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Abstract

Context Scientists face several theoretical and

methodological challenges in appropriately describing

fundamental wildlife-habitat relationships in models.

The spatial scales of habitat relationships are often

unknown, and are expected to follow a multi-scale

hierarchy. Typical frequentist or information theoretic

approaches often suffer under collinearity in multi-

scale studies, fail to converge when models are

complex or represent an intractable computational

burden when candidate model sets are large.

Objectives Our objective was to implement an

automated, Bayesian method for inference on the

spatial scales of habitat variables that best predict

animal abundance.

Methods We introduce Bayesian latent indicator

scale selection (BLISS), a Bayesian method to select

spatial scales of predictors using latent scale indicator

variables that are estimated with reversible-jump

Markov chain Monte Carlo sampling. BLISS does

not suffer from collinearity, and substantially reduces

computation time of studies. We present a simulation

study to validate our method and apply our method to a

case-study of land cover predictors for ring-necked

pheasant (Phasianus colchicus) abundance in

Nebraska, USA.

Results Our method returns accurate descriptions of

the explanatory power of multiple spatial scales, and

unbiased and precise parameter estimates under com-

monly encountered data limitations including spatial

scale autocorrelation, effect size, and sample size.

BLISS outperforms commonly used model selection

methods including stepwise and AIC, and reduces

runtime by 90%.

Conclusions Given the pervasiveness of scale-de-

pendency in ecology, and the implications of mis-

matches between the scales of analyses and ecological

processes, identifying the spatial scales over which

species are integrating habitat information is an

important step in understanding species-habitat rela-

tionships. BLISS is a widely applicable method for

identifying important spatial scales, propagating scale

uncertainty, and testing hypotheses of scaling

relationships.

Keywords Abundance � Bayesian model selection �
Habitat selection � Model uncertainty � Spatial scale
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Introduction

Species distribution models (SDMs) are increasingly

identified as a powerful tool for guiding conservation

planning (Guisan and Thuiller 2005). By associating

habitat variables, generally land-cover imagery, with

species occurrence or abundance, SDMs allow man-

agers and policy makers to explore how large scale

conservation challenges such as climate change may

shape future biological communities (Schwartz et al.

2006). One of the fundamental challenges in the

development of SDMs is that the ecological processes

that shape the niche of a species act at multiple spatial

scales (Levin and Simon 1992; Boyce and Mark 2006;

Sandel and Smith 2009; Chase and Jonathan 2011).

Thus, habitat attributes that may predict where a

species is found at one spatial scale may perform

poorly at predicting species occurrence when consid-

ered at another spatial scale (Robinson 1950). Mis-

matches between the spatial scale of analysis and the

spatial scale of ecological processes underlying the

distribution of a species can contribute to incorrect

inference and overall poor model performance (Hene-

bry 1995; Keitt et al. 2002). Indeed, issues of spatial

autocorrelation, biases in regression coefficients (Len-

non 2000; Kuhn 2007; Bini et al. 2009), limited

explanatory power (De Knegt et al. 2010), and Type 1

error (Anselin and Griffith 1988; Clifford et al. 1989;

Legendre et al. 2002) are all exacerbated when

mismatches of scale occur. Researchers must also be

cautious when altering scale-related dimensions of a

study, such as grain or extent during analysis, as it may

impact statistical results (Turner et al. 1989; Dungan

et al. 2002).

Despite an awareness of the issues associated with

spatial scale mismatches in ecology (Horne and

Schneider 1995; Chalfoun and Martin 2007; Hurlbert

and Jetz 2007), identifying, incorporating, and quan-

tifying influential processes at various scales in

ecological modeling has proven difficult and is often

ignored or over-simplified (Wheatley and Johnson

2009; Jackson and Fahrig 2015). Although there is

presumably not a single ‘best’ spatial scale at which to

associate species and their habitats for all species or

ecological conditions, it is possible to reveal relevant

ecological associations when the scale of analysis

approaches the operational scale of the process of

interest. Studies often use expert knowledge to set the

scale of analysis, or in some cases use expert-informed

designs to collect data at ‘fine-’ versus ‘large-’ spatial

scales to compare their relative explanatory power

(e.g., Saab 1999; Coppeto et al. 2006; Cunningham

et al. 2014). Unfortunately, information regarding the

ecological processes shaping the distribution or abun-

dance of a species is often lacking, let alone the spatial

scale at which these processes may act. To overcome

such limitations of knowledge researchers can collect

data on habitat conditions at multiple spatial scales

and perform model selection to choose a single

‘characteristic’ scale of their species’ response (e.g.,

Būhning-Gaese and Katrin 1997; Pope et al. 2000; van

Langevelde 2000; Steffan-Dewenter et al. 2002; Hol-

land et al. 2004; Gray et al. 2010; Thornton and

Fletcher 2014). While potentially informative, the

notion of a single ‘characteristic’ scale to which a

species may associate fails to consider that, in general,

the processes that define a species’ niche often

interact, with the possibility of multiple explanatory

variables acting at different spatial scales (e.g.,

Cushman and McGarigal 2002). However, few studies

evaluate the explanatory performance of different

variables collected at multiple scales simultaneously

(e.g., Grand and Cushman 2003; Pearson et al. 2004;

Jorgensen et al. 2014), but such studies have the

ability to provide insights into the hierarchical nature

of spatial processes (Urban et al. 1987).

We conducted a literature review of manuscripts

investigating multi-scale habitat-relationships from

the time period 2013–2017 (see Supplementary

Material for details). Our search identified 128

empirical articles aiming to identify the spatial scale

at which to study ecological patterns (e.g., abundance,

occupancy, resource-selection). Of these, 92 and 8%

were conducted in frequentist and Bayesian frame-

works, respectively, and were dominated by an

information-theoretic approach to model selection

(71% information theoretic, 16% fully frequentist

(e.g., selection based on p-value or strength of

coefficient), 7% model fit (e.g., variance explained),

5.5% combination of methods, 0.8% fully Bayesian

(e.g., posterior probability)). Particularly, Bayesian

techniques are common in studies that account for

imperfect detection of subjects because Bayesian

hierarchical models have the flexibility to accommo-

date highly complex, custom, multilevel model spec-

ifications, and multiple levels of error that are not

possible using currently available frequentist tools.

Indeed, this is reflected in our literature search where
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only 13% of multi-scale studies conducted in a

frequentist framework accounted for imperfect detec-

tion, compared to 50% of Bayesian multi-scale

studies, and compared to an overall average 35% of

articles accounting for detection based on a separate

literature review (including uni- and multi-scale

studies; Kellner and Swihart 2014). Although there

are numerous Bayesian methods for model selection

(Hooten and Hobbs 2015) that have been making

inroads into ecological methodology relatively

recently, we hypothesize that the disproportionate

underrepresentation of Bayesian techniques in multi-

scale studies is due to the lack of an accessible method

of model selection for spatial scales in a Bayesian

framework.

We develop a method of Bayesian latent indicator

scale selection (BLISS), estimated with reversible-

jump Markov chain Monte Carlo (MCMC) to provide

a fully-integrated model-based fitting and selection

procedure for selecting important spatial scales and

estimating the effects of predictors in a single step.

Although the use of indicator variables for model

selection is well-established in Bayesian literature (see

Godsill 2001; O’Hara and Sillanpää 2009; Tenan et al.

2014), extensions for use in spatial scale determination

in ecology have not been implemented, regardless of

the efficiency of automated exploration of the candi-

date model space. There are practical reasons for

employing Bayesian methods for scale-selection

beyond any philosophical reasons for preferring a

fully Bayesian approach. Although information crite-

ria including AIC, BIC, and DIC are heavily used, they

are not appropriate for hierarchical (AIC, BIC) or

mixture (DIC) models which are increasingly used in

ecological literature, particularly to combat issues

associated with imperfect detection (Hooten and

Hobbs 2015). Bayesian methods allow a priori

weighting of covariates or models (e.g., when prior

information is available), which is not possible with

many other approaches, including AIC. Furthermore,

given equal priors, it is simple to calculate Bayes

factors, to use in model averaging, and model prob-

abilities for model selection (Johnson and Hoeting

2011). In our literature review, 77% of studies created

models separately by scale, including predictors

measured at each particular scale. Assuming that the

ecological processes governing predictors are limited

to acting at a single ecological scale is likely an

oversimplification. BLISS is able to reveal multimodal

scale patterns across predictors, and interactions

between predictors at multiple scales. Both cases are

either impossible or intractable to efficiently explore

with frequentist methods, but trivial to implement

using our method once a candidate set of scales is

defined. For example, in a study investigating four

predictors at four spatial scales, BLISS would require

coding and estimating only a single model whereas

frequentist or information theoretic approaches would

require the researcher to code and estimate all 256

possible models individually to achieve the same

flexibility in selecting spatial scales of predictor

variables. The number of models required to represent

all possible spatial scale combinations increases

exponentially with the addition of predictors or scales.

Furthermore, common selection rules such as ‘choose

the scale with the lowest AIC’, would ignore the

possibility of multiple important scales, and would not

provide an interpretable quantification of estimation

uncertainty and the likelihoods of alternative model

specifications, both of which are efficiently revealed

with BLISS. We first describe our Bayesian latent

indicator variable approach. Next, we demonstrate its

efficacy through simulations, and illustrate its effi-

ciency with comparisons to other approaches. Finally,

we apply our approach to a case study of ring-necked

pheasants in Nebraska, USA.

Methods

Hierarchical abundance-detection model

Single scale model

The single scale model is based on an N-mixture

model for estimating abundance under repeated mea-

surements and probabilistic detection (Royle 2004).

True abundance at site s and season t, Ns;t, is treated as

an unobserved (latent) variable, which follows a

Poisson distribution with mean parameter ks;t. Condi-

tional on abundance Ns;t, the observed detections at

site s, during season t, and replication r, ds;t;r, follow a

binomial distribution with Ns;t trials and detection

probability ps;t;r:

Ns;t � Poiðks;tÞ ð1Þ

Landscape Ecol (2017) 32:2365–2381 2367
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ds;t;rjNs;t �BinðNs;t; ps;t;rÞ. ð2Þ

The abundance parameter ks;t and detection parameter

ps;t;r are functionally dependent on a set of environ-

mental or other predictors and their corresponding

regression coefficients;

ks;t ¼ expða1xs;t;1 þ a2xs;t;2 þ � � � þ akxs;t;kÞ ð3Þ

ps;t;r ¼ logit�1ðb1zs;t;r;1 þ b2zs;t;r;2 þ � � � þ blzs;t;r;lÞ,
ð4Þ

where a ¼ ða1; . . .; akÞ0 represent coefficients of abun-

dance predictors and b ¼ ðb1; . . .; blÞ0 represent coef-

ficients of detection predictors; potential random

effects are omitted for notational simplicity.

Given the observed detections ds;t;r for all sites,

seasons, and replicates, as well as the corresponding

abundance predictors (e.g., landcover variables) xs;t ¼
ðxs;t;1; . . .; xs;t;kÞ0 and detection predictors (e.g., time of

day) zs;t;r ¼ ðzs;t;r;1; . . .; zs;t;r;lÞ0, the unknown (latent)

abundance Ns;t and regression coefficients a and b are

estimated.

Incorporating multiple scales

We developed an extension from the single scale

model to handle multiple candidate scales for each

abundance predictor where each abundance predictor

xs;t;i, i 2 f1; . . .; kg, is measured on one or more spatial

scales sci 2 fsci;1; . . .; sci;nig. We model the scale of

each predictor as a latent categorical variable, esti-

mated along with the other unknown quantities of the

single scale model.

Priors for regression coefficients and

scales Throughout, we use weak, normally

distributed priors for the coefficients ai,
i 2 f1; . . .; kg, and bj, j 2 f1; . . .; lg with large prior

variances r2
ai and r2

bj
, respectively.

Each predictor xs;t;i, i 2 f1; . . .; kg can be included

with a different number of scales ni\1 as defined by

the study. We use a categorical distribution over all

candidate scales sci 2 fsci;1; . . .; sci;nig with prior

probabilities wi;1; . . .;wi;ni such that
Pni

m¼1 wi;m ¼ 1

and guarantee the existence of a posterior distribution.

The discrete uniform distribution is contained as a

special case where all weights are equal ðwi;m ¼ 1=niÞ,

and represents a proper non-informative distribution

for spatial scales.

Our priors are summarized by:

ai �Nð0; r2
ai
Þ for all i ¼ 1; . . .; k ð5Þ

bj �Nð0; r2
bj
Þ for all j ¼ 1; . . .; l ð6Þ

sci � catðwi;1; . . .;wi;niÞ for all i ¼ 1; . . .; k. ð7Þ

Ecological model The ecological model

incorporating multiple spatial scales differs from the

traditional single scale model in that the mean

abundance parameters ks;t depend on the (latent)

scales sci, i 2 f1; . . .; kg, of the predictors. Below,

xs;t;i½sci� denotes the value of ith abundance predictor

at site s, time t, and measured on scale sci. Because we

use a separate categorical scale variable for each

predictor, a posterior distribution for candidate spatial

scales is produced for each predictor, which allows

predictor-specific selection of the most informative

spatial scales. The choice of scales sci, i 2 f1; . . .; kg,

propagates to the latent abundance variable Ns;t via its

mean parameter ks;t, resulting in

ks;tja1; . . .; ak; sc1; . . .; sck ¼ expða1xs;t;1½sc1� þ � � �
þ akxs;t;k½sck�Þ

ð8Þ

Ns;tjks;t � Poiðks;tÞ ð9Þ

By only including one scale of each predictor at a time,

collinearity among the different scales of the predic-

tors is excluded. As a result, this model design avoids

the need for regularization approaches used in the

presence of correlated predictor variables to eliminate

predictors with little marginal explanatory power.

Regularization approaches are often computationally

intensive and require additional input from the inves-

tigator in specifying regulator parameters (Hooten and

Hobbs 2015).

Detection model The number of detected individuals

ds;t;r are conditional on the latent abundance variables

Ns;t, which, when incorporating multiple scales,

depend on the scale indicators sci, i 2 f1; . . .; kg, and

thus are inherently linked to the scales of the

abundance process.
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ps;t;rjb1; . . .; bl ¼ logit�1ðb1zs;t;r;1 þ � � � þ blzs;t;r;lÞ
ð10Þ

ds;t;rjNs;t; ps;t;r �BinðNs;t; ps;t;rÞ ð11Þ

Posterior estimation using reversible jump MCMC

All models were estimated via posterior simulation

with JAGS (‘‘just another Gibbs sampler;’’ Plummer

2003) (package rjags; Plummer 2013); for example

code, see Supplementary Material.

Simulation studies

To assess the performance of BLISS, we simulated

multi-season abundance data, where abundance and

detection data were generated as a function of three

site-specific abundance covariates measured at four

spatial scales with season-specific intercept terms.

Season-specific intercepts imply that the population is

assumed closed within seasons, but open between

seasons. Abundance covariates were drawn from a

uniform distribution on the interval (0, 1), and we

investigated three scenarios with different strengths of

correlations between different scales of the same

predictor: low (correlation 0.3 between the four

scales), medium (0.60), and high (0.90) (Table 1

Studies 1.1, 1.2, and 1.3). The true spatial scales for the

three abundance covariates were chosen as 2, 3, and 4,

respectively. The abundance coefficients were nor-

mally distributed about their means (SD) 1.25 (0.20),

0.50 (0.05), and - 0.80 (0.10), respectively. To assess

the estimation uncertainty of BLISS under varying

sample sizes we simulated data with low (2), medium

(3), and high (6) within-season temporal replication

(Table 1 Studies 2.1, 2.2, and 2.3), and low (50),

medium (100), and high (200) within-season spatial

replication (Table 1 Studies 3.1, 3.2, and 3.3). Within

these simulation studies, we also evaluated the impact

of the strength of the abundance covariates on scale

selection performance.

Site-specific detection probabilities were simulated

as a function of four covariates drawn independently

from a standard normal distribution combined with

normally distributed coefficients (means (SD) - 0.50

(0.10), 1.25 (0.20), 1.00 (1.00), - 0.90 (0.30)), one

intercept term and an observer-level random effect.

We modeled detection for a hypothetical 3-season

study with multiple replicate abundance counts within

each season (e.g., the ‘robust design’ following

Williams et al. 2002), assuming that the population

is closed during each of 3 simulated seasons.

For each of the simulation studies, we generated

100 data sets, and analyzed each using the model

incorporating multiple scales and RJMCMC in JAGS.

We present results based on 20,000 MCMC samples

after burn-in (burn-in = 5000 iterations) of the

posterior distribution of model parameters (coeffi-

cients) and latent variables (scales, abundance, ran-

dom effects). For each predictor, we analyze scale

selection accuracy and ‘select’ the scale with the

highest posterior probability as the ‘best’ scale. This

intuitive decision rule minimizes the probability of

mis-specification under the margins of the posterior

distribution. We summarized coefficient and abun-

dance estimation for datasets by reporting the poste-

rior mean or mode (N) estimates along with their 95%

Table 1 Conditions for

simulation studies of scale

autocorrelation (1.1, 1.2,

1.3), within-season

temporal replication (2.1,

2.2, 2.3), and spatial

replication (3.1, 3.2, 3.3)

Study Scale Temporal Spatial Total

Autocorrelation Replicates Replicates Seasons Observations

1.1 0.3 3 200 3 1800

1.2 0.6 3 200 3 1800

1.3 0.9 3 200 3 1800

2.1 0.6 2 200 3 1200

2.2 0.6 3 200 3 1800

2.3 0.6 6 200 3 3600

3.1 0.6 3 50 3 450

3.2 0.6 3 100 3 900

3.3 0.6 3 200 3 1800
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credible intervals (CI) and evaluated model perfor-

mance by comparing the estimated site and season-

specific abundance estimates with the true simulated

values by calculating the root mean squared error

(RMSE) of the posterior mode estimates of Ns;t.

Comparison with existing methods

We compared the performance of BLISS to other

methods commonly found in the multi-scale literature

using simulated datasets. Additionally, because the

Watanabe-Akaike or widely applicable information

criterion (WAIC), which represents the posterior

predictive likelihood minus an adjustment for the

effective number of parameters, is a suitable informa-

tion criterion for hierarchical models, but is not yet

widely implemented, we include an evaluation of its

performance here (Watanabe 2013 and Gelman et al.

2014)). We simulated 25 replicate datasets each under

two scenarios of between-predictor correlation (e.g.,

collinear predictors; 0 correlation, and 0.5 between-

predictor correlation) and the characteristics of sim-

ulation study 1.1 (Table 1). We analyzed each repli-

cate dataset using five model selection techniques to

select the spatial scale of each predictor: BLISS,

backward stepwise selection, effect size selection,

AIC model selection, and WAIC model selection.

BLISS proceeded as previously described. Backward

stepwise selection was performed by fitting models

first containing all scales of a single predictor at once

(e.g., three full models, one for each predictor) and

dropping the least important scale based on the largest

‘p-value’ calculated using a normal approximation of

the posterior distribution until only a single scale was

left for each predictor. Coefficient effect size-based

model selection was performed by estimating models

containing all predictors separately by scale (i.e., each

model contained all predictors measured at the same

single scale) and selecting the scale with the strongest

estimated coefficient for each predictor individually

(e.g., Jorgensen et al. 2014). Information criterion-

based model selection was performed by calculating

AIC and WAIC for independent predictor by scale

models (i.e., each model contained only 1 predictor

measured at 1 scale for 12 total models) and selecting

the scale model with the lowest AIC (Akaike and

Hirotogu 1998) or WAIC (Watanabe 2013; Gelman

et al. 2014) for each predictor (e.g., Kirol et al. 2015).

Study of the ring-necked pheasant (Phasianus

colchicus) population in Nebraska

We demonstrate the applicability of our approach to

species count data collected following a typical field

design where data collection was initially conducted to

estimate abundance and habitat relationships for creat-

ing predictive abundance maps. During April–July of

2016, we conducted multi-species 500 m fixed-radius

aural point count surveys (Robbins et al. 1986) at

roadside sites (Mccarthy et al. 2012) located across the

State of Nebraska. Spatially balanced survey sites were

selected to reflect the background landcover composi-

tion such that predictors of interest were sampled along

a gradient from low to high proportions in amounts

found within the State. We conducted surveys from

15 min before sunrise until approximately 10 a.m.,

when detection rates are highest and most consistent

across species (Hutto et al. 1986), and recorded every

individual seen or heard during a three-minute period.

Additionally, during each survey we recorded the start

time, temperature, percentage cloud cover, and wind-

speed, as these may affect our ability to detect

individuals that are present at each location. We did

not conduct surveys during inclement weather includ-

ing high fog, prolonged rain, or in winds exceeding

20 km/h. Observers conducted between 10 and 15

surveys per day, and each site was sampled four times

(replicates) during the breeding season unless incle-

ment weather precluded surveying.

Landcover variables were derived from the 2010

Rainwater Basin Joint Venture Nebraska Landcover

layer generalized into six classes expected to be

important to pheasants (Conservation Reserve Pro-

gram grasses, grass, row crops, small grains, trees, and

wetlands, 95% overall accuracy; Bishop et al. 2011)

Based on these landcover data, we derived the

proportion of each habitat type surrounding survey

points at seven different buffer sizes: 500 m, 1, 2, 3, 4,

5, and 10 km radii.

Landcover variables (each measured at seven

spatial scales) were entered into our model as covari-

ates (centered on the mean) for pheasant abundance,

including their quadratic effects, while time of day,

date, temperature, cloud cover, and windspeed were

included as covariates in the detection process of the

model along with a random effect for observer. BLISS

and coefficient estimation was based on 75,000

iterations after 25,000 iterations of burn-in.
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Results

Autocorrelation of predictors across spatial scales

Scale selection

Our simulation results demonstrated that when pre-

dictor scale autocorrelation was low (q ¼ 0:30),

BLISS had the highest success in identifying the

correct spatial scales, compared with medium and high

autocorrelation (average posterior probability of true

scale = 0.99; range 0.56–1.00). Of 100 simulated

datasets investigating the best-fitting scales of three

predictor variables BLISS did not mis-select any

incorrect scales. As scale autocorrelation increased to

0.6 (medium correlation) BLISS continued to perform

well, correctly identifying 100% of scales from 100

simulated datasets. Similarly, the average posterior

probability of the true scales remained high 0.99

(range 0.89–1.00) in datasets with medium scale

autocorrelation. The percentage correctly selected

scales began to decrease under high scale autocorre-

lation (12%) and average posterior probability for the

true scales declined to 0.87 (range 0.01–1.00).

Covariate and abundance estimation

Posterior distributions of parameter estimates produced

by BLISS always included the true coefficient value.

Regardless of the level of scale autocorrelation in the

predictors, our mean coefficient estimates were within

0.05 units of the true simulated values (Tables 2, 3, 4).

RMSE was low, and consistent over the simulated

levels of autocorrelation. BLISS could predict site-

specific abundance within 1 simulated individual of the

truth in approximately 79% of cases, and in 93% of

cases predicted abundance within two individuals

irrespective of scale autocorrelation in the predictors.

Temporal and spatial sample size

Scale selection

Scale selection was successful for low, medium, and

high within-season replicate simulations. At medium-

and low-replication, BLISS only misidentified the true

scale in 0, and three instances (1%), respectively. With

6 within-season replicates, BLISS only misidentified

the true scale in two instances (1%). Posterior

probability of the true scale under high within-season

replication was, on average, 0.99 (range 0.15–1.00)

and remained high when within-season replicates were

decreased to 3 (average: 0.99; range 0.89–1.00), and 2

(average: 0.98; range 0.13–1.00).

At high spatial replication, BLISS did not mis-

select any scales, and the posterior probability of the

true scale was high (average: 0.99; range 0.89–1.00).

Scale selection success slightly declined as spatial

replicates were lowered to 2 and 12% mis-selected

under medium, and low replicates, respectively.

Posterior probability in the true scale was high

(average: 0.97; range 0.11–1.00) with medium repli-

cates, but declined to 0.83, on average, (range

0.01–1.00) with only 50 sites sampled.

Covariate and abundance estimation

BLISS returned accurate estimates of predictor coef-

ficients regardless of the number of within-season

replicates. Furthermore, the precision of our estimates

improved with the addition of within-season repli-

cates, as increasing replicates from 3 to 6 narrowed the

credible intervals of coefficient estimates by 0.03

(95% CI 0.01, 0.05). Average RMSE of abundance

decreased as we increased our simulations to 6

replicates per season decreasing by 0.43 compared to

3 replicates (95% CI 0.14, 0.67) and 0.70 compared

with 2 replicates (95% CI 0.44, 0.93). Similarly,

increasing within-season replication improved

BLISS’s accuracy in predicting site-specific abun-

dance. At low replication, predicted abundance was

within 1 individual of the truth in 73% of cases, which

increased to 90% at high replication, while predicted

abundance within 2 individuals of the truth increased

from 89 to 98% of cases.

Bias remained low in estimates of abundance

coefficients across levels of spatial replication

(Table 4); the averaged credible intervals across all

100 replications included the true coefficient values

for all coefficients and scenarios. However, as sample

size decreased, the precision of our estimates

decreased significantly for all predictors. Decreasing

the number of study sites from 200 to 100 widened the

95% credible intervals of coefficient estimates by

0.11, on average (95% CI 0.08, 0.16). Further

decreasing sample size to 50 sites surveyed widened
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the 95% credible intervals by 0.25, on average (95%

CI 0.17, 0.35). Nevertheless, RMSE of these models

were consistently low irrespective of spatial replicate

sample size. Regardless of spatial sample size, BLISS

could predict site-specific abundance within one

simulated individual of the truth in approximately

80% of cases, and in 92% of cases predicted

abundance within two individuals (Fig. 1).

Effect size of abundance predictors and scale

selection

Scale selection

The posterior probability of the true scale was not

different at low or medium spatial scale autocorrela-

tion for the three predictors, which all had different

Table 2 Results of simulation studies for scale autocorrelation (AC)

0.3 AC 0.6 AC 0.9 AC TRUE

Coefficient 1 (a1) 1.29 1.27 1.30 1.25

(1.14, 1.44) (1.12, 1.42) (1.15, 1.44) (0.86, 1.64)

Coefficient 2 (a2) 0.49 0.50 0.50 0.50

(0.35, 0.64) (0.36, 0.65) (0.35, 0.64) (0.40, 0.60)

Coefficient 3 (a3) - 0.79 - 0.80 - 0.82 - 0.80

(- 0.94, - 0.64) (- 0.95, - 0.65) (- 0.97, - 0.67) (- 1.00, - 0.60)

Scale 1 (sc1) 100/100 100/100 100/100 –

Scale 2 (sc2) 100/100 100/100 63/100 –

Scale 3 (sc3) 100/100 100/100 100/100 –

Total 300/300 300/300 263/300 –

RMSE 1.38 1.38 1.45 –

%Abundance ± 1 77 78 77 –

%Abundance ± 2 92 92 91 –

Estimated coefficients (mean of posterior distribution) and 95% credible intervals (2.5 and 97.5% quantiles of the posterior

distribution) of the abundance predictors a1; a2; a3; root mean squared error; number of replications (out of 100) that correctly

selected the scales sc1; sc2; sc3; and percentage of abundance posterior mode estimates within 1 or 2 of the true (simulated) abundance

Table 3 Results of simulation studies for within-season temporal replication

2 replications 3 replications 6 replications TRUE

Coefficient 1 (a1) 1.28 1.27 1.31 1.25

(1.10, 1.45) (1.12, 1.42) (1.18, 1.45) (0.86, 1.64)

Coefficient 2 (a2) 0.51 0.50 0.51 0.50

(0.35, 0.66) (0.36, 0.65) (0.38, 0.64) (0.40, 0.60)

Coefficient 3 (a3) - 0.79 - 0.80 - 0.80 - 0.80

(- 0.94, - 0.63) (- 0.95, - 0.65) (- 0.94, - 0.67) (- 1.00, - 0.60)

Scale 1 (sc1) 100/100 100/100 100/100 –

Scale 2 (sc2) 97/100 100/100 98/100 –

Scale 3 (sc3) 100/100 100/100 100/100 –

Total 297/300 300/300 298/300 –

RMSE 1.65 1.38 0.94 –

%Abundance ± 1 70 78 89 –

%Abundance ± 2 88 92 97 –

Estimated coefficients (mean of posterior distribution) and 95% credible intervals (2.5 and 97.5% quantiles of the posterior

distribution) of the abundance predictors a1; a2; a3; root mean squared error; number of replications (out of 100) that correctly

selected the scales sc1; sc2; sc3; and percentage of abundance posterior mode estimates within 1 or 2 of the true (simulated) abundance
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size coefficients (95% CI of the difference in proba-

bility was not different from zero). Under high

simulated scale autocorrelation between spatial scales,

however, the predictor with the weakest coefficient

had significantly lower posterior probability in the

correct scale than the predictors with bigger coeffi-

cients (mean difference: 0.39; 95% CI 0.00, 0.99).

Posterior probabilities in the true spatial scales were

not impacted by coefficient effect sizes when varying

the amount of temporal replication in datasets (mean

differences always overlapped zero). In our spatial

replication study, the predictor with the weakest

coefficient had significantly lower posterior probabil-

ity in the true scale compared with the strongest

coefficient when the amount of spatial replication was

50 and 100 sites (mean difference 50 sites: 0.40; 95%

CI - 0.02, 0.96; mean difference 100 sites: 0.07; 95%

CI 0.00, 0.66).

Table 4 Results of simulation studies for spatial replication

50 sites 100 sites 200 sites TRUE

Coefficient 1 (a1) 1.33 1.30 1.27 1.25

(1.01, 1.66) (1.09, 1.51) (1.12, 1.42) (0.86, 1.64)

Coefficient 2 (a2) 0.49 0.53 0.50 0.50

(0.15, 0.82) (0.32, 0.73) (0.36, 0.65) (0.40, 0.60)

Coefficient 3 (a3) - 0.79 - 0.79 - 0.80 - 0.80

(- 1.13, - 0.45) (- 0.99, - 0.59) (- 0.95, - 0.65) (- 1.00, - 0.60)

Scale 1 (sc1) 99/100 100/100 100/100 –

Scale 2 (sc2) 72/100 96/100 100/100 –

Scale 3 (sc3) 93/100 97/100 100/100 –

Total 264/300 293/300 300/300 –

RMSE 1.34 1.37 1.38 –

%Abundance ± 1 79 78 78 –

%Abundance ± 2 93 92 92 –

Estimated coefficients (mean of posterior distribution) and 95% credible intervals (2.5 and 97.5% quantiles of the posterior

distribution) of the abundance predictors a1; a2; a3; root mean squared error; number of replications (out of 100) that correctly

selected the scales sc1; sc2; sc3; and percentage of abundance posterior mode estimates within 1 or 2 of the true (simulated) abundance
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Fig. 1 Estimated posterior distribution of abundance coeffi-

cients for three abundance covariates (left, middle, and right

columns) of a representative simulated dataset from study 1.1.

The solid line indicates the mean of the posterior distribution

and the dashed line indicates the mean of the true (simulated)

value. Posterior distributions of scale selection were relatively

unambiguous, and trace plots for abundance coefficient

estimates were well-mixed
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Comparison with existing methods

In our methods comparison simulation study, the

BLISS method was 100% accurate in selecting the

best spatial scales of predictors, out-performing all

other methods compared here (Table 5). Although

selection by backward stepwise elimination, coeffi-

cient strength, and WAIC accurately selected the

spatial scales of predictors in all cases of the uncor-

related predictor scenario, their performance degraded

under conditions of predictor collinearity (Table 4;

q ¼ 0:50). Model selection by AIC, the most com-

monly used method in current multi-scale studies,

displayed the worst performance under both the

uncorrelated and correlated predictor scenarios.

Excluding the BLISS method, which had 100%

accuracy, methods for model selection of spatial

scales performed, on average, worst at selecting the

spatial scale of the predictor with the smallest

coefficient (predictor 2) and performed the best at

selecting the spatial scale for the predictor with the

strongest coefficient size (predictor 1).

Application: scale selection for ring-necked

pheasant abundance in Nebraska

During one breeding season we completed 1464 point

counts at 456 survey sites. Compared with conditions

explored in our simulation studies, autocorrelation

between the multiple spatial scales of landcover

variables was high ([ 0.85), temporal replication

was medium (3–4 replicates per site), and spatial

replication was high ([200 sites).

Scale selection

Using BLISS, we identified 4 predictors that were

clearly supported at well-discriminated spatial scales

in predicting pheasant abundance. Proportion of grass

and trees were estimated to predict pheasant abun-

dance at very local scales (1 km, and 500 m radius

scales, respectively) with high posterior probability

(0.66, 0.89, respectively), while CRP best explained

pheasant abundance at the 2 km radius scale (posterior

probability: 0.99), and the proportion of small grains

acted on pheasant abundance at the largest tested scale

(posterior probability: 0.88; 10 km radius). Although

the posterior probability for the best single spatial

scale was lower than for other well-distinguished

predictors, our model indicated that the proportion of

row crops at 1km best explained pheasant abundance

(posterior probability: 0.41). A single scale could not

be unambiguously selected for the proportion of

wetlands; however, posterior probability was approx-

imately normally distributed around the 4 km radius

scale (posterior probability = 0.34), while the second

most supported scale (3km) had only a marginally

lower posterior probability (0.29) (Fig. 2).

Covariate and abundance estimation

The number of detected pheasants per site ranged from

0 to 9 individuals, and the average modeled abundance

was 17 individuals (estimated intercept: Table 6). We

included linear and quadratic terms in the linear

predictor to allow the relationship between abundance

and the predictor to change signs, which was

Table 5 Results of simulation studies comparing the spatial

scale selection accuracy of four alternative model selection

techniques and BLISS under no between-predictor correlation,

and with moderate between-predictor correlation (q ¼ 0:50).

Values indicate the percentage of simulated datasets where the

correct spatial scale was identified for each predictor variable.

Predictor coefficients were generated following the parameters

described in the simulation study with the mean coefficients

a1 ¼ 1:25, a2 ¼ 0:50, and a3 ¼ �0:80

Between-predictor correlation q ¼ 0:0 Between-predictor correlation q ¼ 0:50

Predictor 1 Predictor 2 Predictor 3 Predictor 1 Predictor 2 Predictor 3

BLISS 100 100 100 100 100 100

Coefficient strength 100 100 100 100 92 100

WAIC 100 100 100 100 60 88

Backward stepwise 100 100 100 100 36 92

AIC 80 76 76 52 48 56
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supported for row crops, CRP, small grain, and

grasses. Wetlands had a strictly positive effect on

abundance; while trees had a strictly negative effect on

abundance (Fig. 3).

Discussion

Organisms use information arising from multiple

spatial scales which shape distribution and space-use

decisions, but statistical methods for determining

such scales are still not widely applied in ecological

studies. Our studies have demonstrated that Bayesian

hierarchical models can be highly effective for

identifying the spatial scales that best explain animal

abundance while also returning accurate predictor

and abundance estimates. BLISS was tested under

various ecologically relevant data limitations encoun-

tered in field-based studies (sample size, # replicates,

0.5 1 2 3 4 5 10

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Row Crops

0.5 1 2 3 4 5 10
Spatial Scale (km)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CRP

0.5 1 2 3 4 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Small Grain

0.5 1 2 3 4 5 10

Po
st

er
io

r P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Grasses

0.5 1 2 3 4 5 10

Spatial Scale (km)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Trees

0.5 1 2 3 4 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Wetlands

Fig. 2 Posterior distributions of the spatial scales (in km) of the land cover abundance predictors row crops, CRP, small grain, grasses,

trees and wetlands for ring-necked pheasants breeding in Nebraska as estimated by BLISS

Table 6 Estimated coefficients (posterior mean) and their

associated 95% credible intervals (CI) based on BLISS applied

to point counts of ring-necked pheasants in Nebraska, USA

Coefficient Posterior mean and 95% CI

Intercept 2.84 (2.21, 3.86)

Crops 0.65 (- 0.28, 1.53)

Crops2 - 1.43 (- 3.51, 0.61)

CRP 4.96 (3.31, 6.69)

CRP2 - 9.43 (- 16.97, - 3.74)

Grasses - 1.04 (- 1.75, - 0.26)

Grasses2 - 2.59 (- 4.44, - 0.37)

Small grains 3.20 (1.87, 4.43)

Small grains2 - 4.01 (- 7.22, - 0.97)

Wetland 5.34 (- 0.17, 10.94)

Wetland2 - 0.36 (- 19.00, 18.83)

Trees - 3.79 (- 6.48, - 1.43)

Trees2 - 1.54 (- 12.03, 8.52)
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autocorrelation, confounding detection covariates).

Unsurprisingly, scale selection accuracy approaches

100% with increasing sample size, and decreasing

spatial autocorrelation between scales within predic-

tors, as these represent ideal conditions. However,

our simulations reveal the utility of BLISS even

when study design and ecological conditions do not

conform to this ideal. Our model-based method for

describing spatial scale relationships is useful when

information on the spatial scale of predictor relation-

ships is uncertain, the aim of the study is model

selection for scales, or for propagating scale uncer-

tainty to subsequent analyses. However, insight

gained from purely observational studies should be

evaluated within the limits of correlational research.

Varying the degree of scale autocorrelation in our

predictors introduced uncertainty in the identification

of true scale relationships as correlations increased.

This result is unsurprising given that neighboring

scales will appear very similar at such high correlation

and will explain the data reasonably well when

substituted for the true scale. When neighboring scales

are highly correlated, it would be necessary to

consider whether a single ecological process governs

the abundance-relationship at those scales (e.g., mul-

tiple scales are predicting the same ecological rela-

tionship), whether the species of interest can perceive

a difference between the scales being considered

(Nams 2005), and differences in efficiency of collect-

ing data at those scales, to guide model-selection

decisions or target further studies.

Strong correlation between different scales of the

same predictor had no effect on BLISS’s ability to

retrieve accurate coefficient or abundance estimates.

Unlike model selection procedures that evaluate

models containing multiple scales of predictors simul-

taneously, BLISS does not suffer from collinearity

within scales of predictor variables (Lennon 2000;

Overmars et al. 2003). This is especially relevant

when the research interest lies in estimating and

interpreting sign and magnitude of coefficients, as the

simultaneous inclusion of highly collinear predictors

can lead to identification problems and severely biased

estimates which can easily be avoided in our method.

BLISS had decreasing success in identifying scales

when there was a relatively weak relationship (effect

size) between the predictor and abundance; however,

this was only detectable when scale autocorrelation
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Fig. 3 Marginal effects (mean: black line; 95% CI: gray lines) of landcover predictors on relative pheasant abundance. The range of the

x-axis represents values of landcover predictors measured as proportions sampled in Nebraska
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was high, or spatial replication was medium or low, as

variables that contribute little to the variation of the

population mean ks;t will only change the population

mean and likelihood by small amounts. If the posterior

mass is widely dispersed over several candidate scales,

only limited confidence can be placed on any one

single-scale model. Rather, uncertainty propagation,

or model averaging should be employed, the former of

which is straightforward in a Bayesian framework.

We did not see an effect of varying the number of

within-season replicates on our ability to successfully

identify scale relationships. This is fully expected in a

closed population model, because there was only one

set of predictors and abundance for each site and

season, and additional detection data do not provide

additional habitat information. We expect that extend-

ing the duration of study to multiple seasons would

improve model performance, because this would

provide additional unique habitat information. The

effect of temporal replication manifested itself only in

the accuracy of abundance estimates. While the

accuracy and precision of coefficient estimates were

consistent, there was a positive relationship between

accuracy of site-specific abundance predictions and

replication, resulting in lower RMSE with increased

replication, similar to results presented in simulation

studies of occupancy probabilities (Guillera-Arroita

et al. 2014).

The number of field sites sampled seasonally had a

small, but noticeable, impact on the success of spatial

scale identification, as increasing the number of sites

sampled adds additional data to the estimation of the

ecological model. Furthermore, the results of this

simulation demonstrate a significant increase in pre-

cision in predictor coefficient estimates with sample

size, while bias remained low across simulations;

additional sites provide additional data for the eco-

logical model, which then yields a narrower high

likelihood density area, and by extension, a narrower

high posterior density (HPD) area.

In all simulation studies, some of the generated

datasets performed poorly in the scale selection

procedure (e.g., there was less than 50% of the

posterior probability in the single simulated ‘true’

scale). This was noticeable primarily in simulation

studies with high autocorrelation (0.90) between

different scales of the predictors, or where sample

size was low (N ¼ 50 replicate sites). In most cases,

particularly within the simulation study with low

spatial replication, there was no detectable lack of

convergence. However, we noticed that the posterior

means of the abundance coefficients of each individual

simulation replicate (out of the 100) were typically

slightly biased, while the aggregated distributions of

the 100 simulation posterior mean estimates were

centered around the true coefficient means. This

observation is indicative of the randomness contained

in the simulated datasets and not a problem with the

proposed estimation approach. When drawing a sam-

ple from a data generation process (DGP), each

sample’s moments and other characteristics are typ-

ically different from those of the DGP, but a single,

noisy sample is the only data available on which to

apply the estimation procedure. In small samples,

noise is more pronounced, which leads to greater error

in selection results. In a few cases, a lack of

convergence in the MCMC samples was the likely

driver of mis-selection. This situation occurred most

frequently in scenarios with highly correlated vari-

ables (as in study 1.3). We re-ran a subset of these

datasets, and in most of the re-runs, the MCMC output

converged well and scale selection results were

improved. This illustrates the need for researchers to

perform algorithm-checking steps.

In two additional simulation studies, we demon-

strated that BLISS outperforms other methods of

model selection used to identify important spatial

scales in ecological modeling. Not only did BLISS

correctly identify the true scales of predictors in 100%

of cases, BLISS required only estimating a single

model (runtime (hh:mm): 00:13, on average 90%

faster than other methods), compared with 9 models in

backward stepwise (runtime: 02:21), four models in

the coefficient strength method (runtime: 01:11), and

12 models in both AIC and WAIC selection (runtime:

02:52). To achieve the same flexibility in scale

combinations, AIC and WAIC procedures would

require estimating 64 models, representing all possible

predictor by scale combinations (extrapolated run-

time: 15:16). We expect that if all possible model

combinations are estimated and selection is performed

using AIC or WAIC, that the correct model would be

identified, although at a substantial runtime cost.

Although the use of AIC is known to be problematic

for hierarchical or random effects models, it is

disconcerting that AIC model selection performed

worst, of the methods evaluated here, given that it is
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the most heavily used method in multi-scale studies.

Indeed, while all methods excluding AIC could iden-

tify the true spatial scales when predictor variables

were uncorrelated, AIC failed to select true scales both

under moderate between-predictor correlation, and no

correlation. Some degree of predictor collinearity is

generally the rule in ecological studies, and particu-

larly in investigations of species-habitat relationships

where correlated environmental variables are hypoth-

esized to predict abundance or occurrence at a

location. Researchers often rely on rules of thumb

(e.g., remove variables with q[ 0:5; 0:6; or 0:7; or

variable inflation factor greater than 10) when con-

sidering the impact of collinearity on model inference.

Between-predictor correlations such as the one used in

our simulation are not uncommon in field investiga-

tions. This highlights the necessity of simulation

studies to identify under what conditions particular

methods perform well, and further investigation into

the performance properties of AIC model selection

applied to scale-selection scenarios seems warranted.

Selection based on estimated coefficient strength

ranked second in performance after BLISS although

it is not widely used. Also not commonly used, likely

due to its recent introduction to ecological literature,

WAIC was the third best model selection method

considered here. WAIC is an appealing option for

model selection as it can be interpreted much the same

as AIC, which is commonly applied in ecological

studies, and is a fully Bayesian method. However,

because it is a relatively new information criterion, its

properties are likely the least well studied and there is

little guidance in calculating the metric in commonly

used software. Because of their poor performance, we

cannot recommend backward stepwise or AIC model

selection in multi-scale studies without further inves-

tigation and validation of their use in similar studies.

We applied our method to a case study of ring-

necked pheasants, investigating 6 predictors measured

at seven spatial scales. Ring-necked pheasants are a

culturally and economically important species in

Nebraska that is heavily managed to maintain viable

populations and provide adequate hunting opportuni-

ties. To provide the most effective habitat manage-

ment to maintain or increase populations, wildlife

managers must either acquire parcels of land with

local and neighborhood characteristics that are con-

ducive to supporting high pheasant abundance, or alter

the environment to produce habitat that can sustain

high pheasant abundance. Because it is rarely feasible

to conduct habitat management at large spatial scales,

our results suggest that managers might most effi-

ciently focus their energy on altering row crops, CRP

grasses, non-CRP grasses, or woodland, as pheasant

abundance is associated with these landcover types at

relatively small scales (e.g., 2 km radius or smaller).

Contrariwise, managers are less likely to affect

pheasant abundance through management of either

small grains, or wetlands in Nebraska, as the relation-

ship with these landcover types manifests at pro-

hibitively large spatial scales. Using Bayesian model

selection, we could determine important spatial scales

by running a single model (runtime: 13 min). If we

were to implement typical frequentist or information-

theory model selection with the same flexibility in

identifying scales, we would have had to estimate

117,649 separate models (representing all possible

scale combinations; runtime 1062 days), an inefficient

method of model selection given the available

Bayesian alternative.

In a similar study of ring-necked pheasants in

Nebraska, Jorgensen et al. (2014) created a mixed-

scale model based on effect size selection from

Bayesian hierarchical N-mixture models of predictors

estimated separately at 2 scales (local management:

1 km radius, and landscape: 5 km radius). The authors

chose to model predictors separately by scale because

of autocorrelation, and avoided information criteria

(i.e., AIC, BIC, DIC) because of their inappropriate-

ness for hierarchical mixture models. Because of these

issues, and because reversible-jump MCMC methods

of model selection had not yet been introduced in the

multi-scale ecology literature, Jorgensen et al. were

unable to estimate optimal models. For example, the

authors simplified model structure in the effect size

selection procedure to ignore quadratic effects, which

were expected and included in their final, mixed-scale

model, and clearly supported in our analysis. Addi-

tionally, during model selection, the authors were

limited to evaluating the effect sizes of predictors only

when other predictors were included at the same scale.

We demonstrate that nearly all landcover variables

optimally explain pheasant abundance at different

spatial scales, which was not possible to reflect with

the previous analysis workflow. It is important to

investigate a larger candidate model space when

spatial scales are unknown a priori. Indeed, when

allowed to select from a larger space, the optimal
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spatial scales of landcover predictors ranged from 0.5

to 10 km radii with only three landcover predictors

with similar selected scales between the two methods

(effect size selection/BLISS: CRP 1/2 km, Grasses

1/1 km, Wetlands 5/4 km).

Conclusions

We have clearly demonstrated the performance of

BLISS for the selection of spatial scales and coefficient

estimation of abundance predictors. The greatest utility

of BLISS is providing investigators with an extremely

efficient tool to explore candidate spatial scale space,

coupled with its superior estimation accuracy. Current

approaches to selecting the spatial scales of predictors

are typically implemented under acknowledged sub-

optimal caveats because most familiar model selection

methods were not developed to be used under condi-

tions of collinearity, or with hierarchical, or mixture

models, with serious implications for drawing appro-

priate inferences. However, with the development of

analytical approaches, availability of software, and

accessibility of data, hierarchical and mixture models

are increasingly used to understand spatial ecological

processes in uni-scale but not multi-scale investiga-

tions. Therefore, models such as BLISS, which over-

come the drawbacks of typical model selection

methods, are an important progression in ecology,

allowing scientists to adequately conduct multi-scale

studies. We think it is critical that studies relying on

model selection techniques not developed for the

implemented models of choice (e.g., AIC for selection

in hierarchical models) first validate their performance

under particular study designs and data structure. Only

then can we be confident about results and inferences

made from such analyses. BLISS has promise for

substantial generalization and future research will

include estimating species occurrence, distribution,

and resource use, and in non-hierarchical settings or

with different model error distributions.
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