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2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell
death and cytochrome P4501A expression in developing
Fundulus heteroclitus embryos
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Abstract

Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early develop-
ment using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included
hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LCs, and LDs, of TCDD for
Fundulus embryos were ~ 19.7 +9.5 pg TCDD/ul (water bath) and 0.25 4+ 0.09 ng TCDD/g embryo (nanoinjection).
To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell
death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death
in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was
also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular
tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in
some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar,
while CYP1A expression appeared more sensitive to TCDD induction. © 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Certain halogenated aromatic hydrocarbons in-
cluding 2,3,7,8 - tetrachlorodibenzo - p - dioxin
(TCDD) are extremely toxic to early life stages of
a variety of fish, avian, and mammalian species
(Peterson et al., 1993). TCDD is a teratogen and
developmental toxicant in many species but is
especially potent at inducing hydronephrosis and
cleft palate in mouse embryos (Birnbaum, 1994).
TCDD can also affect the endocrine and repro-
ductive systems (Peterson et al., 1993; Birnbaum,
1994; Heimler et al., 1998), as well as the develop-
ment of other organ systems (Sakamoto et al.,
1995; Henshel, 1998; MacLusky et al., 1998).

In the laboratory TCDD has been shown to
induce abnormal development similar to blue sac
disease and increase cell death (especially in vas-
cular endothelium) in medaka (Oryzias latipes)
embryos (Cantrell et al., 1996, 1998). Spitsbergen
et al. (1991) also found the developing vascular
tissue is a sensitive target of TCDD in fish em-
bryos and fry. Furthermore, TCDD-induced vas-
cular cell death was correlated with
embryotoxicity and co-localized with CYP1A ex-
pression in the vasculature of medaka, and sub-
lethal doses of TCDD increased cell death in
digestive and gill tissues (Cantrell et al., 1998). In
TCDD-exposed trout embryos, endothelial
CYPI1A expression and sac fry mortality occurred
with similar dose—response relationships (Guiney,
et al., 1997).

TCDD acts on the cell through the aryl hydro-
carbon receptor (AhR) leading to induction of
CYPI1A activity and altered expression of other
genes encoding detoxification enzymes such as
CYP1A2, CYPIBI, and NAD(P)H:Quinone oxi-
doreductase (Nebert et al., 1990, 2000; reviewed in
Whitlock et al., 1997). Stimulation of CYP1A and
other enzymes can lead to cellular and physiologi-
cal signs of oxidative stress (Stegeman and Hahn,
1994; Yao et al.,, 1995) and may contribute to
cellular damage and cell death (Kurl et al., 1993;
Sakamoto et al., 1995).

Programmed cell death is an important process
of normal development which can be easily al-
tered by extraneous or toxic signals to cells. It
appears that many teratogens, including TCDD,

can act by altering apoptosis resulting in develop-
mental abnormalities (Sulik et al., 1988;
Sakamoto, et al., 1995). In addition, TCDD-in-
duced teratogenesis in mice, and presumably
other mammals, is AhR-dependent (Mimura, et
al., 1997; Peters et al., 1999).

Cytochrome P450 enzyme systems are present
and active at a low level during embryonic devel-
opment in Fundulus (Binder and Stegeman, 1984).
Cytochrome P450-dependent aryl hydrocarbon
hydroxylase (AHH) enzyme activity is inducible
by halogenated hydrocarbons before hatching,
but basal microsomal AHH activity and its in-
ducibility by PCBs increase within 24 h of hatch-
ing (Binder and Stegeman, 1980, 1984; Binder et
al., 1985). Recently, a Fundulus CYP1A cDNA
has been cloned (Morrison et al., 1998). Although
the expression of CYPIA and other CYPs in
adult and embryonic Fundulus has been described
previously, immunohistochemical localization of
constitutive or induced CYP1A expression in de-
veloping Fundulus embryos has not been reported.

The mummichog Fundulus heteroclitus, a com-
mon and widespread marine/estuarine fish along
the Atlantic coast of the United States, is used as
a model species for both ecological and toxicolog-
ical studies. Fundulus is emerging as an especially
valuable model organism for developmental toxi-
cology. The reproductive and developmental biol-
ogy of Fundulus is well known (Armstrong and
Child, 1965; Selman and Wallace, 1986), and this
species possesses many of the same attributes that
have motivated resecarch on development in ze-
brafish (Detrich et al., 1999). In addition, Fun-
dulus has been important in studies of
evolutionary adaptation to changing environmen-
tal conditions (Powers and Schulte, 1998). Several
wild populations of Fundulus have developed re-
sistance to toxicants including TCDD (reviewed
in Hahn, 1998). An understanding of the mecha-
nism of TCDD embryotoxicity in Fundulus will
help us to determine mechanisms of resistance in
these populations. Although TCDD embryotoxic-
ity has been well characterized in several freshwa-
ter fish species (Spitsbergen et al., 1991; Henry et
al. 1997; Elonen et al., 1998), there is little infor-
mation on the sensitivity of marine fish to TCDD.
Therefore, we determined the effects of TCDD on
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development, cell death, and CYPIA expression in
the embryos of F. heteroclitus in order to charac-
terize the response to TCDD in this important
marine species.

2. Methods
2.1. Chemicals

Instant Ocean, Tetramin®, and brine shrimp
flakes were from Pet Warehouse (Dayton, OH).
AEC (3-amino-9-ethylcarbazole) kit, BSA,
paraformaldehyde, salts, HEPES, hematoxylin,
triolein, and peroxidase were from Sigma (St.
Louis, MO). Tdt enzyme was from Promega
(Madison, WI), and 12-FL-dUTP and digoxy-
genin-dUTP were from Boehringer Mannheim
(Indianapolis, IN). Secondary antibodies were
from BioRad Labs (Richmond, CA). Paraffin was
from Fisher (Suwanee, GA). TCDD was a gift
from Dow Chemical Co., and the purity ( > 98%)
and concentrations were confirmed by gas chro-
matography/ mass spectrometry.

2.2. Fish

Adult Fundulus were collected from tidal
streams near Beaufort, NC and were maintained
in aquaria at Duke University using American
Association for the Accreditation of Laboratory
Animal Care (AAALAC) approved facilities and
protocols. The aquaria were filled with dechlori-
nated water containing sufficient Instant Ocean to
produce artificial sea water (ASW) with a salinity
of (18—20 ppt); the water was changed one to two
times per week. The fish were fed Tetramin® flake
food twice and brine shrimp flakes once daily to
maintain breeding condition. The water tempera-
ture (23°C) and photoperiod (14:10, light:dark)
were also set to induce breeding condition.

Eggs and milt of Fundulus were collected manu-
ally according to Armstrong and Child (1965).
Eggs were fertilized by mixing with sperm and
after 20 min were rinsed three times with ASW.
Fertilized eggs were allowed to develop for several
hours, and only embryos that appeared normal
were used for TCDD exposures.

2.3. Nanoinjection

One group of embryos (20 embryos per dose) at
stage 16 (Armstrong and Child, 1965) was exposed
to TCDD via nanoinjection according to Walker
et al. (1996) and Wilson and Tillitt (1996). TCDD
was dissolved in triolein and injected into the yolk
of each embryo at the following concentrations: 0
(triolein), 0.025, 0.05, 0.5, 5 and 20 ng/g embryo.
The embryos were then allowed to develop in petri
dishes with filter paper soaked in ASW. Their
development was monitored daily, and any abnor-
malities were noted. These embryos were used to
confirm the embryotoxicity results of the water
bath exposed embryos and to obtain a number for
the LD5,. We did not have enough injected em-
bryos to also do TUNEL and CYPIA assays.

2.4. Water bath exposure

A second group of embryos (40 embryos per
dose) at stage 16 was exposed to TCDD in a water
bath. Each embryo was placed in 20 pl of ASW
containing 2 pl of TCDD solution in iso-octane at
the following concentrations: 0, 0+ 2 pl triolein,
3.1, 6.2, 12.5, 25, 50, 100 or 500 pg/ul. Embryos
were removed from the TCDD solutions after 2 h
and allowed to develop on filter paper soaked in
ASW.

Embryos developed at 22°C, and morphology
was monitored daily. Three criteria: (1) presence
of a beating heart; (2) intact pericardial sac; and
(3) circulating blood were used to assess embryo
viability. At various stages during development
[early (stage 28—29); mid (stage 31-32); late (stage
35-36) (Armstrong and Child, 1965)] six embryos
from each dose of TCDD (water bath exposure)
were collected and fixed for analysis of cell death
and CYPIA expression.

2.5. Embryo preparation

Embryos (water bath exposed) were fixed in 4%
paraformaldehyde in HEPES buffer containing
350 mM NacCl, 150 mM HEPES, and 10 mM
CaCl, (pH 7.2) overnight at 4°C. After 1 h, a hole
was made in the chorion surrounding the embryo
to ensure penetration of the fixative. Embryos
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were rinsed for 1 h in phosphate buffered saline
(PBS) and dehydrated in 50 and 70% ethanol for
1 h each. The chorions were removed, and the
embryos stored in 70% ethanol at 4°C.

Embryos were further dehydrated in 95% etha-
nol and two changes of 100% ethanol before
clearing in two changes of xylenes and infiltration
with paraffin at 56°C. Embryos were embedded in
paraffin, cut into 10 pum thick sections, and
mounted on superfrost plus slides (Fisher).

2.6. TUNEL assay

Cell death was analyzed with an in situ end-la-
beling assay that uses terminal deoxynucleotidyl
transferase (TdT; TUNEL assay; Gavrieli et al.,
1992). TdT catalyzes the addition of a labeled
nucleotide to the 3’ OH ends of DNA. Greater 3’
OH labeling indicates increased DNA fragmenta-
tion, a distinguishing characteristic of apoptosis.
This assay was carried out on sections of Fundulus
embryos using a protocol similar to Piqueras et al.
(1996) using both fluorescent and non-flourescent
labeling techniques. A nonfluorescent method was
used to confirm results with the fluorescent
method in which the embryos had some back-
ground autofluorescence. Embryo sections were
labeled with either fluorescein-dUTP or digoxy-
genin-dUTP with a secondary antibody conju-
gated to horseradish peroxidase (HRP). Thus
apoptotic cells were detected with epifluorescence
or light microscopy depending on the label used.
Briefly, embryo sections were deparaffinized, re-
hydrated, and prepared for the TUNEL assay [10
min in 0.01 mg/ml proteinase K at 37°C; rinse in
dH,0; 10 min in 1% bovine serum albumin (BSA)
in PBS; rinse in PBS; 5 min in TdT buffer
(Promega)]. The non-fluorescent TUNEL assay
included an incubation in 2% hydrogen peroxide
for 15 min to block endogenous peroxidases.

The sections were then incubated in assay
buffer containing 6 U of TdT enzyme and 0.3
nmol of labeled nucleotide for 1 h at 37°C. The
reaction was stopped with 200 pl of 0.5M EDTA
followed by two rinses in PBS. The slides were
counterstained with Harris’ hematoxylin for sev-
eral seconds, rinsed in tap water, and mounted in
glycerol mounting medium (Sigma).

Non-fluorescent digoxygenin-dUTP was de-
tected using a peroxidase labeling method. Slides
for this assay were treated for 5 min in 2%
hydrogen peroxide following proteinase K treat-
ment and before the TUNEL assay. Following
the TUNEL assay these slides were incubated in
PBS containing 1% BSA and 400 mU/ml of anti-
digoxygenin-peroxidase antibody (Boerhinger
Mannheim) for 1 h at 37°C. The slides were then
washed 3 times in PBS. Color was developed
using an AEC kit according to the kit instruc-
tions, and slides were counterstained with Harris’
hematoxylin for several seconds, rinsed in tap
water, and mounted in glycerol mounting
medium.

TUNEL-positive (apoptotic) cells were counted
in a single section with the greatest number of
tissues represented and uniformly stained from
each embryo. Quantification was done directly on
the microscope or using photomicrographs of the
sections. Cells were counted in the following tis-
sues: brain, eye, gill, kidney, tail, vasculature,
intestine, liver, heart, and mouth. In most cases
apoptotic cells were counted in sections from at
least 6 embryos, and the average number of
TUNEL positive cells per section was calculated.
In a few cases, certain tissues were not represented
in sections from every embryo, thus decreasing
the statistical significance of those results. Results
from both the fluorescent and nonfluorescent la-
beling techniques were combined as there was no
difference except for the level of background
autofluorescence.

2.7. Cytochrome P450 assay

Immunohistochemistry was done according to
the methods of Smolowitz et al. (1991) with mod-
ifications. In brief, embryo sections were de-
paraffinized and hydrated in 1% BSA in PBS. The
sections were inserted into Shandon coverplates
(Shandon Lipshaw Inc., Pittsburg, PA) and incu-
bated with normal goat serum for 5 min to block
nonspecific binding of the secondary antibody.
This was followed by two 1-h incubations with
150 pl of monoclonal antibody 1-12-3 (Park et al.,
1986). The specificity of this antibody for CYP1A
has been shown previously (Miller et al., 1989).
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Sections were washed with PBS/BSA after this
step and the two following steps. The sections
were incubated with secondary antibody (Goat
antimouse IgG) for 20 min, followed by perox-
idase-linked mouse IgG, also for 20 min. After
washing with PBS/BSA and then PBS, two 15-
min incubations (150 pl each) of color developer
(Signet; Dedham, MA) were added. Sections were
then washed with water, removed from the Shan-
don covers, and washed twice with water. Sections
were next counter stained with Mayer’s hema-
toxylin and mounted in crystalmount. After dry-
ing, coverslips were attached with permount.
Sections of liver from induced and uninduced
scup (Stenotomus chrysops) were run with each
batch of embryo sections as a positive and nega-
tive control, respectively. When sufficient sections
were available, matching sections were stained
with a nonspecific IgG (purified mouse myeloma
protein, UPC-10) as a negative control. Sections
were read blind and scored on two scales, occur-
rence: 0 (no cells staining) to 3 (all cells staining)
and intensity: 0 (no staining) to 5 (very dark red
staining). These two scores were multiplied for a
final score (‘staining index’) of 0—15.

2.8. Statistics

Statistical analysis of the apoptosis and CYPIA
expression results included analysis of variance
(ANOVA) of each treatment compared with con-
trols (P < 0.05) using Microsoft EXCEL (Red-
mond, WA). To determine LD, and LC,, values,
control corrected mortality data was analyzed by
probit analysis (PlotIT Software, Haslett, MI)
with a P value < 0.05. The procedure includes a
chi-square goodness-of-fit test (P value > 0.05) to
determine if the probit model fits the data.

3. Results
3.1. Embryotoxicity

Fundulus embryos exposed to TCDD had a
dose-dependent increase in developmental and

vascular abnormalities as well as mortality. The
observed defects included hemorrhaging, edema,

loss of vascular integrity and reduced blood flow,
and stunted development. These defects first be-
came apparent 4 days after exposure to TCDD at
approximately stage 28 of development and were
present in embryos from both exposure regimes.
This stage is marked by the development of reti-
nal pigment in the eye, and vascular circulation is
well established. By stage 28 most of the organs
have formed, and the embryo is undergoing
growth and organodifferentiation (Armstrong and
Child, 1965).

TCDD caused significant embryo mortality at
moderate and high exposures with the LCs, at
19.7 £9.5 pg/ul (water bath exposure) and the
LD, at 0.25 +0.09 ng/g embryo (nanoinjection;
Fig. 1). Most of the embryos that received a dose
of TCDD of 20 ng/g embryo and 500 pg/ul died
later in development, near hatching (stages 33—
35).

3.2. Apoptosis

Apoptosis was analyzed in all identifiable tis-
sues; however, many of the embryos did not have
all tissues represented even in the best section.
Thus, results are shown for the tissues that were
consistently seen in most of the embryos, while
results in other tissues are discussed.

TCDD caused a dose-dependent increase in the
number of apoptotic cells (TUNEL-positive cells)
in several tissues of water-bath exposed embryos
(Fig. 2). In the early embryos (stage 28—29), only
a few tissues were consistently identified (brain,
eye, tail, and vascular tissue) for which the num-
bers of dying cells increased with TCDD exposure
(Fig. 2A). The early embryos also had a TCDD
dose-dependent increase in TUNEL-positive cells
in intestine (data not shown). The control em-
bryos had very few apoptotic cells in each of these
tissues.

Mid- and late-stage embryos exposed to TCDD
displayed an increase in apoptosis in the brain,
eye, gill, kidney, tail, and vasculature relative to
controls (Fig. 2B,C). The number of TUNEL-
positive cells in intestine were approximately eight
to 13-fold higher when compared to control (data
not shown). In TCDD-treated late-stage embryos
there were also higher numbers of apoptotic cells
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in the heart and mouth, but not in liver (data not
shown).

Late-stage embryos had apoptotic cell death
induced by TCDD treatment in several tissues
including eye, brain, gill, and intestine (Fig. 3).
Control embryos had some autofluorescence but
very few TUNEL-positive cells (Fig. 3A). Con-
versely, embryos exposed to TCDD had more
TUNEL-positive cells that appeared as bright,

Al .
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Fig. 1. Mortality of Fundulus embryos exposed to TCDD via
microinjection (A) or water bath exposure (B). Embryos were
exposed to TCDD during early development and viability was
assessed through hatching. The percent of dead embryos
(those lacking a heartbeat, pericardial sac, or circulating
blood) vs. dose of TCDD are graphed with values representing
the average of three experiments for (A) and six experiments
for (B). Error bars represent S.E.M.
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Fig. 2. Graphs of cell death in tissues of Fundulus embryos
exposed to TCDD. Embryos were exposed to TCDD for 2 h
in early development and were allowed to develop to three
different stages [early (A), mid (B), and late (C)] before
analysis of cell death. The bars represent the number of
TUNEL-positive cells in several tissues of embryos exposed to
increasing concentrations of TCDD (Unt. =0 pg/ul TCDD;
6.1 pg/ul TCDD, 12.5 pg/ul TCDD, and 50 pg/ul TCDD).
Error bars represent S.E.M. ***P < 0.001, **P < 0.01, *P <
0.1.

punctate spots (Fig. 3B,C). Higher magnification
of (B) shows regions of cell death in the brain and
gill (Fig. 3D).

3.3. Cytochrome P4501A4 expression

CYPIA expression, as assessed by immunohis-
tochemical staining with monoclonal antibody 1-
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12-3, was induced in Fundulus embryos at all
doses of TCDD (Figs. 4 and 5). Early embryos
had greatest CYPIA expression in the vascula-
ture of the brain and eye, liver, kidney, and
cardiovascular tissue (Fig. 4A). Mid- and late-
stage embryos also had large increases in
CYPIA expression with TCDD exposure in a
variety of tissues (Fig. 4B,C). Expression of
CYPIA was increased in the vascular endothe-
lium of the brain and eye but not in the sur-
rounding neural or ocular tissue, which is a
different pattern than for the TUNEL-positive
cells. Increased CYP1A expression was also ob-
served in vasculature of gill, liver, and intestine

as well as in epithelial cells of these tissues (Fig.
4 and data not shown). In mid- and late-stage
embryos, TCDD also induced CYPIA expres-
sion in the vascular endothelium in the heart
(data not shown).

The CYPIA staining of control and
TCDD-treated, late-stage embryos is illustrated in
Fig. 5. Control embryos had no apparent staining
for CYP1A (Fig. 5A). All doses of TCDD in-
creased the amount of reddish brown CYPIA
staining in a variety of tissues (Fig. 5B—D), and in
mid- and late-stage embryos CYPIA expression
was maximally induced even at the lowest dose
(Figs. 4 and 5). In addition to high CYPIA

Fig. 3. Photomicrographs of late stage Fundulus embryos after the TUNEL assay. Control embryos (A) show background
autoflourescence but very little bright, punctate staining that is apparent in TCDD-exposed embryos (B—D). Embryos exposed to
12.5 (B) and 50 (C) pg/ul TCDD have an increase in the number of TUNEL-positive cells (arrows) in several tissue including gill,
brain, eye and intestine. The photomicrograph in (D) is a higher magnification of (B) showing the bright, punctate and scattered

nature of the TUNEL-positive cells.



134 B.H. Toomey et al. / Aquatic Toxicology 53 (2001) 127—-138

A. Early
>
o
E Ount.
o B 6.1pg/ul
E 12.5pg/ul
& M 50pg/pl
3 z 2 3 g
v @ 4
] 2 s
Tissue
B. Mid
OUnt.

&6.1pg/ul
12.5pg/ul
M 50pg/pl

Staining Index

Gill
Liv. P
Kid.

>
]
[
>
w

Tissue

C. Late

Ount.
B6.1pg/pl

12.5pg/ut
M SOpg/ul

Staining Index
)

33 3 B3 £ o &

I 3 &% I 2 2 g

&5 o = - i3 <

& o >
Tissue

Fig. 4. Graphs of the CYPIA staining index in tissues of
Fundulus embryos exposed to TCDD. Embryos were exposed
to TCDD for 2 h in early development and were allowed to
develop to three different stages early (A), mid (B), and late
(C) before analysis of CYPIA expression. The bars represent
the average staining index in several tissues of embryos ex-
posed to increasing concentrations of TCDD (Unt. =0 pg/pl
TCDD; 6.1 pg/ul TCDD, 12.5 pg/ul TCDD, and 50 pg/ul
TCDD). Error bars represent S.E.M. ***P < (.001, **P <
0.01, *P <0.1.

expression in the kidney tubules and overall em-
bryonic vasculature, much of the expression in the
brain and intestine is in the vascular tissue of
those organs, especially at the lower doses (Fig.
5B,C; note the elongated staining pattern).

4. Discussion

TCDD is a potent developmental toxicant and
causes vascular problems in a variety of fish em-
bryos (Peterson, et al., 1993). Fundulus embryos
exposed to TCDD had defects similar to other
fish embryos (Walker et al., 1991; Cantrell et al.
1996, 1998; Guiney et al., 1997; Hornung et al.,
1999) including hemorrhaging, edema, loss of
blood flow, and stunted development. Our injec-
tion data of the toxicity of TCDD indicates that
Fundulus embryos (LD, &~ 250 pg/g embryo) were
more sensitive than medaka embryos (LCspeg, &
1250 pg/g egg) and zebrafish embryos (LCspeq, =
2500 pg/g egg) and less sensitive than lake trout
embryos (LCsge., & 50-100 pg/g egg) (Elonen et
al., 1998). The LDy, value we observed in Fun-
dulus is lower than expected considering the simi-
lar relative sensitivities of medaka and Fundulus to
other compounds and other mechanisms. How-
ever, a range of LDy, values for TCDD can exist
within a species, dependent on exposure condi-
tions or strain of fish (Walker et al., 1991; Wright
et al.,, 1996). It is also interesting to note that
certain populations of Fundulus can develop resis-
tance to TCDD in the environment (Prince and
Cooper, 1995; Elskus et al., 1999; Hahn, 1998).
Thus, both physiological and genetic factors can
influence the relative sensitivity of a particular
strain (or population) of fish within a species.

TCDD-induced apoptosis in Fundulus embryos
is consistent with the tissue-specific patterns ob-
served in medaka embryos (Cantrell et al., 1996,
1998). Vascular tissue in early stage embryos was
a sensitive target of TCDD, but many other tis-
sues also had increased cell death suggesting that
vascular tissue was not the only target of TCDD-
induced apoptosis in Fundulus embryos. The pre-
vious studies with medaka embryos identified cell
death in the medial yolk vein as the primary
target site of TCDD exposure in early embryos.
We were unable to locate this vessel consistently
in sections of Fundulus embryos, possibly due to
the extensive nature of the vasculature or disrup-
tion of the yolk and surrounding vessels during
embryo processing. The similar tissue-specific pat-
terns of apoptosis seen in medaka and Fundulus
do, however, suggest a similar response to TCDD
exposure in these fish species.



B.H. Toomey et al. / Aquatic

Other tissues in which apoptosis was increased
by TCDD exposure included brain, eye, gill, kid-
ney, tail, and intestine. In most cases it was not
possible to identify apoptosis specifically in the
vascular tissue of these organs (e.g. if a vessel was
viewed in cross section, it might look like a single
TUNEL-positive cell). In some of these nonvascu-
lar tissues, the increase in cell death may have
resulted from the deterioration of the blood ves-
sels supplying that tissue. That is, cell death in
some tissues, such as neuronal tissue, may be
secondary to the primary insults caused by
TCDD. This hypothesis is consistent with the
observation in medaka that cell death in neural
tissues had a different slope of the dose—response
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curve as compared with mortality (Cantrell et al.,
1998). The timing of embryo collection for the
apoptosis assay is also likely to be an important
factor in detecting vascular cell death. Apoptosis
is a rapid process in which the celluar products do
not remain. Therefore, one must catch the cells in
the dying process to detect them.

There was an increase in CYPIA expression in
Fundulus embryos exposed to TCDD in addition
to an increase in apoptotic cells. It appears that
CYPI1A expression is a more sensitive response
than apoptosis. However, CYP1A expression is
prolonged whereas cell death occurs quickly, and
the window in which the latter can be detected by
the TUNEL assay is narrow. Thus, the differences

Fig. 5. Photomicrographs of Late stage Fundulus embryos after immunostaining for CYP1A. The control embryo (A) has no reddish
brown CYPIA labeling. Embryos exposed to 6.1 pg/ul TCDD (B) have increased CYPI1A staining in the kidney and vascular cells
in the gill and intestine. The embryo exposed to 12.5 pg/ul TCDD also has a large increase in staining in the liver and vasculature,
and the embryo exposed to 50 pg/pl TCDD has very dark CYPIA staining in the embryonic vasculature, kidney, liver, intestine and

gill.
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we observed may be due to timing. There was
co-occurrence of TCDD-induced cell death and
CYPI1A expression in some tissues and cell types
(vasculature, gill, intestine). However, in other
tissues (brain, eye, liver), CYP1A expression and
cell death did not co-occur in the same cell type.
A primary site for TCDD-induced CYPIA ex-
pression was the vascular tissue throughout the
embryo. Therefore, apoptosis of epithelial cells
in some tissues (brain, eye) could be a conse-
quence of cell death in the vasculature of that
tissue, as mentioned earlier. Alternatively,
TCDD may induce apoptotic cell death and
CYPIA expression through unrelated mecha-
nisms in some tissues. TCDD induced a high
level of CYPIA expression in the liver, as ex-
pected, although there was little or no increase
in cell death observed in this organ. Again, this
is consistent with observations seen in medaka
(Cantrell et al., 1996, 1998) and suggests that
the liver is not as susceptible to apoptosis as
compared to other tissues.

Another interesting observation is that in our
study the control embryos had no CYPIA ex-
pression in the kidney. Fundulus larvae and
adults from other populations have a low basal
level of CYPIA expression in proximal tubules
of the kidney even in the control fish (Elskus et
al., 1999; Bello et al.,, 2000). CYP1A is only
active at low basal levels during the embryonic
stages (Binder and Stegeman, 1984) and may not
be detected using immunohistochemical tech-
niques. Alternatively, the embryos used in this
study could be from a less contaminated loca-
tion than the other studies.

The toxicity of TCDD to Fundulus embryos in
this study is similar to that seen in other fish
embryos (e.g. vascular lesions) so it is somewhat
surprising that, in terms of cell death, the vascu-
lar system does not stand out as the primary
target site for TCDD. We may get a more com-
plete picture of cell death in vascular and other
tissues by choosing more than three embryonic
stages for the TUNEL assay. Also, we did not
focus on the medial yolk vein in the embryos,
which may be a primary target of TCDD-in-
duced cell death since it is an initial site of ex-
posure as the embryo utilizes the yolk. However,

Fundulus is more sensitive to TCDD than
medaka, and we may be seeing more of the sub-
lethal and secondary effects of TCDD exposure
along with cell death in the vasculature in these
embryos. Cantrell et al. (1998) found that
medaka embryos exposed to sublethal doses of
TCDD had increased cell death and CYP1A ex-
pression in gill and intestine while embryos ex-
posed to lethal doses had more pronounced
effects on the vasculature. This suggests a differ-
ent pattern in the embryos exposed to low doses
of TCDD.

Thus we have shown that Fundulus embryos
exhibit responses to TCDD exposure that is con-
sistent with the responses observed in other fish
embryos and that indicate a role for TCDD in
inducing CYP1A expression and cell death in a
variety of tissues. However, it is not clear that
CYPI1A induction is a contributing factor in the
increased apoptosis in all cell types. CYPIA
plays a role in increasing oxidative stress in cells
(presumably leading to increased cell death), but
if the cells are protected (e.g. liver cells), they
may not die in response to CYPIA induction.
Perhaps repeating the assays on embryos at
more developmental stages will clarify this. It
will also be interesting to examine the responses
to TCDD of embryos of Fundulus from resistant
populations. These fish may have adaptations
that alter the patterns of TCDD-induced cell
death and CYPIA expression.
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