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Identifying Intracellular pDNA Losses From a
Model of Nonviral Gene Delivery

Timothy Michael Martin, Beata Joanna Wysocki, Tadeusz Antoni Wysocki, Senior Member, IEEE, and
Angela K. Pannier*

Abstract—Nonviral gene delivery systems are a type of
nanocommunication system that transmit plasmid packets (i.e.,
pDNA packets) that are programmed at the nanoscale to bio-
logical systems at the microscopic cellular level. This engineered
nanocommunication system suffers large pDNA losses during
transmission of the genetically encoded information, preventing
its use in biotechnological and medical applications. The pDNA
losses largely remain uncharacterized, and the ramifications of
reducing pDNA loss from newly designed gene delivery systems
remain difficult to predict. Here, the pDNA losses during primary
and secondary transmission chains were identified utilizing a
MATLAB model employing queuing theory simulating delivery of
PEGFPLuc transgene to HeLa cells carried by Lipofectamine 2000
nonviral DNA carrier. Minimizing pDNA loss during endosomal
escape of the primary transmission process results in increased
number of pDNA in the nucleus with increased transfection, but
with increased probability of cell death. The number of pDNA
copies in the nucleus and the amount of time the pDNAs are in
the nucleus directly correlates to improved transfection efficiency.
During secondary transmission, pDNAs are degraded during
distribution to daughter cells. Reducing pDNA losses improves
transfection, but a balance in quantity of nuclear pDNA, mitosis,
and toxicity must be considered in order to achieve therapeutically
relevant transfection levels.

Index Terms—Biological systems modeling, communication net-
works, molecular communication, nanobioscience, nonviral gene
delivery, pDNA packet loss.

I. INTRODUCTION

ANOSCALE communication networks [1]-[3] are
usually defined as networks where at least one of the
transmitter, receiver, medium or message carrier or one of
their essential components have nanoscale (1-100 nm) dimen-
sions [4]. Even though human cells are not that small, their
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ligand receptors, endosomes, and molecular factors, which
are essential components in communication processes, have
nanoscale dimensions and these processes are critical in many
cellular applications [3], [5]-[8], including gene delivery [6].
Gene delivery approaches serve as a platform to modify gene
expression of a cell population with applications including
functional genomics, tissue engineering, and gene therapy.
While the use of modified viruses in the form of viral vectors
efficiently deliver DNA, their numerous safety drawbacks such
as toxicity, immunogenicity, mutagenesis, and tumorigenic ef-
fects make them less than desirable for many in vivo or ex vivo
applications [9]-[11]. These problems with viral delivery have
led to the development of nonviral gene delivery strategies,
where genetic information encoded as plasmid DNA (pDNA)
is transferred to cells with the help of a DNA carrier such as a
lipid or polymer, together forming a pDNA packet.

A major problem preventing use of nonviral gene delivery
systems in those applications is that large losses of the pPDNAs
occur after internalization into cells due to degradation in
primary or secondary transmission chains. Primary transmis-
sion chains describe routing of the pDNA packet through
a series of networked intracellular barriers from the plasma
membrane to the cell nucleus: internalization into endosome,
escape from endosome, translocation to nucleus, nuclear entry,
and transcription/translation of the encoded transgenic protein
[12]-[25]. During those steps, the pDNA can be degraded
in the lysosome (if the pDNA packet fails to escape the en-
dolysosome) or degraded in the cytoplasm after the pDNA
escapes the endosome and unpacks during routing to the nu-
cleus. Secondary transmission chains describe routing of the
pDNA or pDNA packets during mitosis, where each cell splits
into two daughter cells, and as a result, any pDNA or pDNA
packets within the cell are also distributed to each of the two
daughter cells. Degradation during secondary transmission
has been never reported, although in a recent report, in cells
where unpacked pDNA was microinjected into the cell nucleus,
28 percent of cells were unable to retain more than 75% of
microinjected pDNA in the nuclei of daughter cells [26]. The
result suggests either misdirecting and/or degradation of the
pDNA during mitosis since the pDNA is again exposed to the
potential degradation in the cytoplasm by nucleases. Reducing
pDNA losses during primary and secondary transmission can
be achieved through physiochemical modification of the gene
delivery system [27]-[30]. However, the ramifications of de-
sign changes on improved transfection for new gene delivery
systems remain difficult to predict.

1536-1241 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Efficient communication between macro- and nanocommu-
nication systems and among nanosystems themselves can be
achieved by using models to identify losses and to improve per-
formance in the system, including nonviral gene delivery sys-
tems [7], [31], [32]. Several mathematical and computational
models of nonviral gene delivery have been developed to pro-
vide an understanding of the intracellular distribution and ki-
netics of the pDNA [15], [22], [33]-[38]. However, quantita-
tive relationships for pDNA packet loss and transfection re-
main unknown and prevent rationale design of delivery sys-
tems with improved performance [39]. We have recently de-
veloped a model of the pDNA packet transmission process in
SIMULINK [40], using queuing theory [41]. In our telecommu-
nications model, routing of the pDNA packets in primary and
secondary transmission chains is considered the same as data
packet transfer in a packet-switched network [42]. The model
has been since improved by taking into account biological ef-
fects like mitosis and treatment-induced necrosis, which have
been reported to affect transfection but have never been included
in amodel of nonviral gene delivery before [21], [24], [43], [44].
That improved model was implemented in MATLAB and sim-
ulation results showed significant agreement with experimental
data, including pDNA nuclear internalization and transfection
efficiency [42], and thus validated the model. In this work, we
have further refined our telecommunications model [42] by ap-
plying equivalent M/M/1 queues instead of M/M /o queues
and then used the model to identify and characterize, for the first
time, losses incurred by the degradation of the pDNA in pri-
mary and secondary transmission. Additionally, this paper pro-
vides mathematical derivation of the probabilities of service for
queues used in the model and heuristics derived from the ex-
perimental data, including probability of necrosis due to toxi-
city and probability of transfection as a function of the number
of nuclear plasmids, which could serve as important considera-
tions for design of future carriers.

The remainder of this paper is organized as follows: In Sec-
tion IT we provide theoretical aspects of our model. In Section I1I
we describe the baseline performance of the model of nonviral
delivery considered as a telecommunications network. In Sec-
tion IV, we evaluate the effect of the quantity of pDNAs in the
nucleus and the length of time of the pDNAs in the nucleus on
the primary transmission losses in the system. Additionally, we
characterize pPDNA packet loss at the endosomal escape stage
due to lysosomal degradation in terms of transfection. In Sec-
tion V, we evaluate secondary transmission pDNA losses that
occur during mitosis. Finally, in Section VI we draw conclu-
sions based on this work.

II. THEORETICAL ASPECTS OF MODEL

Queuing theory has previously been used to describe data
communication networks [45], servicing of patients at hospitals
[41], and the HIV infection process [46]. In our model, nonviral
gene delivery was modeled as a digital process because events,
such as the number of internalized pDNA packets or pDNAs,
occur as integer numbers. The signals considered in nonviral
gene delivery come from a very small alphabet of symbols,
i.e., pDNAs, pDNA packets, transgenic mRNAs, and transgenic
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Fig. 1. Routing of pDNA packets after arrival to cells. The pDNA will
route differently in the packed state (i.e., as a pDNA packet), unpacked
state (i.e., pDNA alone), or if the cell is undergoing mitosis. Routes
that are active during mitosis are indicated by dashed lines. Kinetic pa-
rameters are reported in [42]. *pDNA packets; Punpacked pDNA;
°nuclear import binding proteins; 9nuclear pore complex; *mRNA;
funfolded protein; &folded protein; d indicates degradation. Reprinted with
permission from John Wiley and Sons under license number 3415431409731
[42].

A B

10°

I
o

10°
10?
10'

8h 16h  24h |

Fig. 2. Model output (solid line in (A); or white bars in (B) was not statistically
different from in vitro results (dashed line in (A); or black bars in (B) at the
indicated time points after delivery of pPEGFPUC/LF2000 packets to HeLa cells
for transfection efficiency (A) or number of pDNAs per cell nucleus (B) based
on Chisquare test with an &« = 0.05. Data are reported as the mean + SEM
(n = 6); see[42] for methods. Reprinted with permission from John Wiley and
Sons under license number 3416000858907 [42].
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proteins, which is appropriately modeled as a digital process
based on control theory and systems engineering [47]. For the
telecommunications model of gene delivery, queues were used
to represent nonviral gene delivery where input variables ar-
rive randomly and are processed randomly by the system (and
thus output by the system randomly) [41]. Our pharmacokinetic
telecommunications model using queuing theory was recently
described (Fig. 1; [42]) and was able to fully recapitulate the in
vitro environment for delivery of pEGFPLuc transgene packed
by Lipofectamine 2000 (LF2000) nonviral carrier to HeLa cer-
vical cancer epithelial cells in terms of transfection efficiency
and unpacked nuclear pDNA (Fig. 2). Transfection efficiency
refers to the portion of total cells expressing at least three trans-
genic green fluorescent proteins (GFPs).

In queuing networks, packets are routed through many
servers, which act to perform processing tasks on the packets
to ensure routing of the packet to a final destination. In such
queuing networks (Fig. 3), the arrival of the packets is modeled
as Poisson process, and this also works for gene delivery, e.g.,
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Fig. 3. Example of a two-stage queuing network with random routing [48].

in [26] where Poisson process was used to model the internal-
ization of pDNA into a cell to be transfected, while the service
time is modeled as an exponential distribution to describe the
length of inter-arrival times in the Poisson process of arrivals.

In such a process, the number of arrivals in any given time
interval (t, t+7] follows a Poisson distribution with a parameter
(A7), such that:

AT k
PN+ N =K="CT
where N(t + 1) — N(t) = k is the number of arrivals in the
interval (t,t + 7].

The length of time it takes for the server to process the packet
is described by the exponential distribution using the probability
distribution of a random variable X in terms of the rate param-
eter A as follows:

o= 20

0 x < 0. )

In general, all molecules, including pDNA, are thought to be
processed by the cell in a parallel fashion, with no known limits
as far as the number of molecular servers (e.g., endosomes) is
concerned, to the best of the authors' knowledge. Hence this
process has been modeled in our previous works [40], [42], [49]
as M /M/oo queue. The processing rates are given in literature
as the so-called kinetic constants p, being a ratio of the number
of molecules processed by a single molecular server in a certain
time interval to the duration of that interval I (Table I), usually
a second, much like the rates of chemical reactions (e.). If the
value of a given constant x satisfies 0 < p < 1, then it can
be interpreted as a probability that a molecule can be processed
by that molecular server in one second interval. If p > 1, then
one can consider a shorter time interval so the scaled constant
gt satisfies 0 < p’ < 1. Therefore, if there are n molecules to
be processed at a given routing stage, the probability p,, that at
least one molecule will be processed in that scaled time interval
is:

Po=1-(1—p)" (€))

On the other hand, the probability that under the same condi-
tions that just one molecule will be processed in that scaled time
interval pyy) is represented as:

Paqy = (1 — /)1 4)

If the time interval is chosen small enough that ng’ < 1, then
the probability py(1y ~ nu', and the scenario of an M/M /oo
queue having a service rate of ¢’ can be simplified to an M /M /1
queue with a service rate of pin(1) = Pn(1)-

The scenario when a routing juncture, like the one shown in
Fig. 1 is concerned, often happens in routing pDNA packets (see

TABLE I
KINETIC CONSTANTS USED AS SERVICE RATES IN MODEL (SEE FIG. 4)

Service rate Valuﬁ

[s7]

Uy 1.45

U 1.7x10"

Us 3.3x10"

s 1.7x10°

Us 3.5x10°

Us 5x 107

complexes
% delivered
/lll (1]

internalization

Ha
enuclear

localization &
entry

\ 4

eendosomal

& 6Iysosome 6cytoplasm

Fig. 4. Primary transmission chain between cell membrane and nucleus. Each
p parameter describes the kinetic rate (s 1) at which a process occurs. See Fig. 2
and [42] and Table 1. Solid line or dashed line indicates transmission path for
pDNA packets or pDNA (unpacked state), respectively. é indicates source of
data loss during transmission of the pDNA. E: endosome; C: cytoplasm as an
abstracted node; N: nucleus.

Fig. 1). However, a more realistic model of such a case is when
a single buffer is served by two different servers—server 1 with
aservicerate of 0 < iy < 1, and a server 2 with a service rate of
0 < pg <1, and the output of those 2 servers are connected to
two different routes. This is a classic case of an M/M /2 queue.
In such a case, a probability p; » that a single pPDNA packet is
going to be processed by one of the servers, but not by both,
equals to:

P12 =p1 (1 — pa) + pa (1 — py)
=+ p2 — 2pipe. (5)

The probability p; that the packet will be processed by the
server 1, and thus routed through the route 1 is then found using
a conditional probability formula as:
H1 — H1l2
=0 nme 6

YT b 2 ©
and the probability p, that the packet will be processed by the
server 2, and thus routed through the route 2 is given by

Py = H2 — H1j2
D a—
w1+ pa — 2pa 2

When both ¢ty < 1 and pus < 1, then the terms pqpuo and
2411 o can be neglected in (5)—(7), which means that it is very
unlikely that in a given time slot the M/M/2 queue could serve
two pDNA packets through both outputs instantaneously. In the
implemented model, we considered only such cases. It should
be noted here that both z; and w5 can be approximated using
formula (4) if more than 1 pDNA packet is in the queue.

O]
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For nonviral gene delivery, the kinetic constants (Table I) are
reported as averages in trafficking studies in literature [15], [18],
[19], [22]-[24], [44], [50]-[57]. To make the simulation model
more realistic, random noise is added to the constants by using
a 10% standard deviation applying a Gaussian distribution to
account for the variability reported in the literature, which is
presumably due to a variety of factors including differences in
cell culture conditions and packet formulations. However, this
value can be easily changed in the simulation environment and
doing so could provide insight into variability in transfection
outcomes.

Servicing of queues with a single output (Fig. 1; Fig. 2) was
implemented in MATLAB using the pseudo code:

if kth_queue length > 0,
a p—
random _uniformly_distributed _number_from_[0, 1];
v = calculated service rate; % (4)
ifv >= aqa,

kth_queue_length = kth_que_length — 1

(k + 1)st_queue length = (k

+ 1)st_queue_length + 1;

end;

end;

When two outputs from the server exist (Fig. 1; Fig. 2), the
route was chosen randomly but with probabilities influenced by
the current state of the network [58] as in (6) and (7) the rates
11 and g5 depend on the number of packets in the queue fol-
lowing (4). The queue was implemented in MATLAB with the
following pseudo code for two distinct outputs serviced with the
rates v1 and v2:

if kih_gueuelength > 0, a =

random _uniformly distributed number _from_[0, 1];
vl = calculated service rate_for_output_1; % (4)
12 = calculated _service_rate_for_output_2; % (4)
vr =vl + 12— 2xvlx0v2; % (5)

if vr >= a,
kth_queue length = kth_que length — 1
b =
random_uniformly_distributed number_from_[0, 1];
if vl < v2,

if (vl — vl % v2)/vr < b, % (6)
(k + 1)st_queue_ length = (k

+ 1)st_queue_ length + 1,

else

(k + 2)nd_queue length = (k

+ 2)nd_queue_ length + 1,
end;

else

if (v2 — vl % v2)/vr < b, % (7)
(k + 2)nd_queue length = (k

+ 2)nd_queue_length + 1,

(k
+

end;
end;
end;
end;

else
+ 1)st_queuve_length = (k
1)st_queue length + 1;
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In summary, our telecommunications model uses a Poisson
distribution of discrete (i.e., integer) numbers of packets in a
memoryless Markov process, in that the current state of the
packets in the system will only affect the current iteration of
the simulation. The decision for routing among multiple routes
within the network is random. Finally, the model is stochastic
since Gaussian noise is added to each pharmacokinetic pa-
rameter. The development and specific application of queuing
theory and the telecommunications model in terms of nonviral
gene delivery is also described in our earlier works [40], [42],
[49].

III. SYSTEM DESCRIPTION

The nanocommunication system of nonviral gene delivery
consists of three components: 1) pDNA: the nanosized piece
of information that encodes for the reporter gene, here GFP; 2)
Wrapper: the pDNA is mixed with LF2000 to electrostatically
form nanosized pDNA packets; and 3) Transmission medium:
the pDNA packets are then delivered to micrometer-sized HeLa
human epithelial cervical cancer cells, where each cell contains
molecules that act to route the pDNA (packed or unpacked;
Fig. 2), thereby acting as a packet-switched network [42].

Transfection success, i.c., transfer of the pDNA into the nu-
cleus and the subsequent production of the GFP protein encoded
by the pDNA within the cell, is dictated by a series of molecular
events that occur in two stages: primary transmission and sec-
ondary transmission. Primary transmission begins once pDNA
packets are delivered to the cell. Upon arriving to the cell mem-
brane, the pDNA packets are first internalized with the cell into
an endosome (vesicle responsible for internalization), then es-
cape the endosome, transit through the cytoplasm and finally lo-
calize and enter to the cell nucleus (Fig. 2; Fig. 4). pPDNAs can
enter the nucleus in a packed state (i.e., pPDNA packets) or un-
packed state (i.e., dissociated from the pDNA carrier; pDNAs).
The first step of primary transmission is internalization (Fig. 4),
aprocess that begins over the ensuing hours after pPDNA packets
are delivered to the media surrounding the cells in vitro. During
the internalization step, nearly all pPDNA packets that bind to the
cell enter the cell through an endocytic pathway [25], [26]. On
average, a dose of 100000 pDNA packets containing approx-
imately 1 million pDNAs are delivered to each cell in vitro,
but not all pDNA packets are internalized. Simulation results
from the model [42] show within 3.9 hours the peak number of
pDNAs observed in the endosomes of each cell is on average
2.8 x10* (Fig. 5). The drastic drop-off of pDNAs within the
endosomes after 4 hours is due to the removal of the supply of
pDNA packets in vitro, accomplished by removing the media
surrounding the cells and any pDNA packets not internalized,
and therefore this situation is simulated in the same manner in
silico.

The second step of primary transmission is endosomal es-
cape (Fig. 2; Fig. 4), where after internalization a fraction of
the pDNA packets within endosomes are able to escape into
the cytoplasm. Simulation results from the model indicate the
peak number of cytoplasmic pDNAs in each cell is on average
1.2 x10* around 4.1 hours after delivery (Fig. 5). Those pDNA
packets that do not escape from the endosomes are destroyed in
lysosomes.
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Fig.5. During primary transmission the pDNA are distributed to the endosome,
cytoplasm, and nucleus in varying quantities over time.

DAUGHTER 1

MOTHER DAUGHTER 2

Fig. 6. Secondary transmission chain occurs during cell division when pDNA
packets or pDNAs route from the nucleus of the mother cell to each daughter
cell. Red arrows indicate pathways that are partially utilized (see text for expla-
nation). Any pDNAs (green circles) or pDNA packets (green circles enclosed
in dashed hexagon) in the cytoplasm route as in primary communication chain
after mitosis. C: cytoplasm as an abstracted node; N: nucleus.

The third step of primary transmission is nuclear localiza-
tion and entry (Fig. 2; Fig. 4), where pDNAs in the cytoplasm
must route to and enter the cell nucleus. The pDNA can route
to the nucleus in one of two states: packed or unpacked. Packed
pDNA simply refers to pDNA that is still associated with the
wrapper LF2000 (i.e., pDNA packet); pDNA packets are pro-
tected from degradation by nucleases in the cytoplasm. Un-
packed pDNA refers to pDNA that dissociates from LF2000
(i.e., pDNA), which while required for transfection, exposes
the pDNA in transit to the nucleus to degradation by nucleases
within the cytoplasm. In the cytoplasm, the pDNAs, in unpacked
or packed state, are then bound by nuclear localization sequence
(NLS)-containing cytoplasmic proteins [15], [26], which shuttle
the pDNAs into the nucleus. Simulation results from the model
show a peak number of 2.0 x10* pDNAs arrive to the cell nu-
cleus 9.2 hours after the cell is initially exposed to the pPDNA
packets (Fig. 5).

Secondary transmission occurs during cell division, when
the mother cell divides and distributes the pDNA packets and
pDNAs to each of two daughter cells (Fig. 6). Our telecommu-
nications model [42] is the first to incorporate mitosis into a
model of nonviral gene delivery, even though mitosis has been
shown to greatly affect transfection success [21]. Since the
mitosis event occurs approximately once every 18 h, on a per
cell basis, the number of cells in the experiment will increase
over time. In the case when the experiment begins with 0.5
x10* cells, within 48 h the number of cells in the experiment
has grown to 1.8 x10* (Fig. 7).

4
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0 10 20 30 40
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Fig. 7. Mitosis and toxicity effects on the number of cells in the experiment.

Within the secondary transmission chain, the pDNA packets
and pDNAs from the mother cell is distributed to the two newly
formed daughter cells (Fig. 6). After the mother cell splits, the
two daughter cells start their life as non-transfected cells with no
nucleus. Within 20 to 30 minutes the daughter cells have com-
pleted mitosis and formed their nuclei. Therefore, pPDNAs that
route from the mother cell are exposed to the cytoplasm of the
daughter cells for a short period of time, and subject to the same
degradation that occurs during primary transmission. However,
it is not well understood how pDNAs are sorted into the nucleus
or cytoplasm of the daughter cells based on if the pDNA was in
the nucleus or cytoplasm of the mother cell, respectively. About
75% of those pDNAs that are in the nucleus of the mother cell
will tend to also be in the nuclei of the daughter cells after a
mitosis event (Fig. 6) [26]. The other ~ 25% ends up in the cy-
toplasm of the daughter cells. Likewise, about 75% of pDNAs
that were in the cytoplasm of the mother cell will tend to re-
main in the cytoplasm of daughter cells (Fig. 6) [26]. The other
~ 25% ends up in the nucleus of the daughter cells. The distri-
bution of the pDNA acts in the same manner whether the pDNA
is packed or unpacked.

When the primary transmission chain is successful, pPDNAs
that are located in the cell nucleus may overproduce the encoded
protein, to the point that the cell dies. Our model [42] is the first
to include this biological effect, even though toxicity is observed
in vitro and in vivo. Dead cells are observed in the simulations
starting ~ 10 h after delivery of the pDNA packets (Fig. 7).
Around 0.6 x10% cells die during the experiment. Those cells
are removed from the experiment and no longer accounted for
in calculations. The toxicity effect on cell death has been quan-
tified in our previous work, which showed a dependency of GFP
quantity on cell death. Based on experimental results and using
curve fitting techniques, we previously approximated the prob-
ability that a transfected cell dies after producing » molecules
of GFP [42] Pp(n) as:

0, n < 500

Pp (n) = {erf (2-390) | n > 500. ®

The plot of Pp(n) shows that the probability of cell death in-
creases asymptotically from 0% to 100% as the number of rel-
ative GFP molecules increases from 500 to 4000 (Fig. 8). The
biological cause of the death effect is unknown; however, re-
ports indicate cells elicit cell stress after uptake of foreign DNA
[59]. Additionally, protein production is one of the highest en-
ergy demanding operations on the cell and overproduction of a
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Fig. 8. Probability of treatment-induced necrosis (i.e., cell death) at a given 0.5
second time interval as a function of a number of GFPs inside that cell.

foreign protein may result in a state where the cell utilizes its
resources in an unrecoverable manner, and therefore dies [60].

Taken together, we have used our nonviral gene delivery
model to quantify the subcellular distribution of pPDNAs during
the experiment, including distribution to daughter cells during
mitosis. Additionally, we quantify the increase or decrease
of cells in the experiment due to mitosis or toxicity-induced
cell death, respectively. Finally, we provide a mathematical
relationship describing the probability of cell death based on
the amount of GFP overproduction. During the gene delivery
process, degradation of the pDNA can occur. That degradation
is what limits the effectiveness of nonviral gene delivery sys-
tems; therefore, we next describe the primary and secondary
transmission losses and offer suggestions which may lead to
increased transfection.

IV. PRIMARY TRANSMISSION LOSSES

The desired outcome when cells are exposed to the pDNA
packets is for each cell to direct the pDNAs to the cell nu-
cleus and produce the protein in relevant levels for applications
in gene therapeutics [61], [62], diagnostics and functional ge-
nomics [63], [64], medical devices [65], and tissue engineering
[66], [67]. However, the primary transmission as described (Fig.
3) results in lost pDNA packets due to the lysosome degrada-
tion and cytoplasmic degradation as the pDNA routes to the nu-
cleus. To quantify only primary transmission chain losses, we
removed mitosis and toxicity effects from the model to remove
any pDNA degradation due to secondary transmission losses.
Of the ~ 1 x 10° pDNAs initially delivered to each cell, about
1.4 x10* pDNAs are degraded in the lysosome by ~ 5 hours,
indicating these pDNAs failed to escape the endosome and lo-
calize to the cytoplasm (Fig. 9). Of those pDNA packets and
pDNAs which escape the endosome, another 3.4 x 10 pDNAs
are degraded en route to the nucleus by ~ 15 hours after ini-
tial exposure of pDNA packets to the cell (Fig. 9). After 15 h,
the degradation plateaus because DNA not degraded in the lyso-
some or cytoplasm is routed to the nucleus, where the pDNA is
no longer exposed to enzymatic degradation (Fig. 9).

These results suggest that limiting the degradation of the
pDNAs prior to their arrival at the nucleus would lead to
improved transfection, especially limiting lysosomal degrada-
tion, which our previous work [42] identified to be the most
sensitive parameter affecting transfection success. Therefore,
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Fig. 10. Increasing (0.01 # g, 0.1 * g} or decreasing (10 * g, 100 * 1) endo-
somal escape kinetics results in increased or decreased transfection efficiency,
respectively, compared to baseline (1 * ).

in this work, we explored the ramifications of improving the
gene delivery system to limit pDNA losses at the lysosomal
degradation stage in data transmission. Specifically, we evalu-
ated the effect on transfection efficiency, which is the number
of cells expressing GFP divided by the total number of cells in
the experiment. In our simulations, enhancing the endosomal
escape kinetics by 10-fold or 100-fold faster (and thus limiting
the transfer of pDNA from the endosome to the lysosome)
resulted in increases in transfection efficiency from ~ 30% to
60% or 70%, respectively, 48 h after delivery of pDNA packets
(Fig. 10).

For the 100-fold enhancement to endosomal escape, two-fold
more pPDNAs were observed in the nucleus of the cell. Physico-
chemical modifications to the DNA carrier which would achieve
increased endosomal escape kinetics and improved transfection
may be dodecylation [22] or incorporation of a pH-sensitive fu-
sogenic peptide [68], two modifications previously shown to im-
prove transfection.

The amount of pDNAs successfully delivered to the nucleus
plays a crucial role in transfection levels. Those cells which con-
tain a higher number of nuclear pPDNAs exhibit increased trans-
fection, though with a saturating effect around 1 x10* nuclear
pDNAs [69]. Unfortunately, as aforementioned, most pDNAs
are degraded before trafficking to the nucleus, thereby suffering
large transmission losses. Therefore, we next explored model
simulations showing the effect of the number of nuclear pPDNAs
on probability of transfection. From [69] we have developed a
heuristic estimate for the probability that at a given time interval,
a particular pDNA transfects the cell. Assuming a 0.5 second
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Fig. 11. Probabilities of successful data transmission (i.e., transfection).
(a) Probability of transfection by a particular pDNA. (b) Probability of trans-
fection over time by varying amount of pDNAs in nucleus.

time interval and & = x pDNAs present in nucleus, that proba-
bility is given by

Pyor{k =2} = +3.33-10 1. )

1.95.107%
x
Assuming that events of transfecting a cell by different pDNA
are statistically independent, the total probability that a cell be-
comes transfected at a particular 0.5 second time interval in the
presence of & = x pDNAs in the nucleus is then found using
the Bernoulli formula as

Pr{k=2}=1-—[1-Pyr{k=12a}]" (10)
and the probability that the cell becomes transfected after n suc-
cessive time intervals equals to:

Pro{k=a,n}=1-{1-[1-Pr{k=2a}"}". (1)

The plots of P,z [70] and Pry [70] are shown in Fig. 11(a)
and (b), respectively. The efficiency of transfection by a par-
ticular pDNA drops as the number of pDNA increases, with a
saturating effect of p = 8 x 10719 or around 102 pDNAs (Fig.
11(a)). The biological significance of the saturation could be due
to availability of cell resources to transcribe the pPDNA and con-
vert its code into the encoded protein. Additionally, those cells
with a high number of pPDNAs also contain high quantities of the
DNA carrier, which has been shown to impede mRNA activity
(loss in ability to transcode the information) [71] and nuclear
import (loss in transmission signal) [72], thereby acting to re-
duce efficiency of transfection on a per pDNA basis.

The amount of pDNA present in the nucleus also affects trans-
fection levels in a time-dependent manner. After 5 h, the proba-
bility of transfection increases almost linearly from 0 to 70% as
the number of pDNAs increases from 0 to 10 x 104 (Fig. 11(b)).
Likewise at 10x10% pDNAs per nucleus, the probability of
transfection increases almost linearly from 0 to 70% as the du-
ration the pDNAs are in the nucleus increases from 0 h to 5 h.
The result highlights the importance of having high numbers
of pDNAs in the nucleus, also shown by Ludtke and colleagues
[73], where increasing the number of nuclear pPDNAs above 571
per cell was enough to achieve ~ 100% transfection. One way
to increase the amount of nuclear pDNA is to reduce pDNA
losses to the lysosome (Fig. 10; and data not shown). However,
increased pDNAs in the nucleus lead to increased GFP produc-
tion (data not shown), and as a consequence, increased proba-
bility of treatment induced necrosis (Fig. 8).

Taken together, we have characterized primary transmission
pDNA losses in the lysosome (due to failure of endosomal es-
cape) and in the cytoplasm (for those pDNAS en route to the nu-
cleus) and have shown that increasing pPDNA quantities in each
compartment or time in the nucleus results in increasing prob-
abilities of transfection. We also demonstrated that reducing
pDNA losses due to lysosomal degradation results in increased
transfection, though at risk of increased probability of cell death
due to GFP accumulation.

V. SECONDARY TRANSMISSION LOSSES

While primary pDNA transmission loses in the lysosome
and cytoplasm are more well-known in the literature, secondary
transmission losses may occur during a mitosis event, when
the mother cell divides into two daughter cells. During mitosis,
contents of the mother cell are distributed to two daughter cells
(including pDNA packets, pDNAs and transgenic mRNAs,
and transgenic GFPs; Fig. 2) and a new nuclear membrane is
rebuilt in each daughter cell. Because there is no nucleus during
mitosis, the unpacked pDNAs may be exposed to degradation
in the cytoplasm. To account for pPDNA degradation during
mitosis, the same kinetic constant was applied as for pDNA
degradation during the trafficking of unpacked pDNAs to the
nucleus through the cytoplasm during primary transmission.
Such pDNA losses after mitosis, used in our model, are consis-
tent with those reported in in vitro transfection [26]. Therefore,
secondary transmission pDNA losses occur during the mitosis
period as a result of distribution of pDNAs from mother cell to
the two daughter cells. Between 5 h and 24 h, approximately
30% of pDNAs are lost by the end of the mitosis, leaving on
average 10000 pDNAs in the cell (Fig. 12). In addition each
mitosis event acts to dilute the number of pDNAs per cell,
because the number of cells in the experiment increases and af-
fects the calculation of transfection efficiency. Meanwhile, the
accrued number of degraded pDNAs remains constant per cell
due to exposure to cytoplasmic nucleases during each mitosis
event. Therefore, by 48 h, the number of surviving pDNAs is
around 4000 per cell (Fig. 12). The dilution of nuclear pPDNAs
and loss of nuclear pDNAs during mitosis is consistent with in
vitro observations [26].

The pDNAs lost during this time period highlights an unex-
plored area where nonviral gene delivery systems could be im-
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Fig. 12. As a cell undergoes mitosis, the pDNAs are exposed to degradation
in the cytoplasm during distribution to daughter cells resulting in a portion of
pDNAss that are degraded during secondary transmission.

proved. For example, the pDNA could be protected from degra-
dation by targeting antibodies to discrete portions of the pDNA,
thereby providing steric hindrance of DNase degradation [74].

VI. CONCLUSIONS

Nonviral gene delivery systems, which are designed to
deliver pDNA encoding proteins to cells, must be improved
in order to achieve a relevant therapeutic effect. Losses in the
transmission of pDNAs prevent therapeutic protein production.
In this work, we quantify those pDNA losses that occur during
primary transmission of the pDNA to the nucleus and in sec-
ondary transmission of pDNA from mother cell to daughter
cells. Limiting those pDNA losses can increase the number of
pDNAs which make it to the nucleus, and therefore increase
transfection in a dose- and time-dependent manner. However,
increased number of nuclear pDNAs leads to increased trans-
gene production and, therefore, an increased probability of cell
death due to toxicity. One mechanism to prevent the toxicity
could be to reduce the frequency of transgene production (such
as by using a weaker promoter). An increase in pDNASs in the
nucleus would also act to reduce the diluting effect of pDNA
caused by mitosis and provide sustained gene expression.
Therefore, the design of new gene delivery systems should
consider the trade-off in quantity of nuclear pDNA, mitosis, and
toxicity in order to achieve therapeutically relevant transfection
levels.
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