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Abstract
Floral herbivory represents a major threat to plant reproductive success, driving the importance of plant tolerance mecha-
nisms that minimize fitness costs. However, the cumulative insect herbivory plants experience under natural conditions 
complicates predictions about tolerance contributions to net fitness. Apical damage can lead to compensatory seed pro-
duction from late season flowering that ameliorates early season fitness losses. Yet, the compensation realized depends on 
successful development and herbivore escape by later season flowers. Using monocarpic perennial Cirsium canescens, we 
quantified seed-reproductive fitness of plants with vs. without experimental damage to the early-developing large apical 
flower head, with and without a 30–40% herbivory reduction on subsequent flower heads, for two flowering cohorts. Plants 
with reduced herbivory clearly demonstrated the release of apical dominance and compensation, not overcompensation, 
for apical damage via greater seed maturation by later flower heads. In contrast, plants that experienced ambient herbivory 
levels on subsequent heads undercompensated for early apical damage. Individuals had lower total seed set when the apical 
head was damaged. Compensation was, therefore, possible through a small increase in total flower heads, caused by a higher 
rate of floral bud survival, and a higher seed maturation rate by subsequent heads, leading to more viable seeds per matured 
flower head. With ambient cumulative floral herbivory, compensation for apical damage was not sufficient to improve fit-
ness. Variation in the intensity of biological interactions played a role in the success of plant tolerance as a mechanism to 
maximize individual fitness.

Keywords Apical dominance · Floral herbivory · Plant–herbivore interactions · Plant tolerance · Predispersal seed 
predation

Introduction

Insect destruction of developing inflorescences and seeds, 
i.e., floral herbivory or predispersal seed predation, repre-
sents a challenge to plant fitness. Such herbivory can dramat-
ically and quantitatively reduce plant-reproductive success 
(Louda and Potvin 1995; McCall and Irwin 2006; Lucas-
Barbosa 2016) and directly affect plant population growth 
rate (Rose et al. 2005; Tenhumberg et al. 2008; von Euler 
et al. 2014) and population density (Louda 1983; Jongejans 
et al. 2008; Lehndal et al. 2016). Floral herbivore impacts 
should, therefore, favor plant growth and allocation strate-
gies that can reduce losses, or even improve fitness, under 
herbivory pressure (Fornoni 2011; Agrawal et al. 2012; Car-
mona and Fornoni 2013). However, these strategies likely 
require allocation tradeoffs that can additionally influence 
fitness outcomes. Consequently, it can be difficult to evaluate 
emergent fitness benefits from plant responses under natural 
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conditions (Agrawal 2005; Brody et al. 2007; Klimešová 
et al. 2007).

Tolerance strategies, such as growth or resource alloca-
tion that compensate for herbivore damage, offer one pos-
sibility to mitigate fitness costs from herbivory (tolerance: 
Strauss and Agrawal 1999; Stowe et al. 2000), albeit at 
additional cost. For instance, compensatory allocation to 
subsequent or additional flowers can minimize the influ-
ence of herbivore floral damage on plant fitness (e.g., Pil-
son and Decker 2002; Brody et al. 2007; Wise et al. 2008), 
and even increase within-year fitness relative to undamaged 
plants (overcompensation, e.g., Paige 1992; Lennartsson 
et al. 1998; Agrawal 2000). However, resulting phenologi-
cal delays or under-allocated resource reserves may limit 
fitness gains, particularly if a tolerance response is not trig-
gered (Lehtilä 2000; Järemo and Palmqvist 2001; Klimešová 
et al. 2014). Tolerance can, therefore, present an ecologi-
cal bet-hedging tradeoff: the risk of complete fitness loss 
(fitness variance) minimized at the expense of maximizing 
mean individual fitness (i.e., Childs et al. 2010; Starrfelt 
and Kokko 2012). Plant damage responses may thus lead to 
variable individual results. Whether such outcomes further 
translate to significant directional population-level impacts 
is often unknown (Lay et al. 2011; Low et al. 2013; Aikens 
and Roach 2015). More research on plant responses under 
natural field conditions is needed to provide information on 
key aspects of tolerance, such as the relative fitness contri-
butions of response strategies versus the fitness impacts of 
cumulative herbivory, and how variation in the growth and 
herbivory environment drives emergent tolerance benefits.

We experimentally evaluated the fitness contribution of 
strong early-season apical investment (prioritized invest-
ment in early season apical seed production) and compen-
satory reproductive effort in response to apical damage (high 
investment in seed production from multiple later flowers) 
under conditions of low and high floral attack in Cirsium 
canescens Nutt. (Platte thistle). This monocarpic perennial 
species is known to have strong population-level interac-
tions with floral herbivores (Louda and Potvin 1995; Rose 
et al. 2005; Russell and Louda 2005; Rand and Louda 2012), 
and would be expected to benefit from tolerance strategies. 
Apical meristem damage is generally a common occurrence 
imposed by physical or biological factors (Gruntman and 
Novoplansky 2011; Adhikari and Russell 2014; Klimešová 
et al. 2014) and represents a disproportionately large poten-
tial early-season fitness risk for C. canescens. When the api-
cal flower head escapes damage, it contributes substantially 
to plant fitness (± 50% total seed production, Louda and 
Potvin 1995). However, up to 50% of flowering C. canes-
cens per season may have the apical flower head aborted by 
early insect feeding (Lamp 1980). Compensatory responses 
for within-season herbivory should supply important fitness 

benefits for this monocarpic plant, providing a relevant sys-
tem in which to examine tolerance in the field.

We asked three questions: (1) Does apical damage lead to 
a detectable tolerance response (i.e., change in within-plant 
distribution of flowering effort and seed production rela-
tive to undamaged plants)?; (2) Do apical damage responses 
interact with cumulative insect floral herbivory pressure in 
determining total seed reproduction by C. canescens?; and, 
(3) Does variation in the risk of cumulative floral herbivory 
on the later-flowering heads affect realized plant fitness 
outcomes, and therefore, fitness gains, from the plant toler-
ance response? We expected compensation for apical flower 
damage to result from an increase in branches or matured 
flowers, due to release from apical dominance restraints. 
Such compensation could additionally change plant phe-
nology, aiding flower escape from herbivores in time (Aars-
sen 1995; Lehtilä 2000; Gruntman and Novoplansky 2011). 
Apical damage has led to compensation, and occasionally 
overcompensation, for herbivore damage in other systems. 
Haphazard variation in the timing and duration of insect 
herbivory and flowering delays due to apical damage can, 
however, reduce the likelihood of successful seed produc-
tion and limit the reliability of fitness gains from compen-
sation (Huhta et al. 2000; Brody and Irwin 2012; Adhikari 
and Russell 2014). This variability increases the potential 
value of strong early-season apical investment, relative to 
fitness costs spread across multiple later flowering heads, 
when fitness must be realized under cumulative season-long 
insect pressure. Thus, outcomes from resultant tradeoffs are 
uncertain when valuable early-season apical investments 
affect the timing and quantity of later flowers. The experi-
mental results clearly demonstrate compensatory ability, but 
ecological constraints on the benefits of the compensatory 
tolerance response.

Materials and methods

Study system

Cirsium canescens Nutt. (Platte thistle) is a short-lived, 
monocarpic perennial that is native to sand and gravel soils 
of the upper Great Plains and southern Rocky Mountains 
(Kaul et al. 2007). Prior research documented intense insect 
floral herbivory on C. canescens, including on the apical 
flower head (Lamp and McCarty 1981; Louda et al. 1990), 
that was variable among individuals (Louda and Potvin 
1995). Seed loss significantly reduced average individual 
fitness and population density (Louda and Potvin 1995), 
and significantly lowered population growth rate (Rose et al. 
2005), suggesting the possibility of strong selection pressure 
for compensatory response by this taprooted monocarpic 
plant.
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Cirsium canescens grows as a rosette for 2–8 years prior 
to its reproductive year (Louda and Potvin 1995), and flow-
ers from mid to late May through late June. Reproduction 
is solely by seed and flowering is determinate, beginning 
with the terminal apical flower head (Lamp 1980; Kaul et al. 
2007). Over the season, subsequent flower heads develop 
basipetally, flowering sequentially from the terminal apical 
head down the stem and sequentially within each branch 
below the branch terminal head.

The five main native floral and seed-feeding herbivores 
at our site were: two tephritid flies (Paracantha culta 
Wiedemann, Orellia occidentale Snow), two pyralid moths 
[Pyrausta subsequalis Gn., Homoeosoma eremophasma 
Neunzig (complex)], and a weevil (Baris nr. subsimilis 
Walker) (Lamp 1980; Louda and Potvin 1995). In addi-
tion, the Eurasian flower head weevil (Rhinocyllus conicus 
Frölich) invaded the floral-feeding guild in 1993 (Louda 
et al. 1997; Louda 1998). Previous studies document both 
the feeding damage (Lamp and McCarty 1981) and the pop-
ulation-level impacts (Louda et al. 1990; Louda and Potvin 
1995; Rose et al. 2005; Russell and Louda 2005) by these 
six floral herbivores.

Study sites

The study extended across six interconnected sand prairie 
sites in Arthur County, western Nebraska, in the upper Great 
Plains, USA. Three sites were within Arapaho Prairie Pre-
serve, a 1200 ha reserve owned by The Nature Conservancy 
and managed for research by the University of Nebraska 
Cedar Point Biological Station (Keeler et al. 1980). Three 
additional sites were in private pasturelands surrounding 
Arapaho Prairie; these are managed for sustained long-term 
cattle production (Delwin Wilson, personal communication).

Experimental design

We used a 2 × 2 factorial completely randomized design, to 
evaluate the effect of apical head damage and cumulative 
floral herbivory over the season on adult plant herbivory 
tolerance. We conducted the experiment twice (2007, 2008) 
using the same design for each year’s flowering cohort. We 
manipulated apical head damage (A) to compare plants with 
apical head damage deliberately imposed  (AD) versus with 
no damage imposed  (AN). Within each apical damage treat-
ment, we altered cumulative floral herbivory (H) on sub-
sequent, lower-positioned flower heads to compare plants 
with reduced herbivory  (HR: insecticide-in-water) versus 
with ambient herbivory  (HA: water-only control). Thus, we 
had four treatment groups: (1) experimentally damaged api-
cal head with reduced cumulative herbivory on lower (later) 
heads  (AD × HR); (2) experimentally damaged apical head 
damage with ambient levels of cumulative herbivory on 

lower heads  (AD × HA); (3) undamaged apical head with 
reduced cumulative herbivory on lower heads  (AN × HR); 
and, (4) undamaged apical head with ambient cumulative 
herbivory on lower heads  (AN × HA).

In early season each year, we selected and marked 
plants that were likely to mature and flower, evidenced by 
an apical flower head bud within the center of the rosette 
(5–10 May 2007, 26 April–10 May 2008). New plants had 
to be chosen each year. In 2007, we had 15 replicates of the 
4 treatments (total n = 60 plants). In 2008, we increased 
the number of replicates to 35 (total n = 140 plants). Each 
replicate block consisted of four plants matched by initial 
plant and apical flower head sizes to control for any effect 
of variation in early-season size or phenology on treat-
ment response. Initial size was measured as a combination 
of rosette diameter (cm), apical bud diameter (mm), and 
total number of flower head buds already initiated. We 
assigned the four treatment combinations randomly within 
each replicate block.

We imposed damage on the apical flower head of the two 
plants randomly assigned to the damage treatment within 
each replicate  (AD). Our damage treatment was designed 
to emulate the flower bud damage and insect feeding we 
observed in the field, which severely slows or stops apical 
flower head development. To impose damage in 2007, we 
caged three field-collected thistle insects onto the flower 
head in 1 mm mesh bags for 1 week in early season (one 
early instar native moth larva, P. subsequalis, plus two small 
adult native weevils, B. subsimilis) after drilling a small hole 
(< 1 mm diameter) into the lower part of each flower head 
to facilitate moth larva entry. After a week, if the damage 
imposed was not comparable to that observed to impede 
flower head development naturally, we further damaged the 
head using a razor blade to partially sever vascular trans-
port from one side of the stem into the flower head, similar 
to insect mining damage. In 2008, early insect abundances 
were low. Thus, we set up five replicates using insects as in 
2007, and an additional 30 replicates using only mechanical 
damage (drilled hole + partial girdling). The effects of the 
two apical damage techniques (insect + mechanical damage 
vs. mechanical damage only) did not differ in their effect on 
seed production; thus, we present the combined data. Apical 
heads assigned to the undamaged treatment  (AN) were han-
dled but not damaged, and also were treated with insecticide 
to prevent later apical damage.

We manipulated insect floral herbivory among individu-
als during the season, reducing cumulative floral herbivory 
 (HR, insecticide-treated later heads) or allowing ambient 
herbivory for a control  (HA, water-treated heads) on one 
plant in each of the apical damage treatments per replicate. 
In the insecticide treatment, we reduced cumulative floral 
herbivory by individually spraying each non-apical flower 
head with insecticide-in-water before and after florets were 
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presented for pollination to avoid interfering with pollina-
tors. In 2007, we used the insecticide Acephate  (IsotoxR, 
Chevron Corp), applied every 7–10 days in a 1% solution, 
as recommended. In 2008, in an effort to increase insecticide 
effectiveness, we used the pyrethroid insecticide bifenthrin 
(FMC Corporation Pty Ltd.), applied every 14 days in a 
0.06% solution.

Data collection

We measured initial plant and flower head sizes when repli-
cate blocks were created and the treatments imposed (8–10 
May 2007; 11–13 May 2008). We then measured the mag-
nitude and the distribution of individual plant-reproductive 
effort every 2 weeks in 2007 (to 31 July), and every 4 weeks 
in 2008 (1–3 June, 1–3 July, 29 July–2 Aug). On each sam-
pling date for each plant, we recorded diameter (mm) of 
the terminal flower heads on all branches and counted the 
total number of smaller, subtending flower buds initiated on 
each branch. We also recorded: plant height (cm), rosette 
diameter (average of two perpendicular diameters, cm), total 
number of branches per plant (> 1 cm long), and total num-
ber of flower heads initiated per plant.

Fitness

To document plant seed production, we collected each 
flower head that matured (exerted at least one floret) for 
dissection as the flower heads and branches senesced. For 
each mature flower head collected, we recorded: mass (g), 
diameter (mm), number of developed undamaged seeds, 
and amount of internal insect damage (i.e., to inflorescence 
receptacle, florets, and developing seeds).

Insect damage

To quantify internal damage by insects, we divided each 
flower head into four sections and assigned a damage score 
to each quarter; this damage score was based on the percent 
area of the receptacle, florets, and seeds that were damaged: 
0 = 0–1%; 1 = 1.1–10%; 2 = 10.1–0%; 3 = 30.1–50%; 
4 = 50.1–75%; and 5 = 75.1–100%. The total damage score 
for each flower head was calculated as the average of the 
four individual quarter scores. For analysis, this total dam-
age score was converted to the proportion represented by the 
midpoint of its damage interval (e.g., score 1 = 0.05, score 
2 = 0.15, etc.), providing a conservative estimate of mean 
insect damage per flower head, as one relatively large inter-
val (damage 5) represents the very high levels of damage 
(> 75%), compared to several smaller intervals that represent 
lower levels of damage.

Data analyses

Between experiment comparison and initial conditions

To evaluate whether initial size or between-year differ-
ences affected treatment outcomes, we analyzed initial size 
measurements (5–10 May 2007, 26 April–10 May 2008) for 
number of flower heads per plant, mean rosette diameter, 
and apical head diameter, as a composite-dependent variable 
representing plant size using MANOVA with Pillai’s trace 
test statistic. We also analyzed both initial and final plant 
size estimates for between-year differences with MANOVA 
(Pillai’s trace test statistic), followed by separate univariate 
ANOVAs for each separate measurement if the MANOVA 
results were significant. No significant differences in initial 
size occurred among the four treatments within year (treat-
ment × year: p > 0.10 for all variables). Plants were on 
average larger in 2007 than in 2008 (both initial and final 
size estimates: Appendix S2). We further analyzed the 
interaction between treatment and year in a similar manner, 
and found no significant qualitative differences in treatment 
effects between years on plant performance (p > 0.10 for all 
treatment × year interactions). We also evaluated whether 
treatment effect on plant seed number differed significantly 
between years (mixed model with year as both a random and 
fixed effect, and branch as a covariate for plant size). There 
was no significant year effect (p = 0.69). We, therefore, 
combined the data from both years and incorporated year as 
either a random effect or covariate when appropriate. Analy-
ses were performed in R (R Core Development Team 2016).

Insect damage

To determine the effectiveness of the insecticide treatment, 
we examined the amount of insect damage to later flower-
ing heads using the arcsine-transformed mean proportion 
internal damage per flower head. Transformed proportions 
were evaluated in a mixed effects model, with year and plant 
as random effects.

Treatment effects

We followed a similar analytical framework to parse treat-
ment effects on fitness outcomes in response to each of the 
three questions posed. We first tested for significance of the 
main effects and treatment interaction. Because floral her-
bivory is known to have strong fitness consequences in this 
system (i.e., Louda and Potvin 1995), and because herbivory 
had a significant main effect in nearly all analyses, when 
significant treatment interactions occurred in the global 
model, we examined the effect of apical damage  (AD ver-
sus  AN) within each herbivory treatment  (HA or  HR) to best 
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evaluate compensation for apical head loss as well as the 
overall effect of herbivory on the outcome of apical damage.

Potential versus realized seed production

To examine how any compensatory response led to abso-
lute differences in potential seed production per plant 
among treatments, we calculated the expected (potential) 
seed production based on the number and size of heads ini-
tiated and the expected number of seeds per head. We used 
published regressions for the number of undamaged filled 
seeds expected in relation to flower head size to estimate 
seed production potential per head (Louda and Potvin 1995), 
and summed the per head values to estimate potential seed 
production per plant. To quantify the percent of the potential 
seed production that was actually realized per flower head 
in the field, we divided observed seed count per head by 
the expected seed production. This parameter allowed us 
to assess whether a plant displayed tolerance after apical 
damage by compensatory production of seed, under either 
reduced or ambient herbivory.

Question 1: Plant response to apical damage

Because any compensation response would likely incorpo-
rate multiple plant characters, we grouped measurements 
associated with two different aspects of the potential plant 
response into two multivariate response variables: (1) plant 
structural investment (plant height, rosette diameter, num-
ber of branches, and number of flower buds); and, (2) plant 
reproductive effort (number of buds that produced flowers, 
number of heads that matured and developed viable seed). 
We combined two measures of reproductive effort because 
many heads that matured (exerted at least one flower) were 
so heavily damaged that they did not succeed in producing 
any viable seeds (see Results below). We analyzed treat-
ment effects on each of these two composite variables using 
MANOVA with year as an additive main effect to account for 
annual differences in plant size. When significant treatment 
effects or interactions occurred in a MANOVA, we exam-
ined treatment effects on each of the significant dependent 
variables using separate ANOVA contrasts. When ANOVAs 
were significant, we examined the effect of apical damage 
 (AD versus  AN) within each herbivory treatment  (HA or  HR).

Question 2: Compensation and apical damage—
effects on whole plant seed production

With the high average levels of ambient floral herbivory in 
this system, many later flower heads produced only a few or 
zero undamaged seeds, resulting in a strongly zero-biased 
distribution. Therefore, we used maximum likelihood to 
determine the most appropriate distribution for analysis of 

the pattern of plant seed production using a generalized lin-
ear model. The best fit was a negative binomial distribution 
(function glm.nb). When an interaction was significant in 
the overall linear model, we evaluated the effect of apical 
damage within insecticide treatment using separate models. 
We included year in the analysis as a covariate.

The total potential seed production and the actual, real-
ized seed production (undamaged viable seeds) as a pro-
portion of the potential total per plant were analyzed with 
generalized linear models, with significant interactions fol-
lowed by separate evaluation of apical damage effects within 
herbivory treatment.

Question 3: Contribution of lower‑positioned heads 
and floral herbivory to outcomes

To examine treatment effects on distribution of seed produc-
tion within plants, we analyzed seed set per flower head by 
head position on a plant and by treatment, with plant and 
year as random variables, in a linear mixed effects model 
(lme function). The number of undamaged, filled (“good”) 
seeds per head was square root-transformed prior to analysis 
to meet ANOVA assumptions. Potential and realized seed 
production per flower head by treatment and by flower head 
position were analyzed with linear mixed effects models 
with plant as a random effect. Proportions were square root-
transformed before analysis.

To allow full evaluation of the numerous analyses per-
formed, we present summarized results in Table 2, with full 
statistical tables provided in the online Supporting Informa-
tion (Appendices S3 and S4).

Results

Imposition of treatments and initial plant size

Visually, plants in the apical damage treatment appeared to 
differ in the severity of apical damage realized. However, 
apparent variation in severity did not drive differences in 
response between plants with more versus less severe api-
cal damage (see Appendix S1 in Supporting Information). 
Average insect damage per non-apical head did not differ 
significantly between apical damage treatments within each 
herbivory treatment (pA = 0.64, t = 0.46; Table 1A; Appen-
dix 3A). However, the insecticide treatment did decrease 
damage 24.5–30.4% within each apical head treatment 
(pH < 0.01, t = 5.86, Table 1A): from 72.9 and 78.5% with 
and without experimental apical damage with ambient her-
bivory to 48.4 and 48.1% with and without experimental api-
cal damage with insecticide-reduced herbivory. Individual 
plants varied widely in the amount of cumulative damage 
to flower heads that they experienced, especially within 
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the reduced herbivory treatment (Fig. 1a vs. Figure 1b). 
Although the insecticide treatment reduced flower head 
damage, there was no evidence that apical damage altered 
the intensity of cumulative floral herbivory on the later, 
lower flowering heads. 

Initial plant size did not vary among treatments 
(MANOVA: pA = 0.59, F = 0.64; pH = 0.67, F = 0.52; 
Appendix 2 and 3Bi). Rosette diameters ranged 28–31 cm 
and apical floral bud diameters ranged 21–24 cm. At the 
start of data collection each year, plants averaged 3–4 flower 
head buds. No interaction occurred between apical damage 
treatment and subsequent herbivory treatment (MANOVA: 
pA×H = 0.24, F = 1.42). Thus, because initial conditions 
among treatments were comparable, final plant differences 
represent treatment responses.

Plant structural and reproductive investment

Neither apical damage treatment nor insect herbivory treat-
ment had a significant effect on plant structural investment 
over the growing season (height, diameter, branches, flower 
buds: Table 1B) (MANOVA: pA = 0.22, F = 1.45; pH = 0.18, 
F = 0.61; pA×H = 0.32, F = 1.19; Appendix 3Bii). However, 
we found an interaction between treatments for plant-repro-
ductive effort (Table 1C; pA×H = 0.04, F = 3.32; Appen-
dix 3Biii). Apical damage did affect reproductive investment 
when herbivory was reduced (pH:R = 0.02; F = 4.22; Appen-
dix 3Biv), but not under ambient herbivory (pH:A = 0.37; 
F = 1.01; Appendix 3Bv). The consequences of apical dam-
age varied between herbivory treatments for both the number 
of heads that matured (= flowered; Table 1C; pA×H = 0.03, 

F = 5.10; Appendix 3 Ci) and that succeeded in producing 
undamaged viable seed (Table 1C; pA×H = 0.01, F = 6.64; 
Appendix 3 Cii). The components of this outcome are as 
follows.

First, when cumulative herbivory over the season was 
reduced, the numbers of heads that matured were marginally 
higher (pH:R = 0.05, F = 4.00; Appendix 3Di), and the num-
bers that succeeded in producing undamaged viable seed 
(pH:R = 0.007, F = 7.79; Appendix 3Dii) were significantly 
higher on plants with apical damage than those without api-
cal damage. These results provide evidence of a compensa-
tory response to apical damage.

Second, apical damage made no difference in the total 
number of flower heads matured (pH:A = 0.23, F = 1.48; 
Appendix 3 Ci) or in the number of mature, seed-producing 
heads under ambient cumulative herbivory (pH:A = 0.70, 
F = 0.15, Appendix 3Cii).

In sum, apical damage did not influence most of the 
parameters of plant structural investment within either her-
bivory treatment (Table 2: Q 1). However, when the cumula-
tive herbivory was reduced, the total number of flower heads 
matured and producing seed increased in the apical dam-
age treatment compared to the no apical damage treatment 
(Table 1). Thus, reduction in cumulative herbivory over the 
flowering season allowed us to quantify the magnitude of 
the effect of apical dominance release in response to dam-
age and the resulting increase in seed-reproductive success. 
This compensatory response to apical damage was obscured 
for plants under the relatively high ambient level of floral 
herbivory observed.

Table 1  End-of-season plant 
performance for C. canescens 
by treatment (X ± SE) over 
2 years: experimentally reduced 
subsequent floral herbivory 
 (HR) vs. ambient subsequent 
floral herbivory  (HA) on plants 
without  (AN) versus with  (AD) 
experimental apical damage

Reduced herbivory  (HR) Ambient herbivory  (HA)

AN
N = 37

AD
N = 31

AN
N = 34

AD
N = 32

A. Effects of insect damage
i. Per non-apical head N = 138 N = 146 N = 124 N = 96
 Flower head damage (%) 48.1 ± 2.6 48.4 ± 2.9 78.5 ± 2.5 72.9 ± 4.3
 Potential seeds 141.1 ± 4.8 156.1 ± 4.4 157.0 ± 3.9 151.1 ± 4.6
 Seeds matured 69.6 ± 7.5 99.0 ± 6.8 30.7 ± 5.3 31.5 ± 6.5

ii. Whole plant
 Total potential seeds 562.7 ± 55.1 721.8 ± 99.4 604.6 ± 64.6 446.4 ± 46.2
 Undamaged seeds matured 355.9 ± 49.0 477.8 ± 81.8 186.3 ± 29.6 112.0 ± 27.9

B. Plant structural investment
Plant height (cm) 53.3 ± 2.0 53.9 ± 2.1 50.6 ± 1.7 47.5 ± 1.9
Rosette diameter (cm) 32.2 ± 1.6 34.6 ± 1.7 34.0 ± 1.6 30.6 ± 1.4
Branches per plant (N) 5.2 ± 0.9 6.6 ± 0.6 5.9 ± 1.0 5.4 ± 0.4
Heads initiated per plant (N) 9.6 ± 0.9 12.6 ± 1.4 10.4 ± 1.8 10.2 ± 0.8
C. Plant-reproductive investment (excluding apical head)
No. mature flower heads 2.9 ± 0.4 4.2 ± 0.6 2.8 ± 0.4 2.3 ± 0.3
Mature heads with seed (N) 1.9 ± 0.3 3.5 ± 0.5 1.5 ± 0.2 1.3 ± 0.2
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Total seed production per plant

Early apical damage and cumulative floral herbivory over the 
season interactively influenced the number of undamaged 
seeds produced by a plant (pA×H = 0.04, z = 2.03, Table 1A; 
Appendix 4A). Plants were able to compensate for the api-
cal head seed loss on average, as apical damage alone did 
not lead to a difference in average plant seed production 
(pH:R = 0.20, z = − 0.27; pH:A = 0.07, z = 1.79; Table 1A; 
Appendix 4A). Although average seed production did not 
differ significantly between apical damage treatments, seed 
production increased 30% when apical damage was imposed 
under experimentally reduced floral herbivory, but decreased 
approximately 60% with apical damage under ambient flo-
ral herbivory. Consequently, herbivory reduction nearly 
doubled seed production in plants without apical damage 
(91%), and nearly quadrupled seed production with apical 
damage (391%) relative to plants under ambient herbivory 
(Table 1A).

The clearest effect of cumulative herbivory on the com-
pensation response is represented in the difference in real-
ized potential seed production with apical damage. Poten-
tial plant seed production, estimated from plant flower head 
sizes, had a similar pattern to observed plant seed production 
(pA×H = 0.02, t = 2.41, Table 1A; Appendix 4B). Seed pro-
duction potential was only marginally reduced with apical 
damage under ambient herbivory (pH:A = 0.05, t = 2.0), and 
the increase in fitness potential under reduced herbivory was 
not significantly different between apical damage treatments 
(pH:R = 0.15, t = − 1.46). However, degree to which actual, 
observed seed production realized the estimated plant seed 
production potential was significantly lower under ambi-
ent (pA×H = 0.02, t = 2.41; pH:A = 0.03, t = 2.25, Fig. 2b; 
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Fig. 1  Average insect damage score per lower, later (non-apical) 
flower head matured for each C. canescens plant (bold dashed line, 
distribution range  is 95% CI) by herbivory treatment: a experimen-
tally reduced herbivory (N = 68), and b ambient herbivory (N = 66). 
Plants are presented in a random order within treatment. Damage 
scores were based on the proportion of receptacle base, florets and 
developing seeds damaged by insects per head and averaged for all 
later (non-apical) flower heads per plant (1 = low to 5 = high)

Table 2  Qualitative summary of results

Asterisks (*) indicate significant treatment or interaction effects, 
“n.s.” represents non-significant effects, and dashes (–) are indica-
tions of sub-analyses that were not performed. Full statistical tables 
for these analyses are provided in Appendices 3 and 4, and specific 
results references are indicated in italics within the table

Treatment Variables measured

Q1: Apical damage response (reproductive investment)
Investment # Heads # Matured

Herbivory * * *
Apical damage * n.s. *
H × A * * *
A: Reduced * * *
A: Ambient n.s. n.s. n.s.
*Appendix 3Biii 3C.2i 3C.2ii
Q2: Effects on plant fitness (seeds per plant)

# Undamaged # Potential % Realized
Herbivory * * *
Apical damage n.s. n.s. n.s.
H × A * * *
A: Reduced n.s. n.s. *
A: Ambient n.s. n.s. *
*Appendix 4A 4B.1 4B.2
Q3: Effects on per-head contributions (seeds per flower head)

# Undamaged # Potential % Realized
Herbivory * n.s. *
Apical damage n.s. n.s. n.s.
Position * * *
H × A * * *
A × position * * *
A: Reduced n.s. – n.s.
 Position * – *
 A × position * – *

A: Ambient n.s. – n.s.
 Position * – *
 A × position n.s. – n.s.

*Appendix 4C 4D 4E
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Appendix 4C), but not different under reduced herbivory 
(pH:R = 0.27, t = − 1.11). Any potential for additional seed 
production with apical damage that might have increased fit-
ness was eliminated under ambient herbivory (Table 2: Q2).

Within‑plant distribution of seed production

Both apical head damage and herbivory treatments influ-
enced overall fitness contributions from non-apical flow-
ering heads. Apical damage, interacting with flower head 
position, led to more seed contribution from a greater 

range of lower positioned flower heads compared to 
undamaged plants (pA×position = 0.01, t = − 2.55, Figs. 3a, 
4, Appendix  4D). This result can be attributed to an 
increase in both potential (pA×position = 0.04. t = − 2.06, 
Table 1, Appendix 4E) and estimated seed potential real-
ized (proportion realized: pA×position < 0.01, t = − 2.66; 
Fig. 3b; Table 1, Appendix 4Fi) per non-apical flower 
head. Herbivory reduction had significant main effects 
on both per-head seed production (pH < 0.01, t = − 2.80; 
Fig. 3d) and proportion of estimated seed production real-
ized (pH < 0.01, t = − 2.75; Fig. 3b), but did not affect 
estimated potential seed production per f lower head 
(pH = 0.95, t = − 0.07; Table 1; Appendix 4D).
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Fig. 2  Whole plant seed production for C. canescens (mean, SE: 
N  =  37 and 31  (HR:  AN and  AD); 34 and 32  (HA:  AN and  AD)): a 
number undamaged viable seeds matured per plant and b percent 
of potential seed production that was realized per plant in each her-
bivory treatment by the later flower heads (excluding the apical head): 
insecticide-reduced herbivory (black, solid line) and ambient her-
bivory (gray, dashed line). Percent seed set realized is the count of 
undamaged matured seed in the field data divided by the estimate of 
potential seed production based on flower head sizes. Potential seed 
production by flower head size was estimated using the regression 
in Louda and Potvin (1995), and summed for all the flower heads 
recorded for each plant
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Fig. 3  Per flower head a number of undamaged viable seeds matured 
by C. canescens [mean, SE:  Nheads = 138 and 146  (HR:  AN and  AD); 
124 and 96  (HA:  AN and  AD)] and b percent of estimated potential 
seed that was realized, per flower head, by treatment. Percent of total 
initiated (potential) seed set actually realized is the actual matured 
seed counts from field data divided by potential seed production 
based on flower head sizes (regression in Louda and Potvin 1995)
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Within herbivory treatments, this pattern was more 
nuanced. When herbivory was reduced, the interaction of 
apical damage and flower head position influenced per-head 
seed contributions (HR: pA×position = 0.03, t = − 2.21) and 
realized seed potential (HR: pA×position = 0.02, t = − 2.32; 
Fig. 4a). However, position alone related to both measures of 
seed contribution under ambient herbivory (undamaged seed 
HA: pposition = 0.01, t = − 2.59; proportion realized potential 
HA: pposition < 0.01, t = − 3.40) with no effect of apical dam-
age (undamaged seed HA: pA = 0.31, t = 1.01; proportion 
realized potential HA: pA = 0.51, t = 0.67).

Therefore, the level of floral herbivory on subsequent, later 
flowering heads determined the actual, realized effect of apical 
damage on the within-plant distribution of undamaged seed 
produced (Table 2: Q3). Under reduced levels of cumulative 
herbivory over the season, plants in the early apical damage 
treatment produced a similar or slightly greater number of 
undamaged seeds than did plants in the no apical damage treat-
ment. Compensation for early apical damage occurred, seen 

as an increase in plant seed production related to an increase 
in the contribution of seed by later, lower flower heads to total 
plant seed production (Table 1, Fig. 4b), but only under the 
condition of reduced cumulative herbivory.

Discussion

Plant tolerance often occurs via a combination of traits, each 
of which contributes to compensation and helps minimize 
impacts on plant fitness (Wise et al. 2008). Flowering pat-
terns resulting from strong apical control can provide a sig-
nificant early season investment plus a reservoir of delayed 
flower heads to provide additional fitness through time. In 
C. canescens, both the disproportionate early season api-
cal investment and seed production from additional flowers 
that arose after apical damage contributed to potential plant 
tolerance. However, this combination did not in general pro-
vide the average plant with a means of performing as well as 
an individual plant that experiences lower herbivory. Under 
ambient herbivory, the later developing, lower positioned 
flower heads were less likely to realize seed set, undercom-
pensating for seed losses associated with early apical dam-
age. Late season losses negated potential fitness gains from 
greater numbers of flower heads, and increased the value of 
apical seed production to whole plant fitness. Plant tolerance 
(the capacity to achieve fitness similar to undamaged plants) 
was sufficient to maintain fitness after apical damage, but 
could not compensate for the ambient cumulative herbivory 
losses accrued over the growing season.

Effect of apical damage on the distribution 
of within‑plant flowering effort and success

Early apical damage did release apical dominance: apical 
damage increased the relative contribution of later, lower-
positioned flower heads to total plant-realized seed produc-
tion under reduced herbivory. This finding is consistent with 
other systems, where meristem release by apical damage 
provides a mechanism to compensate for fitness losses to 
herbivory in the field (e.g., Huhta et al. 2000; Juenger and 
Bergelson 2000; Klimešová et al. 2014).

Bet-hedging theory predicts that plants should keep 
reproductive resources in reserve to enable continued com-
pensation in an uncertain herbivory environment (Nilsson 
et al. 1996; Childs et al. 2010). The effect of floral herbivory 
on C. canescens seed production is influenced by the syn-
chrony of its floral herbivores with plant-flowering phenol-
ogy (Russell and Louda 2005). Distributing reproductive 
effort over longer time periods may increase the probability 
that a subset of flower heads avoid damage. Later season 
flowers may have a higher probability of escaping special-
ist herbivores (e.g., Erigeron glaucus, English-Loeb and 
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Fig. 4  Undamaged, mature seed contributed to total seed produc-
tion for C. canescens by flower head position. Average percent of 
whole plant seed production contributed by each flower head posi-
tion: a with experimentally reduced herbivory, versus b with ambi-
ent herbivory to subsequent heads. Values are mean (± SE) per plant 
percent total undamaged seeds per flower head by position for the 
apical treatments: no apical damage (black bars) and experimental 
apical damage (gray bars). The “s” heads are subsidiary heads below 
the branch terminal flower head; “+” refers to head/branch posi-
tions below the 9th branch (numbered 10–13 in this study); and, “0” 
indicates positions where heads flowered, but did not produce any 
undamaged, viable, seeds.  Nplants = 37 and 31  (HR:  AN and  AD); 34 
and 32  (HA:  AN and  AD)
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Karban 1992). Flexible allocation to later-developing flowers 
(e.g., Sanicula arctopoides, Lowenberg 1994) or extended 
flowering time (e.g., Helianthus annuus, Pilson and Decker 
2002) can lead to greater compensation capacity. We hypoth-
esize that continued investment in lower-positioned heads 
will allow some individuals to partition reproductive effort 
through time, increasing the flowering period, and providing 
a partial escape from herbivores. For instance, because the 
most common and one of the earliest native floral feeders on 
C. canescens, the tephritid fly Paracantha culta, oviposits 
preferentially on small flower heads (10–15 mm diameter, 
Lamp and McCarty 1982), investments across time may 
confer a “size escape” (i.e., Vail 1992) from adapted floral 
herbivores. With the large variation reported in both flo-
ral herbivory and plant seed production (Louda and Potvin 
1995; Rose et al. 2005), these results demonstrate that the 
apical damage response could provide a tolerance mecha-
nism through which C. canescens individuals might com-
pensate in seed production under the risk of continuing, but 
variable, herbivory.

Interaction between apical damage and cumulative 
herbivory

Reproductive success and tolerance to herbivory, specifi-
cally in response to early-apical damage, was determined 
by interaction with the level of herbivory experienced. 
Although C. canescens plants had the potential to tolerate 
loss of the large, early apical flower head investment, such 
tolerance was insufficient on average to override the fitness 
costs imposed by cumulative floral herbivory. The relative 
advantage of high early investment, that escapes herbivores, 
compared to that of releasing additional investment to other 
flowers, likely varies extensively in time and space (i.e., 
Brody and Irwin 2012; Klimešová et al. 2014; Krimmel and 
Pearse 2016). For instance, Adhikari and Russell (2014) 
found a greater proportion of flowering heads developed in 
response to apical damage in another native thistle (Cirsium 
altissimum), but the fecundity of axillary flower heads was 
insufficient to provide compensatory seed production. With-
out apical damage, if ambient herbivory were low, it is a 
possible preferential apical investment and early-season inhi-
bition of lower-positioned and axillary head development 
would still reduce seed contributions from later flowering 
heads. The typical apical contribution to total seed produc-
tion by C. canescens (Fig. 4) is important. Undamaged api-
cal heads produced 58–76% of total plant seed production 
on average. That sustained flower bud release after early 
apical damage enabled greater seed contributions from later 
heads with reduced herbivory suggests there may be a cost 
of apical dominance in lower herbivory environments (Aars-
sen 1995). A large investment in the apical head not only 
presumably mitigates the fitness costs of the high average 

risk of cumulative floral herbivory but also the inhibition of 
later flower heads by apical dominance.

Effect of cumulative herbivory on success 
of response through apical damage

Under field conditions, individual C. canescens plants have 
the capacity to fully compensate, or possibly even over-
compensate, for early loss of the apical flower head, if an 
individual escapes high-intensity ambient herbivory. Plants 
compensated fully for apical damage when cumulative her-
bivory was reduced on non-apical heads. Plants experiencing 
ambient floral herbivory were unable to increase their fitness 
relative to reduced herbivory conditions through the apical 
damage response (e.g., negative trend in seed production 
between apical damage treatments), and had comparatively 
lower fitness regardless of apical damage.

Effective compensation depends upon multiple interac-
tions; response capacity, and the range of damage at which 
tolerance works, varies with ecological context. Plant 
resource condition, herbivore dynamics, phenological over-
lap with shared hosts and pollinators or competing predators, 
and timing of damage can influence the degree of plant tol-
erance (Kolb et al. 2007; Wise and Abrahamson 2007; von 
Euler et al. 2014; Lehndal and Ågren 2015; Krimmel and 
Pearse 2016; Stieha et al. 2016; Kafle et al. 2017). Co-occur-
ring stressors may further interact with cumulative herbivory 
pressure to inhibit successful tolerance (Lay et al. 2011; 
Nguyen et al. 2016). Population-level effects of herbivory 
have been well-documented in C. canescens. We, therefore, 
evaluated the interaction between tolerance and the level of 
herbivory experienced. We detected under-compensation in 
response to the insect herbivore environment, rather than 
inherent constraints on plant ability to compensate.

The interaction between early apical damage and later 
intensity of herbivory suggests mechanisms that influence 
variation in herbivory risk and compensatory timing of C. 
canescens are likely to be particularly important. For exam-
ple, experimental logistics meant we studied plants that 
were in relatively dense patches for this sparse native this-
tle (unpublished data). We hypothesize that if herbivory on 
C. canescens varies with plant density (i.e., Ehrlén 1996; 
Janovský et al. 2016; Underwood and Halpern 2012), then 
isolated individuals of C. canescens may encounter reduced 
herbivore loads, and be more likely to benefit from compen-
sation in the field. Additionally, we did not compare differ-
ences in seed quality among treatments, though studies have 
shown compensatory responses may affect seed weight or 
germination probability rather than seed quantity (Pilson and 
Decker 2002; Aikens and Roach 2015). Further studies are 
required to examine how environmental context influences 
fitness outcomes (i.e., Louda 1982; Gonzáles et al. 2008; 
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Banta et al. 2010), and determines the effectiveness of the 
tolerance mechanisms detected.

Conclusion

When monocarpic perennial plants are consistently exposed 
to intense floral herbivory, plant responses that increase tol-
erance for within-season reproductive losses to herbivores 
would be expected to provide an important contribution to 
plant fitness (Järemo and Palmqvist 2001; Aikens and Roach 
2015). Both disproportionate apical investment and sus-
tained bud release contributed to potential plant tolerance, 
increasing relative plant fitness when average cumulative 
herbivory was reduced. Based on observations, we hypoth-
esize that such tolerance can benefit plants that escape the 
highest levels of insect herbivory, such as those that flower 
in lower density local environments. These results demon-
strate the magnitude and tradeoffs of tolerance in response 
to variable floral herbivory and further our understanding of 
tolerance mechanisms that contribute to plant performance 
and population persistence under field conditions.
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Appendix 1. Variation in Apical Damage Treatment Effectiveness 

 

 The apical damage treatment varied in its effectiveness in simulating the severe damage 

observed in the field (Figure A-1.1A). We examined the effects of this variation since any 

damage that affects apical regions can result in release of the axillary buds (Cline 1991). Also, 

plants vary in the strength of their response to apical damage, and the sensitivity of buds to apical 

inhibition is an important aspect of tolerance capacity (Tuomi et al. 1994, Nilsson et al. 1996).   

 In the control treatment, with no experimental damage imposed and insecticide 

protection, we expected large numbers of filled, undamaged seeds in the apical head; however, 

we found that some apical flower heads were severely damaged anyway and, so, developed 0 or 

only a few seeds (< 100) (Figure A-1.1B). Alternately, in the experimental damage treatment, 

with insect and mechanical experimental damage imposed, we expected few filled seeds in the 

apical flower head; however, we found that some of the experimentally damaged apical flower 

heads succeeded in producing a large number of seeds (>150 seeds).  Consequently, our analysis 

compared treatment effects for plants that had low apical damage (< 100 undamaged seeds), as 

intended for the undamaged apical treatment, versus those that had high apical damage (> 150 

seeds), as intended for the damaged apical treatment (Figure A-1.1B).  

In this contrast, three key results emerged. First, plants with low damage to the apical 

flower head produced as many, but not more, seeds in later flower heads on average as plants 

with high apical damage, under reduced subsequent herbivory. Second, under ambient 

subsequent herbivory conditions, the plants with low damage to the apical head produced more 

undamaged seeds per later, lower flower head than did plants with high damage to the apical 

head. Third, when examined as the proportion of the potential number of seeds that were actually 

realized, the pattern of response to high versus low level of apical damage was similar per flower 
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head, but stronger (Figure A-1.1C). The results provide evidence of compensatory ability for the 

early loss of the apical seeds but, contrary to initial expectation, the average contribution by later 

heads was greater on plants with low damage, rather than with high damage, to the apical flower 

head. 

 

 

Figure Legends 

 

FIG. A-1.1 Evaluating the consistency of apical damage treatment.  (A) Frequency distribution 

of plants by number of undamaged seeds per apical flower head in the apical damage treatment 

for both subsequent herbivory treatments (experimentally reduced vs. ambient subsequent 

herbivory). The distributions demonstrate the variation in severity in the apical damage resulting 

from the treatment imposed (insect and mechanical damage: see Methods) and, so, the 

effectiveness of the imposed treatment.  (B) Number of filled, undamaged seeds per non-apical 

flower head by treatment on plants with either low damage (> 150 undamaged seeds produced) 

or high damage (< 100 undamaged seeds produced) to the apical flower head as intended in the 

apical damage treatment (n = 5 per category); (C) Percent of realized potential seed production 

per later (non-apical) flower head on plants with either low damage or high damage to the apical 

flower head; expected potential seed production by flower head size estimated with regression in 

Louda & Potvin (1995).   
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Figure A-1.1 
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Appendix 2. Initial size by treatment 

Initial size parameters for experimental Cirsium canescens plants by subsequent treatment; 

treatments manipulated both damage to the initial (apical) flower head (AD = Apical damaged; 

AN = Apical not damaged) and insect feeding (HR = Herbivory reduced; HA = Herbivory 

ambient) on subsequently produced flower heads during the season (2007, 2008) at Arapaho 

Prairie, NE.  Values presented represent mean (+SE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Apical Head Damaged 

(AD) 

Apical Head Undamaged 

(AN) 

Variable Year* HR HA HR  HA 

Rosette Diameter 

 2007 37.3 (+2.6) a 32.7 (+1.3) a 33.2 (+2.0)a 37.5 (+2.0) a 

 2008 26.9 (+1.6) b 25.3 (+1.4) b 29.6 (+2.2)b 27.2 (+1.7) b 

 Overall 31.1 (+1.7) 28.4 (+1.1) 31.1 (+1.5) 31.9 (+1.6) 

Apical Bud Diameter 

 2007 31.4 (+1.9) a 29.6 (+1.6) a 29.9 (+1.6) a 33.2 (+2.2) a 

 2008 17.5 (+1.6) b 15.5 (+1.3) b 17.4 (+1.7) b 16.4 (+1.5) b 

 Overall 23.2 (+1.7) 21.5 (+1.6) 22.8 (+1.6) 24.0 (+1.9) 

Number of Buds 

 2007 5.4 (+1.0) a 4.5 (+0.4) a 3.9 (+0.5) a 5.6 (+0.9) a 

 2008 3.0 (+0.5) b 2.3 (+0.3) b 2.8 (+0.5) b 2.9 (+0.5) b 

 Overall 4.0 (+0.5) 3.2 (+0.3) 3.2 (+0.4) 4.1 (+0.5) 

N 2007 13 14 15 15 

 2008 32 33 35 33 
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Appendix 3. Details underlying statistical results 

In the analyses of treatment effects on initial and end-of-season plant characters, bolded values 

indicate significant effects reported in the Results for: (A) Insect damage per flower head by 

treatment; with (B) MANOVA tables (with Pillai’s trace test statistic) for initial and end-of-

season plant characters. Dependent variables included in (i) are: average rosette diameter; apical 

bud diameter; and number of flower buds.  Plant structure response variables included in (ii) are: 

plant height, average rosette diameter, number of flower buds, and number of branches.  Plant 

reproductive response variables in (iii) are: number of flowered heads and number of heads with 

matured seeds. Finally, (C and D) present separate ANOVA tables and subsequent ANOVAs for 

each of the dependent variables included as measures of plant reproductive investment. Response 

variables are: (i) number of flowered heads, and (ii) number of heads with matured seeds. 

 

(A)  Treatment effects on insect damage per C. canescens flower head (Mixed Model GLM, 

plant as random effect) 

 

Source Value Std. Error DF t-value p-value 

Intercept 0.468 0.0478 279 9.801 <0.001* 

Apical Damage (A)  0.031 0.0664 127 0.464 0.644 

Herbivory (H) 0.409 0.0699 127 5.857 <0.001* 

A x H -0.007 0.0966 127 -0.075 0.940 
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(B)   Treatment effects on plant characters (MANOVA) 

 

Source Pillai’s Approx. F num Df dens DF Pr(>F) 

(i.) Initial Measurements 

Apical Damage (A) 0.015 0.637 3 125   0.593 

Herbivory (H) 0.012 0.522 3 125   0.668 

Year 0.546 50.209 3 125 <0.001* 

A x H 0.032 1.415 3 125   0.242 

(ii.) Plant Structural Investment 

Apical Damage (A) 0.044 1.449 4 126   0.222 

Herbivory (H) 0.0488 1.615 4 126   0.175 

Year 0.167 6.33 4 126 <0.001* 

A x H 0.037 1.193 4 126   0.317 

(iii.) Plant Reproductive Investment 

Apical Damage (A) 0.078 5.419 2 128 <0.001* 

Herbivory (H) 0.1075 7.704 2 128 <0.001* 

Year 0.104 7.394 2 128 <0.001* 

A x H 0.049 3.324 2 128   0.039* 

(iv.) Reproductive Investment: Reduced Herbivory 

Apical Damage (A) 0.12 4.22 2 64 0.019* 

Year 0.17 6.64 2 64 0.002* 

(v.) Reproductive Investment: Ambient Herbivory 

Apical Damage (A) 0.03 1.008 2 62 0.371 

Year 0.19 7.18 2 62 0.002* 
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(C) Separate treatment effects on measures of reproductive investment (ANOVA) 

 

Source Sum Sq Df F value Pr(>F) 

(i.)  No. of Heads that Flowered    

Apical Damage (A) 5.82 1 0.9813 0.324 

Herbivory (H) 28.69 1 4.8413 0.030* 

Year 11.95 1 2.0171 0.158 

A x H 30.18 1 5.0937 0.026* 

Residuals 764.44 129   

(ii.) No. of Heads that Flowered with Seeds   

Apical Damage (A) 18.62 1 4.9973 0.027* 

Herbivory (H) 45.87 1 12.3131 <0.001* 

Year 4.17 1 1.1207 0.292 

A x H 24.73 1 6.6392 0.011* 

Residuals 480.53 129   
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(D) Separate components of reproductive investment within herbivory treatments 

 

Source Sum Sq Df F value Pr(>F) 

(i.) Number of Heads Flowered 

Reduced Herbivory     

Apical Damage (A) 32.79 1 4.0043 0.050* 

Year 36.7 1 4.4817 0.038* 

Residuals 532.29 65   

     

Ambient Herbivory     

Apical Damage (A) 4.829 1 1.4764 0.229 

Year 1.364 1 0.4171 0.521 

Residuals 206.046 63   

     

(ii.) Number of Heads Flowered with Seeds 

Reduced Herbivory     

Apical Damage (A) 44.35 1 7.7925   0.007* 

Year 0.8 1 0.1402 0.709 

Residuals 369.91 65   

     

Ambient Herbivory     

Apical Damage (A) 0.244 1 0.1539 0.696 

Year 14.305 1 9.0398    0.004* 

Residuals 99.695 63   
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Appendix 4. Analyses of treatment effects on potential and realized seed production  

Bolded values indicate significant effects reported in the Results;  (A) Total seed production per 

plant;  (B) MANOVA tables (1 – 3) for analyses of per plant potential and realized seed 

production (1) and Separate ANOVA tables for per plant potential (2) and realized seed 

production(3);  (C) MANOVA table for per flower head per plant analysis of potential and 

realized seed production;  (D) Separate ANOVA tables for per flower head per plant potential 

seed production and for realized seed production; and, (E) Results of the analysis of seed 

production by head position on a plant. 

(A)  Total seed production per plant (GLM, negative binomial distribution) 

 

Source Estimate Std. Error z-value    P(>|z|) Null df Residual df 

Good Seeds per Plant       

Intercept 6.4205 0.2481 25.882 <0.001* 133 129 

Apical Damage (A) -0.2893 0.2927 -0.989 0.320 

Herbivory (H) -1.5756 0.3032 -5.197 <0.001* 

Year (2008) -0.3756 0.2109 -1.781 0.075 

A x H 0.8435 0.4166 2.025 0.043* 

Reduced Herbivory       

Intercept 6.1691 0.220 27.612 <0.001* 67 66 

Apical Damage (A) -0.296 0.233 -1.270 0.204 

Year 0.135 0.238 0.566 0.571   

Ambient Herbivory       

Intercept 5.054 0.315 16.054 <0.001* 65 64 

Apical Damage (A) 0.615 0.345 1.786 0.074 

Year -0.856 0.347 -2.468 0.014*   
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(B) Total potential seeds per plant       

 

Source Estimate 
Std. 

Error 
t-value P(>|t|) 

Null 

df 

Residual 

df 

(i.) Potential Seeds per Plant 

Intercept 741.18 81.56 9.087 <0.001 136 132 

Apical Damage (A) -158.68 95.65 -1.659 0.010   

Herbivory (H) -275.96 98.92 -2.79 0.006*   

Year (2008) -32.65 69.15 -0.472 0.638   

A x H 316.31 136.54 2.317 0.022*   

(ii.) Reduced Herbivory       

Intercept 721.8 80.42 8.975 <0.001 69 68 

Apical Damage (A) -159.06 109.15 -1.457 0.150   

(iii.) Ambient Herbivory       

Intercept 446.43 56.89 7.848 <0.001 66 65 

Apical Damage (A) 158.18 79.86 1.981 0.052   
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(C) Total realized seed production 

 

Source Estimate Std. Error t-value P(>|t|) DF 

(i.) Percent Realized Seed Potential per Plant    

Intercept 0.775 0.048 16.044 <0.001 132 

Apical Damage (A) -0.063 0.060 -1.050 0.296  

Herbivory (H) -0.417 0.062 -6.677 <0.001  

A x H 0.208 0.086 2.411 0.017  

(ii.) Reduced Herbivory      

Intercept 0.773 0.042 18.294 0 67 

Apical Damage (A) -0.064 0.057 -1.110 0.271  

(iii.) Ambient Herbivory      

Intercept 0.363 0.066 5.484 0 64 

Apical Damage (A) 0.143 0.064 2.248 0.028  
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(D)  Mature seeds produced per flower head by head position (Mixed Model GLM, plant as 

random effect) 

 

Source Value Std.Error DF t-value p-value 

(i.)  Good Seeds by Head Position     

Intercept 134.388 14.118 274 9.519 <0.001 

Apical Damage (A)  3.520 21.204 127 0.166 0.868 

Herbivory (H) -74.133 26.463 127 -2.801 0.006 

Head Position (Pos) -0.102 0.029 274 -3.464 0.0006 

A x H  17.117 35.343 127 0.484 0.629 

A x Pos  -0.129 0.050 274 -2.554 0.011 

H x Pos -0.008 0.074 274 -0.106 0.916 

A x H x Pos 0.072 0.097 274 0.745 0.457 

(ii.) Reduced Herbivory      

Intercept 133.309 16.083 172 8.289 <0.001 

Apical Damage (A) 4.036 24.211 64 0.167 0.868 

Head Position (Pos) -0.100 0.034 172 -2.953 0.004 

A x Pos -0.128 0.058 172 -2.207 0.029 

(iii.) Ambient Herbivory      

Intercept 63.269 16.344 103 3.871 0.0002 

Apical Damage (A) 21.033 20.739 63 1.014 0.314 

Head Position (Pos) -0.126 0.049 103 -2.589 0.011 

A x Pos -0.058 0.059 103 -0.981 0.329 
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(E) Estimated seed production per flower head (Mixed Model GLM, plant as random effect) 

 

Source Value Std.Error DF t-value p-value 

 Estimated Potential Seeds by Head Position    

Intercept 183.8833 9.461253 274 19.4354 0 

Apical Damage (A)  3.22079 14.20232 127 0.226779 0.821 

Herbivory (H) -1.19875 17.71206 127 -0.06768 0.946 

Head Position (Pos) -0.07501 0.019652 274 -3.81683 <0.001* 

A x H  -10.4521 23.65633 127 -0.44183 0.659 

A x Pos  -0.06946 0.033732 274 -2.05922 0.040* 

H x Pos -0.04333 0.049557 274 -0.87433 0.383 

A x H x Pos 0.11616 0.064562 274 1.799157 0.073 
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(F) Realized seed production per flower head (Mixed Model GLM, plant as random effect) 

 

Source Value Std.Error DF t-value p-value 

(i.) Percent Realized Seed by Head Position     

Intercept 0.874947 0.073764 274 11.86139 0 

Apical Damage (A)  -0.01512 0.110129 127 -0.13731 0.891 

Herbivory (H) -0.37526 0.136411 127 -2.75094 0.007* 

Head Position (Pos) -0.00056 0.000149 274 -3.76582 <0.001* 

A x H  0.095597 0.182247 127 0.524546 0.601 

A x Pos  -0.00068 0.000256 274 -2.65776 0.008* 

H x Pos -0.00027 0.000377 274 -0.72299 0.470 

A x H x Pos 0.000457 0.00049 274 0.932217 0.352 

(ii.) Reduced Herbivory      

Intercept 0.87312 0.079597 171 10.96925 0 

Apical Damage (A) -0.01858 0.119426 64 -0.1556   0.877 

Head Position (Pos) -0.00055 0.000165 171 -3.35596 0.001* 

A x Pos -0.00066 0.000283 171 -2.31703 0.022* 

(iii.) Ambient Herbivory      

Intercept 0.518232 0.094236 103 5.499275 0 

Apical Damage (A) 0.079903 0.120107 63 0.665266 0.508 

Head Position (Pos) -0.00093 0.000274 103 -3.40359 <0.001* 

A x Pos -0.00022 0.00033 103 -0.6569 0.513 
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