple (�, ^, _,

0

, 0, 1), where � is the domain set,

^ and _ are binary operators (^ : � � � ! �, _ : � � � ! �),

0

is a unary operator

(

0

: � ! �), 0 and 1 are two special elements of the domain (0 2 �; 1 2 �). They are

also called zero and identity elements. Every Boolean algebra satis�es the following

axioms: (8x; y 2 � :)
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x _ y = y _ x

x _ (y ^ z) = (x _ y) ^ (x _ z)

x _ x

0

= 1

x _ 0 = x

x ^ y = y ^ x

x ^ (y _ z) = (x ^ y) _ (x ^ z)

x ^ x

0

= 0

x ^ 1 = x

0 6= 1

Boolean term: All the elements of � (including 0 and 1) are Boolean terms. All

the elements of V (set of variables), and all the elements of C, where C is the set of

constants (except 0 and 1), are Boolean terms. If t

1

and t

2

are both Boolean terms,

than t

1

_ t

2

, t

1

^ t

2

, t

0

1

are also Boolean terms.

Precedence constraint: If a constraint has the following form: x ^ y

0

= 0,

(where x; y 2 � [ V [ C), then we call this constraint precedence constraint and

denote with x � y.

Monotone Boolean function: A g Boolean function is monotone if 8x

i

�

y

i

(1 � i � n) : g(x

1

; : : : ; x

n

) � g(y

1

; : : : ; y

n

).

Monotone inequality constraint: g(x

1

; : : : ; x

n

) 6= 0 is a monotone inequality

constraint if g is a monotone Boolean function.

The following is a well-known fact for Boolean terms:

Proposition 1.1 Every t Boolean term can be converted to disjunctive normal

form (DNF):

t(z

1

; z

2

; : : : ; z

n

) =

W

a 2 f0; 1g

n

(t(a

1

; a

2

; : : : ; a

n

) ^ z

a

1

1

^ z

a

2

2

^ : : : ^ z

a

n

n

)

where z

0

denotes z', and z

0

denotes z.
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1.2 Syntax of Datalog Queries with Boolean Con-

straints

The following basic de�nitions can also be found in [6]. Every Datalog program

contains a set of facts (constraint tuples) and a set of rules. The facts can be seen as

special rules as well. The general form of the facts is:

R(x

1

; : : : ; x

k

) : �f(x

1

; : : : ; x

k

) = 0; g

1

(x

1

; : : : ; x

k

) 6= 0; : : : ; g

l

(x

1

; : : : ; x

k

) 6= 0:

where f and g

i

(1 � i � l) are Boolean terms.

The general form of the rules is:

R(x

1

; : : : ; x

k

) : � R

1

(x

1;1

; : : : ; x

1;k

1

); : : : ; R

n

(x

n;1

; : : : ; x

n;k

n

); f(x) = 0;

g

1

(x) 6= 0; : : : ; g

l

(x) 6= 0:

where R;R

1

; : : : ; R

k

are relation symbols (not necessary distinct symbols), x

0

s 2

� [ V [ C, x is the set of variables in the rule, and f and g

i

(1 � i � l) are Boolean

terms.

It is not a real restriction that one side of the constraint is always 0. (f =

g) � (((f ^ g

0

) _ (f

0

^ g)) = 0) hence we can convert all the constraints to this

form. Without loss of generality we can also assume that we have only one equality

constraint, because (f

1

= 0; : : : ; f

n

= 0) � ((f

1

_ : : : _ f

n

) = 0), therefore we can

connect several equality constraints to create one constraint.

1.3 Quanti�er elimination

A quanti�er elimination method is an equivalency between an existentially quanti�ed

formula and a quanti�er-free formula.

Quanti�er elimination is used for variables on the right-hand side of a rule which
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do not occur as variables in the left-hand side.

There are three elimination methods described in [6]. The correctness proofs of

the elimination methods also can be found in the article.

1.3.1 Elimination method for equality constraints

The �rst elimination method [6, Lemma 2.2] (which originates with George Boole)

can be used for equality constraints:

9x(f(x; y

1

; : : : ; y

k

) = 0) � f(0; y

1

; : : : ; y

k

) ^ f(1; y

1

; : : : ; y

k

) = 0

1.3.2 Elimination method for precedence and monotone in-

equality constraints

The other [6, Lemma 2.4] can be used for precedence (x � y) and monotone inequality

constraints:

9x( z

1

� x; : : : ; z

m

� x;

x � y

1

; : : : ; x � y

k

;

w

1

� u

1

; : : : ; w

s

� u

s

;

g

1

(x; v

1

; : : : ; v

1;n

1

) 6= 0;

.

.

.

g

l

(x; v

1

; : : : ; v

1;n

l

) 6= 0; )

is equivalent to:

z

1

� y1; : : : ; z

1

� y

k

; z

2

� y

2

; : : : ; z

m

� y

k

w

1

� u

1

; : : : ; w

s

� u

s

;

g

1

((y

1

^ y

2

^ : : : ^ y

k

); v

1

; : : : ; v

1;n

1

) 6= 0;

.

.

.

g

l

((y

1

^ y

2

^ : : : ^ y

k

); v

1

; : : : ; v

1;n

l

) 6= 0; )

where z

i

; y

i

; w

i

; u

i

; v

i

's are variables or constants. Although they are not necessarily

distinct symbols, they are di�erent from x.
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1.4 Naive and Semi-naive evaluation methods

If our input Datalog program does not contain recursive rules, then the evaluation

of the program is simple, because it is enough to evaluate every rule only once using

a standard algorithm for the ordering of the rules. This algorithm is described for

example in [8]. If the input program contains recursive rules, then the rules have to

be evaluated more than once.

1.4.1 Naive method

Example 1.1 The example is taken from [5]. We have an input database which

contains parents-children pairs, and our goal is to �nd the ancestors of a speci�c

person. The Datalog program is the following: (There is a longer description of this

example in section 5.1)

children(P, C) :- P={"parent1", "parent2"}, C={"person", "brother"}.

children(P, C) :- P={"gparent1", "gparent2"}, C={"parent1", "uncle"}.

children(P, C) :- P={"gparent3", "gparent4"}, C={"parent2", "aunt"}.

children(P, C) :- P={"ggparent1", "ggparent2"}, C={"ggparent3"}.

AAncestor(P) :- children(P,C), {"person"} <= C.

AAncestor(P) :- children(P,C), AAncestor(P2), C /\ P2 != @.

After evaluating all of the rules once, we get the parents (parent1, parent2) of

the speci�c person. If we evaluate the rules again, we get the parents and grand-

parents (gparent1, gparent2, gparent3, gparent4), of the person. After the third
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evaluation we get the great-grandparents (ggparent1, ggparent2) too. After the

fourth evaluation the method does not give new ancestors, hence we can stop.

The previously used algorithm is called Naive method. The pseudo-code of the

method is the following: (taken from [8])

for := 1 to m do

P

i

:= ;

repeat

for i:= 1 to m do

Q

i

:= P

i

;

for i:= 1 to m do

P

i

:= EVAL(i,Q

1

, : : : , Q

m

);

until P

i

= Q

i

for all i ( 1 � i � m);

Where P

i

is the tuples of the ith relation. Q

i

is the tuples of the ith relation in

the previous step. At the beginning we erase all tuples. Than repeat the steps of

the algorithm until the results of the last two steps are identical. During one step

we store the tuples �rst (Q

i

:= P

i

), than calculate the new tuples using the tuples

calculated in the previous steps. The calculation is done by the EVAL function (1.4.3).

In the function, i denotes the index of the current relation, Q

1

; : : : ; Q

m

denote the

tuples of the relations, which can be used by EVAL.

1.4.2 Semi-Naive method

Tha main disadvantage of the Naive method is that it recalculates the same tuples in

every iteration. In the previous example during the �rst step the algorithm calculates
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the parents; during the second step the parents, and the grandparents; during the

third and fourth step the parent, grandparents, and great-grandparents. Therefore

the algorithm calculated the parents four times. If the number of the steps are greater

{ and in a real application it is several times greater { then this disadvantage is also

greater. The main idea of the Semi-Naive method is to omit these recalculations.

If during the calculation we use only old tuples (tuples which were calculated

before the previous step), then we only recalculate some older tuples. Therefore if we

want to calculate new tuples we should use at least one new tuple (tuple which were

calculated during the previous step).

Naturally the �rst step is an exception, because there are no new tuples before

the �rst step, hence the �rst steps of the Semi-naive and Naive methods are identical.

The pseudo-code of the semi-naive evaluation (also taken from [8])

for := 1 to m do

�P

i

:= EVAL(p

i

; ;; : : : ; ;)

P

i

:= �P

i

repeat

for i:= 1 to m do

�Q

i

:= �P

i

;

for i:= 1 to m do begin

�P

i

:= EVAL INCR(i, P

1

, : : : , P

m

, �Q

1

, : : : , �Q

m

);

�P

i

:= �P

i

- P

i

;

end;

for i:=1 to m do

P

i

:= P

i

[�P

i
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until �P

i

= ; for all i ( 1 � i � m);

Where P

i

denotes the tuples of the ith relation, �P

i

the new tuples in the current,

�Q

i

the new tuples in the previous step of the relations. At the �rst step we use

the EVAL function to calculate the tuples. Than we repeat the steps of the algorithm

until there is no new tuples in the last step. In a step �rst we store the new tuples

(�Q

i

= �P

i

), then calculate the new tuples using EVAL INCR function (1.4.4). After

this we check whether the new tuples are really new tuples (�P

i

= �P

i

�P

i

). At the

end of the step we should update the value of P

i

(P

i

= P

i

+ �P

i

). The EVAL INCR

function has more parameters than the EVAL function, because the EVAL INCR function

needs not only all the tuples, but the new tuples as well.

1.4.3 EVAL function

This function calculates new tuples from the previously known tuples. Every relation

is converted to relational algebra formulas (3.1), and these formulas are optimized

(3.2). By using these formulas, the EVAL function can easily calculate the new tuples.

Every formula is a tree, and the leaves of the formulas are the relations. If we

substitute the relations with the tuples of the relations and execute the relational

algebra operators in the nodes, then the root of the tree will contain the new tuples.

1.4.4 EVAL INCR function

This function is similar to the EVAL function. The di�erence is that EVAL INCR should

use at least one new tuple during the calculation. To achieve this, we clone all the

rules as many times as relations occur in the right hand side of the rule. In the ith
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clone we put a � before the ith relation. In Example 1.1 the clones of the rules of

relation AAncestor:

AAncestor(P) :- �children(P,C), "person" <= C.

AAncestor(P) :- �children(P,C), AAncestor(P2), C /\ P2 != @.

AAncestor(P) :- children(P,C), �AAncestor(P2), C /\ P2 != @.

Instead of the original rules we convert and optimize these rules to relational

algebra formulas. With this we have the possibility to calculate EVAL INCR

There is an other possibility to simplify these rules. In Example 1.1 children

relation has only facts, hence �children is always empty. Therefore all the rules

which contains �children can be eliminated. If we eliminate these rules we only have

one rule left:

AAncestor(P) :- children(P,C), �AAncestor(P2), C /\ P2 != @.

More generally if all the rules of relation R contain only facts, then we can elimi-

nate every rule which contains �R in it.

Although not implemented in the system, sometimes we can eliminate other rules

too.

Example 1.2 Assume that we have mother and father relations in our input data-

base, and our goal is to �nd the ancestors of a particular person. First we can de�ne

a parent relation, and after that the solution is the same as in Example 1.1. Here is

a part of the program:
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mother(M,C) :- M == {"mother"}, C == {"child1", "child2"}.

father(F,C) :- F == {"father"}, C == {"child1", "child2"}.

parent(P,C) :- mother(P,C).

parent(P,C) :- father(P,C).

.

.

.

Although the parent relation has two rules, and neither of them are facts, we

calculate the tuples of the parent relation in the beginning of the evaluation, and

after this step no new tuples will be added to this relation. Hence there is only one

step in which �parent is not empty. Therefore it would be possible for some of the

relations to calculate the number of steps after � will be always empty and eliminate

the appropriate rules then.
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Chapter 2

Implementation

2.1 The implemented Boolean Algebra

Chapter 1 gave a small overview of the basics of Datalog with Boolean Constraints.

All the de�nitions, lemmas are working with all the possible Boolean Algebras. Al-

though during the implementationmost of the system are working with all the possible

Boolean Algebras, only one Boolean Algebra is implemented.

2.1.1 Sets

In the �rst Boolean Algebra, � contains the sets of integers and strings. Because of

storage restrictions, � contains only �nite sets, or the sets which complement is �nite.

It is not a strict restriction because the length of input �les are �nite, hence the user

can de�ne only these sets, and all the operators are closed. The Boolean Algebra

operators are de�ned in the following way: ^ � \, _ � [,

0

� complement set.

We should de�ne 0 and 1 elements also: 0 = ; = fg; 1 = fg

0

= complete set =

set of all integers and strings.
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2.2 Implemented quanti�er elimination methods

In [6] P. Revesz describes three elimination methods. One of them works only with

atomless Boolean Algebras. Because the implemented Boolean Algebra of Section

2.1.1 is not an atomless Boolean Algebra, that method is not implemented. The

other two methods (described earlier in Sections 1.3.1, 1.3.2) are implemented in this

system. The elimination method described in Section 1.3.2 can be used only if all

the inequality constraints are monotone constraints. The system does not check the

monotonity, but it assumes that all the inequality constraints are monotone inequality

constraints.

2.3 Hardware and Software

The system is implemented in Java language. Originally the system was implemented

under IRIX 6.2, using JDK 1.0.2 (Hardware: 4 CPU SGI R10000), although it was

tested also under WinNT (Hardware: Pentium 200, Pentium 133, Pentium II 267)

using Microsoft Visual J++ 1.1. Because one of the main properties of Java language

is portability, the system should work on most well-known systems even without

recompilation.

The parser was implemented using Java Compiler Compiler (JavaCC), Version

0.7pre3.

2.4 Java program

2.4.1 Packages

The Java language supports using packages (collection of similar classes). The pack-
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Name Function

storage Storage of Datalog programs

relalg Storage of Relational Algebra Operators

relalg.optimize RA optimization methods

elimination Elimination methods

evaluation Naive & Semi-Naive evaluation

parser The parser

util Miscellaneous classes

Table 2.1: Packages of the Java program

ages of the system and their function can be seen in Table 2.1.

relalg package

relalg and its subpackage relalg.optimize contain classes related to relational

algebra formulas. Chapter 3 contains more information about relational algebra for-

mulas. The optimizationmethods (Section 3.2) are implemented in relalg.optimize

package.

elimination package

Quanti�er elimination methods (Section 1.3) are implemented in this package. Be-

cause two methods are implemented, and the system does not know in advance which

one can be used, a new quanti�er elimination method is implemented. This method

is only a container of other quanti�er elimination methods (right now two methods),

and tries to execute the �rst method, and if it is not possible, than the following one

until one of the methods was successful, or none of them was successful.
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evaluation package

This package implements the generic code of the Naive (Section 1.4.1) and Semi-Naive

(Section 1.4.2) evaluation methods. The eval, eval incr functions are also de�ned

in this package.

parser package

The function of this package is to parse the input �les and the user commands.

Chapter 4 contains more information about the user commands and the input �le

format. The java source �les in this package is created by JavaCC from a grammar

description �le (.jj).

storage package

This package stores the Datalog programs. The hierarchy among the classes can be

seen in Figure 2.1. This is not a superclass-subclass hierarchy, every class shown on

the picture contains one or more instances of the classes shown below the class. At

the top of this hierarchy there is the Database class, which contains our database. A

database is a set of Relations. Every relation have one or more Rules. Every rule

have a head, which represented by a RelationTitle, and a body. A body can contains

other relation names (RelationTitles), and Constraints. A Constraint can be an

equality or an inequality constraint. Every constraint have the form: 'Boolean Term'

= 0 or 'Boolean Term' 6= 0. A Boolean Term is represented by a Term. Because every

boolean term can be transformed to Disjunctive Normal Form (DNF), every term is

stored as an array of basic Conjunctions (Conjunction). A basic conjunction is a

conjunction of literals, which can be stored as an array of Literals. A literal can be
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Database

ConstantVariable Element

RelationTitle

Relation

Conjunction

Constraint

Literal

Term

Rule

Figure 2.1: The hierarchy among the classes of storage package

a variable (Variable), an element of � (Element) and a constant (Constant). The

constants are not implemented in the current version of the system, but it is worth

to mention the possibility to integrate constants to the system.

Element is an abstract class, it can contain the elements of all possible Boolean

Algebras. It de�ned the necessary method which has to be implemented to represent

a concrete Boolean Algebra. ElementSet is a subclass of Element it can store the el-

ement of all the possible set-typed Boolean Algebras. The only non-abstract subclass

of ElementSet is ElementFSet, which implements � = sets (Section 2.1.1). Figure

2.2 shows a superclass-subclass hierarchy among these classes. Angled rectangle in-

dicates that the class is not abstract, while oval-shaped rectangle indicates that the

class is abstract.
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ElementSet

Element

ElemetFSet

Figure 2.2: The subclasses of Element
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Chapter 3

Relational Algebra Formulas

3.1 Relational Algebra Formulas

Because the relational algebra formulas are described in several textbooks, for example

[8], in this part I describe only the di�erences between the general relational algebra

and relational algebra formulas used in this program.

In this system there are four relational algebra operators: join (1), project (�),

union ([), select (�). Because cross-product (�) can be seen as a special join, in this

system join represents both of them. The other main di�erence, that join and union

originally are binary operators, hence the number of operands are always two. In this

system the number of operand are greater or equal than two. For instance if we want

to represent the join of four relations, originally we need three join operators, the new

system needs only one.

The system stores relational algebra formulas as a tree, it makes easy to change

the formula, and to represent an operations if it has more than two operands. It is

also very useful when we want to visualize a formula.

The input from the user contains Datalog rules, hence it is necessary to convert
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these rules to relational algebra formulas. A conversion method is described in Ull-

man's book [8, chapter 3]. However, the method works with pure Datalog rules, hence

that method needs to be extended.

3.1.1 Converting a Rule

A general Datalog with Boolean Algebra rule has the following form:

R(X

1

; : : : ; X

k

) : � Q

1

(Y

1;1

; : : : ; Y

1;l

1

); : : : ; Q

m

(Y

m;1

; : : : ; Y

m;l

m

); �

1

; : : : ; �

n

Where m � 0 is the number of relations on the right-hand side, n � 0 is the number

of selections on the right-hand side. Although either m or n can be zero, they cannot

be zero at the same time. (n +m > 0).

If m > 1 then �rst we need to join the relations on the right hand side. After that

we can issue the selection one after the other. (It would be possible to combine the

selections into one selection, but the optimization method works better if we do not

combine them.)

If fY

1;1

; : : : ; Y

1;l

1

; : : : ; Y

m;1

; : : : ; Y

m;l

m

g � fX

1

; : : : ; X

k

g then the right-hand side

contains only variables which can be found in the left hand side, therefore it is not

necessary to use projection. Otherwise we need a projection (�

X

1

;:::;X

k

) as well.

3.1.2 Converting a Relation

First the algorithm converts all the rules of the relation. If the number of the rules

is greater than one then the algorithm connects the formulas with union.

Example 3.1 If relation R has the following two Datalog rules:

R(x,y) :- C(x,y).

R(x,y) :- A(x,z), B(z,y), D(y), z != f1,2,3g.



24

D( Y )

Π X,Y
C( X, Y )

U

B( Z, Y )

σ
Z != { 1, 2, 3 }

A( X, Z )

Figure 3.1: The formula of Relation R

then the algorithm �rst converts the �rst rule, and we get the formula: C(x; y). Next

the second rule is converted yielding: �

x;y

(�

z!=f1;2;3g

(A(x; z) 1 B(z; y) 1 D(y))),

and �nally the two formulas are joined together with a union operator. C(x; y) [

�

x;y

(�

z!=f1;2;3g

(A(x; z) 1 B(z; y) 1 D(y))) (see Figure 3.1).

3.2 Optimization of Relational Algebra Formulas

Although after converting Datalog rules to relational algebra formulas we are able

to use the formulas, it is better to �rst optimize the formula. Using optimization

methods we calculate a new formula from our original formula. The new formula

should be equivalent with the original one (if we evaluate it, the result should be the

same), and it should be evaluated faster. No algorithm can improve all formulas.
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Usually the optimization algorithms improve the majority of the formulas, and leave

unaltered or even worsen some formulas.

There are many optimization methods. The algebraic manipulation method used

in our system is described in the next subsection.

3.3 Algebraic Manipulation

This method is also described in [8]. In this method we will use some equations

between formulas. These equations are also called laws. First we give a list of these

laws, and later an algorithm which can change the original formula using these laws.

After the changes the new formula can be usually evaluated faster than the original

We have to optimize only a subset of the possible formulas, because our formulas

are originally Datalog programs.

3.3.1 Laws

We use the following laws from [8]

1. Commutative law for join:

R

1

1 R

2

� R

2

1 R

1

2. Associative law for joins :

(R

1

1 R

2

) 1 R

3

� R

1

1 (R

2

1 R

3

)

3. Cascade of projections:
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�

A

1

;A

2

;:::;A

k

(�

B

1

;B

2

;:::;B

l

(R)) � �

A

1

;A

2

;:::;A

k

(R)

if fA

1

; A

2

; : : : ; A

k

g � fB

1

; B

2

; : : : ; B

l

g

4. Cascade of selections:

�

F

1

(�

F

2

(R)) � �

F

1

^F

2

(R) � �

F

2

(�

F

1

(R))

5. Commuting selections and projections:

If the set of attributes in condition F is the subset of fA

1

; A

2

; : : : ; A

k

g:

�

A

1

;A

2

;:::;A

k

(�

F

(R)) � �

F

(�

A

1

;A

2

;:::;A

k

(R))

If the set of attributes in F is fA

i

1

; A

i

2

; : : : ; A

i

m

g [ fB

1

; B

2

; : : : ; B

l

g:

�

A

1

;A

2

;:::;A

k

(�

F

(R)) � �

A

1

;A

2

;:::;A

k

(�

F

(�

A

1

;A

2

;:::;A

k

;B

1

;B

2

;:::;B

l

(R)))

6. Communing selection with Join:

If all the attributes of F are the attributes of R

1

:

�

F

(R

1

1 R

2

) � �

F

(R

1

) 1 R

2

If F = F

1

^ F

2

, and the attributes of F

1

are only in R

1

, and the attributes in

F

2

are only in R

2

, then:

�

F

(R

1

1 R

2

) � �

F

1

(R

1

) 1 �

F

2

(R

2

)
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If F = F

1

^F

2

, and the attributes of F

1

are only in R

1

, but the attributes in F

2

are in both R

1

and R

2

:

�

F

(R

1

1 R

2

) � �

F

2

(�

F

1

(R

1

) 1 R

2

)

7. Commuting a projection with a join:

fA

1

; A

2

; : : : ; A

k

g = fB

1

; B

2

; : : : ; B

l

g [ fC

1

; : : : ; C

m

g, where B

i

s are attributes

of R

1

, and C

i

s are attributes of R

2

:

�

A

1

;A

2

;:::;A

k

(R

1

1 R

2

) � �

B

1

;B

2

;:::;B

l

(R

1

) 1 �

C

1

;C

2

;:::;C

m

(R

2

)

3.3.2 Principles

These are three main principles of algebraic query optimization:

1. Perform selections as early as possible

2. Perform projections as early as possible

3. Combine sequences of unary operations

3.3.3 The Algorithm

The steps of the algorithm

1. For each selection use rule (4) { (6) to move the selection down.

2. Move projections down using rules (3), (7), If possible, delete projections.

3. Use rule (4) to combine cascades of selection into one selection.
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Move selections down

In this step our goal is to move selections as down as possible. Originally we have a

set of selections (S

1

, S

2

, : : : ,S

k

), and a set of relations (R

1

,R

2

, : : : ,R

l

). In the original

execution order, we connect the relations with a join operator (if the number of the

operations is greater than zero), than calculate the selections one after the other.

During the optimization, we �rst check which relations and selections have com-

mon variables. Let V

i

be the set of relations which have common variables with S

i

.

More formally:

V

i

= fR

n

j (variables in R

n

) \ (variables in S

i

) 6= ;g

A selection (S

i

) can be executed, if the join of all the relations mentioned in V

i

is

already calculated. The join can contain other relations also.

If V

i

is empty or contains all the relations, then the selection is executed only after

we join all the relations. Therefore we should �nd the place of the other selections.

If 9i8j : V

i

� V

j

, then S

i

will be executed before all the other selections. If such

an index (i) does not exist, then the program chooses any index, which has a small

size V

i

. Next we modify the V

j

(j 6= i) sets.

V

j

:=

(

V

j

n V

i

[ S

i

if V

i

\ V

j

6= ;

V

j

if V

i

\ V

j

= ;

As we can see, V

j

contains not only relations but selections as well.

The previously described method is one step of the optimization. This step should

be repeated until all the selections are chosen. If there are some relations which are

not used during the optimization (no selection contains any variables of the relation),

then a �nal join should connect these relations and the selections.
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σ

X /\ { 6, 8 } == @σ

σY /\ {4} == @

X /\ Y != @

X, YΠ

X /\ {2,4} == @

A( X, Z )       B( V, Y )       C( X )      D( V, Y )

σ

Figure 3.2: The formula before the optimization

Example 3.2 Assume, we have the following Datalog program:

R(X; Y ) : � A(X;Z); B(V; Y ); C(X); D(V; Y ); X \ f2; 4g == @;

X \ f6; 8g == @; Y \ f4g == ;; X \ Y ! = ;:

the corresponding relational algebra formula (see Figure 3.2):

�

x;y

(�

x\y 6=;

(�

y\f4g=;

(�

x\f6;8g=;

(�

x\f2;4g=;

(A(x; z) 1 B(v; y) 1 C(x) 1 D(v; y))))))

�

y\f4g=;

and �

x\f6;8g=;

and �

x\f2;4g=;

each contain only one variable: y, x, and

x respectively. The variables in �

x\y 6=;

are x and y. �

x\y 6=;

has common variables
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with relations A,B,C, and D, therefore V

1

= fA;B;C;Dg. Similarly, V

2

= fB;Dg,

V

3

= fA;Cg, V

4

= fA;Cg.

There exists no V

i

, which is the subset of all the other V

j

's hence the algorithm

chooses one selection, which has the smaller V

i

. In this example the algorithm can

choose V

2

, V

3

, and V

4

, assume that it chooses V

2

. As we issue S

2

, we get the following

formula: �

y\f4g=;

(B(v; y) 1 D(v; y)).

The new values of V

1

, V

3

, and V

4

are: V

1

= fA;B;C;DgnfB;Dg [ fS

2

g =

fA;C; S

2

g, V

3

and V

4

are unchanged because V

3

and V

4

has no common variables

with S

2

. (V

3

= fA;Cg, V

4

= fA;Cg)

Now V

3

� V

1

, V

3

� V

4

hence we can issue S

3

, and get �

x\f6;8g=;

(C(x) 1 A(x; z)).

The new values of V

1

and V

4

are: V

1

= fA;C; S

2

gnfA;Cg [ fS

3

g = fS

2

; S

3

g, V

4

=

fA;CgnfA;Cg [ fS

3

g = fS

3

g.

Now V

4

� V

1

, so the algorithm can issue S

4

, and we get �

x\f2;4g=;

(�

x\f6;8g=;

(C(x) 1

A(x; z)))

Finally we issue V

1

, and get �(x; y)(�

x\y 6=;

(�

x\f2;4g=;

(�

x\f6;8g=;

(C(x) 1 A(x; z)) 1

�

y\f4g=;

(B(v; y) 1 D(v; y))))) (Figure 3.3)

Moving Projections Down

In this step our goal is to move projections as down as possible. Originally we have

a projection, below that maybe some selections and �nally a join (Figure 3.4) If it is

possible then we evaluate the projection before the join. Usually it is not possible,

but we can eliminate at least some of the variables before the join.

Denote PV the set of variables in the projection. Denote SV the set of variables

in the selections. Denote V [i] the variables of the ith branch of the join. All the
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σ
X /\ Y != @

B( V, Y )        D( V, Y )

Π

X /\ {6,8} == @σ

C( X ) A( X, Z )

σ Y /\ {4} == @

X, Y

X /\ {2,4} == @σ

Figure 3.3: The formula after the �rst step of optimization

variable in PV or SV cannot be eliminated before the selections.

If a variable occurs only in one branch, and the variable is not in PV or in SV ,

then this variable easily can be eliminated before the join. For instance, if our original

formula is �(x)(A(x) 1 B(x; y)) as shown in Figure 3.5, then y occurs only in the

second branch, therefore we can eliminate y before the join. The optimized formula

is: A(X) 1 �(x)(B(x; y)) as shown in Figure 3.6.

If there exist no variable which occurs only in one brach, then the algorithm

chooses one variables which occurs in the least branches. If all the variables are occur

in all the branches then the algorithm cannot eliminate any variables. If more than
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B

.

.

.

1

1 lVV

SV

PV

lB

σ

σ

Π

. . .

. . .

Figure 3.4: The variables of the formula

one variables occur in the same branches then the algorithm eliminates these variables

at the same time.

After this step the branches of the join has changed, therefore the algorithm should

recalculate the values of V [i]

0

s. This recalculation is similar to the recalculation during

the �rst step (Moving selections down) of the algorithm. There algorithm is running

until we cannot �nd any eliminable variables.

Because one brach of the join can contain other join operators, after the algorithm

move a projection below the join, we should check whether it is possible to move the

projection even more below the other join. To achieve this the algorithm calls itself

in a recursive way. The new instance of the algorithm works only on a subtree

(subformula) of the original tree (formula).

Example 3.3 After the �rst step of the optimization we got the formula shown in
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B( X, Y )A( X )

XΠ

Figure 3.5: Optimization input

X

B( X, Y )

ΠA( X )

Figure 3.6: Optimization output

Figure 3.3. The variables of the join are X, Y (PV = fX; Y g), the variables in

the selection are also X and Y (SV = fX; Y g). PV [ SV = fX; Y g, therefore we

cannot eliminate X and Y. The upper join has two branches. The variables in the

�rst branch are: X, Z, therefore V [1] = fX;Zg. Similarly V [2] = fV; Y g. Z and V

are local variables because Z occurs only in the �rst, and V occurs only in the second

branch. Therefore we can eliminate Z from the �rst branch before the join, and V

from the second one. The variables in the �rst brach are: fX;Zg. If we eliminate Z,

we have only X, hence we should issue a �(X) below the join. In the same way we

should issue �(Y ) below the second branch. Our new formula is shown in Figure 3.7.

Finally the algorithm tries to move the projections even below the other joins.

In the second branch, Y cannot be eliminated, because Y is a variable in the pro-

jection (and in the selection also). V cannot be eliminated because it occurs in all

the branches. In the �rst branch X is ineliminable, because X is a variable in the

projection. Z is a local variable of the second branch, hence it can be eliminated

before the join. Therefore the algorithm can move the projection below the join, and
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XΠ

B( V, Y )        D( V, Y )

σ Y /\ {4} == @

X /\ Y != @

A( X, Z )

YΠ

X /\ {6,8} == @

X /\ {2,4} == @σ

C( X )

σ

σ

Figure 3.7: The formula during the second step of optimization

we get our new formula, which is shown in Figure 3.8.

Connecting Selections

This is the �nal and the easiest step of the optimization. In this step, the algorithm

combine cascades of selection into one selection. The algorithm simply checks every

edge in the tree, and if both vertices of this edge are selections, then connects the two

vertices and erases the edge.

Example 3.4 In our example (Figure 3.8) there is only on pair of selections which

can be connected. (�

x\f2;4g=;

and �

x\f6;8g=;

. After this step, we get our �nal formula,

which can be seen in Figure 3.9.
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σ

X /\ Y != @σ

Π

X /\ {6,8} == @

X /\ {2,4} == @

σ

B( V, Y )        D( V, Y )

σ Y /\ {4} == @

Y

ΠC( X ) X

A( X, Z )

Figure 3.8: The formula after the second step of optimization

3.4 Calculating multiple joins

When we have to join more than two relations, then the simplest way to join them

is to choose one tuple from each relation, create a new tuple and write the result to

the output relation. For instance we have four relations A, B, C, D, and we want to

calculate

A(X; Y ) 1 B(Y; Z) 1 C(Z; V ) 1 (V;W )

Assume that there are 100 tuples in the relations. In this case we have to create

100

4

= 10

8

tuples.
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Π

X /\ Y != @σ

YX /\ {2,4} == @, X /\ {6,8} == @σ

B( V, Y )        D( V, Y )

σ Y /\ {4} == @

C( X ) Π

A( X, Z )

X

Figure 3.9: The formula after the optimization

A better solution if we join two relations, than join the third to the result of the

previous join, and �nally join the fourth to the last result. For instance if we calculate

A(X; Y ) 1 B(Y; Z), than the size of the result usually is less than 100

2

= 10

4

. Let us

assume that the results always contain 100 tuples. In this case we have to calculate

3 � 100

2

= 3 � 10

4

tuples, which is less than 1 percent of the original calculation.

Of course we do not know the size of the result relation before we create the re-

sult. If the two relation have no common variables, than the join is a cross-product,

so the size of the result relation is the multiplication of the size of the original rela-

tions. In other cases we only know that the size of the result is not greater than the

multiplication of the size of the original relations.

If the algorithm is able to estimate the size of the resulting relation, then it is pos-

sible to join the relations in a good order, therefore the algorithm is able to decrease
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the cost of a multiple join. The good order can be determined using dynamic pro-

gramming. Because the algebraic manipulation considerably decreases the occurrence

of multiple joins, and makes it more di�cult to estimate the size of the resulting rela-

tion, this system does not change the execution order of the joins, but simply executes

the joins from left to right.
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Chapter 4

User's Manual

The user interface of the program is a character based interface. (One student in the

department is working on a Graphical User Interface)

After staring the program the system waits for a user command. After the user

enters the command, the system waits for the next command. This process is �nished

if the user exists from the system.

With the help of some commands the user can change the values of the switches,

with the other command the user can ask the program to give information or execute

a process. First I describe the switches and later the other commands.

The user is also able to give a new rule or fact to the system. The general form

of the rules and facts are described in Section 1.2. There are some di�erences:

� The user can enter more than one equality constraint.

� The user can enter constraints in which neither side of the constraint is zero.

� The user can use not only [, \,

0

but � and � as well.

� Because keyboard does not contain symbols like [, \, or the other operators,
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Mathematical In the system

[ \/, and

\ /\, or

R

0

not( R ), R'

� <=, =<, [=

� =>, >=, =]

= =, ==

6= !=, <>

; @, ZERO

Table 4.1: Operators

the user should use other symbols instead of. Table 4.1 shows the symbols which

can be used by the system. Usually more than one symbols can be used, they

are separated by commas.

4.1 Switches

Most of the switches has two possible values, they are either turned on or o�. All the

possible values should be typed with small letters, in the examples the capital letters

show the default value of the switch.

� time on|OFF.

If the switch is turned on, then program after each evaluation displays the

time used during the evaluation. It displays not only the total time, but some

part-time (for instance time used by di�erent relation operators) as well.

All the time values are in second, and they are real second, not CPU second.

� tempfile on|OFF.
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If the switch is turned on, after each step of the Naive (Section 1.4.1) or Semi-

Naive (Section 1.4.2) evaluation, the program prints out the derived tuples into a

temporary �le ('temp.bld'). This �le is not being overwritten by the following

steps, hence the user can analyse the results after each step. Although the �le

contain the results of more steps, each result has the same format as the input

�le, therefore it is possible to use di�erent parts of this �le as an input �le, and

continue an interrupted execution.

� trace on|OFF.

If the switch is turned on then the program display the inner representation of

a rule after a new rule added to the system.

� optimize ON|off.

If the switch is turned on, then the program uses relational algebra optimization

(Section 3.2), if not then the program uses the original formula. The value of

the switch should be changed before loading the input �le to make e�ect.

� method old|naive|SEMINAIVE.

With this switch the user can choose between the implemented evaluation meth-

ods. The Naive (Section 1.4.1), Semi-Naive (Section 1.4.2) methods work with

also non-recursive and recursive queries, but the 'old' method works only with

non-recursive queries.

4.2 Commands

� exit|bye.
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The command exists the program.

� load|consult 'filename'.

The command load the �le with the given �lename, and reads the queries from

the �le. The format of the input �le is described in Section 4.3.

� formula "R" [onto 'filename'].

The command displays the relational algebra formula of "R" which is used by

the Naive evaluation (Section 1.4.1). If the user specify a �le name, then the

formula will be printed out to the �le, otherwise it will be printed out to the

screen.

� formuladelta "R" [onto 'filename'].

The command displays the relational algebra formula of "R" which is used by

the Semi-Naive evaluation (Section 1.4.2). If the user specify a �le name, then

the formula will be printed out to the �le, otherwise it will be printed out to

the screen.

� display ["R"] [onto 'filename'].

If the user do not specify a relation name then the program prints out the names

and the arities of all relations.

If the user specify a relation name then the program prints out the rules of the

relation.

Similarly to the formula and formuladelta commands the user can name a

�le, otherwise the result of the command will be printed out to the screen.
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� displaydf [onto 'filename'].

The command prints out all the derived facts in the database.

Similarly to the previous commands the user can name a �le, otherwise the

result of the command will be printed to the screen.

� memory.

The command displays the total and the free memory used by the system.

� clear.

The command erases all the relations, rules from the database.

� R(E

1

; : : : ; E

n

)?

With this command the user can ask the derived fact of a relation. E

i

can be

either a variable or an element of �. One variable can occur more than once. At

the �rst time using this command the system calculates the derived facts using

of of the evaluation method. Later the system uses the derived facts stored in

the memory, hence the answer will be faster.

Note: This is the only command which ends with a '?' instead of a '.'.

4.3 Input �le format

The input �le starts with a line contains 'begin' and ends with a line 'end'. Between

these lines there are the rule de�nitions.

The input �le may contain empty lines, one-line comments (after // as in C++

or Java), multi-line comments (between /* and */ as in C, C++ or Java).
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If a line would be too long it can be splitted into more lines, each line but the last

should end with a '\' character. In the examples of this thesis we do not use the

'\' character.
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Chapter 5

Examples

5.1 Ancestors example

5.1.1 The problem

The ancestors example appeared in [5]. In the input database we store informations

about parents and their children. Our goal is to calculate all the ancestors of one

particular person.

5.1.2 The input database

Pure Datalog

In pure Datalog one of the easiest way to use the children relation. One tuple can

contains one parent and one child. For instance if husband and wife have three

children: child1, child2, child3, then our input database is the following:

children( husband, child1 ).

children( husband, child2 ).

children( husband, child3 ).

children( wife, child1 ).
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children( wife, child2 ).

children( wife, child3 ).

New system

In the new system, we need only one tuple to represent the previous example:

children( { husband, wife }, {child1, child2, child3} ).

Comparison

The previous example shows that in the new system, we need fewer tuples to store the

same data. It also can be seen, that the tuples in the new system are more complex

then the tuples in pure Datalog. In the example we needed only one tuple instead of

six. More generally, if a couple has k children, then the pure Datalog needs 2k tuples,

in contrast to the new system, which needs only one.

5.1.3 The Datalog program

Pure Datalog

AAncestor(P) :- children(P, {"person"}).

AAncestor(P) :- children(P, C), AAncestor(C).

New system

AAncestor(P) :- children(P,C), {"person"} <= C.

AAncestor(P) :- children(P,C), AAncestor(P2), C /\ P2 != @.
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Comparison

The program contains two rules in both systems. The rules are very similar, although

the new system has slightly more complex rules.

5.1.4 The output database

Pure Datalog

In the pure Datalog every tuple in the output relation represents one of the ancestors.

New system

In the new system every tuple in the output relation represents two ancestors.

Comparison

The new system contains half the number of tuples as pure Datalog.

5.1.5 Execution complexity

In this comparison I assume that both systems are using the Semi-Naive or the naive

evaluation.

Pure Datalog

At the �rst step, the system �nds the parents of person using the �rst rule. The

system should check all the children tuples, and �nd those in which person is the

child.

Later we need to use the second rule, hence we need to evaluate a join.
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New system

At the �rst step, the systems �nds the parents of person using the �rst rule. The

system should check all the children tuples, and �nd those in which person is one

of the children.

Later we need to use the second rule, hence we need to evaluate a join, and a

selection.

Comparison

The �rst step is almost identical. Because the number of tuples is less in the new

system, in that case the program should check fewer tuples. On the other hand,

the tuples are more complex in the new system, hence to check one tuple is more

time-consuming. If we analyze one step, then we can �nd real advantages.

If our goal is to �nd the ancestors of child3, then in the original system we should

check all the six tuples. Check means here to evaluate child1 == child3, child2

== child3, child3 == child3 . We should evaluate each of them twice, because

each children occur in two tuples.

In the new system, we should check only one tuple. Check here means that we

should calculate the intersection of fchild3g and f child1, child2, child3 g. It

means, that we should evaluate child1 == child3, child2 == child3, child3 ==

child3. In this case we need to evaluate these only once. Finally we should check

whether the intersection is empty or not.

In the later steps, both systems evaluate a join, the second one also evaluates a

selection. If in the pure datalog system we denote the number of tuples in relations

children and AAncestor C

p

and A

p

respectively, then the number of tuples in the



48

ggparent1 ggparent2

gparent4gparent1 gparent2 gparent3

parent1

cousin4wife

son daughter

granddaughtergrandson

daughterinlaw soninlaw

cousin3

parent2

cousin1

uncleswife uncle aunt

cousin2brotherperson

auntshusband

Figure 5.1: A family tree

new system are C

n

=

C

p

2

and A

n

=

A

p

2k

, where k is the average number of children.

Therefore the number of basic operation during join is A

p

C

p

in the old system and

A

n

C

n

=

A

p

C

p

4k

in the new system.

If we are using Semi-Naive evaluation (1.4.2) than the algorithm uses only the

new tuples, hence the number of basic operation is �A

p

C

p

in the old, and �A

n

C

n

=

�A

p

C

p

4k

in the new system.

Similarly to the �rst step, one basic step is more complex in the second system,

but there is still an advantage of using the new system. Usually the cost of the

selection is much more less than the cost of the join, hence it is not a problem that

in the new system we need a selection as well.
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5.1.6 Run-time results

Figure 5.1 shows a family tree, which was used for test purposes. The squared rect-

angles contain the names of the men, oval shaped rectangles contain the names of the

women. In the program there is no di�erence between the two sex, it only helps to

understand the family tree.

Table 5.1 shows the running times. During the evaluation, the program calculated

not only the ancestors of person, but the ancestors of everybody. Because the opti-

mization of relational algebra formulas does not change the formulas in this example,

the optimization has no e�ect on the running-time (the small di�erences are only

because of the inaccuracy of time-measurement). As can be seen in the table the

Semi-Naive evaluation is approximately eight times faster then the Naive evaluation,

hence the Semi-Naive evaluation is a great improvement.

5.2 Genome Map

5.2.1 The problem

The following genome map problem is described in [7].

The deoxyribonucleic acid (DNA) is a sequence of nucleotides. There are four

nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T).

Random substrings of a given DNA are called clones. Clones may overlap each

other. It is possible to cut a DNA string into clones with so called restriction enzymes.

After cutting we loose all information about the order of the clones. Each clone can

be analysed further. By various enzymes the clones can be digested, and we can

measure the fragments after the digestion. To eliminate the errors of measurement
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we can round the length of fragments.

As an input we have a set of clones (c

1

; : : : ; c

n

) of a DNA string, and the lengths

of the fragments of each clone.

The goal is to �nd the original order of the clones. This problem is NP-complete.

However there exist di�erent heuristics which make it possible to solve the problem.

In this example we have an order of clones, and the task is to decide whether it is

a possible order of clones or not.

5.2.2 Solution

The idea for the algorithm is described in [7].

Further restrictions

To apply this solution we need some further restrictions in the input database:

� No clone contains any other clone.

� No clone contains two di�erent fragments with the same length. Although it is

possible that two di�erent clones have di�erent fragments with the same length.

� There exists k such that each fragment is contained in at most k clones.

� If (c

1

; : : : ; c

n

) is the correct order of the clones then 8i (1 � i < n) : c

i

overlaps

c

i+1

Automaton

Because every fragment is contained at most k clones, it is enough to analyze k + 1

clones at the same time. We call k + 1 adjacent clones a window. At the beginning
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the window contains the �rst k + 1 clones, but during the solution this window will

shift right. We denote the clones in the window A

1

; : : : ; A

k+1

.

During the solution we will change the values of A

1

; : : : A

k+1

. The values will

change if we shift the window, or if we pick fragments from the clones. We pick

fragments from several clones (A

1

; : : : ; A

l

(1 � l � k)) at the same time. If a clone

must contain the fragments that we pick next, then we call the clone active. If A

j

active then 8i (i < j) A

i

also active, hence one number is enough to store the set of

active clones.

We create a a non-deterministic automaton to solve the problem. The automaton

contains k + 2 states, where S

0

is the initial state, H is the halt stage, and S

i

is the

stage which represents when i clone active.

Now we need to de�ne the transition of the automaton.

If A

i

� A

i+1

then we cannot pick a fragment from the �rst i clones which is not

in A

i+1

, therefore A

i+1

can be declared an active clone too.

If A

1

= ; then we can shift the window right.

If there are fragments which are in the active clones and not in the �rst non-active

clone, then we can pick these fragments.

Figure 5.2 shows an automaton when k = 5. This automaton is taken from [7].

Because this system supports more Boolean operators than the DISCO system which

was used in [7], the description of the edges of this automaton is simpler than in [7].
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A3<=A4 A4<=A5

A5=A5\JA4=A4\J

A4=A4\J

A3=A3\J

A3=A3\J

A2<=A3

H

A1==@ A1==@ A1==@ A1==@

A1<=A2

A3=A3\J

J==A1\A2

J==(A1^A2)\A3

J==(A1^A2^A3)\A4

J==(A1^A2^A3^A4)\A5

J==(A1^A2^A3^A4^A5)\A6

window empty

init window

A1=A1\J

A2=A2\J

A2=A2\J

A2=A2\J

A2=A2\J

A1=A1\J

A1=A1\J

A1=A1\J

A1=A1\J

S4 S53

S0

S1 S2 S

Figure 5.2: The non-deterministic automation for k=5

C1

C5

C3

C4

C6

C2

C7

10851015 20 515353025

Figure 5.3: The clones of the smaller example
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5.2.3 Concrete examples

Example with input size n=11, k=3

This is a small example, when k = 3. Figure 5.3 shows the clones with the fragments

and also shows the correct order of the clones.

To represent this example we need the following part of the input �le:

clone(N,X) :- N == {1}, X == {25,30,35,15}.

clone(N,X) :- N == {2}, X == {5,8,20,25}.

clone(N,X) :- N == {3}, X == {15,10,5}.

clone(N,X) :- N == {4}, X == {10,5,8,20}.

clone(N,X) :- N == {5}, X == {20,25,30,35}.

clone(N,X) :- N == {6}, X == {35,15,5}.

clone(N,X) :- N == {7}, X == {15,5,10}.

clone(N,X) :- N =={99}, X == @.

firstClone(N) :- N == {3}.

nextClone(N1,N2) :- N1 == {3}, N2 == {4}.

nextClone(N1,N2) :- N1 == {4}, N2 == {2}.

nextClone(N1,N2) :- N1 == {2}, N2 == {5}.

nextClone(N1,N2) :- N1 == {5}, N2 == {1}.

nextClone(N1,N2) :- N1 == {1}, N2 == {6}.

nextClone(N1,N2) :- N1 == {6}, N2 == {7}.

nextClone(N1,N2) :- N1 == {7}, N2 == {99}.

nextClone(N1,N2) :- N1 =={99}, N2 == {99}.

To implement the automation we need the second part of the input �le:

pick(J, A, B) :- A = B \/ J, B /\ J ==@.

S1(L, A1, A2, A3, A4) :- L == @, firstClone(s1), clone(s1, A1),

nextClone(s1,s2), clone(s2, A2),

nextClone(s2,s3), clone(s3, A3),

nextClone(s3,s4), clone(s4, A4).



54

Naive SemiNaive

Problem Without With Without With

optimization optimization optimization optimization

Genome map

(n = 11; k = 3)

1810 1146 103 98

Genome map

(n = 16; k = 5)

| | 1008 932

Ancestor 59.4 59.6 7.6 7.5

Unavoidable sets 30.1 253.9 19.2 68.9

Multiset 1197 1181 61 61

Table 5.1: Test results (Pentium II 267 MHz)

// i -> i+1

S2(L, A1, A2, A3, A4) :- L == @, S1(J, A1, A2, A3, A4), A1 <= A2.

S3(L, A1, A2, A3, A4) :- L == @, S2(J, A1, A2, A3, A4), A2 <= A3.

// i+1 -> i

S1(L, A2, A3, A4, A5) :- L == @, S2(J, A1, A2, A3, A4),

A1 == @, clone(c1, A4), nextClone(c1, c2), clone(c2, A5).

S2(L, A2, A3, A4, A5) :- L == @, S3(J, A1, A2, A3, A4),

A1 == @, clone(c1, A4), nextClone(c1, c2), clone(c2, A5).

//i -> i

S1(J, B1, A2, A3, A4) :- S1(JJ,A1,A2,A3,A4), J<=A1, J/\A2=@,

pick(J,A1,B1).

S2(J, B1, B2, A3, A4) :- S2(JJ,A1,A2,A3,A4), J<=A1\/A2, J/\A3=@,

pick(J,A1,B1), pick(J,A2,B2).

S3(J, B1, B2, B3, A4) :- S3(JJ,A1,A2,A3,A4), J<=A1\/A2\/A3,

J/\A4=@, pick(J,A1,B1), pick(J,A2,B2), pick(J,A3,B3).

GOOD(X) :- S1(J, @, @, @, @).

I measured the evaluation time of this example in four di�erent situations. Table

5.1 shows the results. All the numbers are real seconds, not CPU seconds, the test
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Figure 5.4: The clones of the bigger example

was running under WinNT (Pentium II 267 MHz). As can be seen the Semi-Naive

evaluation is a great improvement, we need only the 5.69 percent (optimization o�)

or 8.55 percent (optimization on) of the time as the time of the Naive evaluation.

The optimization has a remarkable e�ect with Naive evaluation (we save 36 percent

of the time), and a a slight e�ect if optimization is on (4.8 percent). The reason

of the small e�ect is that the original rules are rather optimized, there is no much

possibility to optimize the rules more. However it has to be mentioned that the time

of the optimization (less than 1 second) is much more smaller than this small e�ect,

therefore the optimization is useful.

Example with input size n=16, k=5

The original example described in [7] was also tested in this system. The clones and

the fragments are also shown in Figure 5.4. Table 5.1 shows the test result of this
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example too.

5.3 Unavoidable Sets

5.3.1 Problem

The problem originates from two-player games, such as chess for instance. We can

assign di�erent labels to di�erent positions. In chess we can use labels like: white

wins, black wins, draw. It is possible that a position has no labels assigned. If we

de�ne more labels, then it is also possible that more then one labels are assigned to

a position. For instance if we de�ne labels like: white has a queen, white has a rook,

white has a bishop, then if white has two rooks and a queen, and no bishops, then

the �rst two labels are assigned to the position.

Assume that white wants to reach a position which has a speci�c label, and black

wants to avoid it. We can build a tree which contain the possible positions, the

current position is the root, and there is a directed edge between two positions if one

player can move from one position to the other. If the players turn in alternate, then

this graph is a bipartite graph (one position contains the name of the player who will

turn next). We assume that the graph is an acyclic graph. In chess this is really

acyclic, because if the same position occurs thrice, then the game is draw.

Our goal is to calculate those labels, which are unavoidable by black, if white

wants to reach the label.

5.3.2 Solution

We can assign labels to the leaves. To calculate the labels for the other nodes, we do

the following. If black has to move, then we calculate the intersection of the labels
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Figure 5.5: The acyclic graph

assigned to the children of the node, because black wants to avoid the label. If white

has to move, then we calculate the union of the labels assigned to the children of the

node, because white wants to reach the label. If we assign labels one after the each

other, then after �nite steps we reach root, because the graph is acyclic.

Mathematically the problem is the following: We have a directed acyclic bipartite

graph. Let A and B the two disjunct sets of vertices. The graph has a special vertex

for which the in-degree equals zero. We call this vertex root. Let us suppose that root

is in A. Sets are assigned to the leaves. If the sets of all the children of a vertex are

already de�ned, then we can assign a set to the vertex. If the vertex is in A, then we

assign the union of the sets of the children, if the vertex is in B then the intersection

of the sets of the children. The goal is to �nd the set which is assigned to root.
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5.3.3 Example

In this example the graph and the labels assigned to the leaves are shown in Figure

5.5.

To store the structure of the graph, we need the �rst part of the input �le:

left(P,C) :- P == {1}, C == {2}.

right(P,C) :- P == {1}, C == {3}.

left(P,C) :- P == {2}, C == {4}.

right(P,C) :- P == {2}, C == {5}.

left(P,C) :- P == {3}, C == {5}.

right(P,C) :- P == {3}, C == {6}.

left(P,C) :- P == {4}, C == {7}.

right(P,C) :- P == {4}, C == {8}.

left(P,C) :- P == {5}, C == {8}.

right(P,C) :- P == {5}, C == {9}.

left(P,C) :- P == {6}, C == {10}.

right(P,C) :- P == {6}, C == {11}.

left(P,C) :- P == {7}, C == {12}.

right(P,C) :- P == {7}, C == {13}.

left(P,C) :- P == {8}, C == {12}.

right(P,C) :- P == {8}, C == {14}.

left(P,C) :- P == {9}, C == {14}.

right(P,C) :- P == {9}, C == {15}.

left(P,C) :- P == {10}, C == {14}.

right(P,C) :- P == {10}, C == {15}.

left(P,C) :- P == {11}, C == {15}.

right(P,C) :- P == {11}, C == {16}.

To store the sets of the leaves we need the following part:

white(X, S) :- X == {12}, S == {3,7}.

white(X, S) :- X == {13}, S == {3}.

white(X, S) :- X == {14}, S == {3,4}.

white(X, S) :- X == {15}, S == {3,4,5,6}.

white(X, S) :- X == {16}, S == {4,6,7}.
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The part which calculates the new sets contains only three rules:

black(X, S) :- left(X, L),right(X, R),white(L, W1),white(R, W2), S=W1/\W2.

white(X, S) :- left(X, L),right(X, R),black(L, B1),black(R, B2), S=B1\/B2.

un(S) :- white(X, S), X == {1}.

If we give this input �le to the system we get the result, that the set of unavoidable

labels is f3; 4g. Table 5.1 shows the used time during evaluation. This example also

shows the advantage of the Semi-Naive evaluation. Because the number of iterations

are relatively small in this example, the e�ect is not too big. This example also shows

that the optimization method may worsen a formula. This is very rare, the problem

is that in this example the right-hand side of black and white rules contains four

relations and a selection, and in most cases it is useful to evaluate selections before

join, in this special case join before selection would have been better.
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Chapter 6

Multisets

6.1 Introduction

A natural extension of the program is using multisets instead of sets. Multisets are

similar data structures to sets, the di�erence is that a set can contain an element at

most once, while a multiset can contain several copies of an element. Unfortunately,

multisets do not form a Boolean Algebra. However, as described in [5] multisets

can be implemented using a limited set of multiset operators, and applying other

restrictions.

6.2 Extension of the program

We allow the following multiset operators:

� V

1

� V

2

Where V

1

, and V

2

are multiset variables. With this operator we can check

whether one multiset variable is a subset of another multiset variable or not.

� V =M
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V

1

== V

2

V

1

� V

2

; V

2

� V

1

V � E V

2

= E; V � V

2

V � E V

2

= E; V � V

2

V == ; V

2

= ;; V � V

2

V == E V

2

= E; V � V

2

; V

2

� V

Table 6.1: Other operators which can be expressed

Where V is a multiset variable, andM is a concrete multiset. With this operator

we can change the value of the multiset variable.

� V

1

= V

2

� V

3

Where V

1

, V

2

, and V

3

are multiset variables. The value of V

1

is calculated using

the already known value of V

2

and V

3

.

Although we allow only these three operators, some other operators can be ex-

pressed with these operators. Table 6.1 shows operators which can be expressed using

the basic operators. In the table V

i

's are multiset variables, E is a multiset constant.

All the multiset variables and constants are denoted with a '*' sign in the input

�le. There are also other restrictions related to multisets:

� At most one multiset variable in every relation.

� Only the �rst variable can be a multiset
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6.3 An example

6.3.1 The problem

The next example is also related to the genome maps, and described in [5]. In this

previous genome map example we cut the DNA with an enzyme, and get clones, after

this used an other enzyme to digest the clones. In this example at the beginning

we have two enzymes. We cut the original DNA with one of them and get the so

called row clones, cut the original with the other enzyme and get the so called column

clones. Neither the row clones nor the column clones can overlap each other. After

this we use the same enzyme to digest both the row and column clones.

6.3.2 The solution

Because of the genetic di�erence, we know the �rst row, and the �rst column clone.

The structure of the row and column clones implies that one of these two �rst clones

is a subset of the other one. Assume the the �rst column clone is a subset of the �rst

row clone. We also know that at the beginning of the DNA, there are the fragments

of this column clone (which are fragments of the �rst row clone also), and following

this, that fragments of the �rst row clone which are not in the �rst column clone. Let

S be the set of these fragments. The algorithm should �nd an other column clone,

which is either a subset of S, or a superset of S. If the column clone is a subset of S,

it means that we still have more fragments from the row clones than from the column

clones, hence we need to �nd an other column clone. If the column clone is a superset

of S, it means that we have more fragments from the column clones than from the

row clones, hence we need to �nd a row clone now. The di�erence of the column clone

and S will be the new value of S. We can repeat this step, until S equals the empty
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set, which means, that we �nd the same fragments in both the row and the column

clones. S will be empty at the end of the DNA, although there is a small possibility

that S will be empty before that.

The Datalog with Boolean Constraints program, which can solve this problem:

down(*SS,UC,UR) :- initialc(*SS,UC,UR).

right(*SS,UC,UR) :- initialr(*SS,UC,UR).

down(*SS,UC,URR) :- down(*S,UC,UR), row(*R,M), *R <= *S,

*SS = *S - *R, pick(M,UR, URR).

down(*SS,UCC,UR) :- right(*S,UC,UR), column(*C,N), *S <= *C,

*SS = *C - *S, pick(N,UC,UCC).

right(*SS,UCC,UR) :- right(*S,UC,UR), column(*C,N), *C <= *S,

*SS = *S - *C, pick(N,UC,UCC).

right(*SS,UC,URR) :- down(*S,UC,UR), row(*R,M), *S <= *R,

*SS = *R - *S, pick(M,UR,URR).

halt(X) :- down(*X,@,@), *Y == *@, *X <= *Y.

halt(X) :- right(*X,@,@), *Y == *@, *X <= *Y.

6.3.3 Concrete example

In this example the DNA contains 28 fragments, ten row and nine column clones.

Figure 6.1 shows the fragments of the DNA string, the row and column clones.

Table 6.2 shows the process of the solution. The �rst column shows the expression

of the new value of S, the second column shows the new value of S. The third and

fourth columns show the unused row and column clones.

Table 5.1 shows the execution time of this example. The Semi-Naive evaluation
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124947 11 510101012871318135 8 65271498 4

C8C6C1C3

R5

C4

28

C2C5C9C7

R7R6R3

17 105

R9 R10R2R4R1R8

Figure 6.1: The correct order of clones

S Row clones Column clones

C3 5,13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 1, 2, 4, 5, 6, 7, 8, 9

R9 - S 13,18 1, 2, 3, 4, 5, 6, 7, 8, 10 1, 2, 4, 5, 6, 7, 8, 9

S - C1 13 1, 2, 3, 4, 5, 6, 7, 8, 10 2, 4, 5, 6, 7, 8, 9

C6 - S 7, 8 1, 2, 3, 4, 5, 6, 7, 8, 10 2, 4, 5, 7, 8, 9

R8 - S 17 1, 2, 3, 4, 5, 6, 7, 10 2, 4, 5, 7, 8, 9

C8 - S 8, 9, 14, 27 1, 2, 3, 4, 5, 6, 7, 10 2, 4, 5, 7, 9

S - R3 14, 27 1, 2, 4, 5, 6, 7, 10 2, 4, 5, 7, 9

S - R1 27 2, 4, 5, 6, 7, 10 2, 4, 5, 7, 9

R4 - S 65 2, 5, 6, 7, 10 2, 4, 5, 7, 9

C4 - S 8 2, 5, 6, 7, 10 2, 5, 7, 9

R6 - S 4, 7 2, 5, 7, 10 2, 5, 7, 9

C7 - S 4, 9, 12 2, 5, 7, 10 2, 5, 9

S - R2 12 5, 7, 10 2, 5, 9

R10 - S 10, 10, 11, 12 5, 7 2, 5, 9

C9 - S 10 5, 7 2, 5

R7 - S 5, 28 5 2, 5

C5 - S 4 5 2

R5 - S 5, 10 | 2

C2 - S | | |

Table 6.2: The solution
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is a great improvement in this example too (it needs only about 5 % of the time

necessary for the Naive evaluation). However the optimization of Relational Algebra

formulas has no important e�ect on the execution time of this query.
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Chapter 7

Further Work

� GUI: Currently the program has a character based interface, which can make

di�cult for the user to handle the program. The biggest disadvantage of the

character based interface is that sometimes it is too di�cult to interpret the

results, because the result is only a set of formulas.

Currently a student (Song Liu) in the Department is working on a Graphical

User Interface which will make easier to understand the results.

� Approximation: Every elimination method have some restrictions on the in-

put database. Sometimes we cannot use any quanti�er elimination methods.

In these cases approximation may help, when we cannot compute the correct

quanti�er-free formula, rather only create a formula which approximate the

result. A possible way of approximation is described in [3].

� Multiset: Chapter 6 describes the an extension of the system, which makes

possible to use multisets. Only a small subset of multiset operators are used in

this extension, it would be possible to implement more multiset operators.
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� Indexing:

Indexing can improve the speed of the database systems. However indexing

is not too di�cult in traditional relational database systems, it is much more

di�cult in constraint database systems. A good indexing method would improve

the speed of this system.
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