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Abstract: This study evaluates the transmission range requirements of Connected Vehicles (CVs) at
Highway-Rail Grade Crossings (HRGCs) in terms of safety improvement. The safety improvement
of HRGCs is evaluated by using a reliability-based risk analysis that calculates risk of collision
for CVs and non-CVs. Trains are assumed to have onboard units that transmit train location and
speed information to CVs via vehicle to vehicle communications. The stopping distance and time
to collision of a vehicle are the demand functions in reliability-based risk analysis. The demand
functions consist of probability density functions of a vehicle’s initial speed, perception-reaction
time, initial deceleration rate, final speed, and final deceleration rate. Train arrival time depending
on the train speed and transmission range is the supply threshold for calculating the CV’s risk of
collision at passive HRGCs. The transmission range’s projected highway distance is the supply
threshold for CVs at active HRGCs. After deriving probability density functions of demand functions
from the published data, Monte Carlo simulations generate the probabilities or risks that a CV
would fail to stop within the transmission range or train arrival time. With the provision of a 600 m
transmission range, the risk of collision for the CV is lower than that for the non-CV with a 300 m
sight distance to the train at the passive HRGC. The CV’s risk of collision is lower than the non-CV’s
with a 300 m transmission range at active HRGCs. The CV application at HRGCs can improve
safety by reducing CVs’ risk of collision. A 600 m transmission range is desirable at passive HRGCs.
A 300 m transmission is sufficient for CVs at active HRGCs. Overall, a 600 m transmission range is
feasible to improve the safety at passive and active HRGCs.

Keywords: connected vehicles; highway-rail grade crossings; reliability-based risk analysis;
transmission range

1. Introduction

Highway-rail grade crossings (HRGCs) are locations with continuing safety issues despite work
done to improve their safety. The total number of incidents, injuries, and deaths at public HRGCs
in the U.S. has declined over the last 10 years; however, 2060 incidents, 990 injuries, and 237 deaths
still occurred in 2015 [1]. These injuries and deaths incur primary (direct, indirect, and intangible)
and secondary (supply chain business disruption) costs [2]. Active HRGCs have more incidents,
injuries, and deaths than passive HRGCs for they are located in higher traffic areas and more likely to
incur incidents [3]. However, safety devices at active HRGCs have a higher incident prevention rate
than stop or yield signs at passive HRGCs, when traffic volumes and number of trains are taken into
account [4]. The major cause of incidents at active HRGCs is drivers’ violation of control devices [5].
Impatient drivers rush the gates as they think no train will arrive soon based on their experiences [6].
Likewise, passive HRGCs experience a high level of noncompliance to stop signs. A field study of
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seven passive HRGCs in Kansas shows that 79% (1913 out of 2421) of drivers did not stop in front
of stop signs [7]. Another field study in Australia shows that 59% of drivers are not compliant to
stop signs [8]. Kasalica et al. [9] found that 8 out of 35 drivers (23%) did not stop or slow down after
perceiving an approaching train at a passive HRGC in Serbia. Driver violations are the main cause of
incidents at HRGCs, and a new technology has the potential to mitigate the problem by providing
train information to drivers directly.

Safety devices, such as flashing light signals, automatic gates, or other infrastructure are used
to improve safety for active HRGCs with high incident rates. Passive HRGCs have crossbucks, stop
or yield signs and are typically located in rural areas or areas with lower traffic volumes and lower
numbers of trains. Drivers may be aware of the traffic control devices by auditory or visual stimulus
when they are sufficiently close (within sight distance) to active HRGCs. At passive HRGCs, drivers
need to locate the trains by themselves to make sure there are no approaching trains before crossing.
However, some drivers are not aware of approaching trains for various reasons, or they perceive trains
but make the wrong decision of proceeding or stopping, resulting in incidents [10]. Drivers’ negligence
or misjudgment of a train’s arrival time results in an incident. Essentially, drivers at any HRGC have
higher risks if they are unable to perceive approaching trains in time and make correct decisions to
avoid collisions. The current protection mechanism providing auditory or visual warnings may not be
sufficient for drivers to know exactly when an approaching train will arrive.

It is expected that injuries and deaths at HRGCs can be further reduced if a new system can
provide train information to drivers directly. Given the train speed and arrival time, drivers can
have a better chance to make the correct decision and avoid collisions. Wireless communication
methods can transmit train information from a train to highway vehicles. The emergence of Connected
Vehicle (CV) technology provides the wireless communication network for Vehicle-to-Vehicle (V2V)
safety applications. The CV technology uses dedicated short-range communications to enable V2V
information exchange using onboard units (OBUs). The U.S. Department of Transportation announces
the proposed rules for mandating V2V communications on light vehicles [11] paving the way to
improving safety at HRGCs in the future. The concept of direct communications between a train and
vehicles had been proposed by Hartong et al. [12]. OBUs had been installed on trucks and transit
vehicles in the safety pilot model deployment [13]. An OBU can also be installed on a train that is
similar to the installation on a vehicle. When a train is equipped with an OBU, a highway vehicle’s
OBU can receive the train information and evaluate the risk of collision based on its own with the
train’s speed, location, and heading. An OBU consisting of V2V communication and driver-vehicle
interfaces can provide visual, auditory, or haptic warnings to drivers if any risk exceeds a threshold. CV
drivers may maneuver their vehicles to avoid potential incidents after perceiving the onboard warning.
In this study, it is assumed that OBUs are installed on CVs and approaching trains, other assumptions
regarding the driver, highway, train and HRGC will be specified in the problem formulation section.

The objective of this study is to evaluate the transmission range requirements of CV application at
HRGCs from the perspective of safety improvement. The problem is formulated as a reliability-based
risk analysis with the demand variable acting as a probability density function [14]. With the supply
variable given as a safety threshold, the probability of exceeding the threshold (deterministic) is defined
as the risk of collision (a probability between 0 and 1). The supply variables are the sight distance
and transmission range for non-CVs and CVs. The transmission range of V2V communications is a
function transmission power. The higher the transmission power, the longer the transmission range.
Based on the performance requirements defined in SAE J2945/1 [15], the minimum transmission range
for V2V safety applications is 300 m. However, considering the safety requirements at HRGCs, a train’s
OBU can transmit at a higher power level to extend the transmission range over 300 m. The demand
variables are the stopping distance and time to collision at active and passive HRGCs. The details of
reliability-based risk analysis are elucidated in the next section.
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2. Methods

2.1. Reliability-Based Risk Analysis

Reliability theory incorporates the uncertainty of the supply and demand variables in the
performance function to generate the risk of failure. The simplest system includes one demand
and one supply variable in the performance function [16]. When demand and supply variables are
Probability Density Functions (PDF), the expected value and standard deviation of the difference
between demand and supply variables can be calculated if both variables are normally distributed.
A function’s PDF can be obtained by using exact methods if the function only has two variables. Exact
methods are unable to work when more than two variables are in the limit state function—or when
this limit state function is non-linear, or the variables are not normally distributed [17]. Approximate
methods including the first- and second-order reliability methods were developed to solve this problem.
Both methods transform a reliability analysis problem into an approximate optimization problem. Such
a transformation comes with two premises: the number of random variables should be limited, and
the problem should be lightly nonlinear to avoid large bias in the estimation [18]. Unlike approximate
methods, the Monte Carlo Method [19] defines a domain of possible input variables, defines how these
input variables are generated randomly from their PDFs over the domain, performs a deterministic
computation for the input variables, and aggregates or analyzes the results statistically. Essentially,
a Monte Carlo simulation randomly generates input variable values a large number of times and
aggregates the result as a PDF for further analysis. When a function consisting of multiple variables
and no closed form is available, Monte Carlo simulation is an efficient and effective tool to solve the
problem. Since several input variables are expected in the demand function of problem formulation,
Monte Carlo simulation will be used to calculate the risk of collision at HRGCs.

2.2. Problem Formulation

The risk of collision can be measured from the perspective of time and space. If a vehicle is unable
to stop in time, then it may collide with an arriving train at passive HRGCs. If a vehicle is unable
to stop in front of an active HRGC with gates, then it may collide with the gate. CV drivers receive
train information from approaching trains at passive HRGCs, and the risk of collision is evaluated
based on time to collision. CV drivers may also receive train information from an approaching train
at active HRGCs, the risk of collision is evaluated based on their stopping distances. Only the CV
without preceding vehicles approaching an HRGC that may collide with a train or a gate is considered
as the CV with the potential risk of collision. At passive HRGCs, non-CV drivers need to perceive
an approaching train by the visual (train) or auditory (horn) stimulus, and the risk is the potential
collision with the train. At active HRGCs, the risk is considered as the potential collision with the
infrastructure for non-CV drivers. A vehicle may go around the gates; however, this type of driver
behavior is not considered in the problem formulation as vehicles may have already stopped or slowed
down before crossing.

2.2.1. Assumptions

The following conditions are assumed at the passive and active HRGCs where the CV application
is implemented.

• A single track and two-lane highway
• Straight sections with no curves on the highway
• The highway–rail intersecting angle is 90◦

• The highway pavement is dry to provide sufficient friction for deceleration
• No line of sight obstruction between highway vehicles and the approaching train
• The sight distance to train is 300 m under fair weather conditions
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• The speed of an approaching train is constant
• CV drivers are obedient to the onboard warning of a train arrival to stop their vehicles

2.2.2. Supply Thresholds

The supply variables for CVs and non-CVs are the transmission range and sight distance at
HRGCs. As portrayed in Figure 1, the V2V transmission range is the distance from the approaching
train to the CV. The V2V transmission range needs to be projected on the highway for supplying the
required stopping distance at active HRGCs. The train speed, V2V transmission range, and sight
distance determine the time to collision (TTC) at passive HRGCs. The highway distance is the supply
threshold for a safe stop in front of active HRGCs. Train arrival time is the supply threshold at passive
HRGCs. Table 1 lists the supply thresholds of CV and non-CVs at active and passive HRGCs.
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Figure 1. Transmission range for CVs and sight distance for non-CVs.

Table 1. Supply Variables.

HRGC Vehicle Sight/Transmission
Distance *

Train Arrival
Time

Highway
Distance

Supply
Threshold

Active CV TR ≥20 s TR Cosθ1 TR Cosθ1
Active Non-CV SDG ≥20 s SDG SDG
Passive CV TR TR Sinθ1/VT TR Cosθ1 TR Sinθ1/VT
Passive Non-CV SDT SDT Sinθ2/VT SDT Cosθ2 SDT Sinθ2/VT

* All the variables are defined in Figure 1.

For active HRGCs equipped with gates and flashers, the warning time shall be at least 20 s before
the train arrival as regulated by the Code of Federal Regulations [20]. When the gate is lowering,
a vehicle may collide with the gate whether the approaching train has arrived or not. Train arrival
time becomes an indirect factor in the safety modeling at active HRGCs for vehicles are protected by
the gates. Therefore, the supply threshold would be considered from the perspective of sight distance
at active HRGCs. As for passive HRGCs, the supply threshold is considered from the perspective of
TTC. Essentially, both CVs and non-CVs need to stop in time before a train arrives at a passive HRGC.
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2.2.3. Demand Functions

Stopping distance defines the necessary distance for highway vehicles to stop safely in front of
an obstacle. Stopping distance is a function of vehicle speed, perception-reaction time, deceleration
rate, and grade based on the American Association of State Highway Transportation Officials [21]
definition. When a driver applies the brake to decelerate from moving to a complete stop, the braking
action should be continuous. That means the driver’s foot should keep pressing on the brake pedal
until the vehicle comes to a stop. The deceleration rate is an average of the exerting braking force
during the braking process. However, if the driver presses the brake initially and loosens it for a short
time then presses it again, the deceleration rates of the two braking phases can be different.

Drivers tend to decelerate in a discontinuous manner when they are approaching HRGCs [22,23].
Drivers tend to reduce their speeds when they initially perceive risks. If the risk is not imminent,
then the deceleration may not be continuous. The first phase of deceleration is mild for some drivers,
and it is followed by the second phase of deceleration that the deceleration rate is higher than that of
the first phase. At passive HRGCs, as drivers approach, it is assumed that they try to locate a train
in the perception-reaction time. When a train is perceived, some drivers may start to decelerate at
this moment, but the deceleration is mild without the intention to stop completely. At active HRGCs,
drivers may just stop stepping on the accelerator or brake slightly as the HRGC is still far away.
This process is the first phase of deceleration. When they see that a train is approaching, or warning
lights are flashing, a solid brake will be applied to stop the vehicle completely. This process is the
second phase of deceleration. Essentially, this stopping process can be divided into three parts: the
perception-reaction time to locate the train, initial braking, and full braking [23]. Equation (1) [2] is to
model the three-phase stopping behavior found at HRGCs. The second and third terms in Equation
(1) denote the initial and final braking distances. As analyzed in the previous section, train arrival
time is the supply threshold for CVs and non-CVs at passive HRGCs, and the corresponding demand
function is TTC. Equation (2) denotes TTC of the stopping maneuver. The second and third terms in
Equation (2) denote the initial and final braking times.

d = 0.278 Vit +
V2

i − V2
f

254( ai
9.81 ± G)

+
V2

f

254(
a f

9.81 ± G)
(1)

TTC = t +
Vi − Vf

35.3( ai
9.81 ± G)

+
Vf

35.3(
a f

9.81 ± G)
(2)

where

d = stopping distance (m),
Vi = initial vehicle speed (km/h),
Vf = final vehicle speed (km/h),

t = perception-reaction time (s),
ai = initial deceleration rate (m/s2),
af = final deceleration rate (m/s2),

G = grade, and
TTC = time to collision.

The demand function is the stopping distance the active HRGCs, and the demand function is TTC
at passive HRGCs. Equations (3) and (4) define the risk of collision as the probabilities of stopping
distance and TTC above the supply thresholds.

RD = P(Vit +
V2

i − V2
f

2(ai ± 9.81G)
+

V2
f

2
(

a f ± 9.81G
) > sD) (3)
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RT = P(t +
Vi − Vf

(ai ± 9.81G)
+

Vf(
a f ± 9.81G

) > sT) (4)

where

RD = risk of collision for stopping distance,
RT = risk of collision for TTC,
sD =supply threshold of stopping distance,
sT =supply threshold of TTC.

Monte Carlo simulations require PDFs of all stochastic variables in the demand function. The PDFs
of stopping distance and TTC at HRGCs can be obtained by plugging the PDFs of all variables into
Equations (3) and (4) (assuming grade is zero). With the assumption that perception-reaction time
and vehicle speeds are normally distributed, and the deceleration rates are log-normally distributed,
the histogram of stopping distance can be generated from simulations. The statistical package R
(version 2.15.3) is used to perform these simulations. The risk of collision can be obtained by calculating
the probability of overshooting a designated distance and TTC.

2.3. Data Sources

The data sources consist of field vehicle speeds and deceleration data at HRGCs, and drivers’
perception-reaction data from driving simulators. The data sources of active HRGCs are based on
the data collected by Moon and Coleman [23] at two active HRGCs—Hartford and McLean in the
Chicago–St. Louis high-speed passenger rail corridor. Only the single vehicle data from both sites are
used in this study. The research of Tey et al. [22] using an HRGC driving simulator provides detail
distance statistics (means and standard errors) of accelerator release, initial braking, and final braking
for two initial speeds (60 and 80 kph). The PDFs of all variables in the demand functions are defined in
Table 2 [24].

Table 2. PDFs of Stochastic Variables in the Demand Function

Vehicle PDF Non-CV Non-CV Non-CV CV

Site McLean Hartford Simulator Simulator
Warning Device Active Active Passive Onboard

(mean, standard
deviation)

(mean, standard
deviation)

(mean, standard
deviation)

(mean, standard
deviation)

Reaction Time (s) Normal (3.13, 1.59) (3.13, 1.59) (3.22, 1.69) (3.21, 1.35)
Initial Speed (m/s) Normal (17.24, 1.9) (18.92, 2.1) (16.5, 1.6) (16.5, 1.6)
Initial Brake (m/s2) Log-normal (0.51, 0.27) (0.63, 0.39) (0.73, 0.43) (0.57, 0.33)
Final Speed (m/s) Normal (14.2, 1.42) (16.85, 1.85) (12.32, 1.47) (10.02, 1.2)
Final Brake (m/s2) Log-normal (1.19, 0.56) (0.85, 0.47) (1.64, 0.56) (1.02, 0.52)

The PDF of each variable should be able to address the variations of driver behavior and
other factors in the period of data collection. Driver behavior depends on human factors including
gender, age, health condition, alcohol/drug use, etc. Other environmental, vehicular, and road
factors—including time of day, day of week, weather, temperature, light, vehicle type, model year,
tire pressure, pavement, and geometric designs—may affect the likeliness of a crash occurrence
and the severity of injury if a crash occurs. These safety factors may change over time and their
temporal stability is crucial in assessing the impact of safety countermeasures [25,26]. The PDFs are
obtained from the collected samples that the temporary instability issue can be addressed in the data
collection period; however, the sample characteristics may change over a longer period of time or
other than the data collection period. In addition, the unobserved heterogeneity [27] among safety
factors (e.g., pavement and light conditions) can be accounted for in the stochastic demand function
considering the total effect of all variables’ randomness to the stopping distance. After all, the risk
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of collision is generated from the demand function based on the supply threshold, and Monte Carlo
simulations provide the aggregate probabilities of all unobserved effects.

3. Results

3.1. Passive HRGC

At passive HRGCs, the supply thresholds depend on the train speed, transmission range,
sight distance to train, and the angle between the driving direction and vehicle to train direction.
The demand function is the same for CV and non-CV drivers, different supply thresholds are used in
the calculation of risk of collision. Figure 2 shows the risks of collisions at various train sight distances
and transmission ranges at the passive HRGC. Four train speeds—48, 64, 80, and 96 kph (30, 40, 50,
and 60 mph)—are used to evaluate the risk of collisions. Sight distances are from 100 m to 500 m at the
interval of 100 m, and their corresponding risks decrease with the increase of sight distances. When a
train is approaching at 96 kph (60 mph), and a driver’s sight distance is 300 m, the risk of collision is
close to 0.5. With the same speed of an approaching train, a driver’s risk can be reduced to less than
0.2 if the sight distance is 400 m. On the other hand, if a driver can only have a sight distance of 100 m,
then the risk of collision is higher than 0.8 even the train speed is only 48 kph (30 mph). The risk of
collision increases from 0.2 to 0.5 with an increase of train speed from 48 to 64 kph (30 to 40 mph).
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Figure 2. Risk of collision at the passive HRGC.

The CV’s risks of collision are calculated based on the transmission ranges from 300 to 700 m. It is
observed that when the transmission range is 400 m the risk of collision is close to 0.5 with the train
speed of 96 kph (60 mph). If a transmission range of 600 m is provided, then the risk of collision drops
to less than 0.1 with the same train speed. Although a transmission range of 700 m can further reduce
the risk of collision, the scale of reduction is not large (from 0.08 to 0.02). As observed in Figure 2,
the risk of collision for a 600 m transmission range is close to that for a 500 m sight distance with the
train speed of 96 kph (60 mph). With the provision of a 600 m transmission range, the risk of collision
for the CV is lower than that for the non-CV with a 300 m sight distance to the train.
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3.2. Active HRGC

At active HRGCs, the supply thresholds depend on the sight distance to HRGC and transmission
range projected on the highway. The demand functions are different for the CV and non-CVs, and
three demand functions are used in the calculation of risk of collision. Three supply highway distances
(141.4, 176.8, and 212.1 m) are used to compare the risk of collision for the CV and non-CV at active
HRGCs as illustrated in Figure 3. The corresponding V2V transmission ranges are 200, 250, and 300 m
for each projected highway distance for the CV. The CV’s risk of collision is lower than non-CVs’ at
each supply projected highway distance. Given a 300 m transmission range, the CV’s risk of collision
is less than 0.1.
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4. Discussion

Based on the simulations results at the passive HRGC, if a non-CV driver’s sight distance is 300 m
and the transmission range for a CV driver is also 300 m, then the CV driver’s risk of collision is
higher than the non-CV driver’s. Under this condition, the transmission range needs to be extended
to 600 m so the risk of collision can be lower than that of a 300 m sight distance. Although the SAE’s
standard transmission range is 300 m (SAE 2016), an extension to 600 m is viable by increasing the
transmission power from 20 dBm (0.1 W) (defined for V2V safety applications) to 33 dBm (1.995 W) at
passive HRGCs. For active HRGCs, given a 300 m transmission range is sufficient for an approaching
60 kph (37.5 mph) CV. A train’s OBU can adjust its transmission power according to the type of
HRGCs; however, such an adjustment is an extra effort to develop the software function and it
increases the complexity of operations as well. In practice, the transmission power of a train’s OBU
can be set as 33 dBm constantly for providing a 600 m transmission range at all HRGCs. 33 dBm is
the maximum transmission power specified by Federal Communications Commission [28], whether
a 600 m transmission range can be provided effectively at this power level depends on the condition of
line of sight obstruction at each HRGC. Besides, the OBU’s installation position on a locomotive may
also affect the transmission range. Further research is needed to discuss issues of transmission power
and OBU installation for maintaining the desirable effective transmission range.

The effective transmission range of V2V communications can be decreased by line of sight
obstruction such as buildings, vegetation, etc. However, such a decrease will not cause a complete
loss for radiated 5.9 GHz microwaves and can still penetrate or deflect from the obstruction surfaces
to reach the receiver. If a 600 m transmission range is decreased to 500 m, the risk of collision is still
lower than that of a 300 m sight distance. A 300 m sight distance should require fair weather, no line of



Designs 2017, 1, 2 9 of 10

sight obstruction, good driver vision, and a conspicuous train to perceive. Such a good combination of
conditions may not appear very often for most HRGCs. Considering the low cost ($350 [29]) of OBU
installations on trains and vehicle installations may reach 50% in 2021 [11], this safety application is
no doubt a cost-effective solution as compared to installations of safety devices or other means for
improving rural passive HRGCs with incident occurrences. For active HRGCs, most drivers would
stop their vehicles by perceiving the activated gates and flashers, the CV application can still provide
additional protection to CV drivers by advising the train arrival time. With the provision of train
arrival time, impatient CV drivers should be less likely to drive around the gates if they know the
exact arrival time of an approaching train.

Margins of safety have already been considered in the evaluations of risk of collision. The CV’s
risk of collision at 600 m transmission range is less than 0.1 as compared to 0.5 of non-CV’s in the
passive HRGC. Even in the case of 500 m transmission range, the CV’s risk of collision is 0.25 still
much lower than the non-CV’s 0.5. A wide safety margin has been reserved by adopting a 600 m
transmission range. Emergency scenarios such as drivers’ late reaction, a train’s warning message loss,
or other unexpected factors, may increase the risk of collision; nonetheless, the safety should not be
compromised by providing a sufficient margin of safety.

5. Conclusions

With sufficient transmission ranges, the CV application can improve the safety at HRGCs by
reducing the risk of collision. The CV’s risk of collision is lower than the non-CV’s when a sufficient
transmission range is provided at passive and active HRGCs. The transmission range at passive
HRGCs is vital to the prevention of train collisions. A 600 m transmission range is desirable at passive
and active HRGCs. With the provision of a 600 m transmission range, the risk of collision for the CV is
lower than that for the non-CV with a 300 m sight distance at the passive HRGC. At active HRGCs,
given a 300 m transmission range, the risk of collision for the CV is lower than that for the non-CVs.
Overall, a 600 m transmission range is feasible to improve the safety at passive and active HRGCs.
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