
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Mechanical (and Materials) Engineering --
Dissertations, Theses, and Student Research

Mechanical & Materials Engineering, Department
of

Fall 10-19-2017

Cam-Based Pose-Independent Counterweighting
for Partial Body-Weight Support in Rehabilitation
Ashish Shinde
University of Nebraska - Lincoln, ashish.shinde@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mechengdiss

Part of the Acoustics, Dynamics, and Controls Commons, Applied Mechanics Commons, and
the Computer-Aided Engineering and Design Commons

This Article is brought to you for free and open access by the Mechanical & Materials Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Shinde, Ashish, "Cam-Based Pose-Independent Counterweighting for Partial Body-Weight Support in Rehabilitation" (2017).
Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research. 134.
http://digitalcommons.unl.edu/mechengdiss/134

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengineer?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengineer?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mechengdiss/134?utm_source=digitalcommons.unl.edu%2Fmechengdiss%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages


Cam-Based Pose-Independent Counterweighting for Partial Body-Weight Support in 

Rehabilitation  

By  

Ashish B Shinde 

 

A THESIS 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science  

 

Major: Mechanical Engineering and Applied Mechanics  

 

Under the Supervision of Professor Carl Nelson  

Lincoln, Nebraska 

 

 

 

December 2017 

 

 

 



 

 

 

CAM-BASED POSE-INDEPENDENT COUNTERWEIGHTING FOR PARTIAL 

BODY-WEIGHT SUPPORT IN REHABILITATION 

Ashish B Shinde, M.S.  

University of Nebraska, 2017  

Advisor: Carl Nelson  

This thesis presents the design and testing of a body weight support system for gait 

training in a two-dimensional workspace. Extension of the system to a three-dimensional 

workspace is not within the scope of this thesis.  

Gait dysfunctions are changes in normal walking patterns, often related to a disease 

or abnormality in different areas of the body. There are numerous body weight support 

(BWS) systems present in the market which are applied to rehabilitation scenarios in 

mobility recovery like in gait training. But most of these BWE systems are costly and 

generally are stationary devices. A major drawback of such devices is the lack of degrees 

of freedom for free ambulation. While some multidirectional body weight support systems 

do exist, these devices are equipped with sensors and control systems which increase the 

cost of the product.   

 In this thesis, we introduce a new partial body-weight support system for, and 

apply this to, a rehabilitation scenario in mobility recovery.  The idea behind the research 

is the development of a low-cost weight-offload system which is easy to operate, flexible 

in its installation footprint, and requires little to no electromechanical input. We propose a 

cable-based body-weight support system which allows the user to move in a two-

dimensional workspace with a uniform supporting force throughout that workspace.  This 



 

 

is achieved by coupling the cable displacements to the counterweight displacements using 

mechanical programming via cams. There will be two identical sets of cams, gear boxes, 

and counterweights to support uniform force on the payload.  The system functionality is 

demonstrated in a prototype embodiment and tested in the lab. 
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Abbreviations and Symbols  
 

1. BWS – Body weight support system  

2. P – Tension in cable-1 (N) 

3. Q – Tension in cable-2 (N) 

4. L – (Horizontal) workspace length (m) 

5. α – Cable 1 angle with horizontal (radians) 

6. β – Cable 2 angle with horizontal (radians) 

7. y – Vertical distance of payload, measured from top (m) 

8. e– The vertical offset distance between the payload and the cable attachment point 

(m) 

9. x– Horizontal payment displacement  

10. WP – Payload weight (N) 

11. L1/ L2 –  Cable usable lengths for cable 1 & 2  

12.  t – Time (s)  

13. v(t) – The horizontal payload velocity (m/s) 

14.  x0 – The initial position of the payload (m) 

15. κ – Gear box ratio 

16. R(θ) – Cam radius at time t (m) 

17. Tcables – Torque acting on the cam from cables (Nm) 

18. TCW – Torque acting on the cam provided by the counterweight (Nm)  

19. LCW – Counterweight arm length (m) 

20. θ – Angle of the counterweight arm length with respect to vertical (radians)  
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21. LCam – The effective length of cable wrapped on the cam (m) 

22. LCable – The displacement of cable during payload motion (m) 

23.  HP – Reference height of payload on which BWS system is designed (m) 

24. R0 – Initial cam radius (m) 

25.  E – Young’s Modulus of the material (MPa/ psi) 

26. Sy – Yield Strength of the material (GPa/ ksi) 

27. RA/RB – Reactions on the bearings (N) 

28. σb –   Bending Stress  in the shaft (N/mm2) 

29. M – Bending Moment in the shaft (Nm) 

30. I – Moment of inertia (mm4) 

31. d – Diameter of the gear shafts (mm) 

32. SF – Factor of safety  

33. Wt – Transmitted load (N)  

34. Fw –Net face width of the gear (mm) 

35. p – Circular pitch (in) 

36. m –  module (mm)  

37. y, Y –Lewis form factor,  

38. σg
b  –   Allowable bending stress in the gear face tooth (N/mm2) 

39. Tmax –  Maximum torque in the gear box system (lb-inch) 

40. Fs – Shear force in the key (N) 

41. τ – Shear stress in the key (N/mm2) 

42. Lk –length of key (in) 



xi 

 

 

 

43. bk – Width and breadth of key (in) 

44. Wspool – Width of the larger spool (mm /in) 

45. dfb – gear box flange bolt diameter (in) 

46. N – Number of bolts  

47. T1 – Torque due to the counterweight (Nm) 

48. T2 – Torque due to the payload or tension in the strap (Nm) 

49. σallow – Allowable bending stress in the slotted counterweight arm or shaft 

(N/mm2) 

50. h –  breadth of the counterweight arm (in) 

51. w – width of the counterweight arm (in) 

52. tcw – thickness of the cross section of the counterweight arm (in) 

53.    , ω1 – Angular velocity (rad/s) 

54.     ,      – Angular acceleration (rad/s2) 

55. vcw,       – Linear velocity of the counterweight (m/s) 

56. r – Radius vector.  

57. acw,       – Linear acceleration of the counterweight (m/s2) 

58. F1 – Net force on the counterweight system (N) 

59. er – Unit Vector in direction of r 

60. eθ – Unit Vector in direction of θ 

61. Icw – Inertial of the counterweight (Nmm2) 

62. vcam,        – Linear velocity of the cam (m/s) 
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64. F2 – Net force on the cam (N) 

65. ez – Unit Vector in direction perpendicular to cam  

66. ey – Unit Vector in of gravity 

67. Icam – Inertial of the cam (Nmm2) 

68. FS – Net force/Tension in the strap (N) 
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70. Wcam – Weight of the cam (N) 
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Chapter 1 - Introduction 

People with arthritis, stroke or trauma resulting in brain injuries or spinal cord 

injury (SCI), or other neurological diseases, face problems like loss of motor and sensory 

ability [1, 2]. Difficulty in walking has an impact on subjects in terms of decreased self-

reliance and quality of life [2].   Gait rehabilitation training is commonly employed to 

regain normal lower-limb function as much as possible [3]. Gait therapy, involving 

repetitive stepping to restore motor learning and control, is often recommended as a part 

of the rehabilitation process; this may be complemented by balance therapy and various 

forms of occupational therapy [4]. 

1.1. Gait Dysfunctions  

Gait dysfunctions are changes in your normal walking pattern, often related to a 

disease or abnormality in different areas of the body. Individuals with gait dysfunctions 

may have a gait pattern characterized by hesitant, shuffling steps that are short and quick. 

Gait dysfunctions cause difficulties in gait initiation, changes in postural control, and 

difficultly in turning. Freezing and motor blocks, balance deficits and frequent falls occur 

during later stages of gait dysfunction [5]. Gait and balance disorders are associated with 

increased morbidity and mortality, as well as reduced level of function. Gait dysfunctions 

are commonly caused by spinal cord injuries, stroke, Parkinson’s disease, arthritis, 

orthostatic hypotension, etc.; however, most gait and balance disorders involve multiple 

contributing factors [6, 7].  



2 

 

 

 

Gait training is a method to reduce mobility dysfunction. Gait training can be used 

to treat diverse patient populations that exhibit mobility impairments. Two such 

populations are people with post-stroke and post-spinal cord injury. Gait training or 

locomotion therapy uses several devices to assist the patient with moving and maintaining 

balance [8]. These include treadmill training with partial body-weight support [9], 

robotically assisted gait repetition [10], and other devices such as elliptical machines which 

combine robotic assistance with body-weight support features [11, 12, 13, 14, 15]. Gait 

training is a type of physical therapy that can help improve patients’ ability to walk, 

typically relying on such devices.   

There are numerous secondary benefits to gait training. Many medical and 

psychosocial problems occur when subjects are bound to a wheelchair or bed for a lengthy 

period.  According to Frey et al. [16], “Some of the most common problems are pressure 

sores, reduced bone-density in the legs, increased risk of fractures, deterioration of 

cardiopulmonary and circulatory functions, spasticity, bowel and bladder stagnation, 

urinary tract infections, and joint contractures.” Treadmill training provides exercise and 

mobility that offer some solutions to these problems [16]. 

1.2. Body Weight Support System (BWS) 

Body weight support (BWS) systems are used to assist therapists in gait training of 

patients with gait dysfunctions. The main purpose of BWS is to unload part of patients’ 

weight to accommodate patients’ weakness and to facilitate safe therapy.  It works on the 

principle of reducing the muscle force required to counteract gravity [17]. Body weight 

support (BWS) exerts forces on an individual that could change the requirements of the 
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nervous system to actively stabilize the body during gait [17]. To utilize BWS effectively, 

it is important to understand the implementation and force mechanism of BWS [17]. 

A major design challenge for designing BWS is to overcome slow walking speeds 

and increased risks for falls.  Reliability and safety of the BWS is very important. Another 

important challenge in designing a BWS is adjustability. It should adapt to changes in force 

requirements. It should provide appropriate mechanical assistance to patients while 

walking [18]. 

1.3. Overview of Bodyweight Support Systems  

A BWS system in gait therapy consists of a harness system worn by patients and a 

method of unloading part of a patient's weight (e.g. ropes and pulleys and a counterweight); 

hereafter this partial patient weight is referred to as payload. The use of treadmill-based 

BWS began in the early 1990s [19]. Following are existing BWS systems [16]: 

1.3.1. Treadmill Bodyweight Support Systems  

Perhaps the most common type of BWS system is with one or two degrees of 

freedom while patients walk on a treadmill. Major drawbacks of such systems are limited 

degrees of freedom and/or undesired interaction forces due to inertia [16]. Also, patients 

have to continuously adjust their walking velocity to maintain their position on the 

treadmill [20]. 

A. Static Systems 

A static system is shown in Figure 1-1 (A). In this system, a harness is attached to 

an overhead suspension composed of ropes and pulleys. The ropes are connected to a winch 
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for counterweighting the payload. The winch can be actuated either manually or 

automatically using electric or hydraulic drives. The winch wraps the rope until it supports 

the desired payload. More advanced systems use a transducer for weight feedback during 

hoisting. The main disadvantage of this system is the limited vertical movement of the 

center of mass. Thus, the constant potential energy of the payload is not maintained which 

may hamper the execution of gait patterns [16]. 

B. Passive Dynamic BWS with Adjustable Counterweights   

An adjustable system is shown in Figure 1-1 (B). The counterweight can be used 

for the balancing of payload or dynamically unloading part of the patients' body weight. It 

is connected to the patient harness by a rope-and-pulley system. It comprises weight and 

an inertial component, resulting from acceleration of the counter-mass from body 

movement during walking. These inertial forces cause deviations of the suspension force 

from the desired value. Also, only a discrete value of counterweight can be achieved [16].  

 

Figure 1-1  Overview of body weight support systems [16] 

(A) Static BWS. (B) Passive counterweight systems. (C)  Passive elastic systems 

(spring). (D) Active dynamic system with force sensor and electric winch 
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C. Passive Dynamic Elastic Systems  

An elastic system is shown in Figure 1-1 (C). Elastic components can be used for 

counterweighting the payload. The amount of unloading is determined by the amount of 

tension of the elastic element. Passive elastic unloading can also be achieved by pneumatic 

cylinders filled with compressed air. The advantage of this system compared to the earlier 

one is that inertial effects can be neglected. However, suspension force is a function of 

spring length and therefore varies due to the vertical movement of the patient. Low-

stiffness springs can be used to reduce force variation. However, this results in a long 

spring elongation to obtain the desired working load. Drawbacks of such systems include 

difficulty of load adjustments over a large range [16].   

D. Active Dynamic Systems 

An active system is shown in Figure 1-1 (D). Active dynamic systems like 

pneumatic, hydraulic, and electromagnetic or any other force generating system which 

produces a desired force to counterweight the payload, can be used in body weight support 

systems. The vertical position of the supporting force to the patient’s movement is adjusted 

by applying a closed loop approach in which a position sensor measures the vertical 

position. This feedback is given to the actuator to generate desired positions or forces [16]. 

E. Mechatronic Body Weight Support System 

A mechatronic system is shown in Figure 1-2. The mechatronic BWS combines 

key ideas of both passive elastic and active dynamic systems. The system is composed of 

a passive elastic spring element to take over the main unloading forces, and an active 
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dynamic system like a closed loop electric drive to generate the exact desired force. These 

forces from passive spring and active electric drive act on the patient via a rope connected 

to a harness worn by the patient. The length of the rope can be adjusted by an electric winch 

to adapt the system to different patient sizes. The patient is placed in a harness via the rope. 

The rope is guided via static pulleys seated by ball bearings. The end of the rope is attached 

to the electric winch which serves to lift the patient from a static position as well as keep 

the system in an optimal working range [16]. 

 

Figure 1-2 Mechatronic body weight support system [16] 

 A major drawback of BWS treadmills, apart from the limited degrees of freedom, 

is the high equipment cost and the labor-intensive nature of the system. Major sellers of 

BWS treadmills sell devices ranging from $10,000 to $15,000. Integrated BWS treadmills 

may cost up to $180,000 [21]. 
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1.3.2. Multidirectional Transparent Support System  

The robotic system FLOAT (Free Levitation for Overground Active Training) is an 

overhead support system that is designed to precisely control forces acting on a human 

subject in vertical and in both horizontal directions, (Figure 1-3). The device capitalizes on 

cable robot technology that allows three-dimensional gait training. It reduces the effects of 

inertial forces on the system. The FLOAT allows the patients to move in a large workspace, 

so diverse activities can be trained and analyzed in patients such as level walking, running, 

walking on uneven terrain and stair climbing. Two parallel rails are arranged on the ceiling, 

which guide two deflection units each. Each deflection unit (refer to Figure 1-3) is 

composed of a rolling cart carrying an inclinable pulley. At each end of the rails, a winch 

with a laser sensor is positioned. From each winch, cable extends via the deflection unit 

which is harnessed to the patient. The force vector acting on the human (payload) is used 

to implicitly displace the deflection unit in the horizontal direction along the rail [22].  

 

  

Figure 1-3 Concept of FLOAT body weight support system [22] 
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1.4. Summary and Problem Approach 

            Gait dysfunctions are changes in normal walking patterns, often related to a disease 

or abnormality in different areas of the body. Gait training uses several devices to assist 

the patient to move and maintain balance. There are numerous body weight support (BWS) 

systems to address the need of gait rehabilitation, such as the treadmill body weight support 

system [16], the multidirectional transparent support system [22], passive suspension 

walkers [15], and robotically mobilized walkers [13]. Treadmills with un-weighting 

devices are used to train walking at various speeds on a straight flat surface or a small 

incline. Drawbacks of these BWS systems include high cost and they generally are 

stationary devices. More drawbacks of devices similar to treadmills include the limited 

degrees of freedom for free ambulation. There are some multidirectional BWS systems that 

exist and are equipped with sensors and control systems which increase the cost of the 

product.  

A primary idea would be a partial body-weight support system which bridges the 

gap between stationary assistive devices like treadmills and the subsequent phases of 

rehabilitation involving more advanced mobility [11]. The requirement for such a system 

is to provide consistent body-weight support throughout a planar “workspace” during gait 

rehabilitation [11]. This proposed system should equip the entire space (rather than the 

patient) with a cable system, like a cable-suspended robot [23], suitable for attaching a 

typical body-weight support harness used with other rehabilitation devices. This proposed 
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system can be tuned to passively compensate for a portion of the weight of the patient as 

needed for his/her individualized therapy to keep the system discreet and affordable [11].  

The generation of three-dimensional workspace will be complicated. The approach 

used in this thesis is to build the system in a two-dimensional workspace, verify the concept 

by developing the prototype in the lab for design parameters discussed in this thesis, and 

suggest necessary modifications for the system. Therefore, this thesis consists of designing 

and testing a partial body-weight support system in a two-dimensional workspace. 

Although a reduction in cost of existing BWS systems is one of the design objectives, we 

will not consider that in the current phase. Our focus is on verification and validation of 

the proposed idea in a two-dimensional workspace.  

1.5. New Partial Body Weight Support System Design Requirements   

The following are the design requirements of a new partial body-weight support 

system.  

A. 3-Dimensional Workspace  

The main disadvantage of treadmills is the limited degrees of freedom. Therefore, 

while designing the new system, we must consider that the patient should be able to walk 

throughout a room. The device must allow the patient to move freely without constraining 

him or her. 

B. Simplified System Controls 

For simplicity, there should be less use of controls and sensors, and ideally the 

design should be purely mechanical. This will reduce the cost of the system as well as 

potential failure points.  
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C. Safety  

Gait simulators are usually complex robotic devices on which the patient stands 

and moves. To avoid accidents, the BWS device must be constrained to move only within 

the physiological limits of the human body. It also must provide the patient with the means 

to quickly reach safety should anything wrong happen with the system.  

Since the proposed partial BWS could eventually be marketed as a medical device, 

it should comply with relevant safety standards such as International Standard IEC 60601-

1 [19].  
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Chapter 2 - Modeling Approach 

To satisfy the design objectives given in section 1.4 and the design requirements 

given in section 1.5, a two-dimensional workspace is considered in which the patient walks 

along a straight line. Using a planar system of two cables suspended from two anchoring 

points, one can fully balance a load vertically while maintaining zero net force on the 

payload horizontally (see Figure 2-1). The necessary cable tensions are related through a 

nonlinear function which can be “programmed” mechanically, without any actuators or 

control, only using stored energy in a system of counterweights.  This concept of static 

balancing has been applied in a variety of systems using springs, counterweights, and other 

means [24, 25, 26].  Here we used a mechanical device, a cam with a torsional 

counterweight, as a function generator to map the nonlinear relation between the cable 

tension and cable displacement such that equilibrium was maintained. 

2.1. Balancing of Payload  

Referring to Figure 2-2, let the tension in cable 1 be P (N), and let the tension in 

cable 2 be Q (N). With the distance between the columns equal to L, and the payload 

located at a distance y, measured vertically from the tops of the columns, the condition 

constraining the payload to remain at a constant height is given by,  

ey

L


  cotcot                                    (1)                                                   

where e is the vertical offset distance between the payload and the cable attachment point, 

and  and are the respective cable angles.  
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Figure 2-1 System layout  

                  

Figure 2-2 Schematic of forces, angles and displacements  

Applying principles of static force equilibrium, balancing the horizontal forces gives: 

 coscos QP       (2) 

and balancing the vertical forces yields: 

pWQP   sinsin     (3) 
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where WP is the payload weight.  Solving these two simultaneous equations (2) and (3), 

we obtain the tension in each cable:  

                      
)sin(

cos

sincossincos

cos













 PP WW

P                           (4) 

                         
)sin(

cos

sincossincos

cos













 PP WW

Q     (5) 

Using the position coordinates to substitute for the angles gave an alternate form of 

the tension expressions in terms of the horizontal payload displacement x:  

   
 eyL

eyxLxW
Q P






22

      (6) 

The relation between the tensions P and Q in the cable and the horizontal payload 

distance can be shown graphically.  We considered width of the workspace (L) (3.64 m) 

and a specific payload (Wp) (100 kg) and height (d) (2 m); this relationship is shown in 

Figure 2-3. We also note that P is symmetric with Q.  

Extending this relationship to the entire workspace of the system (3.64 m wide and 

up to a height of 3.05 m), one obtains the distribution in Figure 2-4. 

Besides showing the nonlinear variation of the cable tension as a function of the 

horizontal and vertical coordinates, Figure 2-4 brings to light significant increase of the 

cable tension for payload levels over two meters. 

Using the Pythagorean Theorem, cable usable lengths are given by: 

)²(²1 eyxL        (7) 

   )²()²(2 eyxLL       (8) 
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Figure 2-3 Cable tension for a 100-kg payload at a 2-meter payload height 

 

Figure 2-4 Cable 2 tension depending on payload (100 kg) position 

Considering the actual workspace dimensions, this relationship led to the cable 

displacement shown in Figure 2-5. 

Differentiating those expressions with respect to the horizontal position yielded 

expressions for rates of change of the cable length depending on x position (with y assumed 



15 

 

 

 

fixed). As noted earlier, the displacements and speeds were symmetric, depending on 

whether the right or left cable origin was used as the reference frame. 

22

1

)(

)(

xey

x

dx

xdL


                                              (9) 

 

 

Figure 2-5 Cable 1 length depending on payload position 

Applying the chain rule (multiplying Equation (9) by x-velocity) gives the general 

shape of the cable tangential speed profiles as shown in Figure 2-6, as the horizontal 

position (x) is a function of horizontal payload velocity: 

22

1

)(

)(

xey

x

dx

xdL


                                         (10) 

where v(t) is the horizontal payload velocity, x0 the initial position and t the time. 
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Figure 2-6 Cable 1 speed depending on payload horizontal position 

2.2. Counterweight System Design   

The counterweight system was designed to follow the tensile force profiles in the 

cables as a function of cable displacement.  It consisted of a gearbox, cam, and pendulum 

counterweight.  The gearbox allowed scaling of the cable displacement (on the length scale 

of the workspace) down to the length scale of the cam circumference.  The varying cam 

radius combined with the sinusoidal moment produced by the counterweight arm to match 

the nonlinear cable displacement-tension profile.  This arrangement is shown in Figure 2-1 

Since the cam was a 1-DOF function generator, it could only be used to balance the 

system in 1 DOF.  Therefore, since cable tension varies with both horizontal displacement 

and payload height (Figure 2-4), the counterweight system would theoretically only be 

able to balance the payload for the reference height (HP) for which it has been designed. In 

other cases, motors would have to provide additional torque in order to maintain 

equilibrium. 
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The cam shape was synthesized as follows. Considering the left cable shown in 

Figure 2-2 with tension P (given in (4)), the torque acting on the cam from the cable is 

given by:  

                             )( RPTcables       (11) 

where κ is the gearbox ratio and R(θ) the cam radius at time t.   

The torque provided by the counterweight is given by the following equation: 

sin CWCWCW LWT       (12) 

where WCW is the counterweight (N), LCW the arm’s length (m) to which the counterweight 

is attached, and ϴ is the angle (rad) of the counterweight arm with respect to the vertical. 

For a fully balanced system, one obtains:   

)(sin  RPLW CWCW      (13) 

We noted that R(θ) is an as-yet unknown function of ϴ at time t. 

The effective length of cable wrapped on the cam is given by: 

  dRLCAM )(      (14) 

Considering the reference payload’s level (two meters), this length should match 

the displacement of cable length during payload motion: 

    
2222 )()( eyxeyLLLL xiCable     (15) 

The effective length of cable wrapped should be equal to the displacement of 

cable length during payload motion.  

CAMCable LL          (16) 

Therefore,  
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2222 )()()( eyxeyLdR                              (17) 

2.3. Cam Design  

Cam design was difficult to derive due to the implicit nature of equations (11), (12), 

(14), and (15). Here R(θ) implicitly depends on sinθ, i.e. the counterweight arm angle with 

respect to horizontal and cable tensions (P or Q) (refer to equation (13)). Furthermore, by 

equation (17), R(θ) depends on x.  

By equation (17),  

2222 )())(()(( eydReyLx                   (18) 

 From (6), we can see that cable tension, P (or Q) depends on payload displacement x.  

 
 eyL

eyxxLW
P

P






22)()(
                (19) 

 

Rewriting (13),  

P
R

LW CWCW 




)(

sin




               (20) 

2.3.1. Trial and Error Approach  

Since we observed that equations (18), (19) and (20) are implicitly interdependent, 

we could not solve these equations for the three variables x, R(θ) and θ. These equations 

can be solved numerically. One of the easiest ways to solve these equations is a trial and 

error method. The basic idea behind this method is to assume an initial value of one of the 

variables and solve all equations for the remaining variable. Since we assumed one of the 

variables, the solution would not satisfy all the equations. We either increased the value of 

an assumed variable or decreased it and compared the difference in solutions [27]. This 
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process was continued until all the equations were satisfied with a certain degree of error. 

We used MS-Excel for carrying out these iterations.   

2.3.2. Initialization for R(θ).  

All iterations were done by initializing R(θ) and then calculating the gear box ratio 

by using equation (21). 

Due to the implicit nature of the equations, we assumed R(θ) (denoted as R0) to be 

some constant value related to the gear box ratio: 

 

2/

)(
22

0
 




eyeyL
R                 (21) 

Here rotation of the cam was restricted to 90°. This restriction was necessary, since 

the sine function varies from 0 to 1 in 90°. The gear box ratio and the initial value were 

both considered by taking into account the size of the resulting cam. If we assumed a gear 

box ratio as low as five, then the resulting cam would be too big and the purpose of gear 

box would not be served.  

2.3.3. Design Parameters for Cam Design: 

For designing the BWS, we assumed some parameters to be fixed so we could build 

the system. The cam profile was checked by changing one of these parameters and 

observing its effects on other variables. See Table 2 1. 

A. Payload (WP):  

The cam was designed for a payload of 150 kg. But the BWS system factor of safety 

was calculated by considering a maximum payload of 200 kg.  
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Table 2-1. Design parameters 

Parameters Value 

Payload (WP)A 150 kg  

Length of Workspace (L) 3.65 m  

Height of Workspace (H) 3.05 m  

Payload height from top (HP) (Reference Height) B1 1.05 m  

Payload height from top (y-e) (Case 2) B2 1.35 m  

Payload height from top (y-e) (Case 3) B3 0.75 m  

Length of counter weight Arm (LCW) 1 m  

Gear Box Ratio (κ)C 12 

Counterweight (WCW)D 400 kg  

B. Payload Height from top (y-e):  

For designing the cam, the payload vertical location is important. Since 

displacement of cable length and tension in the cables are dependent on the vertical location 

of the payload, it is important to consider an increase or reduction in payload. For design 

of the cam, we considered three cases for payload location – 0.75 m, 1.05 m and 1.35 m. 

The cam was designed for a reference height of 1.05 m.  

C. Gear box ratio: 

 Initially the gear box ratio was assumed to be 10. But since the actual profile of the 

cam was non-circular and different from the initially assumed profile, there was a change 

in the gear box ratio. The gear box ratio was calculated as,   
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




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eyeyL
                            (22) 

D.  Counterweight:  

The counterweight was calculated from (13) as, 





sin

)(max






CW

CW
L

tRP
W            (23) 

The maximum counterweight depends on the maximum tension in the cables, the 

radius of the cam at that point, and the angle of the counterweight arm.  

2.3.4. Cam design - Iteration 1:  

These iterations were carried out by assuming x in steps: 

1. We discretized the workspace length L into small intervals, and calculated P & Q 

using equations (18) & (6) at each discrete location. For example, in Table 2-2 , x 

is discretized into 14 points, each 0.26 m in length.  

2. Simultaneously, we calculated the displacement of cable 1 (L1) and cable 2 (L2) 

using equation (15). 

3. We assumed a circular profile for the cam and initial radius R0 calculated by (21); 

R0 came out to be 0.2 m.  

4. We calculated the position of the counterweight arm (θ) using (13). In this step, 

we balanced the torque provided by the counterweight with the torque required by 

the cables.  

5. We obtained the length of cable wrapped by the cam as  RLCAM  . 
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6. The results are shown in Table 2-2. 

Table 2-2. Iteration 1- cam design parameters for initial cam radius  

Movement of 

Payload(x) 

TCable1 

P (N) 

Cam Radius 

(m) 

CW Angle 

(θ)(Rad) 
Lcam (m) L1 (m) 

0 1500 0.2 1.063 0.213 0.274 

0.26 1434.92 0.2 0.990 1.979 0.271 

0.52 1434.74 0.2 0.989 1.979 0.262 

0.78 1468.18 0.2 1.026 2.052 0.248 

1.04 1508.03 0.2 1.073 2.145 0.231 

1.3 1534.66 0.2 1.106 2.212 0.212 

1.56 1535.06 0.2 1.107 2.213 0.191 

1.82 1500.83 0.2 1.064 2.128 0.169 

2.08 1426.53 0.2 0.981 1.962 0.146 

2.34 1308.56 0.2 0.867 1.734 0.122 

2.6 1144.5 0.2 0.730 1.459 0.098 

2.86 932.65 0.2 0.574 1.149 0.074 

3.12 671.83 0.2 0.402 0.804 0.050 

3.38 361.16 0.2 0.212 0.424 0.025 

3.64 0 0.2 0.000 0.000 0.000 

7. In the above steps, we have balanced the torque provided by the counterweight 

with the torque required to balance the payload. But the length of cable wrapped 

by the cam was not equal to the displacement of the cable in the workspace. That 

is, equation (17) was not satisfied.   We tried to achieve this equilibrium by 

changing R0, so that it was satisfied. The results are shown in Table 2-3. 

8. The cam radius from Table 2-3 is plotted in Figure 2-7. With these points (iterated 

cam profile radius) we fit a polynomial of degree six which came out to be:  

1962.0032.0012.0

0017.00001.0105107)(

2

34506608



 

xx

xxxxtR
              (24) 
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Table 2-3. Cam radius after iteration 1.8 

Cam Radius (m) CW Angle (θ)(Rad) Lcam (m) L1 (m) 

0.218 1.258 2.738 2.738 

0.224 1.209 2.706 2.707 

0.221 1.182 2.616 2.617 

0.214 1.158 2.480 2.480 

0.205 1.125 2.310 2.311 

0.197 1.076 2.117 2.117 

0.189 1.008 1.908 1.908 

0.183 0.924 1.687 1.687 

0.177 0.825 1.458 1.458 

0.172 0.713 1.223 1.224 

0.167 0.590 0.984 0.984 

0.162 0.457 0.742 0.742 

0.158 0.314 0.496 0.496 

0.154 0.162 0.250 0.249 

0.150 0.000 0.000 0.000 

 

9. Equation (24) is the trendline from Figure 2-7. This polynomial plot was used for 

modeling and manufacturing the cam since it is difficult to model the cam with 

discrete points.    

 

Figure 2-7  Cam radius plot vs x(t) 
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Table 2-4. Verification of cam profile radius after iteration 1 

Sr. 

No 
X P R(θ) Theta L1 TCW Lcam Tcable1 Tcw-Tcable Lcw-Lcable 

0 0.00 1500.00 0.196 1.030 2.738 2943.000 2.340 2943.000 0.000 0.398 

1 0.26 1434.92 0.204 1.019 2.707 2923.488 2.319 2923.488 0.000 0.388 

2 0.52 1434.74 0.210 1.069 2.617 3010.483 2.421 3010.483 0.000 0.195 

3 0.78 1468.18 0.215 1.162 2.480 3151.157 2.617 3151.157 0.000 -0.137 

4 1.04 1508.03 0.218 1.283 2.311 3292.062 2.875 3292.062 0.000 -0.565 

5 1.30 1534.66 0.221 1.414 2.117 3391.414 3.162 3391.414 0.000 -1.045 

6 1.56 1535.06 0.223 1.484 1.908 3420.483 3.316 3420.483 0.000 -1.408 

7 1.82 1500.83 0.224 1.365 1.687 3360.964 3.051 3360.964 0.000 -1.364 

8 2.08 1426.53 0.224 1.201 1.458 3201.970 2.685 3201.970 0.000 -1.227 

9 2.34 1308.56 0.224 1.027 1.224 2937.666 2.293 2937.666 0.000 -1.069 

10 2.60 1144.50 0.224 0.844 0.984 2565.524 1.882 2565.524 0.000 -0.898 

11 2.86 932.65 0.224 0.653 0.742 2085.048 1.454 2085.048 0.000 -0.712 

12 3.12 671.83 0.223 0.451 0.496 1496.802 1.003 1496.802 0.000 -0.507 

13 3.38 361.16 0.222 0.236 0.249 801.629 0.523 801.629 0.000 -0.274 

14 3.64 0.00 0.221 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

10. We could see that error in recalculations of the length of cam to be wrapped and 

the length of displacement of the cable was excessive. We decided not to use this 

approach. Also, here the cam radius was a function of x and not θ, so we needed 

to create one more approximation for R(θ) as a function of θ. This approximation 

would generate error.  

2.3.5. Cam design - Iteration 2:  

These iterations were carried out by discretizing the cam profile (θ). Also design of 

the cam profile was restricted to the range 0 to 90˚.   

1. The first step was to discretize the cam profile. That is, θ was divided into 90 

intervals from 0 to 90˚.   

2. We calculated the torque provided by the counterweight TCW by using (12).  
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3. We assumed a circular profile for the cam and an initial radius R0 calculated by 

equation (21). R0 came out to be 0.2 m.  

4. We obtained the length of cable wrapped by the cam as  
RLCAM 

. 

5. We calculated the position of the payload x in the workspace by using (18).  

6. We calculated cable tensions P and Q by using (5) and (19).  

7. We calculated the displacement of cables (L1 and L2) from the payload position 

using (15). 

8. We calculated the torque provided by the cable Tcable by using equation (11).  

9. The results are shown in Table 2-5. 

Table 2-5. Cam design – iteration 2 for initial radius 0.2m 

Sr 

No. 
Theta TCW 

Initial 

R 
Lcam X P L1 Tcable 1 

0 0.000 0.000 0.2 0.000 3.640 0.000 3.788 0.000 

5 0.087 341.999 0.2 0.209 3.421 306.927 3.579 736.626 

10 0.175 681.395 0.2 0.419 3.202 579.536 3.370 1390.886 

15 0.262 1015.606 0.2 0.628 2.981 817.859 3.160 1962.862 

20 0.349 1342.087 0.2 0.838 2.758 1021.944 2.951 2452.666 

25 0.436 1658.354 0.2 1.047 2.532 1191.860 2.741 2860.465 

30 0.524 1962.000 0.2 1.257 2.304 1327.713 2.532 3186.510 

35 0.611 2250.714 0.2 1.466 2.071 1429.665 2.322 3431.196 

40 0.698 2522.299 0.2 1.676 1.834 1497.991 2.113 3595.179 

45 0.785 2774.687 0.2 1.885 1.588 1533.183 1.903 3679.638 

50 0.873 3005.958 0.2 2.094 1.329 1536.212 1.694 3686.908 

55 0.960 3214.353 0.2 2.304 1.050 1509.335 1.485 3622.404 

60 1.047 3398.284 0.2 2.513 0.724 1459.545 1.275 3502.909 

65 1.134 3556.352 0.2 2.723 0.182 1446.198 1.066 3470.875 
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10.  For equilibrium of forces and torque, equation (13) should be satisfied. That is, 

torque provided by the counterweight should be equal to the torque due to tension 

in the cables.  We tried to achieve this equilibrium by changing R0, so that it was 

satisfied.  

11. The results are shown in Table 2-6. 

Table 2-6. Cam design – iteration 2 after recalculated R(θ) 

Sr 

No. 
Theta TCW Initial R Lcam X P L1 Tcable1 

0 0.000 0 0.133 0 3.64 0 3.788 0 

1 0.017 68.483 0.133 0.028 3.611 42.833 3.761 68.413 

2 0.035 136.946 0.134 0.056 3.582 85.246 3.733 136.769 

3 0.052 205.366 0.135 0.084 3.552 127.294 3.704 205.453 

4 0.070 273.724 0.135 0.112 3.523 168.874 3.676 273.576 

5 0.087 341.999 0.136 0.141 3.493 210.009 3.648 341.726 

10 0.175 681.395 0.139 0.285 3.343 408.935 3.504 680.632 

15 0.262 1015.606 0.142 0.432 3.188 595.714 3.356 1015.096 

20 0.349 1342.087 0.145 0.583 3.029 769.236 3.205 1342.164 

25 0.436 1658.354 0.149 0.737 2.865 928.435 3.051 1656.700 

30 0.524 1962.000 0.153 0.896 2.696 1072.216 2.893 1962.155 

35 0.611 2250.714 0.156 1.058 2.521 1199.431 2.731 2251.092 

40 0.698 2522.299 0.161 1.224 2.340 1308.781 2.564 2522.283 

45 0.785 2774.687 0.165 1.395 2.151 1398.897 2.393 2774.852 

50 0.873 3005.958 0.171 1.571 1.953 1468.226 2.217 3005.752 

55 0.960 3214.353 0.177 1.754 1.743 1515.014 2.034 3214.254 

60 1.047 3398.284 0.184 1.944 1.517 1537.212 1.845 3397.853 

65 1.134 3556.352 0.193 2.142 1.268 1532.594 1.646 3556.844 

70 1.222 3687.354 0.205 2.352 0.981 1499.524 1.437 3688.828 

75 1.309 3790.293 0.219 2.575 0.609 1443.865 1.214 3791.013 

 

12. These iterated points we plotted as R(θ) vs θ as shown in Figure 2-8. With these 

points (iterated cam profile radius) we fit a polynomial of degree six which came 

out to be:  
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13. Equation (25) is the trendline from Figure 2-8. This polynomial plot was used for 

modeling and manufacturing  the cam since it is difficult to model the cam with 

discrete points.  

14. Validation of Design: 

 The final cam radius needed to be verified, since we had a plot of the trendline 

which deviated from the actual cam profile. This deviation was measured in terms of the 

difference in torque provided by the counterweight and torque resulting from the cable 

tensions and the difference in length of cable wrapped on the cam, from the displacement 

of cable in the workspace. See Table 2-7. 

 

 

Figure 2-8 Cam radius plot vs counterweight arm rotation 
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Table 2-7. Verification of corrected R(θ) 

Sr 

No. 
Theta TCW  R(θ) Lcam X P L1 Tcable1 

Tcw-

Tcable1 

Lcw-

L1 

0 0.000 0.000 0.132 0.000 3.640 0.000 0.000 0.000 0.000 0 

1 0.017 68.483 0.133 0.028 3.611 42.819 0.028 68.370 0.114 0 

2 0.035 136.946 0.134 0.056 3.582 85.257 0.056 136.865 
0.081 

-6.9E-

17 

3 0.052 205.366 0.134 0.084 3.552 127.293 0.084 205.394 -0.028 0 

4 0.070 273.724 0.135 0.112 3.523 168.911 0.112 273.885 
-0.161 

-1.8E-

16 

5 0.087 341.999 0.136 0.141 3.493 210.094 0.141 342.280 -0.281 0 

10 0.175 681.395 0.139 0.286 3.341 410.777 0.286 684.346 -2.950 0 

15 0.262 1015.606 0.142 0.435 3.185 598.857 0.435 1019.987 -4.381 0 

20 0.349 1342.087 0.145 0.587 3.024 773.447 0.587 1348.077 -5.989 0 

25 0.436 1658.354 0.149 0.743 2.859 933.563 0.743 1666.798 -8.443 0 

30 0.524 1962.000 0.153 0.902 2.688 1078.054 0.902 1973.133 -11.133 0 

35 0.611 2250.714 0.156 1.066 2.511 1205.635 1.066 2263.463 -12.749 0 

40 0.698 2522.299 0.161 1.234 2.328 1314.942 1.234 2534.573 -12.274 0 

45 0.785 2774.687 0.165 1.407 2.137 1404.541 1.407 2784.479 -9.792 0 

50 0.873 3005.958 0.170 1.586 1.936 1472.868 1.586 3012.587 -6.628 0 

55 0.960 3214.353 0.177 1.771 1.723 1518.103 1.771 3218.850 -4.498 0 

60 1.047 3398.284 0.184 1.964 1.492 1538.026 1.964 3401.883 -3.599 0 

65 1.134 3556.352 0.194 2.167 1.236 1530.108 2.167 3556.514 -0.162 0 

70 1.222 3687.354 0.205 2.382 0.936 1492.786 2.382 3673.616 13.738 0 

75 1.309 3790.293 0.219 2.610 0.534 1435.961 2.610 3765.149 25.144 0 

 

 This verification was done by putting R (θ) from (25) into (14) and  comparing it 

with the displacement of cable (L1). The comparison is shown in Table 2-7 as (Lcw-Lcable). 

We observed that these differences tend to zero, so the polynomial form of R(θ) is 

acceptable.  

 Also, Tcable was calculated by using equation (11), and we compared it with TCW as 

shown in Table 2-7 as (Tcw-Tcable1). We observed that the maximum torque difference was 

25 Nm. The percentage error was 1%.   
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2.3.6. Cam Profile Completion:  

1. The cam profile was described by equation (25), so we could get the cam profile from 

0° to 90°. We could not apply the same equation to a 360° profile, since at some point 

the cam radius diminishes to zero and then becomes negative.  

2. To complete the profile, we  divided the cam profile equation into two parts, where the 

first part was spanning 0 to 75° would satisfy equation (25) and from 75° to 360° we 

would develop a new equation.  

3. The transition point was chosen as 75° by an iterative method considering the resultant 

profile and the difference in torque values. For a transition point at 90°, the resultant 

cam profile was too big.  

a) The new equation was a 3rd-degree polynomial, denoted as  

dcbatR   23

2 )(      (26) 

b) For continuity of the profile, the value R(θ) and slope 
d

dR
 of (25) and (26) at points 

θ = 75° and θ = 0°/360° should be equal.  

c) Therefore, we got four equations and four variables to solve:  
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             (27) 

d) Solving equation (27), we got  

16633.0440031.012449.0009871.0)( 23

2  tR            (28) 
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4. The resultant cam profile is shown in Figure 2-9 and is given by equation (25) for 0° 

to 75° and equation (28)  for 75° to 360°.  

 

Figure 2-9  Cam profile (units of degrees and meters) 

 

2.4. Effect of Change in Payload Position  

The cam design was done for a reference height of two meters. In most cases, we 

intended to keep the same reference height. But we needed to know the effect of the change 

in payload position on torque requirements and balancing of payload. The following 

analysis was done for an increase and decrease in payload position by 0.3m.  

2.4.1. Decrease in Payload Position  

For a decrease in payload height by 0.3 m, that is y = 1.35 m, we calculated design 

parameters as described in section 2.3.  
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Table 2-8.  Effect of decrease in payload height (y = 1.35 m) for same design parameters 

Sr 

No. 
Theta TCW R(θ) Lcam X L1 Tcable1 

Tcw-

Tcable 
Lcw-Lcable 

0 0.000 0.000 0.132 0.000 3.640 0.000 0.000 0.000 0 

1 0.017 68.483 0.133 0.028 3.610 0.028 55.865 12.619 -4.545E-16 

2 0.035 136.946 0.134 0.056 3.580 0.056 111.874 25.072 -6.939E-17 

3 0.052 205.366 0.134 0.084 3.550 0.084 167.955 37.412 0 

4 0.070 273.724 0.135 0.112 3.520 0.112 224.049 49.675 -1.804E-16 

5 0.087 341.999 0.136 0.141 3.489 0.141 280.110 61.889 0 

10 0.175 681.395 0.139 0.286 3.333 0.286 561.254 120.141 0 

15 0.262 1015.606 0.142 0.435 3.172 0.435 838.541 177.065 0 

20 0.349 1342.087 0.145 0.587 3.006 0.587 1111.276 230.811 0 

25 0.436 1658.354 0.149 0.743 2.835 0.743 1378.253 280.101 0 

30 0.524 1962.000 0.153 0.902 2.657 0.902 1637.342 324.658 0 

35 0.611 2250.714 0.156 1.066 2.471 1.066 1886.004 364.710 0 

40 0.698 2522.299 0.161 1.234 2.278 1.234 2122.171 400.128 0 

45 0.785 2774.687 0.165 1.407 2.074 1.407 2345.053 429.634 0 

50 0.873 3005.958 0.170 1.586 1.858 1.586 2555.503 450.456 0 

55 0.960 3214.353 0.177 1.771 1.623 1.771 2755.812 458.541 0 

60 1.047 3398.284 0.184 1.964 1.363 1.964 2949.311 448.972 0 

65 1.134 3556.352 0.194 2.167 1.058 2.167 3142.111 414.240 0 

70 1.222 3687.354 0.205 2.382 0.655 2.382 3364.558 322.796 0 

 

1. We got a maximum difference in torque requirement of 458 Nm as shown in column 

“Tcw-Tcable” of Table 2-8 for a payload of 150 kg and counterweight of 400 kg. We 

got a difference in cable length wrapping on the cam from the displacement of cable 

length in the workspace approximately equal to zero.  

2. If we changed the counterweight to 355 kg, we got the difference in torque 

requirements as 117 Nm. This torque requirement for this set of boundary conditions 

at various positions and theta values are shown in Table 2-9 

3. For a payload height of (y = 1.25 m) and a counterweight of Wcw = 365 kg, we got 

the maximum difference in torque requirement as 70 Nm. 
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Table 2-9.  Torque Requirement for Payload at y =1.35m and Counterweight Wcw = 475 

kg 

Sr No. Theta TCW X Tcable1 Tcw-Tcable 

0 0.000 0.000 3.640 0.000 0.000 

1 0.017 60.779 3.610 55.865 4.914 

2 0.035 121.539 3.580 111.874 9.666 

3 0.052 182.263 3.550 167.955 14.308 

4 0.070 242.930 3.520 224.049 18.881 

5 0.087 303.524 3.489 280.110 23.414 

10 0.175 604.738 3.333 561.254 43.484 

15 0.262 901.350 3.172 838.541 62.809 

20 0.349 1191.102 3.006 1111.276 79.826 

25 0.436 1471.789 2.835 1378.253 93.537 

30 0.524 1741.275 2.657 1637.342 103.933 

35 0.611 1997.509 2.471 1886.004 111.505 

40 0.698 2238.540 2.278 2122.171 116.369 

45 0.785 2462.535 2.074 2345.053 117.482 

50 0.873 2667.788 1.858 2555.503 112.285 

55 0.960 2852.738 1.623 2755.812 96.926 

60 1.047 3015.977 1.363 2949.311 66.665 

65 1.134 3156.262 1.058 3142.111 14.151 

70 1.222 3272.527 0.655 3364.558 -92.031 

 

4. Since the positions at which these differences occur varies due to the complex nature 

of the equations, we could not develop a relation between payload and counterweight. 

We needed to rely on Excel calculations to determine the counterweight. For 

example, for conditions of y = 1.25 m and Wcw = 365 kg, the maximum torque 

requirement occurs at x = 2.29m, while for y = 1.35 m and Wcw = 365 kg, it occurs 

at x = 2.07 m. 

2.4.2.Increase in Payload Position  

For an increase in payload height by 0.3 m, that is y = 0.75 m, we calculated design 

parameters as described in section 2.3.  
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Table 2-10. Effect of increase in payload height (y = 0.75 m) for same design parameters 

Sr 

No. 
Theta TCW R(θ) Lcam X L1 Tcable1 Tcw-Tcable Lcw-Lcable 

0 0.000 0.000 0.132 0.000 3.640 0.000 0.000 0.000 0 

1 0.017 68.483 0.133 0.028 3.612 0.028 92.089 -23.606 0 

2 0.035 136.946 0.134 0.056 3.583 0.056 184.292 -47.347 -6.939E-17 

3 0.052 205.366 0.134 0.084 3.554 0.084 276.486 -71.119 0 

4 0.070 273.724 0.135 0.112 3.525 0.112 368.569 -94.844 -1.804E-16 

5 0.087 341.999 0.136 0.141 3.496 0.141 460.461 -118.462 0 

10 0.175 681.395 0.139 0.286 3.347 0.286 919.067 -237.672 0 

15 0.262 1015.606 0.142 0.435 3.195 0.435 1367.224 -351.618 0 

20 0.349 1342.087 0.145 0.587 3.038 0.587 1803.139 -461.052 0 

25 0.436 1658.354 0.149 0.743 2.878 0.743 2224.037 -565.683 0 

30 0.524 1962.000 0.153 0.902 2.712 0.902 2625.464 -663.464 0 

35 0.611 2250.714 0.156 1.066 2.542 1.066 3002.078 -751.365 0 

40 0.698 2522.299 0.161 1.234 2.366 1.234 3348.951 -826.653 0 

45 0.785 2774.687 0.165 1.407 2.184 1.407 3662.559 -887.872 0 

50 0.873 3005.958 0.170 1.586 1.994 1.586 3940.790 -934.832 0 

55 0.960 3214.353 0.177 1.771 1.795 1.771 4181.459 -967.107 0 

60 1.047 3398.284 0.184 1.964 1.584 1.964 4379.097 -980.813 0 

65 1.134 3556.352 0.194 2.167 1.356 2.167 4520.072 -963.720 0 

70 1.222 3687.354 0.205 2.382 1.104 2.382 4576.851 -889.497 0 

75 1.309 3790.293 0.219 2.610 0.813 2.610 4504.815 -714.522 0 

80 1.396 3864.386 0.232 2.854 0.427 2.854 4245.665 -381.279 0 

 

1. We got a maximum difference in torque requirement of 980 Nm as shown in column 

“Tcw-Tcable” of Table 2-10. We got a difference in the cable length wrapping on the 

cam from the displacement of cable length in the workspace approximately equal to 

zero.  

2. If we changed the counterweight to 475 kg, we got the difference in torque 

requirements as 371 Nm. The torque requirement for this set of boundary conditions 

at various positions and theta are shown in Table 2-11. 
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3. For a payload height of (y = 0.85 m) and counterweight of Wcw = 465 kg, we got the 

maximum difference in torque requirement as 75 Nm.  

Table 2-11. Torque requirement for payload at y =0.75m and counterweight Wcw = 475 

kg 

Sr No. Theta TCW X Tcable1 Tcw-Tcable 

0 0.000 0.000 3.640 0.000 0.000 

1 0.017 81.324 3.612 92.089 -10.765 

2 0.035 162.623 3.583 184.292 -21.669 

3 0.052 243.872 3.554 276.486 -32.613 

4 0.070 325.048 3.525 368.569 -43.521 

5 0.087 406.124 3.496 460.461 -54.337 

10 0.175 809.157 3.347 919.067 -109.910 

15 0.262 1206.032 3.195 1367.224 -161.191 

20 0.349 1593.728 3.038 1803.139 -209.411 

25 0.436 1969.295 2.878 2224.037 -254.741 

30 0.524 2329.875 2.712 2625.464 -295.589 

35 0.611 2672.723 2.542 3002.078 -329.356 

40 0.698 2995.230 2.366 3348.951 -353.722 

45 0.785 3294.941 2.184 3662.559 -367.619 

50 0.873 3569.576 1.994 3940.790 -371.215 

55 0.960 3817.044 1.795 4181.459 -364.416 

60 1.047 4035.462 1.584 4379.097 -343.635 

65 1.134 4223.168 1.356 4520.072 -296.904 

70 1.222 4378.733 1.104 4576.851 -198.118 

75 1.309 4500.973 0.813 4504.815 -3.842 

80 1.396 4588.958 0.427 4245.665 343.293 

 

 

2.4.3. Summary of changes in payload position  

It was difficult to track the torque requirement at various positions, but we 

concluded that as payload height increased the variation in torque requirement 

increased, and we needed to increase the counterweight, so as to require less 

compensatory motor torque.    
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Chapter 3 - Design of Components  

In chapter 2, we derived a cam profile to balance a load vertically while maintaining 

zero net force on the payload horizontally.  

The partial body weight offload system comprised a cam (non-circular spool), gear 

box, spools, counterweight arm, cam shaft, and rope and pulley system as shown in Figure 

2-1.  

The components were designed by considering the system as static.  

As discussed in the previous chapter, the cam was designed for the parameters  

shown in Table 3-1.  Therefore, for designing the rest of the components, we used design 

parameters from Table 2-1 and loads and torque values from Table 2-7. 

Table 3-1. Design parameters after cam design 

 Parameters Value 

Payload (WP) 152 kg  

Payload Height from Top (HP) 

(Reference Height)  

1.05 m  

Length of Counterweight Arm (LCW) 1 m  

Gear Box Ratio (κ) 12 

Counterweight (WCW) 400 kg  

Maximum Tension in the Rope (refer to 

Table 2-7.) 

1530 N  

Maximum Torque at Counterweight Arm 

(refer to Table 2-7.) 

3790.293 Nm 
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3.1. Gear Box Design  

The gear box comprises gears and circular spools. The layout of the gear box is as shown 

in Figure 3-1.  

 

 

 

 
Figure 3-1 Gear Box Layout 

3.1.1. Selection of the Gear Box Ratio: 

The gear box ratio was calculated from equation (22), as  

 






2/

0

22 )(






Rd

eyeyL
                            (22)      

Here,   

L = 3.65 m  

(y-e) = 1.05 m 


2/

0



Rd 0.277 
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Substituting the above values gave 91.9 . Therefore, the selected gear box 

ratio is 12, rounding up to the nearest highly factorable integer. 

Since the gear box ratio is 12, and 10 is an upper bound on the reduction ratio for 

a single gear stage, we needed to arrange a combination of gears and spools to 12. Factors 

of 12 are either 6 and 2, or 4 and 3. Therefore, gears with a ratio of 4 and spools with the 

size ratio of 3 were selected for design of the gear box.  

The larger spool and smaller gear (pinion) were installed on the one shaft denoted 

as shaft-1 for calculations. The smaller spool and larger gear were installed on the other 

shaft denoted as shaft-2. The rope from the payload went through a pulley and was 

wound on the larger spool. The nylon strap was wound on the smaller spool and then was 

wound on the cam. The tension in the rope revolved the larger spool and was balanced by 

the cam system design in chapter 2.  

3.1.2. Gear Shaft Design for Stresses: 

The shaft material was 1045 carbon steel (McMaster-Carr). Properties were: 

Yield Strength – 75,000 psi (510 MPa) 

Young’s Modulus – 29,000 ksi (210 GPa) 

We designed for shafts loading in which the bending moment contributes most 

heavily to stress [28]. The free body diagrams are shown in Figure 3-2 and Figure 3-5, 

with associated shear and moment diagrams in Figures 3-3, 3-4, 3-6, and 3-7. 

a. Stress Analysis in Shaft-1.  

The larger spool and pinion (smaller gear) were installed on Shaft-1. Forces 

coming from the payload were considered for the design of this shaft.  
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Figure 3-2 Free body diagram of shaft 1 

The reactions were calculated as:  

∑F = 0.                 RA +RB + 1538 – 4614 = 0.                          (29) 

∑M = 0.                 0204.7875R +4614153.195- 153857.975 B                       (30) 

This gives RA = 59.6N and RB = 3016.4N. 

The bending moment and shear force diagrams for shaft 1 are as shown below.  

 
Figure 3-3 Shear force diagram for shaft 1 
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Figure 3-4 Bending moment diagram for shaft 1 

 

The maximum bending moment is 155.624 Nm and the maximum shear force is 3016 N.  

 

Bending stress in the shaft is given by Hearn [29]:  

I

My
b                     (31) 

Here, y = d/2 

and         
64

4d
I


                                 (32) 

Therefore,    
3

32

d

M
b


                                  (33) 

Allowable bending stress is  

    MPa
SF

S y

b 340
5.1

510
                (34) 

where SF is a factor of safety, considered as 1.5.  

Therefore, the minimum diameter is 
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mm
M

d
b

7.16
340

10006.1553232
33 










          (35) 

b. Stress Analysis in Shaft-2.  

A smaller spool and a larger gear were installed on Shaft-2. Forces coming from 

the counterweight were considered for the design of this shaft.  

 

Figure 3-5 Free body Diagram of Shaft 2 

The reactions are calculated as:  

∑F = 0.                 RA +RB + 18456– 4614 = 0.                (36) 

∑M = 0.               0204.7875R +4614153.195- 8456157.975 B             (37) 

This gives RA = -12786.76N and RB = -1055.2N. 

The bending moment and shear force diagrams for shaft 2 are as shown below.  
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Figure 3-6 Shear force diagram for shaft 2 

 

Figure 3-7 Bending moment diagram for shaft 2 

 

Using the same equation (35) as above for allowable stress, the minimum diameter is  

mm
M

d
b

47.26
340

10006193232
33 










                (38)     
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3.1.3. Selection of gears.  

The Lewis form factor bending stress (σg
b) in gears is given by Budynas, Nisbett, 

and Shigley  [28]:  

   
YmF

W

pyF

W

w

t

w

t

b
g        (39) 

where 

• Wt – Transmitted load = 4614 N 

• Fw – Net face width of gear  

• p - Circular pitch  

• m - module = 4 mm  

• y, Y – Lewis form factor, Y = 0.296  

• Material of procured gear supplier i.e. Boston Gear is Mild Carbon Steel which has 

yield strength of Sy = 440MPa.  

• Allowable bending stress is   

293
5.1

440


SF

S y
b

g         (40) 

Therefore,   

4296.0

4614
293




wF
     (41) 

Fw = 13.3 mm is the minimum face width. 

For the final selection of gears refer to Table 3-2. 
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Table 3-2. Gear selection parameters 

 Gear Pinion   

No. of Teeth  64 64 16 16 

Pressure Angle  20° 

Pitch Diameter  256 mm 8 inch 64 mm 2 inch 

Face Width 15 mm  0.75inch 15 mm 0.75 inch 

Module 4 mm  4 mm  

Diametrical Pitch   6.35  6.35 

Bore 27 mm 1 1/8” 25 mm 1” 

 

 We selected a gear from the Boston catalog as shown in Appendix B-1.  

Note: For testing of the prototype, gears and bearings were selected with a bore of one 

inch diameter.  

3.1.4. Failure Analysis of Key:  

For 1” & 1.125” bores, the standard key available is ¼” x ¼”.  

Maximum torque in the system is  

24150max  spooldFT       (42) 

      inch -lb 8300 max T      (43) 

Shear force is given by  

 14755lb
2T max 

d
FS

        (44) 

Shear stress in the key is 

 
F S

kkbL
                        (45) 

Maximum shear stress for steel (Shear Stress Failure Theory [28]) is   

37500psi 
2

S y
             (46) 



44 

 

 

 

Allowable shear stress is 

25000
5.1

37500


SF
allow


 psi        (47) 

Therefore, from equations (44), (45) and (47),   

     Lk = 2.3 in.        (48) 

Note: For testing, we considered 2” width of smaller spool and length of key since pilot 

testing will not be at maximum load.  

3.1.5. Spool Design  

Rope from the payload wound on the larger spool. The size difference between 

the larger and smaller spool was three times. If the smaller spool is chosen to be two 

inches in diameter, the larger spool is six inches in diameter.  

Width of the larger spool is calculated as  

  
cableL)

0.3937

W
(6

spool
            (49) 

Here, 0.3937 inch is the nominal rope diameter.  

From equation 15, with x = 0,  

1.1173030144 22 CableL  in 

By Equation (41) 

   0.3937138.85W6 spool  ;                (50) 

344.2Wspool  in       (51) 

 The width of the smaller spool was equal to the width of the strap which was two 

inches.  
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3.1.6. Gear Box Housing Design: 

The gear box was mounted on a wooden vertical post, as shown in Figure 3-8. 

The main challenge with this assembly was to design bolts for failure in shear. There 

were also complex reaction forces coming on the gearbox housing.   

 

Figure 3-8  Gear box mounted on vertical post 

 

We selected the gear box housing to be made up of ⅜” steel plate.   

The approximate bolt diameter is given by  

3
max2Td fb              (52) 

Here, Tmax  ≈  1000 Nm. 

"5.0)2( 3
max

1

 Td fb
      (53) 

Therefore, we selected the bolt diameter as 9/16”.  
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Calculations for shear stress in the bolt are given by  

Na

F
                                (54) 

The shear stress area of a 9/16-18 grade bolt is a = 0.2030 in2 

F = 18456+1538, N = 4496 lb,    (55) 

Number of bolts: N = 6. 

Therefore, shear stress in the bolt is  

psi14765
2030.06

4496



        (56)                                         

3.2. Cam Shaft  

Bending stresses in the cam shaft were neglected due to the very short length of the shaft.  

Shear stress in torsion is given by  

3

16

d

T

J

Tr


              (57) 

Here T is the total torque applied on the cam shaft and is given by  

T = T1  or  T2         (58) 

where 

 T1 = 4000 Nm (torque due to the counterweight) 

or T2 = 4000 Nm (torque due to the payload or tension in the strap).  

The maximum shear stress for steel (Shear Stress Failure Theory [28]) is   

Nm552 
2

S y
             (59) 

The allowable shear stress is 
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Nm
SF

allow 170
5.1

255



           (60) 

Therefore,  

mmd 58.30
170

1000400016
3 







            (61) 

Therefore, the cam shaft, d = 1.25” (31.75mm).  

 

3.2.1. Failure Analysis of Key:  

 For the 1.125” bore, the standard key available is ¼” x ¼”.  

The maximum counterweight of the system was 4000 N and the length of the 

counterweight arm was 1 m. Therefore, the maximum torque in the cam shaft was  

T = 8450 lb-in (954.75 Nm).              (62) 

Shear force is given by  

 lb 13520 
2T 


d

FS
        (63) 

Shear stress in the key is 

  
F S

Lb
           (64) 

Maximum shear stress for steel (Shear Stress Failure Theory [28]) is   

375000psi 
2

S y
            (65) 

 

Allowable shear stress is 

25000
5.1

37500


SF
allow


 psi       (66) 
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Therefore,  

 
25.025000

13520 


L      (67) 

L = 2.16 in.  

Therefore, we selected a shaft size of 1.25” diameter, with the corresponding key of 

reasonable length to match the cam thickness. 

3.3. Counterweight Arm  

 

Figure 3-9 Counterweight arm layout 

 

The counterweight arm is the square bar keyed to the cam shaft. Since torque in 

the cam shaft is equal to that of the counterweight arm, the dimension of the 

counterweight arm width was 2.5” x 2.5”, equal to the key length as calculated in section 

3.2.1.   The bore in the counterweight arm acts as a slotted beam, with stresses in the 

slotted beam given as,  

cI

M A
allow

/
                    (68) 
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where I/c is the section modulus of the cross section of the weakest part of the slotted 

beam  [30].  

Allowable bending stress is  

MPa
SF

Sy
allow 340

5.1

510
              (69) 

2

2wth
I                     (70) 

h = w = 2.5” (width of counterweight arm) 

2

dh
tcw


 = .375”         (71) 

w= h =2.5” 

F = 4,000 N ≈ 900 lb.   

Lcw = 1000 mm = 39.37 in.                 

E (steel) = 210 GPa = 210 x 103 MPa                                                                  

psi
hwt

FL

cw

cw 15118
375.05.25.2

37.391000
max 




    (72) 

 Therefore,                 

  3.3
15118

50000
SF                                         (73) 

 Therefore, a counterweight arm of 2.5” x 2.5” of 37.39” length was acceptable. 

3.4. Dynamic Analysis  

Consider the counterweight rotating through the counterweight arm of length, 1m, 

at a constant angular velocity of ω1. Let the mass of the counterweight be mcw.  

Therefore, the velocity of the counterweight is given by [31, 32]  
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  eLererrv cwrcwcw 
...

        (74) 

since , 0
.

r ,   
.

  and  cwLr  .  

 

 

Figure 3-10 Free body diagram for counterweight-cam system 

Acceleration of the counterweight is 

 errerrra rcwcw )2()(
....2.....

           (75) 

Here, 0
.

r 0
..

r , 1

.

  , 1

...

  and cwLr  . Therefore,  

 eLeLa cwrcwcw

.
2           (76) 

Assuming zero friction in the counterweight shaft,  

 
..

rmF       (77) 

ycwcwcwrcwcw gemeLmeLmF  
.

2

1
     (78) 
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where, F1 is a net force on the counterweight system that is carried by reaction loads at 

the shaft.  

Moments about the cam shaft can be given as,  

                             FrM       (79) 

)(
.

2

1 ycwcwcwrcwcwr gemeLmeLmreM      (80) 

)sin(
.

2

1 zcwcwzcwcw egLmeLmM        (81) 

zcwcw egLmIM )sin(
.

1      (82) 

 It is observed that, in (82), the second term represents the torque (Tcw) applied at 

the center of the cam due to the counterweight, while the first term represents the torque 

(Tcw_inertia) due to the effect of the inertia of the counterweight on the system. This inertia 

effect depends on the angular acceleration of the counterweight.    

 Taking the ratio of Tcw_inertia and Tcw from (81),  

 
g

L

T

T
cw

cw

Inertiacw

.

_ 
      (83) 

 To have minimum effect of counterweight inertia, ratio (83) should be less than 

10%. Therefore,  

1.0

.


g

L
   (84) 

 

For Lcw =1m and g ≈ 10m/s2.  

1
.

  rad/s2   (85) 
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 The average cam radius was 0.2 m and gear box ratio κ was 12; to have the effect 

of inertia under 10%, maximum acceleration (or deacceleration) of payload should not be 

more than,  

4.2pa m/s2    (86) 

Acceleration of the cam is given by (76),  

From equation (25),  

1323.00447.0078.02702.0404.02856.00708.0)( 23456  R   

We can rewrite 
.

r  as,  

..


d

dr
r    (87) 

Therefore,  

2

2345
.

)0447.0156.00.81061.616428.10.4248(  r     (88) 

where   
.

 is the angular velocity of the cam.  

We can also write 
. .

r  as  

...

r
dt

d
r   (89) 

2

.
2345

2

2

234
..

)0447.0156.00.81061.616428.10.4248(

)156.062121.4.848712.5124.2(







r
     (90) 

Since,  
...

  . Therefore,  

2

2

234
..

)156.062121.4.848712.5124.2(  r    (91) 

Therefore by (68),  
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       (92) 

Summing forces,   

 
22 FWFFF camcamS       (93) 

where FS is the force in the strap, Fcam is the inertial force acting on the cam due to acam 

given by (89), Wcam is the weight of the cam, and F2 is the net force on the cam.  

))2()(( 2
2

.
2

2

2







e
d

dR
ReR

d

Rd
mamF rcamcamcamcam    (94) 

ycamcam gemW       (95) 

The mass of the manufactured cam profile (refer to section 4.1 for manufacturing 

details) is,  

11.533kg 1.769)2 + 2.6653( camm    (96) 

NWcam 113      (97) 

Balancing the moments,  

  FrM 2
      (98) 

)(2 camcamSr WFFreM      (99) 

zcamcamS egcmm
d

dR
RRRFM ))2(( 2

.
2

2  


   (100) 

In (100), the first term FSR is tension in the strap due to the payload. The second 

term is the effect of inertia of the cam. This effect depends on two terms; first, the inertia 

effect due to angular acceleration of the cam, and second, the inertia effect due to the non-
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circularity of the cam. This effect was not considered in static balancing. The third term 

comes out to be the effect of the unbalanced cam on the system. Term “c” in (100) is the 

distance between center of gravity of the cam and the axis of rotation. We can minimize 

this effect by the balancing of the cam.  

From the profile of the cam (refer to Figure 3-11), the center of gravity is located 

at points (-82.63 mm, 40.01 mm) from the axis of rotation.   

 

Figure 3-11 Center of gravity of the cam  

.4509)+91.8cos( = c  mm    (101) 

Therefore, at a lower counterweight and at the vertical position of the counterweight 

arm that is, θ is less, the effect of the unbalanced cam is more.  But for a higher 

counterweight, this unbalancing effect is low.  

Balancing of moments,  

  21  = M M     (102) 

Therefore, from (82) and (97),  



55 

 

 

 

.451)+cos(37.1053.11)2( =sin 2
.

2
.

2



 

d
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RRRFgLmLm Scwcwcwcw  (103) 

 The left hand side of (103) gives the torque due to the counterweight considering 

its inertial affect. While the right of (103) gives the moment about the cam shaft due to 

payload or tension in the rope. It also considers the inertial effect and the effect of the 

unbalanced cam. For a higher counterweight like 400kg, as calculated in this thesis, we 

could neglect these effects of mass and inertia of the cam due to its low weight, i.e. 11.5 

kg. For a lower counterweight, these effects are considerable and need to be calculated 

for accurate dynamics of the system.  

3.5. Summary of the Design of the Components  

The final dimensions of  the components are given below.  

Table 3-3. Summary of design of components 

Component SI Inch System 

Payload 150 kg 330lbs 

Counterweight 400 kg 880lbs 

1. Cam 

CAM Shaft  31.25 mm 1 ¼  inch 

Cam Width 63.5 mm 2 ½ inch 

2. Counterweight Arm  

Square Bar 65mm x 65mm x1000 mm 2.5” x 2.5” x 39.37” 

3. Gear Box  

Gear Box Shaft 27 mm 1 1/8 inch 

 Gear Pinion  

Attachment To CAM To Payload 

No of teeth  64 16 
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Pitch Diameter  256 mm 10 inch 64 mm 2.5 inch 

Face Width 13 mm  0.5 inch 12 mm 0.5 inch 

Module 4 mm  4 mm  

Diametrical Pitch   8  8 

5. Spools 

 Smaller Spool  Larger Spool  

Diameter  2 inch 6 inch  

Width  2.5 inch 3  inch (for 9.5 mm rope) 

  



57 

 

 

 

Chapter 4 - Prototype Testing 

In chapter 2, we  designed the cam and in chapter 3 we designed the components 

required for implementing the partial body-weight support system. In this chapter, we will 

test the prototype and will analyze the results.  

For the prototype design, we tried to maintain similar sizes as designed in chapter 3. 

The sizes of each component used for the design are as shown in Table 4-1. 

For testing, we developed and assembled the half system. That is, we manufactured 

and assembled one cam, one gearbox and one counterweight arm. The purpose of this was 

to analyze the operation of the system and to avoid any increases in the cost of testing if 

improvements needed to be made.  

4.1. Manufacturing of Cam 

The maximum diameter of the cam is 434.12 mm with a 50 mm width. Therefore, 

manufacturing the entire cam from a single work piece would be costly. Instead a sandwich 

pattern was used. Two 0.75” thick wooden cam profiles were sandwiched between three 

0.25” aluminum (Al) cam profiles. These Al cam profiles were manufactured using a CNC 

machining center. The cam designed in section 2.3 was converted into a step file using 

Matlab and MSC Adams. The manufactured Al profile was used as a template for 

manufacturing the wooden profiles using a router. We assembled the finished sandwich of 

Al & wooden profiles using 0.25” bolts and nuts.    
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Rope  

Strap  

Wooden post  

Cam  

Measuring Scale  

Counterweight Arm  

Counterweight  

Pulley  

4.2. Assembly  

One end of a 10-mm rope was wound on the 6” aluminum spool with the help of a ⅜” 

diameter eyebolt (Refer to Figure 4-1). A wooden plate was used as a guide to the rope, so 

that it wouldn’t slip from the spool.  

  

Figure 4-2 – Test setup 

 

 

 

 

Figure 4-1 – Gear box 

 

Figure 4-3 – Counterweight and 

measurement of theta by linear scale 

Gear Box 

Smaller spool  

Larger Spool  
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The other end of the rope passed through a pulley and was secured on a spring scale to 

measure rope tension. The pulley was assembled at a height of 120” from the ground on 

the main structure. The gear box, which comprised spools and gears, was assembled 

vertically at a height of 80” from the ground. The cam assembly, which consisted of the 

cam, the cam shaft, and counterweight arm, was installed on the wooden post with the help 

of a sleeve bearing, at a height of 50” from the ground. The nylon strap was glued on the 

cam and wrapped for a full revolution. It was fixed on the smaller spool with the help of 

three 3/16” diameter bolts 50” from the ground. See Appendix D for test setup images. 

Table 4-1. Components used for testing  

1. Cam 

CAM Shaft  1.125” 

Cam Width 2” 

2. Counterweight Arm  

Square tube 2” x 2” x 0.25” thick x 39.37” long  

3. Gear Box  

Gear Box Shaft 1” 

 Gear Pinion 

No. of teeth  64 16 

Pitch Diameter  8” 2” 

Face Width 2” 2” 

Diametrical Pitch  8 8 

4. Spools 

 Smaller Spool  Larger Spool  

Diameter  2 inch 6 inch  

Width  2.25 inch 3 inch (for 9.5 mm rope) 
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4.3. Measurements 

Three sets of counterweights (50 lb., 60 lb., & 70 lb.) were used to demonstrate the 

performance of the system. A spring scale was used to measure the tension in the rope. A 

protractor and tape measure were used to measure the angular position of the counterweight 

with respect to the wooden post. Refer to Figure 4-3. 

 The rope was paid out and tension in the rope was measured at specific points along 

the movement. The cable angle and position of payload (rope displacement) were 

calculated by the difference in the measuring point with respect to the starting point of the 

measurement.  

4.4. Results 

At zero counterweight, since the cam is non-circular, the center of mass of the cam 

tends to rotate counter-clockwise, and the system stabilizes at a counterweight angle of θ 

= 20°. This is a limitation of the model compared to the prototype (the model was assumed 

massless and the prototype was not counterbalanced to be neutral). 

At a counterweight of 15 lb. (66.7 N), the counterweight arm came to a vertical 

position, that is, at θ = 0°. The results are tabulated as shown in Table 4-2.  

In Table 4-2, y’ is the movement of the rope vertically and tension is measured at 

these respective points. Theta (θ) is the angle of the counterweight arm with respect to 

vertical. It was measured by using a tape measure and/or protractor. The readings were 

taken for counterweight values of 50, 60, & 70 lbs. Tension in the rope was measured using 

a spring scale and noted down. We observed that when the rope was fully stretched, it did 
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not comes back to its original position but there was some slip (related to the winding and 

unwinding on the spool).  

Table 4-2. Results for vertical rope movement  

y' Theta cw Tension 

78.000 0.095 50 0.0 

74.000 0.108 50 2.0 

70.000 0.156 50 4.5 

66.000 0.205 50 5.5 

62.000 0.257 50 7.0 

58.000 0.310 50 8.0 

54.000 0.360 50 11.5 

50.000 0.413 50 12.5 

46.000 0.461 50 14.0 

42.000 0.504 50 15.5 

38.000 0.540 50 16.5 

34.000 0.589 50 18.0 

30.000 0.628 50 20.0 

26.000 0.680 50 21.5 

22.000 0.721 50 19.0 

18.000 0.760 50 18.0 

76.000 0095  60 0.0 

72.000 0.115 60 2.0 

68.000 0.163 60 5.0 

64.000 0.216 60 6.5 

60.000 0.267 60 7.5 

56.000 0.321 60 10.0 

52.000 0.375 60 12.0 

48.000 0.425 60 13.5 

44.000 0.473 60 15.0 

40.000 0.518 60 14.0 

36.000 0.561 60 18.5 

32.000 0.603 60 20.0 
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y' Theta cw Tension 

28.000 0.647 60 20.5 

24.000 0.688 60 21.5 

74.000 0.095 70 0.0 

70.000 0.132 70 4.0 

66.000 0.182 70 6.0 

62.000 0.231 70 8.0 

58.000 0.283 70 10.5 

54.000 0.337 70 12.0 

50.000 0.391 70 13.5 

46.000 0.439 70 16.0 

42.000 0.486 70 17.5 

38.000 0.531 70 19.0 

34.000 0.574 70 20.0 

30.000 0.604 70 21.0 

26.000 0.660 70 22.5 

22.000 0.698 70 23.5 

4.5. Analysis  

The data collected in Table 4.2 do not give any conclusion regarding static and 

dynamic performance of the system. Therefore, to compare analytical results with 

experimental, we calculated torque provided by the counterweight (Tcw) and torque due to 

tension in the cable at R (Tcable). We calculated theoretical tension in the cable and 

compared it with actual tension.  

4.5.1. Analysis for y = 1.06m, CW = 222N 

In this section, we analyze the results for a counterweight of 50 lb (222N) and 

payload height of 1.06 m (y=78” from ground). The analysis steps are given below.   
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Table 4-3. Analysis for h = 1.06m, CW = 222N 

Sr 

No. 
Tension (y) Theta 

Strap 

Spool 
R TCW 

Strap 

Cam 
Tcable 

Tcw-

Tcable 

Strap 

Difference 

in mm 

0 0.000 1.981 0.095 0.000 0.136 21.2 0.000 0.0 21.2 0 

1 8.896 1.880 0.108 0.008 0.137 24.0 0.002 14.6 9.4 -7 

2 20.017 1.778 0.156 0.017 0.138 34.6 0.008 33.2 1.4 -9 

3 24.465 1.676 0.205 0.025 0.140 45.2 0.015 41.1 4.1 -10 

4 31.138 1.575 0.257 0.034 0.142 56.5 0.023 53.0 3.5 -11 

5 35.586 1.473 0.310 0.042 0.144 67.8 0.030 61.4 6.4 -12 

6 51.155 1.372 0.360 0.051 0.146 78.4 0.038 89.4 -11.0 -13 

7 55.603 1.270 0.413 0.059 0.148 89.3 0.045 98.6 -9.3 -14 

8 62.275 1.168 0.461 0.068 0.150 98.9 0.052 112.0 -13.1 -15 

9 68.947 1.067 0.504 0.076 0.152 107.3 0.059 125.5 -18.1 -17 

10 73.396 0.965 0.540 0.085 0.153 114.4 0.065 135.0 -20.6 -20 

11 80.068 0.864 0.589 0.093 0.155 123.6 0.072 149.4 -25.8 -21 

12 88.964 0.762 0.628 0.102 0.157 130.6 0.078 167.9 -37.2 -23 

13 95.637 0.660 0.680 0.110 0.160 139.8 0.087 183.3 -43.5 -23 

14 84.516 0.559 0.721 0.119 0.162 146.9 0.093 164.1 -17.2 -25 

15 80.068 0.457 0.760 0.127 0.164 153.2 0.100 157.4 -4.17 -27 

 

 

Figure 4-4 comparison between theoretical tension and actual tension in cable for Table 

4-3 
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1. The strap displacement on the cam could be calculated from equation (14) 

 dtRSCAM )(             

2. The strap displacement on the smaller spool could be calculated as  

12

cablecable

Spool

LL
S 


    (104) 

3. We got an error of 27 mm at the end of the complete cycle as shown in Table 4-3. 

We got a maximum torque difference of 43.5 Nm. This difference is 31% of the 

torque transmitted by the cam. As seen in chapter 2, the theoretical difference 

between Tcam to Tcable is 1%.  

4. The comparison between theoretical P and the actual tension in the cable is 

plotted as shown in Figure 4-4. 

4.5.2. Analysis for h = 1.12m, CW = 267N 

In this section, we analyze the results for a counterweight of 60 lb (267N) and 

payload height of 1.12 m (y=76” from ground).  The analysis steps are given below.   

1. The maximum difference in the strap advancement on the cam was 22 mm. 

2. The maximum difference in the torque was 18 Nm which is 14% of the torque 

transmitted by the cam. While at the cable displacement of 2”, the maximum (Tcam-

Tcable)/Tcam is 15% due to the center of gravity not passing through the axis of rotation.  

3. The difference between theoretical tension and actual tension in the cable is as shown 

in Figure 4-5. 
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Table 4-4. Analysis for h = 1.12m, CW = 267N 

TCW Tcable1 Tcw-Tcable Strap_Spool Strap_Cam 

Strap 

Difference 

in mm 

Actual 

Tension 

Theoretical 

Tension 

25.422 0.000 25.422 0.000 0.000 0 0.000 0.000 

30.506 14.598 15.908 0.008 0.003 -6 8.896 41.228 

43.217 36.943 6.274 0.017 0.009 -8 22.241 56.028 

57.199 48.674 8.525 0.025 0.017 -9 28.913 66.471 

70.333 56.894 13.439 0.034 0.024 -10 33.362 74.565 

84.315 76.957 7.358 0.042 0.032 -10 44.482 81.070 

97.873 93.707 4.166 0.051 0.040 -11 53.379 86.368 

110.160 106.890 3.270 0.059 0.047 -12 60.051 90.683 

121.600 120.370 1.229 0.068 0.054 -13 66.723 94.162 

132.192 113.803 18.389 0.076 0.061 -15 62.275 96.912 

141.937 152.243 -10.306 0.085 0.068 -17 82.292 99.011 

151.258 166.612 -15.354 0.093 0.074 -19 88.964 100.526 

160.825 173.036 -12.211 0.102 0.081 -20 91.189 101.516 

169.477 183.766 -14.289 0.110 0.088 -22 95.637 102.035 

 
Figure 4-5 Comparison between theoretical tension and actual tension in cable for 

Table 4-4 
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4.5.3. Analysis for h = 1.17m, CW = 311N 

In this section, we analyze the results for a counterweight of 60 lb (267N) and 

payload height of 1.12 m (y=76” from ground).  The analysis steps are given below.   

1. The maximum difference in the strap advancement on the cam was 21 mm. 

2. The maximum difference in the torque was 12 Nm. This is 10% of the torque 

transmitted by the cam. For the cable displacement of 4”, this difference is 12% due 

to improper center of mass of the cam.  

3. The difference between the theoretical tension and the actual tension in the cable is as 

shown in Figure 4-6. 

Table 4-5. Analysis at h = 1.17m, CW = 311N 

TCW Tcable1 Tcw-Tcable Strap_Spool Strap_Cam 

Strap 

Difference 

in mm 

Actual 

Tension 

Theoretical 

Tension 

29.658 0.000 29.658 0.000 0.000 0 0.000 0.000 

41.027 29.196 11.699 0.008 0.005 -3 17.793 49.934 

56.350 44.331 11.803 0.017 0.012 -5 26.689 67.548 

71.179 59.906 11.050 0.025 0.019 -7 35.586 79.823 

86.997 79.652 7.003 0.034 0.026 -8 46.706 89.227 

102.814 92.348 10.092 0.042 0.034 -8 53.379 96.694 

118.632 105.421 12.764 0.051 0.042 -9 60.051 102.696 

132.472 126.685 5.290 0.059 0.049 -10 71.172 107.512 

145.324 140.432 4.391 0.068 0.056 -12 77.844 111.327 

157.682 154.447 2.663 0.076 0.063 -13 84.516 114.272 

169.050 164.587 3.830 0.085 0.070 -15 88.964 116.448 

176.959 174.943 1.917 0.093 0.075 -19 93.413 117.940 

190.800 189.917 0.147 0.102 0.083 -18 100.085 118.823 

200.191 200.861 -1.310 0.110 0.090 -21 104.533 119.166 
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Figure 4-6 Comparison between theoretical tension and actual tension in cable for Table 

4-5   

4.6. Observations and Conclusions 

1. The center of mass of the cam does not pass through the axis of rotation of the cam. 

Therefore, the tension in the rope will always be less than the theoretical calculated 

tension in the rope. This explained some of the error in the previous figures. 

2. For larger movement of the cable, the difference between the actual tension and the 

calculated tension was relatively low, in the range of 12%. Table 4-6 shows the 

difference in percentage of tensions for each case.  

3. In Table 4-6, y” is the position of the spring scale for reference. That is, y”1- y”2 is the 

cable displacement. We took measurements at intervals of 4” cable displacement. 

Columns labeled 50 lb., 60 lb., and 70 lb. show the ratio given by 

%
lTheroetica

lTheroeticaActual

P

PP 
     (105) 
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Table 4-6. Percentage difference in tensions in cable 

y" 50 lb 60 lb 70lb 

74 74%     

70 57% 79%   

66 56% 61% 63% 

62 50% 57% 59% 

58 47% 56% 54% 

54 29% 46% 46% 

50 26% 39% 44% 

46 21% 34% 40% 

42 15% 30% 33% 

38 11% 36% 29% 

34 4% 17% 25% 

30 -5% 12% 23% 

26 -12% 10% 20% 

22 1% 6% 15% 

18 6%   12% 

4. The installation of the strap and rope should be done under proper tension. 

Furthermore, we could not adjust tension easily, since there was no brake attached to 

the gearbox. Therefore, one of the design improvements will be the locking of the 

gear box so that the rope and strap can be installed easily.  
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Chapter 5 - Conclusions and Future Work   

This thesis presents the design and testing of a “Cam-Based Pose-Independent 

Counterweighting for Partial Body-Weight Support in Rehabilitation” in a two-

dimensional work space.  

We have discussed that the gait dysfunctions are changes in normal walking 

patterns, often related to a disease or abnormality in different areas of the body. There are 

numerous body-weight support (BWS) systems like “The Treadmill Body-Weight Support 

System” or the “Multidirectional Transparent Support System” which are applied to 

rehabilitation during gait training. But most of these BWS systems are costly and generally 

are stationary devices. A major drawback of such devices is the lack of degrees of freedom 

for free ambulation. While some multidirectional body-weight support systems do exist, 

these devices are equipped with sensors and control systems which increase the cost of the 

product.   

The main objective of this project was to introduce a partial body-weight support 

system which can be used in a three-dimensional work space. But the scope of this thesis 

is limited to verify the concept in a two-dimensional work space and test and verify the 

prototype. Also, another objective of the research is development of a low-cost weight-

offload system which is easy to operate, flexible in its installation footprint, and requires 

little to no electromechanical input.  

We proposed a cable-based body-weight support system which allows the user to 

move in a two-dimensional workspace with a uniform supporting force throughout that 

workspace.  This was achieved by coupling the cable displacements to the counterweight 
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displacements using mechanical programming via cams. There would be two identical sets 

of cams, gear boxes and counterweights to support the uniform force on the payload.  

The design of the cam was a complex process due to the involvement of implicit 

equations which could not be solved explicitly. This work was restricted by the 

assumptions that a patient walks in a straight line and there are no forces or movement in 

another direction. Using a planar system of two cables suspended from two anchoring 

positions, the system was balanced.  Cable tensions were related to payload and 

displacement.  The length of the cable to be wrapped on the pulley was related to the radius 

of the cam and the displacement of the payload. Since these variables are interdependent 

and implicit, a trial and error method was used. We had assumed the initial value of R(θ) 

and solved these equations. Then we changed the assumed value so that all the equations 

were satisfied. For this we used Excel for solving by the trial and error method. The cam 

profile was achieved by fitting a six-degree polynomial to the resulting R(θ). This cam was 

designed for a reference height of 1.05 m from the top of the support frame for a maximum 

payload of 150 kg and counterweight of 400 kg.  

With this approach, as designed and built, torque was not fully balanced. We also 

got a difference of 1% torque at the designed parameters. This difference increased to 15% 

for payload positions moved 0.3 m either upwards or downwards for change in the 

counterweight value. If we keep the same counterweight as 400 kg, these differences 

increase to 35%. Therefore, there is need of compensatory torque to balance the system.  

To verify this design, a prototype was built in the lab and tested. It is observed that:  
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• The center of mass location of the cam affects the tension in the rope to around 70% 

of the designed torque for lower counterweight, and it decreases as we increase the 

counterweight. Since the system was tested to a maximum 70 lb. of counterweight 

instead of the designed 880 lb., this effect may be negligible in practice.  

• Since testing was done on a relative lower counterweight, the system mass affects 

the recorded calculation.  

• The actual tension follows an incremental path as designed, and the profile is 

similar to the theoretical tension; therefore it appears that the calculation of the cam 

profile holds true.  

• As we observed that torque differences in the cable and cam shaft decrease with an 

increase in counterweight, we can accept the calculations and design, pending 

further testing.  

Future Work:  

The following modifications need to be done before moving into a three-

dimensional workspace:  

• Balancing of the cam. It has a significant effect on torque and tension in the cable 

at lower counterweights. The balancing of the cam can be done by the addition of 

mass.  

• A mechanism to measure tension at a higher counterweight. We need to take more 

readings at much higher counterweights to validate the system. A winch for holding 

the rope at high counterweight values and appropriate load cells in-line with the 

rope can be used to measure accurate tension in the rope.  
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• Improved methodology is needed to measure the angle of the cam with greater 

precision. Digital angular sensors like potentiometers can be used for this purpose. 

• Development of a full two-dimensional system and observation of changes in 

tension in both the cables. Since, in the current phase, testing of the prototype was 

done in a half-system model, it would be beneficial to see the behavior of a 

complete two-dimensional system before arriving at particular conclusions to 

pursue the 3-dimensional workspace.  

• Mechanism to assemble a gear box with brake. This will help for assembling the 

system. Also, it is useful for attaching and detaching payload from the system in 

case of an emergency.  
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Appendix 
 

Appendix A – Cam Design 
 

A - 1: Matlab Code to Find Complete CAM profile  

clc; 
clear all; 
close all; 
  
theta = [0:(pi./360):(2.*pi)]; 
  

  
A =  find(theta <= ((5.*pi)/12)); 
     R1 = -(0.0708.*(theta(1,A).^6))+(0.2856.*(theta(1,A).^5))-

(0.404.*(theta(1,A).^4))+(0.2702.*(theta(1,A).^3))-(0.078.*(theta(1,A).^2))+(0.0447.*theta(1,A))+0.1323; 
  
B = find(((5.*pi)/12) < theta ); 
    R2 = (0.0098705631176298.*(theta(1,B).^3))-

(0.124487286387676.*(theta(1,B).^2))+(0.440030738865897*theta(1,B))-0.166328882873349; 
  
  Z = 5.*zeros( length(theta),1);  
  
Cam_R = [R1 R2] 
  
plot3( Cam_R.*cos(theta), Cam_R.*sin(theta),Z); 
  
CAM = [theta, Cam_R.*cos(theta), Cam_R.*sin(theta),Z]; 

  
save CAM.dat CAM  -ascii 
  
polar(theta, Cam_R) 
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A - 2: CAM Profile (2D Drawing)  
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A - 3: CAM Shaft  
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A - 4: Sleeve Bearing  
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A - 5: CAM – MED Data  

1. Cam – Al profile  
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2. Cam – Wooden profile  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 

 

 

 

Appendix B – Gear Box Design  
 

B - 1: Spur Gears from Boston  

Source: http://www.bostongear.com/ 

  

http://www.bostongear.com/
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B - 2: Gear Drawing   
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B - 3: Gear Box Frame 
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B - 4: Gear Box Frame (3D) 
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B - 5: Gear Box Plate 1 (2D drawing) 
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B - 6: Gear Box Plate 2 (2D drawing) 
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B - 7: 6” Spool (2D drawing) 
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B - 8: 2” Spool (2D Drawing) 
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B - 9: Gear Box Shaft  
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B - 10: Gear Box  
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B - 11: Flanged Bearing  
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Appendix C –Counterweight Arm 
 

C - 1: Counterweight Arm (2D Drawing)  
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Appendix D –Test Setup (JPEG Images) 
 

D - 1: Gear Box  
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D - 2: Cam & Counterweight Arm  
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D - 3: Rope connecting pulley and larger spool 
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D - 4: Complete setup  
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D - 5: Measurement of theta (counterweight arm angle with vertical) 
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D - 6: Measurement of Tension in rope  
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