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Determination of accurate and continuous measurements of volumetric water 

content (θv) is extremely valuable for irrigation management and other agronomic 

decisions. Lately, electromagnetic (EM) sensors are being widely used to monitor θv 

continuously which also offer the benefits of ease of installation, fewer regulatory and 

safety concerns, and cost effectiveness. However, the accuracy of parameters [soil 

temperature, electrical conductivity (ECa), dielectric permittivity (εra), and θv] reported by 

EM sensors need to be evaluated for them to be utilized for agricultural water 

management. In the current study, the accuracy of a wide range of EM sensors was 

evaluated over field and laboratory conditions. The performance of eight EM sensors 

(TDR315, CS655, HydraProbe2, 5TE, EC5, CS616, Field Connect, AquaCheck), was 

analyzed through a field study in a loam soil. In addition, performance assessment of two 

improved and recently developed EM sensors (TDR315 and CS655) was done in a 

laboratory over different soil type, temperature, and salinity conditions. For the field 

study, the reported temperature and ECa difference among the sensors were within 1°C 

and 1 dS m-1, respectively. Among the single-sensor probes, the range of depth-combined 

(0.15 and 0.76 m) RMSD for factory calibration varied from 0.039 m3 m-3 (5TE) to 0.157 



 

 

m3 m-3 (CS616). Regression calibrations improved θv accuracy substantially beyond 

factory calibrations and the betterment in θv accuracy gained by using offset calibrations 

was smaller and less consistent than the improvements gained by using regression 

calibrations. For the laboratory study, the models for estimation of θv at hot (35°C) and 

cold (23.9°C) temperature were not significantly different from each other (two-tail p-

value within 0.1387 and 0.7231) for TDR315 and CS655 sensors. The models for no 

salinity and added salinity were significantly different from each other (two-tail p-value 

within 2.2 × 10-16 and 0.005). It was found that CS655 and TDR315 calibration varied 

with soil type and the relationship of the calculated coefficients (quadratic, linear, and 

intercept) for CS655 and TDR315 sensors across each soil type were investigated with 

respect to their clay content. Based on external validation of the relationships of TDR315 

and CS655 sensors with the clay content, it was found that soil type has a noteworthy 

effect on the performance of CS655, but not TDR315 sensors. Future work aiming to test 

the developed universal calibration would strengthen the claims of this study and may 

signal new opportunities. 
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CHAPTER I 

INTRODUCTION 

Accurate and continuous determination of soil water quantity and quality is vital 

in many soil-water and hydrologic studies as it can better inform the timing and depth of 

irrigation applications and reduce the likelihood of excessively or insufficiently 

irrigating. Excessive irrigation increases fertilizer and irrigation pumping costs as well as 

generates additional nitrate leaching and greenhouse gas emissions. On the opposite 

extreme, inadequate soil water, as a result of insufficient irrigation, limits transpiration 

and photosynthesis and, in turn, can hinder crop growth and yield potential. 

Measurements of soil water quantity is arguably the most necessary geophysical estimate 

for implementing deficit irrigation, in which crop water status is carefully managed to 

maximize grain yield with a limited water supply (Geerts and Raes, 2009). 

The direct method to measure volumetric water content (θv) is by the 

thermogravimetric method which involves removing a known volume of soil, drying at 

105°C until it reaches a constant weight, and then determining the volume of water loss 

(Walker et al., 2004). Unfortunately, this method is destructive, non-continuous, tedious, 

and time-consuming, and therefore, not a suitable option for most applications, including 

irrigation scheduling. Alternatively, neutron attenuation via a neutron moisture meter 

(NMM) is a reliable and accurate non-destructive (after installation) indirect measure of 

θv. Although the NMM improves the stability in monitoring of θv as compared to the 

thermogravimetric method by allowing for repeated measures in a single location, it too 

is limited in applications due to a radioactive source, which requires proper training, 
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licensing, and safety measures when handling, storing, and transporting the instrument 

(Rudnick et al., 2015). However, a calibrated NMM can be used to compare other soil 

water monitoring devices (Leib et al., 2003). 

Since electromagnetic (EM) properties of soil vary with θv, various EM sensors 

have been developed, tested, and adopted over the last several decades. Some of these EM 

sensors also measure apparent electrical conductivity (ECa) and temperature. These extra 

capabilities undoubtedly broaden the applicability of EM sensors in both research and 

production scenarios. For example, measurement of ECa can be used to monitor soil 

salinity (Rhoades et al., 1976) if calibrated using saturation extract electrical conductivity 

(ECe), and to monitor nitrate-nitrogen (NO3-N) concentrations in soil and water (Payero et 

al., 2006). Temperature is a key environmental variable for plants during the vegetative 

period as it affects time of emergence (Schneider and Gupta, 1985). 

The ability of EM sensors to provide continuous measurements of θv, ECa, and 

temperature has broadened their applicability in research and production scenarios. 

However, merely deploying EM sensors and amassing a large dataset does not guarantee 

improvements in research and management. Predictive models, revealing findings, and 

better informed decisions require more accurate soil water quantity and quality data. 

Despite commonalities among EM sensors, the distinctions in measurement technology, 

design, installation method, internal adjustments, and factory calibration culminate in 

substantial disparities in measurement accuracy across sensors. Furthermore, dielectric 

properties of soil are influenced by other factors like temperature, salinity, soil texture, 

and bulk density (ρb), so a deliberate investigation of these factors is vital for accurate 

determination of EM sensor estimated θv (Paige and Keefer, 2008). Therefore, it is 
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imperative that disparities among sensors are recognized to identify appropriate sensors 

across regions and applications as well as to develop improved calibrations. 

A field study was conducted to analyze the performance of eight EM sensors—

TDR315, CS655, HydraProbe2, 5TE, EC5, CS616, Field Connect, and AquaCheck—in a 

loam soil of west central Nebraska. This field study was designed to generate new peer-

reviewed information on EM sensors whose performance, to our knowledge, have scarcely 

been reported in the literature (e.g., CS655, TDR315, AquaCheck, and Field Connect) as 

well as supplement the body of knowledge on the accuracy of EM sensors that have been 

widely studied in the literature (e.g., HydraProbe2, 5TE, EC5, and CS616) across diverse 

settings.  

Alongside, a laboratory study was conducted to analyze the performance of two 

recently developed electromagnetic (EM) sensors – TDR315 and CS655 in five different 

textured soils collected across the state of Nebraska. This lab study was designed to 

evaluate statistical and practical significance on sensor performance at different 

temperatures, salinity levels, and clay content (soil type) settings.  

 The specific objectives for the field experiment were - 

 Evaluate factory calibrations of the EM sensors for temperature, ECa, εra, 

and θv. 

 Compare the factory calibrations for θv against two custom calibration 

approaches, the first a conventional approach based on regression and the 

second an offset approach based on one known data point. 
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 The specific objectives for the laboratory experiment were - 

 Evaluate sensor (TDR315 and CS655) performance across five soil types 

that range in clay content. 

 Assess the effects of increased salinity and temperature differences on 

sensor (factory calibration) reported θv across soil types. 

 Develop a general calibration equation for both sensors by accounting for 

the effects of clay content on the calibration coefficients between sensor 

reported and reference θv. 

1.1  REFERENCES 

Geerts, S., Raes, D., 2009. Deficit irrigation as an on-farm strategy to maximize crop 

water productivity in dry areas. Agricultural Water Management 96(9): 1275-

1284. 

Leib, B.G., Jabro, J.D., Matthews, G.R., 2003. Field evaluation and performance 

comparison of soil moisture sensors. Soil Science 168(6): 396-408. 

Paige, G.B., Keefer, T.O., 2008. Comparison of field performance of multiple soil 

moisture sensors in a semi-arid rangeland. Journal of the American Water 

Resources Association. 44(1), 121.135. 

Payero, J., Tarkalson, D., Irmak, S., 2006. Use of time domain reflectometry for 

continuous monitoring of nitrate-nitrogen in soil and water. Applied Engineering 

in Agriculture 22(5): 689. 
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Rhoades, J., Raats, P., Prather, R., 1976. Effects of liquid-phase electrical conductivity, 

water content, and surface conductivity on bulk soil electrical conductivity. Soil 

Science Society of America Journal 40(5): 651-655. 

Rudnick, D.R., Djaman, K., Irmak, S., 2015. Performance analysis of capacitance and 

electrical resistance-type soil moisture sensors in a silt loam soil. Transactions of 

the ASABE 58(3): 649-665.Schneider, E., Gupta, S., 1985. Corn emergence as 

influenced by soil temperature, matric potential, and aggregate size distribution. 

Soil Science Society of America Journal 49(2): 415-422. 

Walker, J.P., Willgoose, G.R., Kalma, J.D., 2004. In situ measurement of soil moisture: a 

comparison of techniques. Journal of Hydrology, 293. 85-99. 
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Published as: 

Singh, J., Lo, T., Rudnick, D.R., Dorr, T.J., Burr, C.A., Werle, R., Shaver, T.M., 

Muñoz-Arriola, F., 2018. Performance assessment of factory and field calibrations for 

electromagnetic sensors in a loam soil. Agricultural Water Management. 196: 87-98. 

2.1  INTRODUCTION 

Accurate determination of soil water quantity and quality can better inform the 

timing and depth of irrigation applications and reduce the likelihood of excessively or 

insufficiently irrigating. Excessive irrigation increases fertilizer and irrigation pumping 

costs as well as generates additional nitrate leaching and greenhouse gas emissions. 

Furthermore, by subjecting soil and plant canopies to frequent and prolonged wet 

conditions, excessive irrigation can decrease harvestable yield due to greater occurrence 

and severity of disease, anaerobic soil conditions, nutrient deficiencies, and inability to 

operate farm machinery. On the opposite extreme, inadequate soil water, as a result of 

insufficient irrigation, limits transpiration and photosynthesis and, in turn, hinders crop 

growth and yield potential (Doorenbos and Kassam, 1979). Measurements of soil water 

quantity is arguably the most necessary geophysical estimate for implementing deficit 

CHAPTER-II 

PERFORMANCE ASSESSMENT OF FACTORY AND FIELD 

CALIBRATIONS FOR ELECTROMAGNETIC SENSORS IN A LOAM 

SOIL 
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irrigation, in which crop water status is carefully managed to maximize grain yield with a 

limited water supply (Geerts and Raes, 2009).  

Although most attention in irrigation scheduling is focused on soil water quantity, 

soil water quality likewise deserves consideration. Measurements of soil salinity can 

guide the use of irrigation to leach salts out of the crop root zone to maintain soil salinity 

levels within a crop’s tolerable range (U.S. Salinity Laboratory Staff, 1954). Limited 

irrigation can be applied if rescue fertilizer applications are undesired or infeasible, based 

on the detection of nutrient stressed crops. . Rudnick and Irmak (2014b) observed a 

reduction in corn evapotranspiration (ET) when the crops were subjected to nitrogen 

stress. Irrigation exceeding a crop’s ET rate can cause further reduction in nutrient 

availability through leaching, and consequently affect grain yield and the environment.  

Repeated nondestructive measurement of soil water status is ideal because 

temporal trends can be determined without the potentially confounding influence of soil 

spatial variability. Neutron moisture meter (NMM) is the current standard to measure 

accurate, repeated, and non-destructive field volumetric water content (θv) (Chanasyk and 

Naeth, 1996) and, if calibrated with respect to thermogravimetric method, it can be used 

to compare other soil water monitoring devices (Leib et al., 2003). However, the NMM is 

not typically an option for on farm management or collecting high spatiotemporal dense 

data due to the radioactive source, which requires proper training, licensing, and safety 

measures when handling, storing, and transporting the instrument (Rudnick et al., 2015).  

Since electromagnetic (EM) properties of soil vary with θv, various EM sensors 

that can be installed into the soil to provide continuous measurement of soil water 
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quantity have been developed, tested, and adopted over the last several decades. Some of 

these EM sensors also measure apparent electrical conductivity (ECa) and temperature 

(T). These extra capabilities undoubtedly broaden the applicability of EM sensors in both 

research and production scenarios. For example, measurement of ECa can be used to 

monitor soil salinity (Rhoades et al., 1976) if calibrated using saturation extract electrical 

conductivity (ECe), and to monitor nitrate-nitrogen (NO3-N) concentrations in soil and 

water (Payero et al., 2006). Temperature is a key environmental variable for plants during 

the vegetative period as it affects time of emergence (Schneider and Gupta, 1985) and 

grain yield (Bollero et al., 1996). 

However, merely deploying EM sensors and amassing a large dataset does not 

guarantee improvements in research and management. Predictive models, revealing 

findings, and better informed decisions require accuracy in soil water quantity and quality 

data. Despite commonalities among EM sensors, some studies have shown that the 

distinctions in measurement technology, design, installation method, internal 

adjustments, and factory calibration could culminate in substantial disparities in θv 

measurement accuracy across sensors (Varble and Chavez, 2011; Chavez and Evett, 

2012; Mittelbach, 2012; Vaz et al., 2013). It is imperative that these disparities among 

sensors are recognized to identify appropriate sensors across regions and applications, 

and develop improved calibrations.  

A field study was conducted to analyze the performance of eight EM sensors—

TDR315, CS655, HydraProbe2, 5TE, EC5, CS616, Field Connect, and AquaCheck—in a 

loam soil of west central Nebraska. This field study was designed to generate new peer-

reviewed information on EM sensors whose performance, to our knowledge, have 
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scarcely been reported in the literature, e.g., CS655, TDR315, AquaCheck, and Field 

Connect( Kisekka et al., 2014; Rudnick, 2015; Zeelie, 2015; Schwartz et al., 2016) as 

well as supplement the body of knowledge on the performance of EM sensors that have 

been widely studied in the literature, e.g., HydraProbe2, 5TE, EC5, and CS616 (Ojo et 

al., 2014; Ojo et al., 2015; Rüdiger et al., 2010; Udawatta et al., 2011; Varble and 

Chávez, 2011; Mittelbach et al., 2012) across diverse settings. Results of this field study 

may be somewhat directly transferable to similar environments, useful for meta-analyses 

in understanding sensor performance between divergent environments, and laying a 

foundation for future research.  

The specific objectives of the research were to 1) evaluate factory calibrations of 

the EM sensors for T, ECa, apparent dielectrical permittivity (εra), and θv and 2) compare 

the factory calibration for θv against two custom calibration approaches, the first a 

conventional approach based on regression and the second an offset approach based on 

one known data point. 

2.2  MATERIAL AND METHODS 

2.2.1 SITE, SOIL, AND EXPERIMENTAL DESCRIPTIONS 

A field experiment was conducted at the University of Nebraska-Lincoln West 

Central Research and Extension Center (WCREC) in North Platte, NE (41.1° N, 100.8° 

W, and 861 m above sea level) during the 2016 growing season. The research site is 

located in a semi-arid climate zone with average annual precipitation and standardized 

alfalfa reference ET (EWRI, 2005) of 514 and 1,530 mm, respectively (HPRCC, 2016; 

NCDC, 2015). The research was performed with soybean at 0.76 m spacing planted on 
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May 26, 2016. During the study period, which was 28 July to 5 September, 2016, three 

significant rain events occurred: 31 mm on 28 July, 17 mm on 11 August, and 9 mm on 

26 August. Textural composition, organic matter content (OMC), and bulk density (ρb) 

were determined at soil depth intervals of 0.15 m from 0.08 to 0.84 m (Table 2.1). 

Table 2.1. Textural composition, organic matter content (OMC), and bulk density (ρb) of the soil 

at the study site as determined from four soil cores; mean ± standard deviation were 

reported for each property. 

Depth 

(m) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

OM 

(%) 

ρb 

(g cm-3) 

           0.08-0.23 

    0.23-0.38 

    0.38-0.53 

           0.53-0.69 

46 ± 5 

38 ± 7 

33 ± 5 

32 ± 3 

36 ± 8 

  41 ± 6 

43 ± 6 

45 ± 4 

18 ± 3 

22 ± 2 

25 ± 1 

24 ± 1 

2.3 ± 0.2 

   1.9 ± 0.0 

2.1 ± 0.2 

2.0 ± 0.2 

1.40 ± 0.03 

1.34 ± 0.06 

1.16 ± 0.06 

1.16 ± 0.02 

    0.69-0.84      41 ± 4   42 ± 9 17 ± 5 2.0 ± 0.2 1.10 ± 0.04 

 

A pit was dug between two rows of soybeans. Single-sensor probes were inserted 

into one of the pit walls so that the prongs were oriented horizontally and located directly 

underneath a single row of soybeans. Two replicates of the following sensors—5TE, 

EC5, HydraProbe2, CS616, CS655, and TDR315—were installed at a depth of 0.15 m, 

and two replicates of the same sensors were installed at a depth of 0.76 m. At each depth, 

the arrangement of the sensors along the soybean row was randomized, and the sensors 

were 0.08 m apart from each other. This spacing was chosen so that every sensor was 

outside the measurement volumes of the other sensors.  The sensor outputs were recorded 

every hour. In addition, two replicates of the Field Connect and AquaCheck probes and 

four replicates of NMM aluminum access tubes were installed in the crop row 

neighboring the aforementioned sensors. All sensors were installed following 

manufacturer recommendations and allowed to equilibrate with the surrounding soil prior 

to the start of the study. 
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2.2.2 DESCRIPTION OF SENSORS 

2.2.2.1 TDR315 

The Acclima TDR315 (Acclima, Inc., Meridian, ID) is a time domain 

reflectometer with three parallel rods serving as the waveguide. The sensor head has all 

necessary electronics and firmware to generate an EM pulse and construct a waveform to 

determine the propagation time of the EM wave, which is used to estimate εra. The sensor 

is equipped with a thermistor to measure soil T. TDR315 measures ECa based on Giese 

and Tiemann method (Giese and Tiemann, 1975) like conventional TDR equipment. A 

proprietary dielectric mixing model is used to estimate θv from εra. However, Topp 

equation (Equation 1; Topp et al., 1980) was considered for determination of θv from εra 

reported by TDR315 as well. 

θv = 4.3 × 10-6 (εra
3) – 5.5 × 10-4 (εra

2) + 2.92 × 10-2 (εra) – 5.3 × 10-2  (1) 

2.2.2.2 CS616 AND CS655 

The Campbell Scientific CS616 and CS655 (Campbell Scientific, Inc., Logan, 

UT) are water content reflectometers with two parallel rods forming an open-ended 

transmission line. The sensors measure the two-way travel time of an EM pulse to 

determine a period average. The CS616 uses a quadratic equation relating period average 

to calculate θv; whereas, the CS655 uses a factory calibrated empirical model involving 

voltage ratio and period average to determine εra and then estimates θv from εra using the 

Topp equation (Eqn. 1). The CS655 sensor also measures soil T using a thermistor and 

ECa by determining the ratio between the excitation voltage and the measured voltage. 
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The manufacturer’s T adjustment was also considered for CS616 by using T 

measurements by CS655. 

2.2.2.3 HYDRAPROBE 2 

The Stevens HydraProbe2 (Stevens Water Monitoring Systems, Inc., Portland, 

OR) is an impedance sensor with three tines surrounding one center tine. It measures real 

(εr′) and imaginary (εr′′) relative permittivity separately from the response of a reflected 

standing EM wave at a radio frequency of 50 MHz. The εr′ is used to estimate θv using a 

square root mixing model; whereas, εr′′ is used to estimate ECa. In addition, Topp 

equation (Eqn. 1) was considered for determination of θv from εr′ reported by 

HydraProbe2 as well. This sensor also measures soil T using a thermistor. The default θv 

calibration, which is the “loam calibration”, is stated to be suitable for most medium 

textured soils, and therefore, was used in this study.  

2.2.2.4 5TE AND EC5 

The Decagon Devices 5TE and EC5 (Decagon Devices, Inc., Pullman, WA) are a 

three and two pronged capacitance sensor, respectively, and are designed to use an 

oscillator running at 70 MHz frequency to measure εra. The 5TE sensor estimates θv from 

εra using the Topp equation (Eqn. 1); whereas, the EC5 sensor uses a linear calibration 

equation to determine θv from output voltage. However, Topp equation (Eqn. 1) was 

considered for determination of θv from εra reported by EC5 as well. The 5TE sensor also 

measures soil T using a thermistor that is in thermal contact with the sensor prongs as 

well as ECa using screws on the surface of the sensor to form a two-sensor electrical 

array. 
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2.2.2.5 MULTI-SENSOR CAPACITANCE PROBES 

The multi-sensor capacitance probes used in this study were the John Deere Field 

Connect (Deere & Company, Moline, IL) and AquaCheck Classic Probe (AquaCheck 

Ltd, Durbanville, South Africa). Each sensor along the probe shaft emits an EM field into 

the soil. The reported count, which is proportional to the sensor circuit (resonant) 

frequency, is used to calculate a scaled frequency. The scaled frequency is then converted 

to θv. Field Connect performs this conversion using a proprietary calibration procedure, 

and each probe has sensors located at depths of 0.1, 0.2, 0.3, 0.5, and 1.0 m. For 

AquaCheck, the conversion was not built-in, but the manufacturer provided six equations, 

five soil specific and one generic. The five texture-specific equations were each 

generated from field calibrations in South Africa, whereas the “generic” equation used 

the pooled data from three soil types (sand, silt loam, and clay [Zeelie, 2015]). According 

to the textural classification of the soil, loam calibration was selected for conversion of 

scaled frequency to θv, and generic calibration was selected as well. One version of 

AquaCheck probes was included in this study with sensors located at depths of 0.10, 

0.20, 0.30, 0.41, 0.61, and 0.81 m. 

2.2.2.6 NEUTRON MOISTURE METER 

The neutron moisture meter (NMM) used in this study was a CPN 503DR 

Hydroprobe Moisture Neutron Depth Gauge (Campbell Pacific Nuclear International 

Inc., Concord, CA). A NMM is comprised of a nuclear source and detector. The nuclear 

source is lowered into an access tube at a desired depth (0.15, 0.30, 0.46, 0.76, and 0.91 

m), where high energy neutrons are emitted into the soil and thermalized (slowed down) 
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by colliding with hydrogen atoms. The thermalized, low energy neutrons are counted by 

a helium-3 detector and are compared against a standard count to estimate θv from a 

linear calibration equation with slope ‘a’ and intercept ‘b’: 

𝜽𝒗 = 𝒂 × [
𝑵𝒆𝒖𝒕𝒓𝒐𝒏 𝑪𝒐𝒖𝒏𝒕

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑪𝒐𝒖𝒏𝒕
] + 𝒃     (2) 

The standard count is used to monitor the performance and verify that the NMM 

is operating without faults. A NMM is not typically sensitive to changes in T and salinity 

(Evett et al., 2006); however, it can be influenced by OMC, clay content, soil texture, and 

chemical elements (Hauser, 1984), and therefore, a site-specific calibration of a NMM is 

recommended. 

 A site-specific calibration of the CPN 503DR NMM was performed at the 

depths 0.15, 0.30, 0.46, 0.76, and 0.91 m, respectively for this study. Ordinary least 

squares regression was used to fit a linear calibration equation between observed neutron 

count ratios and thermo-gravimetrically determined θv of 30 intact soil samples ranging 

between 0.104 and 0.302 m3 m-3. The soil samples used for the calibration were collected 

within 2 m of the investigated sensors. The resulting calibration root mean squared 

difference (RMSD), evaluated with the calibration dataset, was 0.007 m3 m-3 and the 

coefficient of determination (R2) was 0.99. 

2.2.3 ANALYSIS 

In this study, temperature (T), apparent electrical conductivity (ECa), apparent 

dielectric permittivity (εra) and volumetric water content (θv) were analyzed, with 

emphasis on θv determined from all the single-sensor and multiple-sensor probes. Among 
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the sensors under evaluation, TDR315, CS655, HydraProbe2, and 5TE reported εra as 

well as T and ECa. Apart from θv, εra was also reported by EC5. T, ECa, and εra reported 

by each sensor were compared with the average reported values for these parameters 

among all sensors at depths of 0.15 and 0.76 m to investigate the comparability of these 

parameters amongst different sensors. The purpose of such analyses was to determine 

how closely these parameters (T, ECa, and εra) were reported by different sensors rather 

than an accuracy assessment. Because ECa reported by 5TE have been automatically 

normalized to 25°C (Decagon Devices, 2016), ECa reported by TDR315, CS655, and 

HydraProbe2 were manually normalized to 25°C for consistency using equation 3 

(Campbell Scientific, 2016). 

𝑬𝑪𝒂,𝟐𝟓 =
𝑬𝑪𝒂

𝟏+𝟎.𝟎𝟐×(𝑻−𝟐𝟓)
      (3) 

where, ECa,25 (dS m-1) is the apparent electrical conductivity after normalization 

to 25°C, ECa (dS m-1) is the apparent electrical conductivity before normalization to 

25°C, and T is the soil temperature at time and space of apparent electrical conductivity 

measurement (°C).  

Average mean deviation (AMD; Eqn.4) of the sensor-reported values of T, ECa, 

and εra from the corresponding overall average of all EM sensors was computed from the 

data pairs considered in the analysis. Each data pair consisted of an average sensor-

reported parameter (T, ECa, or εra) and overall average among all sensors at a certain 

time.  AMD was calculated as: 

𝑨𝑴𝑫 =
∑ (𝒔𝒊−𝒎𝒊)𝒏

𝒊

𝒏
       (4) 
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where, i is the index of the data pairs, n is the number of data pairs, si is the sensor 

reported value of the ith data pair, and mi is the mean of all sensors of the ith data pair. 

 The field calibrated NMM was used as the reference for θv following Bell et al. 

(1987),   Leib et al. (2003), and Rudnick et al. (2015). On each of 14 dates during the 

study period, a 16-second NMM reading was collected at each of five depths (0.15, 0.30, 

0.51, 0.61, and 0.76 m) in each of four access tubes. The reference value of θv at a given 

depth on a given date was obtained by averaging the four readings (one from each tube) 

at that depth on that date. Besides the default factory calibrations for the EM sensors, 

alternate calibrations were explored for some of the sensors. The Topp equation (eqn. 1) 

was considered for TDR315, HydraProbe2, and EC5. . 

Sensor-reported and reference θv values for each sensor were compared at two 

depths (0.15 and 0.76 m for single-sensor probes; 0.30 and 0.51 m for Field Connect; 

0.30 and 0.61 m for AquaCheck) separately and combined. The sensor-reported θv 

recorded at the time closest to each NMM reading (always within one hour) was 

considered, and the pair of sensor-reported θv and reference θv formed a set of 

comparison for the analysis.  Several statistics were calculated to summarize each set of 

comparisons. The mean difference (MD; Eqn. 5) and standard deviation of difference 

(SDD; Eqn. 6) of the sensor-reported values from corresponding reference values were 

calculated. The equations for calculating MD (Eqn. 5) and AMD (Eqn. 4) are similar. 

However, MD compares sensor reported θv against the reference (NMM average) θv, 

whereas AMD compares sensor-reported parameter (T, ECa, or εra) against the overall 

average parameter (T, ECa, or εra) among all sensors. The root mean squared difference 

(RMSD), on the other hand, was the commonly computed indicator of the absolute 
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magnitude of the differences between sensor-reported and reference values while 

penalizing larger differences (Eqn. 7). 

𝑴𝑫 =
∑ (𝒔𝒊−𝒓𝒊)𝒏

𝒊

𝒏
       (5) 

𝑺𝑫𝑫 = √
∑ [(𝒔𝒊−𝒓𝒊)−𝑴𝑫]𝟐𝒏

𝒊

𝒏−𝟏
      (6) 

𝑹𝑴𝑺𝑫 =  √
∑ (𝒔𝒊−𝒓𝒊)𝟐𝒏

𝒊

𝒏
                  (7) 

where, i is the index of the data pairs, n is the number of data pairs, si is the sensor 

reported value of the ith data pair, and ri is the reference value of the ith data pair.  

For θv, two types of custom calibrations were developed to compare with the 

factory calibration. The first type was regression calibration of sensor-reported values to 

reference values. A linear model and a quadratic model were considered in every case. To 

obtain a more conservative RMSD value for comparison with the factory calibration, the 

RMSD of each model was calculated using the leave-one-out cross validation (LOOCV) 

approach. Instead of comparing each reference value against the model fitted using all 

data pairs, in LOOCV RMSD calculations each reference value was compared against the 

model fitted using all data pairs except the pair to which the particular reference value 

belonged. The model with the smaller LOOCV RMSD was selected. LOOCV RMSD 

was reported with the best-fit coefficient estimates of the selected model according to 

ordinary least squares with all data pairs included. Calculations were conducted in 

statistical computing language R (R version 3.3.2, R Foundation for Statistical 

Computing, Wein, Austria). 
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The second type of custom calibration for θv was offset calibration based on one 

known data pair. This type of calibration would be performed by making one highly 

accurate (e.g., thermo-gravimetric or NMM) θv measurement to determine a constant 

offset with which to shift all other sensor-reported θv values. As a simulation, an offset 

was calculated as the difference of the sensor-reported value from the corresponding 

reference value of one data pair, and that offset was subtracted from the sensor-reported 

values of all other data pairs. The RMSD between the shifted sensor-reported values and 

the reference values of those data pairs was calculated, and the process was repeated until 

every data pair had been used to calculate the offset exactly once. With the number of 

RMSD values equal to the number of data pairs, a 95% confidence interval of the mean 

RMSD based on the Student’s t distribution was computed using the t-test function in 

statistical computing language R. 

2.3 RESULTS AND DISCUSSION 

2.3.1 TEMPERATURE 

Weather and time-of-day caused daily soil T fluctuations with large amplitudes at 

the shallower depth (0.15 m) but were dampened and integrated into roughly weekly 

fluctuations with small amplitudes at the deeper soil depth (0.76 m; fig. 2.1). Each EM 

sensor-average was compared against the average of all EM sensors.  
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Figure 2.1. Temporal trend in sensor-average temperature (T, ᵒC) for TDR315, CS655, 

HydraProbe2, 5TE, and overall average of EM sensors at depths of 0.15 and 0.76 m during 

the study period. 

The comparisons above would suggest that two of the same or different EM 

sensors could be expected to report T values generally within 1°C of each other when 

subjected to the same environmental conditions. Therefore, the investigated sensors 

would be able to differentiate, for example, soil T between coulter planting and 

conventional planting, which has been reported to have a mean difference as low as 2.2⁰C 

(Griffith et al., 1973). Such comparability among sensors provides confidence that the 

sensors can be used for crop modeling and planting decisions. 

Table 2.2. Average Mean Deviation (AMD) of TDR315, CS655, HydraProbe2, and 5TE 

sensors using factory calibration from the overall average sensors for temperature at 0.15 m, 

0.76 m, and combined depths. 

Sensor Average Mean Deviation (AMD) 

Temperature (°C) 0.15 m 0.76 m Combined 

TDR315 -0.20 0.45 0.12 

CS655 -0.04 -0.27 -0.16 

HydraProbe2 0.12 -0.31 -0.21 

5TE 0.34 0.14 0.24 
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2.3.2 APPARENT ELECTRICAL CONDUCTIVITY (ECA) 

In general, all sensors had a decreasing trend in ECa overtime and appeared to 

follow the wetting and drying cycle of the soil. It was observed that following a wetting 

event (precipitation) of 17 mm on 11 August, there was an increase in ECa (fig. 2.2; 

Rhoades et al., 1976). The 0.15 m soil depth responded more to wetting events as 

compared to the 0.76 m soil depth. A comparison for each EM sensor-average ECa 

against the average ECa of all EM sensors was made. The range for reported ECa among 

all sensors at both depths was within 1 dS m-1. 

 

Figure 2.2. Temporal trend in sensor-average apparent electrical conductivity (ECa, dS m-1) for 

TDR315, CS655, HydraProbe2, 5TE, and overall average of EM sensors  at depths of 0.15 

and 0.76 m during the study period. 

Within the observed range of ECa for the EM sensors, HydraProbe2 and CS655 

reported ECa were comparable to the overall average at both depths. Seyfried and 

Murdock (2004) compared ECa measurements by HydraProbe and by a conductivity 
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electrode calibrated with standard solutions. They found that the two sensors reported 

ECa values in KCl solutions were similar up to a range (0-1.5 dS m-1) and there was an 

accuracy deterioration with increasing solution ECa and concentration. Logsdon et al. 

(2010) reported that measured ECa by HydraProbe was very similar to theoretical EC for 

fluids, and suggested that an adjustment was needed in the HydraProbe reported EC to 

account for dielectric relaxation in soils. 

 At 0.76 m depth, where the ECa reported by other sensors was within the range 

0.16 to 0.92 dS m-1, the two 5TE replicates were essentially nonresponsive and only 

reported ECa between 0.00 and 0.03 dS m-1. The contrasting performance of 5TE sensors 

at both depths relative to other sensors was unlikely due to defective sensors because the 

differences were consistent across replicates and depths. Chávez and Evett (2012) 

reported an underestimation of ECa for 5TE sensor by about 35% in comparison to 

conventional TDR. However, Schwartz et al. (2013) witnessed that ECa reported by 5TE 

sensor was very similar to ECa reported by conventional TDR.  

Table 2.3. Average Mean Deviation (AMD) of TDR315, CS655, HydraProbe2, and 5TE sensors 

using factory calibration from the overall average sensors for apparent electrical 

conductivity at 0.15 m, 0.76 m, and combined depths. 

Sensor Average Mean Deviation (AMD) 

Apparent Electrical 

Conductivity (ECa) 
0.15 m 0.76 m Combined 

TDR315 0.33 0.32 0.33 

CS655 -0.08 -0.07 -0.08 

HydraProbe2 0.14 0.06 0.10 

5TE -0.39 -0.30 -0.34 

 



22 

 

2.3.3 APPARENT DIELECTRIC PERMITTIVITY (ΕRA) 

Similar to the temporal trends in ECa, all sensors had a decreasing trend in εra 

overtime and followed the wetting and drying cycle of the soil, where εra increased 

following a wetting event (fig. 2.3). As expected, the 0.15 m soil depth responded more 

to wetting events as compared to the 0.76 m soil depth, since the near surface soil is 

subjected to more transient water dynamics as compared with lower soil depths according 

to Rudnick and Irmak (2014a). Cross comparison amongst εra reported by different EM 

sensors was made with the average εra of all EM sensors. The AMD within reported εra 

spanned across a wide range at shallower depth (2.12-14.05) and a narrow range at 

deeper depth (0.31-9.52) comparatively, with the observed range of εra within 10.50 to 

40.99 at 0.15 m, and 6.56 to 28.55 at 0.76 m depth (table 2.4).  

 

Figure 2.3. Temporal trends in sensor-average apparent relative permittivity (εra) for TDR315, 

CS655, HydraProbe2, 5TE, EC5, and overall average of EM sensors at depths of 0.15 and 

0.76 m during the study period. 
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The HydraProbe2 sensor recorded the largest average εra difference with respect 

to the overall average.. The difference was consistent for both the replications in 

comparison to the overall average at two depths. This remarkable difference in εra was 

possibly due to differences in operating measurement frequency amongst sensors. 

Seyfried and Murdock (2004) synthesized the findings of multiple researchers on the 

differences between soil permittivity measured at around 1 GHz (standard) by TDR and 

at 50 MHz (standard) by HydraProbe2. They claimed that the real (εr′) and imaginary 

(εr″) relative permittivity, and consequently εra, of soils except sands were often larger at 

50 MHz than at around 1 GHz. If this interpretation holds true, it would not be 

appropriate to directly compare εra reported by different sensors due to the differences in 

measurement frequency in our context. 
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Table 2.4. Average Mean Deviation (AMD) of TDR315, CS655, HydraProbe2, 5TE, and EC5 

sensors using factory calibration from the overall average sensors for apparent dielectric 

permittivity at 0.15 m, 0.76 m, and combined depths. 

Sensor Average Mean Deviation (AMD) 

Apparent Dieletric 

Permittivty (εra) 
0.15 m 0.76 m Combined 

TDR315 -6.01 -2.42 -3.79 

CS655 -0.12 -3.08 -1.60 

HydraProbe2 12.84 6.72 9.78 

5TE -5.14 -1.97 -3.56 

EC5 -2.42 0.76 -0.83 

 

2.3.4 VOLUMETRIC WATER CONTENT (ΘV) 

2.3.4.1 TEMPORAL TRENDS 

The study period could be characterized as a drying cycle that began with a 31 

mm rain on 28 July and was interrupted by a 17 mm rain on 11 August and a 9 mm rain 

on 26 August. Reference θv, which was the average NMM θv from four access tubes, 

ranged from 0.180-0.332 m3 m-3 at 0.15 m, 0.173-0.260 m3 m-3 at 0.30 m, 0.139-0.189 m3 

m-3 at 0.51 m, 0.130-0.192 m3 m-3 at 0.61 m, and 0.131-0.214 m3 m-3 at 0.76 m. With 

increasing depth, the range of reference θv narrowed because deeper depths received less 

of infiltrated rainfall and contributed less to ET as compared to shallower depths. 

The differences between sensor-reported and reference θv varied among sensors 

and over time (fig.2. 4). However, for all evaluated sensors, the factory calibrations and 

the considered alternate calibrations followed the general trend of reference θv. All 

evaluated sensors, nonetheless, commonly overestimated θv relative to the reference.  

Using the Topp equation (eq. 1) instead of the factory calibration improved the 

performance of TDR315 but not HydraProbe2 or the EC5. By switching to Topp 

equation, combined RMSD for TDR315 decreased by 0.013 m3 m-3 whereas combined 
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RMSD for HydraProbe and EC5 increased by 0.029, and 0.100 m3 m-3, respectively. The 

Topp equation was developed using TDR (Topp et al., 1980) and has been demonstrated 

to be applicable in many soils (Dane and Topp, 2002). Thus, the suitability of the Topp 

equation for TDR315 was not surprising. The overestimation of εra by HydraProbe2 is 

discussed in the previous subsection. Therefore, applying the Topp equation to εra based 

on HydraProbe2 measurements would tend to inflate the calculated θv, matching the 

observations in the present study. In fact, overestimation of θv also occurred when Vaz et 

al. (2013) applied the Topp equation to εr′ as measured by HydraProbe2.  

The influence of ambient T on CS616 has been described in the literature 

(Udawatta et al., 2011; Varble and Chávez, 2011; Mittelbach et al., 2012). In the present 

study, CS616-reported θv at 0.15 m using the factory calibration exhibited diurnal 

fluctuations in which θv appeared to decrease with decreasing soil T and increase with 

increasing soil T. Or and Wraith (1999) attributed these diurnal fluctuations not to actual 

changes in θv but to both the volume fraction of bound water and the T effects on the 

permittivity of bulk water. Besides altering the EM properties of the surrounding media, 

T could also affect sensor electronics (Seyfried and Grant, 2007). The manufacturer’s T 

adjustment, however, arguably did not improve the accuracy of CS616-reported θv in the 

present study. When this adjustment was applied to the CS616 data at 0.15 m, the diurnal 

fluctuations was simultaneously reversed and amplified. Such an outcome may indicate 

overcompensation by the manufacturer’s T adjustment, which Rüdiger et al. (2010) 

noticed. 
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Figure 2.4. Temporal trends in volumetric water content (θv) at various depths reported by the 

evaluated sensors using default factory calibrations (and/or alternate calibrations noted in 

parentheses) as compared with the field-calibrated neutron moisture meter (NMM). The 

average of two replications per depth was shown for each sensor, and the average and range 

of four replications per depth were shown for the NMM. 

While the soil at the field site was a loam, AquaCheck-reported θv was further 

from reference θv when using the “loam” calibration than when using the “generic” 

calibration. Loam was intermediate among the five soil textural classes for which a 

specific calibration was provided by the manufacturer. Yet, the loam calibration was most 

unlike the other calibrations because the former computed a much higher θv when the 

same scaled frequency was measured. As compared to the sites where the other 

calibrations were developed, the site where the loam calibration was developed might 

have differed in one or more non-textural soil properties that heavily impacted 

AquaCheck response. 

2.3.4.2 FACTORY CALIBRATIONS 

Commonalities in performance statistics were found among the evaluated sensors 

(table 2.5). MD was positive for all evaluated sensors at all depths, a result in agreement 

with the earlier finding that sensor-reported θv was predominantly higher than reference 

θv. Except in the cases of CS655 and EC5, SDD never exceeded half of MD at any depth 

or for combined data, signifying that the deviations of sensor-reported θv from reference 

θv for each of the other six sensors were rather consistent in direction and magnitude. 

Consequently, RMSD mostly followed the patterns of MD. 

Table 2.5. Mean difference (MD) statistics comparing volumetric water content (θv) reported by 

the evaluated sensors using factory calibrations against reference θv from average of four 

neutron moisture meter (NMM) access tubes. 

θv (m3 m-3) 
0.15 m 0.76 m Combined 

Sensor 
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TDR315 0.046 0.047 0.047 

CS655 0.093 0.018 0.056 

HydraProbe2 0.125 0.065 0.095 

5TE 0.032 0.041 0.036 

EC5 0.034 0.062 0.048 

CS616 0.197 0.100 0.149 

 0.30 m 0.51 m Combined 

Field Connect 0.061 0.098 0.079 

 0.30 m 0.61 m Combined 

AquaCheck[a] 0.152 0.172 0.162 
[a] While two replicates of other evaluated sensors were included, only one replicate of 

AquaCheck using the generic calibration was included. 

The performance statistics varied among depths. MD was smaller at the shallower 

depth and larger at the deeper depth for five sensors (TDR315, 5TE, EC5, Field Connect, 

and AquaCheck), while the opposite was true for three sensors (CS655, HydraProbe2, 

and CS616). Except in the cases of TDR315 and EC5, SDD was similar at individual 

depths but larger for the combined data. 

Table 2.6. Standard Deviation of Difference (SDD) statistics comparing volumetric water content 

(θv) reported by the evaluated sensors using factory calibrations against reference θv from 

average of four neutron moisture meter (NMM) access tubes. 

θv (m3 m-3) 
0.15 m 0.76 m Combined 

Sensor 

TDR315 0.016 0.022 0.019 

CS655 0.049 0.026 0.055 

HydraProbe2 0.018 0.022 0.036 

5TE 0.015 0.014 0.015 

EC5 0.029 0.011 0.026 

CS616 0.013 0.017 0.051 

 0.30 m 0.51 m Combined 

Field Connect 0.021 0.018 0.027 

 0.30 m 0.61 m Combined 

AquaCheck[a] 0.016 0.012 0.017 
[a] While two replicates of other evaluated sensors were included, only one replicate of 

AquaCheck using the generic calibration was included. 

With RMSD ranging between 0.032 and 0.197 m3 m-3 at individual depths and 

between 0.039 and 0.163 m3 m-3 for combined data, the evaluated sensors ranged 

between fair (0.05 m3 m-3 > RMSD ≥ 0.01 m3 m-3) and very poor (RMSD ≥ 0.1 m3 m-3) 

on the accuracy scale of Fares et al. (2011). On the same scale, the performance of Field 

Connect was poor (0.1 m3 m-3 > RMSD ≥ 0.05 m3 m-3), and AquaCheck was very poor 
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(RMSD ≥ 0.1 m3 m-3) for combined data, with the RMSD values of Field Connect and 

AquaCheck as 0.083 and 0.163 m3 m-3, respectively. Among the single-sensor probes, 

RMSD of 5TE was smallest both at 0.15 m and for combined data with values of 0.035 

and 0.039 m3 m-3, respectively, whereas RMSD of CS655 was the smallest at 0.76 m with 

a value of 0.032 m3 m-3. RMSD of CS616 was the largest among the single-sensor probes 

at both depths and combined.  

Table 2.7. Root Mean Square Difference (RMSD) statistics comparing volumetric water content 

(θv) reported by the evaluated sensors using factory calibrations against reference θv from 

average of four neutron moisture meter (NMM) access tubes. 

θv (m3 m-3) 
0.15 m 0.76 m Combined 

Sensor 

TDR315 0.049 0.052 0.050 

CS655 0.105 0.032 0.078 

HydraProbe2 0.126 0.069 0.102 

5TE 0.035 0.043 0.039 

EC5 0.044 0.063 0.054 

CS616 0.197 0.102 0.157 

 0.30 m 0.51 m Combined 

Field Connect 0.064 0.100 0.083 

 0.30 m 0.61 m Combined 

AquaCheck[a] 0.153 0.172 0.163 
[a] While two replicates of other evaluated sensors were included, only one replicate of 

AquaCheck using the generic calibration was included. 

1.3.4.3 REGRESSION CALIBRATIONS 

Out of the 24 regression calibration equations, five were linear and 19 were 

quadratic (fig. 2.5). Here, polynomial order was selected by minimization of LOOCV 

RMSD and not by statistical significance tests with α = 0.05. If the latter method was 

applied, the regression calibration equations for CS616 at 0.76 m and for Field Connect at 

0.30 m would be linear because the p-value for the true quadratic coefficient being zero 

was 0.10 and 0.14, respectively, for these two datasets. Interestingly, the estimate of the 

intercept was greater than zero for all regression calibration equations. In all linear 

calibration equations (reference θv = m × sensor θv + c), the estimate of the linear 
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coefficient ‘m’ was positive but less than 1. Hence, the sensors to which these linear 

calibration equations were fitted were more sensitive than the reference. The quadratic 

calibration equations, on the other hand, implied that sensitivity generally increased with 

θv within the observed θv range. Some of the regression calibration equations for θv were 

negatively sensitive under dry conditions and/or highly sensitive under wet conditions. At 

the minimum sensor value observed, eight regression calibrations specify that increases 

in sensor-reported θv would signify decreases in reference θv. These calibrations are those 

for CS655, HydraProbe2, 5TE, and EC5 at 0.15 m; Field Connect at 0.30 m and for 

combined data; and AquaCheck at 0.51 m and for combined data. At the maximum 

sensor value observed, six regression calibrations specify that one unit of increase in 

sensor-reported θv would signify more than two units of increase in reference θv. These 

calibrations are those for TDR315, 5TE, and EC5 at 0.15 m; Field Connect for combined 

data; and AquaCheck at 0.30 m and for combined data. 

Table 2.8. Leave-one-out cross validation RMSD calibration of regression calibration for 

comparing volumetric water content (θv) reported by the evaluated sensors using factory 

calibrations against reference θv from average of four neutron moisture meter (NMM) 

access tubes. 

θv (m3 m-3) 
0.15 m 0.76 m Combined 

Sensor 

TDR315 0.014 0.010 0.016 

CS655 0.024 0.005 0.022 

HydraProbe2 0.011 0.009 0.013 

5TE 0.010 0.011 0.013 

EC5 0.028 0.008 0.025 

CS616 0.011 0.007 0.016 

 0.30 m 0.51 m Combined 

Field Connect 0.021 0.016 0.026 

 0.30 m 0.61 m Combined 

AquaCheck[a] 0.009 0.005 0.013 
[a] While two replicates of other evaluated sensors were included, only one replicate of 

AquaCheck using the generic calibration was included. 

Regression calibrations led to substantial improvement in θv accuracy beyond 

factory calibration (table 2.8). For example, RMSD of CS616 exceeded by 0.10 m3 m-3 at 
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both depths when using factory calibration, yet when using regression calibration, RMSD 

of CS616 dropped below 0.02 m3 m-3 for depth-specific and combined data. In general, 

RMSD of the evaluated sensors were below 0.015 m3 m-3 using depth-specific regression 

calibrations and below 0.020 m3 m-3 using combined regression calibrations. The 

exceptions were CS655 at 0.15 m, EC5 at 0.15 m, and Field Connect at all depths. 

Among all considered regression calibrations, the combined regression calibration of 

Field Connect resulted in the largest RMSD of 0.026 m3 m-3. 
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Figure 2.5. Scatterplots with 1:1 line comparing volumetric water content (θv) reported by the 

evaluated sensors using factory calibrations against reference θv from average of four NMM 

access tubes. Regression calibration curves were displayed with the estimates of the coefficients 

in the corresponding equation (Reference θv) = C0 + C1 × (Sensor θv) + C2 × (Sensor θv)2. 

2.3.4.3 OFFSET CALIBRATIONS 

Though the improvements in θv accuracy gained by using offset calibrations were 

smaller and less consistent than the improvements gained by using regression 

calibrations, offset calibrations were nonetheless valuable for several sensors under 
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evaluation (table 2.9). For example, RMSD of HydraProbe2 exceeded 0.10 m3 m-3 at 0.15 

m and for combined data when using factory calibration. Using offset calibrations, the 

upper bound of the confidence interval for mean RMSD of HydraProbe2 was below 0.03 

m3 m-3 at 0.15 m and below 0.06 m3 m-3 for combined data. The lower and upper bounds 

of the confidence interval for mean RMSD of most sensors were below 0.02 and 0.04 m3 

m-3, respectively, when using depth-specific offset calibrations. For CS655, 

HydraProbe2, CS616, and Field Connect using combined offset calibrations tended to 

result in higher RMSD than using depth-specific offset calibrations. The highest 

confidence interval for mean RMSD among all offset calibrations was 0.072-0.082 m3 m-

3 for CS655 with combined data. 

Table 2.9. 95% confidence interval of mean RMSD of offset calibration for comparing 

volumetric water content (θv) reported by the evaluated sensors using factory calibrations 

against reference θv from average of four neutron moisture meter (NMM) access tubes. 

θv (m3 m-3) 
0.15 m 0.76 m Combined 

Sensor 

TDR315 0.019-0.026 0.028-0.035 0.025-0.030 

CS655 0.063-0.076 0.032-0.042 0.072-0.082 

HydraProbe2 0.023-0.027 0.027-0.035 0.048-0.054 

5TE 0.017-0.025 0.019-0.021 0.019-0.024 

EC5 0.036-0.045 0.014-0.017 0.032-0.040 

CS616 0.016-0.021 0.022-0.026 0.070-0.075 

 0.30 m 0.51 m Combined 

Field Connect 0.027-0.033 0.023-0.027 0.035-0.041 

 0.30 m 0.61 m Combined 

AquaCheck[a] 0.015-0.028 0.014-0.019 0.019-0.028 
[a] While two replicates of other evaluated sensors were included, only one replicate of 

AquaCheck using the generic calibration was included. 

 

An offset calibration determined the difference between sensor-reported θv and 

reference θv for one data point and then shifted all other data points by that difference. 

Offset calibrations were therefore most beneficial if data points fitted tightly around one 

line whose slope was around 1. For example, the distribution of all 5TE data points 
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generally matched one line with a slope of 1, so RMSD of both depth-specific and 

combined offset calibrations were relatively low. As for CS616, the distribution of 0.15 

m data points generally matched one line with a slope of 1, and the distribution of 0.76 m 

data points generally matched a different line with slope of 1. The ultimate result was low 

RMSD for depth-specific offset calibrations but high RMSD for combined offset 

calibrations. Offset calibrations could also be worse than factory calibrations if the 

differences from reference θv values were extremely variable among sensor-reported θv 

values. One instance was CS655 data points at 0.76 m, for which factory calibration 

RMSD was lower than the lower bound of the confidence interval for mean RMSD when 

using depth-specific offset calibrations. These data points were located near the 1:1 line 

at the dry end of reference θv but increased in sensor-reported θv following a slope 

exceeding 1 as reference θv increased. Since it might not be possible to know beforehand 

the uniformity in the differences between sensor-reported and reference θv, the risk of 

worsening sensor accuracy is unavoidable when applying an offset calibration based on 

one known data point. Therefore, unless the user has confidence that changes in sensor-

reported θv are almost identical to changes in true θv, the use of an offset calibration 

cannot yet be recommended. Further research can investigate optimal sampling timing for 

offset calibrations and further explore other simplified calibration procedures such as 

Sakaki et al. (2011). 

2.4 DISCUSSION 

Overestimation of θv has been reported in the literature for most of the evaluated 

sensors: CS655 (Kisekka et al., 2014; Michel et al., 2015), HydraProbe2 (Ojo et al., 

2014; Ojo et al., 2015), 5TE (Varble and Chávez, 2011), EC5 (Ojo et al., 2014), CS616 
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(Rüdiger et al., 2010; Udawatta et al., 2011; Varble and Chávez, 2011; Mittelbach et al., 

2012), and Field Connect (Rudnick et al., 2015). Some of these studies commented that 

the occurrence and/or magnitude of overestimation was dependent on θv (Udawatta et al., 

2011; Mittelbach et al., 2012; Ojo et al., 2014; Kisekka et al., 2014; Rudnick et al., 2015). 

In the present study, such dependence on θv could be argued particularly at the 0.76 m 

depth. Whereas, others remarked that overestimation increased with clay content 

(Rüdiger et al., 2010; Varble and Chávez, 2011). The average clay content of the present 

study site ranged from 17 to 25% (table 2.1). 

 The differences in results across depths have tended to be associated with 

soil textural differences in the literature. Mittelbach et al. (2012) showed that CS616 

underestimated θv in a clay loam topsoil at the depth of 0.05 m but overestimated θv in 

the underlying loam subsoil at depths of 0.25, 0.35, 0.55, and 0.80 m. Rudnick et al. 

(2015) noted that overestimation of θv by Field Connect was greater at 1.00 m than at 

0.30 m and attributed this phenomenon to the higher clay content at the deeper depth. In 

the present study site, however, soil texture at 0.15 and 0.76 m depths was alike (table 

2.1). RMSD values of comparable magnitudes for factory calibrations have been 

published for the evaluated sensors. For TDR315, RMSD was 0.0324 m3 m-3 in a clay 

loam repacked in the lab (Schwartz et al., 2016). For HydraProbe2, RMSD was 0.048 m3 

m-3 in five soils repacked in the lab (Vaz et al., 2013), 0.131 m3 m-3 in a clay in the field 

(Ojo et al., 2014), 0.018 m3 m-3 in a coarse-textured soil in the field, and 0.052 m3 m-3 in 

a medium-textured soil in the field (Ojo et al., 2015). For 5TE, RMSD was 0.028-0.037 

m3 m-3 in a sandy clay loam in the field (Varble and Chávez, 2011). For EC5, RMSD was 

0.058 m3 m-3 in clay in the field (Ojo et al., 2014). For CS616, RMSD was 0.144 m3 m-3 
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in five silty soils in the field (Rüdiger et al., 2010), 0.15 m3 m-3 in three soils repacked in 

the lab (Udawatta et al., 2011), 0.034-0.289 m3 m-3 in three soils repacked in the lab 

(Varble and Chávez, 2011), 0.192-0.337 m3 m-3 in a sandy clay loam in the field (Varble 

and Chávez, 2011), and 0.01-0.14 m3 m-3 across seven depths in a medium-fine textured 

soil in the field (Mittelbach et al., 2012). For Field Connect, RMSD was 0.066-0.069 m3 

m-3 across two depths in a medium-fine textured soil in the field (Rudnick et al., 2015). 

 The abundance of previous evaluations on θv measurement accuracy of 

HydraProbe2 and CS616 generally agree on two points. First, obtaining RMSD values in 

excess of 0.05 and 0.10 m3 m-3 for these two sensors, respectively, as did the present 

study, would be ordinary when using factory calibrations (Rüdiger et al., 2010; Udawatta 

et al., 2011; Varble and Chávez, 2011; Mittelbach et al., 2012; Ojo et al., 2014; Ojo et al., 

2015). Second, the accuracy of HydraProbe2 and CS616 factory calibrations often 

deteriorates with increasing clay content, as shown by Varble and Chávez (2011), Vaz et 

al. (2013), and Ojo et al. (2015), but not by Udawatta et al. (2011). The εr′ measurements 

at 50 MHz by HydraProbe2 and period measurements around 175 MHz by CS616 are 

both affected by dielectric dispersion (Seyfried and Murdock, 2004; Kelleners et al., 

2005). The latter is affected additionally by EC (Kelleners et al., 2005). Because both 

dielectric dispersion and EC are related to clay content and clay mineralogy (Seyfried and 

Murdock, 2004), the relationship between measured εr′ and true θv for HydraProbe2 and 

the relationship between measured period and true θv for CS616 may vary among soils. 

 In support of the results of our study, some field studies have noted that 

RMSD in θv was smaller when using site-specific regression calibrations developed in 

undisturbed field soil than when using factory calibrations (Varble and Chávez, 2011; 
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Nolz, 2012; Ojo et al., 2014; Ojo et al., 2015; Rudnick et al., 2015). Just as the accuracy 

of factory calibrations has been evaluated with independent data, the accuracy of new 

regression calibrations should be evaluated (by cross-validation or external validation) 

with sufficiently diverse data to include the full spectrum of conditions under which these 

new regression calibrations would be applied. Factors that may differ between calibration 

conditions and validation conditions would include the observed range of θv, the strength 

of confounding/interfering variables (e.g., T and EM properties), and the magnitude of 

inter-replicate variability in electronics and installation. By splitting a time series of 

AquaCheck data into an earlier portion for regression calibration and a later portion for 

validation, RMSD across six depths was 0.005-0.019 m3 m-3 during calibration, but 

roughly doubled to 0.009-0.037 m3 m-3 (Nolz, 2012). By using a regression calibration 

based on 12 Field Connect replicates in the same field during the previous growing 

season, RMSD in θv reported by 18 Field Connect replicates was reduced to 0.038 m3 m-3 

from 0.067 m3 m-3 as obtained by using the factory calibration. If a new regression 

calibration performed worse than the factory calibration in such evaluations, then the 

benefit of the former would be in question. 

 It may be possible to manage irrigation by monitoring changes in sensor-

reported θv instead of exact values of sensor-reported θv. This approach is very similar to 

the offset calibration because it is based on the same assumption that sensor θv and 

reference θv have equal sensitivity, i.e. with 1 unit increase in reference θv, there is 1 unit 

increase in sensor θv. But on the basis of assessing the scatterplots with 1:1 line 

comparing sensor θv with reference θv (fig. 2.5), we observe that slope of the relationship 

between sensor θv and reference θv is not consistently one. Instead, many of these 
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relationships are curvilinear indicating that the sensitivity of sensor θv varies with the 

reference θv. Therefore, we cannot recommend at this that the offset 

calibration/monitoring changes in θv will always be appropriate for irrigation 

management. We did note that some of the EM sensors had slopes closer to one at certain 

depths. Further research could be conducted to analyze if the appropriateness of offset 

calibrations or tracking changes is a property of each EM sensor or is merely site-

specific. 

2.4.1 IMPLICATIONS 

While the differences between reference and sensor-reported θv were sometimes 

large when using factory calibrations in this study, regression calibrations of θv resulted 

in excellent fit nonetheless for all sensors at individual depths or for combined data. This 

finding would suggest that much of the uncertainty in sensor-reported θv for the sensors 

under evaluation was systematic and could be modeled. The dominance of systematic 

error reported by the investigated sensors highlights that the development of more 

accurate calibrations is a principal key to improving sensor-reported θv. Increasing the 

number of sensor replicates would only reduce variance due to random errors such as 

inter-replicate variability, inter-cycle variability, and fluctuations.   

 For a calibration to be transferable the sensor must either be highly 

resistant to potentially confounding factors (e.g., T, ECa, clay mineralogy and content) or 

the calibration must account for these factors internally. If the major factors can be 

identified and quantified and the effects of these factors can be well-modeled, perhaps 

sensor calibrations similar to pedo-transfer functions for estimating the soil water 
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characteristics curve can be developed. An alternative to devising a universal calibration 

is performing site-specific calibrations. Although, conducting comprehensive regression 

calibrations at each field site might be impractical if a sensor is widely applied. However, 

the relative success of offset calibrations for certain sensors in this field study was 

encouraging and may signal new opportunities. How regression and offset calibrations 

can be conducted practically and accurately for the purpose of irrigation management is 

yet to be investigated.  

 Qualitative information about soil water status can be determined from the 

EM sensors installed at different depths, since the factory calibrations and the alternate 

calibrations followed the general trend of reference θv. However, scheduling irrigation by 

considering EM sensor-reported θv as the true θv might be misleading and can result in 

unintended consequences such as over- or under-irrigating. For irrigation management, 

alternate paradigms of sensor use, possibly analyzing trends and relative values at one or 

more depths rather than relying on conversions from raw output to water content for 

decision-making, might also deserve scientific attention. All these issues can be further 

explored in future research. 

2.5 CONCLUSIONS 

A field study was conducted at the University of Nebraska-Lincoln West Central 

Research and Extension Center in North Platte, NE, to evaluate the performance of eight 

electromagnetic (EM) soil water sensors, TDR315, CS655, HydraProbe2, 5TE, EC5, 

CS616, Field Connect, and AquaCheck, in a loam soil at two depths. Factory calibrations 

of the EM sensors were evaluated against the overall average of EM sensors for 
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temperature (T), apparent electrical conductivity (ECa), and apparent dielectric 

permittivity (εra), and volumetric water content (θv) was compared with a field calibrated 

CPN 503DR Hydroprobe Moisture Neutron Depth Gauge (NMM) following Bell et al. 

(1987), Leib et al. (2003), and Rudnick et al. (2015). 

All T measuring sensors followed the temporal trends in T generally within 1⁰C 

of each other. The average mean deviation (AMD) ranged from -0.20°C for TDR315 to 

0.34°C for 5TE at depth of 0.15 m and from -0.31°C for HydraProbe2 to 0.45°C for 

TDR315 at depth of 0.76 m. The range for reported ECa among all sensors at both depths 

was within 1 dS m-1. Such comparability among sensors provides confidence that the 

sensors can be used for crop modeling and planting decisions. 

Sensor performance assessment of 5TE, EC5, HydraProbe2, CS616, CS655, 

TDR315, Field Connect, and AquaCheck with default factory, regression, and offset 

calibrations against the field calibrated NMM was carried out. The Topp equation for 

TDR315, HydraProbe2, and EC5; manufacturer’s T adjustment for CS616 using T 

measurements by CS655; and both “generic” and the “loam” calibrations for AquaCheck 

were considered in addition to the factory calibrations. Among the single-sensor probes, 

the range of RMSD using factory calibration varied from 0.039 m3 m-3 for 5TE to 0.157 

m3 m-3 for CS616. In comparison with the single-sensor probes, RMSD of Field Connect 

was moderate (0.083 m3 m-3) and RMSD of AquaCheck was high (0.163 m3 m-3). Using 

regression calibrations improved θv accuracy beyond factory calibration. In general, 

RMSD of the evaluated sensors were below 0.025 m3 m-3 using regression calibrations 

with exceptions of 5TE and Field Connect. The betterment in θv accuracy gained by using 

offset calibrations was smaller and less consistent than the improvements gained by using 
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regression calibrations. The relative success of offset calibrations for certain sensors in 

this field study is encouraging and may signal new opportunities. In addition, alternate 

models of sensor use, possibly analyzing trends and relative values at one or more depths 

rather than relying on conversions from raw output to water content for decision-making 

for irrigation management can be further explored in future research. 
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3.1 INTRODUCTION 

Determination of accurate and continuous soil water content is vital in many soil-

water and hydrologic studies as well as assisting producers in making optimal irrigation 

management decisions. Monitoring of soil water status can be used to schedule irrigations 

by triggering water application when soil water is depleted to a defined threshold based 

on crop and soil type. Direct measurement of soil volumetric water content (θv) can be 

done by the thermo-gravimetric method which involves removing a known volume of 

soil, drying at 105°C until it reaches a constant weight, and then determining the volume 

of water loss (Walker et al., 2004). Unfortunately, this method is destructive, non-

continuous, tedious, and time-consuming, and therefore, not a suitable option for most 

applications, including irrigation scheduling. Alternatively, neutron attenuation via a 

neutron moisture meter (NMM) is a reliable and accurate non-destructive (after 

installation) indirect measure of θv. Although the NMM improves stability in monitoring 

of θv as compared to the thermo-gravimetric method by allowing for repeated measures in 

a single location, it is also limited in applications due to a radioactive source, which 

requires proper training, licensing, and safety measures when handling, storing, and 

transporting the instrument (Rudnick et al., 2015). Consequently, electromagnetic (EM) 

sensors are widely used to monitor θv due to ease of installation, fewer regulatory and 

CHAPTER III 

EVALUATION OF THE EFFECTS OF CLAY CONTENT, TEMPERATURE, AND 

SALINITY ON THE PERFORMANCE OF REFLECTOMETERS 
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safety concerns, cost effectiveness, continuous measurement, and data can be stored on-

site and transmitted to a remote computer. In addition, some EM sensors have the 

capability to measure additional soil properties such as temperature, apparent electrical 

conductivity (ECa), and dielectric permittivity (εra).   

 Electromagnetic soil water sensors estimate θv by determining dielectric 

permittivity. The dielectric permittivity of water is high in comparison to other soil 

constituents. However, the dielectric properties of soil can be influenced by other factors 

such as temperature, salinity, textural composition (sand, silt, and clay), organic matter 

content (OMC), and bulk density (ρb), and therefore, a deliberate investigation of these 

factors is vital for accurate determination of θv (Paige and Keefer, 2008). Several studies 

have investigated the reliability and accuracy of EM sensors under various soil 

conditions.   

Some studies have reported low sensitivity of soil temperature on εra measured by 

Time domain reflectometry (TDR) (Pepin et al., 1995; Blonquist et al., 2005). 

Conversely, some researchers found that the εra measured by TDR can possibly increase 

with the increase in temperature due to release of bound water (Wraith and Or, 1999; 

Gong et al., 2003). Variations in temperature were found to introduce slight errors in θv 

estimated by TDR315 sensors as well (Adayemi et al., 2016). On the other hand, 

fluctuations in soil temperature have shown to effect the performance of water content 

reflectometers (WCR) (CS616) as well in the literature (Seyfried and Murdock, 2001; 

Western and Seyfried, 2005; Lodgson, 2009; Mittelbach et al., 2012).  
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The influence of variations in salinity (ECa) has shown to effect θv measurements 

by TDR (Dalton, 1992; Wyesure et al., 1997; Topp et al., 1980; Nadler et al., 1991). An 

overestimation of TDR reported θv measurements at higher ECa was witnessed by Dalton 

(1992). In addition, Wyesure et al. (1997) observed that ECa influenced the 

overestimation of θv by TDR, however, the overestimation stayed within reasonable 

limits if ECa was kept under 2 dS m-1. In contrast, some studies have suggested that θv 

and ECa calculations are independent of each other (Topp et al., 1980; Nadler et al., 

1991). 

The effects of soil type on the performance of EM sensors have been considered 

in the past as well. According to the findings of Jacobsen and Schjønning (1993), a 

correlation of ρb, clay content, and OMC with TDR reported θv measurement yielded an 

improved (in comparison to a third-order polynomial relationship between θv and the εra), 

and statistically significant calibration. 

Several studies have been conducted in the last few decades with EM sensors and 

many have concluded that a soil specific calibration would improve the accuracy of these 

sensors. These calibrations have been extensively developed for different soils, either in 

the field (Evett and Steiner, 1995; Chandler et al., 2004; Varble and Chavez, 2011; 

Mittelbach et al., 2012; Rudnick et al., 2015; Singh et al., 2017) or laboratory (Seyfried 

and Murdock, 2001; Western and Seyfreid, 2005; Udawatta et al., 2011; Varble and 

Chavez, 2011; Adayemi et al., 2016).  However, minimal research has been conducted to 

develop universal calibrations (i.e., calibration that can work across various conditions). 

The models for these calibrations could be applied to different soil and environmental 

conditions.  Researchers have modeled for the compensating effects of temperature and 
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salinity on the accuracy of conventional TDR in the literature (Evett et al. 2005; Schwartz 

et al., 2009). However, there is still a need of universal calibrations for recently 

developed EM sensors. 

A laboratory study was conducted to evaluate the performance of two recently 

developed EM sensors – TDR315 and CS655 in five different textured soils collected 

across different topographic regions of Nebraska. This lab study was designed to evaluate 

practical significance on sensor performance at different temperatures, salinity, and clay 

content conditions. Specific objectives of the research were to 1) evaluate the effects of 

temperature difference, increased salinity, and clay content (soil type) on sensor (factory 

calibration) reported θv, and 2) develop a general non-soil type specific calibration 

equation for the TDR315 and CS655 sensors based on the investigated relationship 

between clay content and the calibration coefficients relating sensor and reference θv. 

3.2 MATERIAL AND METHODS 

3.2.1 SITE AND SOIL DESCRIPTIONS 

Soil samples of varying textural composition, organic matter content (OMC), and 

bulk density (ρb) were collected across Nebraska (fig. 3.1). The soils were Valent sand 

(mixed, mesic Ustic Torripsamments), Cozad silt loam (coarse-silty, mixed, superactive, 

mesic Typic Haplustolls), Kuma silt loam (fine-silty,mixed, superactive, mesic Pachic 

Argiustolls) Hastings silt loam (fine, smectitic, mesic Udic Argiustolls), and Wymore 

silty clay loam (fine, smectitic, mesic Aquertic Argiudolls). The description for soil 

depth, location, and horizon associated with each soil type are presented in Table 3.1, and 

soil properties are presented in Table 3.2. The soils ranged from 5 ± 1% clay content for 
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the Valent sand to 49 ± 4% for the Wymore silty clay loam soil. The corresponding soil 

associations for each site in Nebraska are presented in fig. 3.1.  

 

Figure 3.1. Site locations where soil samples were collected for the experiment, along with their 

soil associations in Nebraska. 

Table 3.10. Site description for various locations of soil collection across Nebraska including soil 

type, depth (m), location, and horizon, respectively. 

Soil type  

 

Depth 

(m) 

Location 

 

Horizon 

 

Valent (0.46-0.91) Lamar, Nebraska C 

Cozad (0.08-0.23) North Platte, Nebraska Ap 

Kuma (0.08-0.23) Big Springs, Nebraska A 

Hastings (0.30-0.46) Aurora, Nebraska Bt 

Wymore (0.30-0.46) Lincoln, Nebraska Bt 
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Table 3.2.Textural composition and organic matter content (OMC) as determined from three soil 

samples; mean ± standard deviation were reported for each property, and ground bulk density 

(oven-dried and passed through 2 mm sieve) (ρb) of all soil types. 

Soil type 

 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

OMC 

(%) 

ρb 

(g cm-3) 

Valent 88 ± 1.0 7 ± 1 5 ± 1 0.2 ± 0 1.62 

Cozad 55 ± 3.5 23 ± 3 22 ± 0 2.1 ± 0 1.20 

Kuma 35 ± 2.0 35 ± 3 30 ± 2 2.6 ± 0 1.15 

Hastings 14 ± 3.0 40 ± 5 46 ± 2 2.4 ± 0 1.38 

Wymore 8 ± 4.0 42 ± 1 49 ± 4 2.5 ± 0 1.23 

 

3.2.2 DESCRIPTION OF SENSORS 

Campbell Scientific CS655 and Acclima TDR315/315-L were the investigated 

sensors in the study. A short description of each sensor is provided below. 

3.2.2.1 ACCLIMA TDR315/315-L 

The Acclima TDR315/315-L (Acclima, Inc., Meridian, ID) are time domain 

reflectometers (TDR) with three parallel rods (15 cm long by 3.2 mm diameter) serving 

as the waveguide. The sensor head for TDR315 has all necessary electronics and 

firmware to generate an EM pulse and construct a waveform to determine the 

propagation time of the EM wave, which is used to estimate apparent dielectric 

permittivity (εra). The TDR315-L has similar electronics and firmware as the TDR315, 

but it is not capable of exporting the waveform spectrum. The power consumption for 

TDR315-L is lower in comparison to TDR315. Temperature effects on εra for TDR315 

and TDR315-L are minimal and similar (Scott, 2017). Soil volumetric water content (θv) 

is calculated from εra using a proprietary dielectric mixing model. Schwartz et al. (2016) 

observed that the fitted θv calibrations of the Pullman clay loam soil for TDR315 sensors 
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were nearly indistinguishable from conventional TDR calibrations with similar root mean 

square errors (RMSE) of 0.017 to 0.020 m3 m-3. 

   3.2.2.2 CAMPBELL SCIENTIFIC CS655 

Campbell Scientific CS655 (Campbell Scientific, Inc., Logan, Utah) sensor is 

configured as a water content reflectometer with two 12 cm parallel rods forming an 

open-ended transmission line. It measures temperature by a thermistor, apparent electrical 

conductivity (ECa) by determining the ratio between the excitation voltage and measured 

voltage, and period average from two way travel time of an electromagnetic pulse. The εra 

is calculated from a factory calibrated empirical model involving voltage ratio and period 

average, and then εra is used to determine θv using Topp et al. (1980) equation (Eqn. 1). 

θv = 4.3 × 10-6 (εra
3) – 5.5 × 10-4 (εra

2) + 2.92 × 10-2 (εra) – 5.3 × 10-2 (1) 

Chavez and Evett (2012) reported that the factory calibration of CS655 for θv 

compared well with locally calibrated conventional TDR sensors (Chavez and Evett, 

2012). However, proper installation has been observed to be a key to optimum 

performance of CS655 sensors (Aguilar et al., 2015). 

3.2.3 EXPERIMENT DESCRIPTION 

A laboratory experiment was conducted in a temperature controlled walk-in room. 

Three replicates of each soil type were packed at respective bulk density (ρb) as 

mentioned in Table 3.2. The soils were packed in PVC pipe sections of 0.254 m nominal 

diameter and 0.223 m length after oven-drying and passing the soil through 2 mm sieve. 

A metallic plate was fabricated slightly smaller than the internal diameter of the PVC 
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pipe. It was used to pack the soil using a hydraulic press at the desired ρb for each soil 

type. Then, one TDR315-L (or TDR315 for three Cozad columns and one Kuma column) 

sensor and one CS655 sensor were inserted downward into each soil column until the 

bottom of the sensor head was flush with the top of the soil column. The dimensions of 

the soil columns and the placement of the two sensors were carefully designed so that the 

sensing volume of each sensor extended almost the full height of the column, remained 

entirely within the column, and did not include the hardware of the other sensor in the 

column. At the same time, the sensor probes were inserted at a distance > 0.08 m from 

the column section so that the sensed volume was not restrained by the PVC pipe. From 

here forward, the TDR315 and TDR315-L sensors will be referred to as TDR315. The 

sensors were aligned perpendicular to the diameter of the soil column. Each pipe section 

was secured by layers of landscape mesh and window screen at the bottom so that the 

packed soil in these columns could be saturated from the bottom up. The soil columns 

were saturated in large clean containers and following saturation, these soil columns were 

drained briefly and sealed with a plastic wrap at the bottom.  

The columns were suspended to be weighed by a strain gauge load cell. The 

weights of these soil columns were used as reference θv against which the sensor-reported 

θv were compared. The soil columns were saturated three times to evaluate for the effects 

of temperature, clay content, and added salinity on sensor performance of CS655 and 

TDR315 in terms of θv. The water used for saturation was heated to the ambient air 

temperature prior to and throughout the wetting cycles to minimize potential temperature 

effects on sensor performance. The drying cycles were carried out under the following 

conditions, 1) at constant temperature (35⁰C) and no added salinity, 2) at two different 



56 

 

temperature levels (23.9 and 35⁰C) with no added salinity, and 3) with constant 

temperature (35⁰C) and added salinity, respectively. For all drying cycles, temperature of 

the walk-in room was maintained at 35°C except for the drying cycle where the effect of 

temperature was analyzed. For that drying cycle, two temperature levels, 35 and 23.9°C 

rotating weekly, were maintained for the walk-in room. The lower and higher extreme 

temperatures were selected to cover the range of observed temperature throughout the 

growing season field conditions at the location where the experiment was carried out.  

For the salinity evaluation saturation was accompanied with 0.3094% (w/w) CaCl2 

solution. At the end of the entire experiment, soil from each column was extracted and 

oven-dried separately. 

3.2.4 ANALYSIS 

In this study, effects of temperature, salinity, and textural composition (clay 

content) of different soil types on sensor-reported θv for TDR315 and CS655 in 

comparison to a standard (reference) θv were analyzed. For each replication, reference θv 

was determined using the following formula: 

𝜃𝑣  =  
(𝑊𝑡𝑜𝑡𝑎𝑙−𝑊𝑠𝑜𝑖𝑙−𝑊𝑠𝑒𝑡𝑢𝑝)

𝜌𝑤 𝑉𝑠𝑜𝑖𝑙
     (2) 

where, Wtotal is the total weight of the soil column, Wsoil is the weight of the dry soil in 

the column, Wsetup is the weight of the empty soil column setup, ρw is the density of 

water, and Vsoil is the volume of the soil in the column.  

The sensor-reported θv recorded at the time closest to each reference reading 

(always within 3 minutes) was considered for the analysis. Sensor-reported and reference 
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θv were compared separately for TDR315 and CS655. The average of three replicates of 

TDR315 and CS655 for each soil type and the average of three replicates of reference θv 

for that particular soil type formed a set of comparison for the analysis. The sets of 

comparisons to analyze for the effects of temperature, salinity, and textural composition 

were 8, 40, and 33, respectively. For the drying cycle at two different temperatures with 

no added salinity, the walk-in room temperature alternated weekly between 35 and 

23.9°C for eight times to evaluate for the effects of temperature. The drying cycle which 

was started following salinization was compared to the drying cycle carried out at 

constant temperature and no added salinity to determine the effects of salinity. For the 

drying cycle with constant temperature and no added salinity, it was investigated if 

different soil types (table 3.1) had an effect on sensor-performance. 

For each sensor in each soil at each weighing time, the standard deviation of 

difference (SDD) was calculated to evaluate inter-replicate variability in sensor θv 

accuracy among the three replicate soil columns (eqn. 3).  

𝑆𝐷𝐷 =  √∑ [(𝑠𝑖,𝑡−𝑟𝑖,𝑡)−
1

𝑚
∑ (𝑠𝑖,𝑡−𝑟𝑖,𝑡)𝑚

𝑖 ]
2

𝑚
𝑖

𝑚−1
      (3) 

where, i is the index of the soil column, m is the number of soil columns per soil 

type, t is the index of the weighing time, si,t is the sensor θv of the ith soil column at the tth 

weighing time, and ri,t is the reference θv of the ith soil column at the tth weighing time. 

In the remainder of the analyses, for each sensor in each soil at each weighing 

time, average sensor θv among the replicate columns was compared against average 

reference θv among the replicate columns. Root mean square difference (RMSD; eqn. 4) 
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was calculated for each sensor in each soil over each drying cycle to indicate the absolute 

magnitude of differences between sensor θv and reference θv while penalizing larger 

differences. 

𝑅𝑀𝑆𝐷 =  √∑ [
1

𝑚
(∑ 𝑠𝑖,𝑡

𝑚
𝑖 )−

1

𝑚
(∑ 𝑟𝑖,𝑡

𝑚
𝑖 )]

2
𝑛
𝑖

𝑛
      (4) 

where, n is the number of weighing times during the drying cycle.  

The effects of temperature, salinity, and textural composition were analyzed both 

statistically and practically. For each variable (temperature, salinity, and soil type) a 

regression model with a set of coefficients ignoring the level of each variable (e.g., 23.9 

vs 35°C) and one regression model with separate coefficients for each level were 

constructed. Statistical significance of the effect of this factor can be quantified by 

comparing the two regression models in an analysis of variance (ANOVA). Practical 

significance of the effect of this factor can be quantified by comparing the RMSD of the 

two regression models and by comparing the various sets of coefficient values in the 

second regression model. 

A general clay content correction was proposed for θv measurements by TDR315 

and CS655, individually. The basis of each correction was the five soil-specific 

regression calibration equations relating sensor to reference θv during the drying cycle 

with constant temperature and no added salinity. Then, a set of regression interpolation 

equations were developed to estimate the value of each calibration coefficient as a 

function of clay content. The polynomial order of each interpolation equation was chosen 

using leave-one-out cross-validation. 
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The general clay content corrections would be theoretically applicable to any soil 

whose clay content is within the range spanned by the five soils in this experiment. 

However, the magnitude of improvement from applying the corrections would be best 

assessed by external validation in soils that were not part of this experiment. A 

comprehensive validation effort was prevented by the limited number of published 

studies that presented graphs or equations relating sensor θv of TDR315 (Schwartz et al., 

2016; Singh et al., 2018) or CS655 (Chávez and Evett, 2012; Singh et al., 2018) to 

reference θv. Nonetheless, validation with these available studies generated preliminary 

information about the effectiveness of the general clay content corrections. 

3.3 RESULTS AND DISCUSSION 

3.3.1 TEMPORAL TRENDS 

The study period was characterized as drying cycles of soil columns at 1) constant 

temperature with no added salinity, 2) at two temperature levels with no added salinity, 

and 3) constant temperature with added salinity. The cycle length for these drying cycles 

ranged within 40 to 56 days. Each drying cycle was started after all the soil columns were 

completely saturated, briefly drained, and covered with plastic from the bottom. 

Reference θv, which was determined from the average weight of three soil columns, 

ranged within 0.001 to 0.291 m3 m-3 for Valent soil type, 0.078 to 0.477 m3 m-3 for Cozad 

soil type, 0.111 to 0.446 m3 m-3 for Kuma soil type, 0.199 to 0.472 m3 m-3 for Hastings 

soil type, and 0.213 to 0.488 m3 m-3 for Wymore soil type across all drying cycles.  
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Figure 3.2. Temporal trends in volumetric water content (θv) for various soil classes at the drying 

cycle of soil columns at constant temperature with no added salinity by evaluated sensors 

compared with θv determined from the weight of soil column. The average of three 

replications per soil class was shown for each sensor, and the reference. 

Though the differences between sensor and reference θv varied among sensor type 

and over time (fig. 3.2), both TDR315 and CS655 followed the general trends of 

reference θv across all soil types. The CS655 θv for Cozad soil type was similar to the 

reference θv with slight underestimation near the drier end (< 0.20 m3 m-3) for all drying 

cycles. Underestimation by CS655 near the drier end was also witnessed by Singh et al. 

(2018) in a case study of sensor-comparison on a Cozad soil. On the other hand, CS655 

overestimated θv in comparison to the reference for Kuma, Hastings, and Wymore soil 

types. Overestimation by CS655 has also been reported by Kisseka et al., 2014, Michel et 

al., 2015, and Singh et al., 2018. Some studies have stated that the magnitude and/or 
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occurrence of overestimation of θv by EM sensors was dependent on θv at different θv 

ranges (Udawatta et al., 2011; Mittelbach et al., 2012; Kisekka et al., 2014; Rudnick et 

al., 2015). In the current study, such dependence of θv could be argued for CS655 sensor 

in the Kuma soil type, since the temporal trends during three drying cycles indicated that 

CS655 sensor tended to overestimate more in the mid-range of θv under non-saline 

conditions. Also, Hastings and Wymore soil types witnessed less overestimation by 

CS655 from the mid-range θv till the end of drying cycle under saline conditions.  

The TDR315 for Hastings and Wymore soil classes was close to the reference θv 

in the beginning of all drying cycles, but underestimated for the latter part of the drying 

cycles with no and with added salinity with constant temperature; whereas, slight 

overestimation in mid-range θv for the Valent soil type across all drying cycles was 

observed for TDR315. For the Cozad soil type, underestimation by TDR315 was 

witnessed in the beginning of the drying cycles with both no and added salinity at 

constant temperature.  

During the drying cycle at two temperatures and no salinity added, evident 

fluctuations in the overestimation by CS655 and TDR315 were observed for Hastings and 

Wymore soil types. The temporal trends suggest that the degree of overestimation by 

CS655 was slightly more at the lower temperature (23.9°C) and slightly less at the higher 

temperature (35°C) for Hastings and Wymore soil types. However, the temperature effect 

on CS655 sensor-reported θv for Valent, Cozad, and Kuma soil types was not observed. 

TDR315 sensor-reported θv witnessed more overestimation at lower temperature and less 

overestimation at higher temperature for Hastings and Wymore soil types and not for 

Valent, Cozad, and Kuma soil types. 
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3.3.2 EFFECTS OF SOIL TYPE ON SENSOR PERFORMANCE 

The soil types with higher clay content (Hastings and Wymore) displayed higher 

water retention capacity in comparison to the other soils throughout the drying cycles. 

The response of CS655 in comparison to reference θv varied among soil types across the 

three drying cycles. However, the response of TDR315 in comparison to reference θv was 

similar for Valent, Cozad, and Kuma soil types across all three drying cycles. 

Performances in terms of RMSDs for CS655 and TDR315 across all drying cycles 

were determined and are presented in Table 3.3. The RMSD values for CS655 sensor was 

0.090 and 0.062 m3 m-3 for Hastings and Wymore during the drying cycle when 

temperature was kept constant and no salinity was added. However, during the same 

round TDR315 sensor had RMSD values of 0.039 and 0.032 m3 m-3 for Hastings and 

Wymore soil types, respectively. For Valent, Cozad, and Kuma soil types, the TDR315 

and CS655 performed similarly with RMSD values ranging from 0.012 to 0.045 m3 m-3 

for TDR315, and 0.009 to 0.044 m3 m-3 for CS655. The performance of CS655 for 

Valent, Cozad, and Kuma soil types (with RMSD ranging between 0.012 and 0.045 m3 

m-3) was found to better than Hastings and Wymore soil types (with RMSD ranging 

between 0.048 and 0.129 m3 m-3) due to consistently lower RMSD values across all the 

drying cycles. Whereas, TDR315 performed better for Valent and Kuma soil types in 

comparison to Cozad, Hastings, and Wymore soil types consistently across all drying 

cycles.  

The inter-replicate differences for each sensor type varied across the five soil 

types (table 3.3). The θv standard deviation of difference (SDD) was within 0.000 and 
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0.030 m3 m-3 for three replicates of CS655, and 0.001-0.050 m3 m-3 for three replicates of 

TDR315 across all soil types and all drying cycles. The SDD range of inter-replicate 

differences for CS655 was smaller than TDR315 for all soil types except Cozad. On the 

other hand, RMSD for TDR315 was lower than CS655 for Valent, Hastings, and 

Wymore soil types (table 3.4). The SDD range of CS655 for Cozad soil type (0.001-

0.007 m3 m-3) was considerably lower than TDR315 (0.002-0.029 m3 m-3); whereas, their 

RMSD values were similar (Table 3.3). The performance of TDR315 and CS655 for 

Valent and Kuma soil types was similar with comparable RMSD (Table 3.4) and ranges 

in SDD (standard deviation) (Table 3.3). 

Table 3.3. Range of standard deviation of difference (SDD) statistics comparing volumetric water 

content (θv) reported by three TDR315 and CS655 sensors using factory calibrations against 

reference θv from three weights for three drying cycles. 

Sensor Range of Standard Deviation in between replicates 

θv (m3 m-

3) 
Valent Cozad Kuma Hastings Wymore 

TDR315 0.001-0.018 0.002-0.029 0.002-0.027 0.002-0.040 0.007-0.050 

CS655 0.000-0.027 0.001-0.007 0.005-0.026 0.004-0.017 0.001-0.030 

 

Table 3.4. Root mean square difference (RMSD) comparing volumetric water content (θv) 

reported by average of three TDR315 and CS655 sensors using factory calibrations against 

reference θv from average of three weights for three drying cycles. 

Drying cycle at constant temperature and no salinity added  

Sensor Root Mean Square Difference (RMSD) 

θv (m3 m-

3) 
Valent Cozad Kuma Hastings Wymore 

TDR315 0.010 0.044 0.036 0.039 0.032 

CS655 0.014 0.038 0.016 0.090 0.062 

Drying cycle at two temperature levels and no salinity added  

 Valent Cozad Kuma Hastings Wymore 

TDR315 0.018 0.014 0.009 0.022 0.020 

CS655 0.012 0.018 0.036 0.129 0.099 

Drying cycle at constant temperature and added salinity 

 Valent Cozad Kuma Hastings Wymore 

TDR315 0.009 0.044 0.013 0.032 0.027 

CS655 0.036 0.045 0.015 0.081 0.048 
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The observed range for reference θv was within 0.03 and 0.029 m3 m-3 for Valent, 

0.12 and 0.48 m3 m-3 for Cozad, 0.16 and 0.45 m3 m-3 for Kuma, 0.25 and 0.47 m3 m-3 for 

Hastings, and 0.26 and 0.49 m3 m-3 for Wymore soil type. Nine out of ten regressions 

between sensor-reported and reference θv were quadratic (fig. 3.3). The polynomial order 

for regression calibration of each soil type for CS655 and TDR315 versus reference θv 

was selected based on statistical significance tests with α = 0.05 (observed p-values 

ranged from 2 × 10-16 to 0.004). When the regression calibrations were determined, it was 

revealed that CS655 and TDR315 calibration varied with soil type (Table 3.5). The 

regression calibration for CS655 in Valent soil type was linear because the fitted 

quadratic coefficient was not significantly different from zero (two-tail p value = 0.676), 

but quadratic coefficients were reported for comparison with other soil types. The 

quadratic equation coefficients relating sensor and reference θv for each soil type is 

presented in Table 3.5. Chandler et al. (2004) found that water content reflectometers 

(WCR) calibration varied with soil type, which corroborates our finding. Seyfried and 

Murdock (2001) concluded that separate calibrations were required to accurately predict 

θv in different soils during a laboratory test involving six CS615 sensors. Kelleners et al. 

(2005) found that there was a notable overestimation of εra by CS615 and CS616 in 

comparison with TDR in sandy loam and silt loam soils due to dielectric dispersion and 

ionic conductivity. However, in our study CS655 sensor did not remarkably 

underestimate or overestimate θv, most likely due to an improved factory calibration in 

comparison to CS616 and CS615. Quantitative and qualitative knowledge about soil 

water status can be established from the sensors installed in different soils based on the 
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developed clay content – sensor θv calibration equations (fig. 3.3 and Table 3.5), since the 

general trend of factory calibration for the sensors and reference θv were similar.  

 

 
 

 

Figure 3.3. Scatterplots with 1:1 line comparing volumetric water content (θv) reported by 

CSS655 and TDR315 (for Valent, Cozad, Kuma, Hastings, and Wymore) against reference 

θv from average of three replicates of weight of soil columns. 

 

Table 3.5. The values for estimated calibration coefficients quadratic (c2), linear (c1), and 

intercept (c0) for CS655 and TDR315 sensors in different soils for the corresponding 

equation: (Reference θv) = C0 + C1 × (Sensor θv) + C2 × (Sensor θv)2. 

Soil type 

class  

Sensor c2  c1 c0 Multiple 

R2 

Valent TDR315 

CS655 

1.229638 

0.912627 

0.6622 

0.9529 

0.000 

-0.002 

0.995 

0.996 

Cozad TDR315 

CS655 

1.458782 

1.440271 

0.4931 

0.3184 

0.041 

0.079 
0.997 

0.999 

Kuma TDR315 

CS655 

0.386172 

1.883720 

0.8289 

-0.1293 

0.034 

0.128 
0.999 

0.999 

Hastings TDR315 

CS655 

0.962550 

3.862300 

0.1456 

-2.3110 

0.185 

0.585 
0.982 

0.992 

Wymore TDR315 

CS655 

0.750000 

2.707150 

0.3026 

-1.2899 

0.158 

0.395 

     0.990 

0.999 
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3.3.3 TEMPERATURE AND SALINITY EFFECTS ON SENSOR PERFORMANCE ACROSS SOIL TYPES  

Sensor-reported θv in comparison to reference θv were determined at two 

temperature levels (23.9 and 35⁰C) as well as two salinity levels across all soil types. It 

was found that the polynomial order for six out of ten relationships between TDR315 and 

reference θv as well as between CS655 and reference at two temperature levels across 

five soil types were linear and four were quadratic (fig. 3.4) using statistical significance 

tests with α = 0.05. However, all relationships between TDR315 and reference and 

between CS655 and reference at two salinity levels across five soil types were found to 

be quadratic (fig. 3.5) using statistical significance tests with α = 0.05. 
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Figure 3.4. Scatterplots with 1:1 line comparing volumetric water content (θv) reported by 

evaluated sensors in the drying cycle of soil columns at two temperature levels (23.9 ⁰C, and 35 

⁰C) with no added salinity by evaluated sensors compared with θv determined from the weight of 

soil columns. The average of three replications per soil class was shown for each sensor, and the 

reference. 

The regression model for estimating θv at combined (23.9 and 35⁰C) temperatures 

was not statistically different from the regression model for estimating θv at temperatures 

separately as the range of two-tail p-value was within 0.1387 and 0.7231. The regression 

models for both TDR315 and CS655 at two temperature levels witnessed low range of 

residual sum of squares using ANOVA (0.0004 to 0.0023 m3 m-3 for TDR315 and 0.0003 

to 0.0055 m3 m-3 for CS655), which is beyond the accuracy range reported by the 

manufacturers. Therefore, it can be claimed with confidence that the performance of 

TDR315 and CS655 sensors was not practically different across two investigated 
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temperatures. However, 9 out of 10 regression models (comprising models for both 

TDR315 and CS655) for no salinity versus added salinity were statistically different from 

each other with two-tail p-value within the range of 2.2 × 10-16 and 0.005. The response 

of TDR315 in Valent soil was not statistically different at two salinity levels (p-value = 

0.322). On the other hand, the residual sum of squares using ANOVA for TDR315 was 

within 0.0002 and 0.0026 m3 m-3 and was within 0.0026 and 0.0137 m3 m-3 for CS655, 

which is of low practical significance and within the range of the manufacturer’s reported 

accuracies.  
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Figure 3.5. Scatterplots with 1:1 line comparing volumetric water content (θv) reported by 

evaluated sensors in the drying cycles of soil columns at constant temperature with no 

salinity and added salinity by evaluated sensors compared with θv determined from the 

weight of soil columns. The average of three replications per soil class was shown for each 

sensor, and the reference. 

Laboratory experiments have also reported low sensitivity of temperature 

variability on θv measurement. Blonquist et al. (2005) suggested that the TDR measured 

EM signal property is sensitive in some degree to temperature leading to potential errors 

in θv prediction, which was also witnessed in our study for TDR315 although the error in 

θv prediction was quite low (0.0003 to 0.0023 m3 m-3) using ANOVA across five soil 

types. Furthermore, Pepin et al. (1995) claimed that θv determined from TDR has low 

sensitivity to soil temperature taking in account of practical changes in temperature in 

field conditions, which is supported by the results of this study as TDR315 was not 
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statistically different at two temperature levels (23.9 and 35⁰C) with the range of two-tail 

p-value between 0.1387 and 0.7231. However, Wraith and Or (1999) witnessed a 

substantial influence of temperature on measured θv based on εra for TDR under certain 

soil and wetness conditions, which they attributed to the competing effects of temperature 

on εra of bulk and hindered soil water. The εra of bulk soil water decreases with increased 

temperature, while that of bound water is presumed to increase with temperature, which 

is supported by the findings of Gong et al. (2003) who observed that temperature affected 

θv measurement of TDR. Substantial temperature effect on θv estimation was not 

witnessed in our study for TDR315 possibly due to the smaller temperature range of 23.9 

and 35⁰C considered in our study as compared to a range of 5 to 65⁰C by Wraith and Or 

(1999) and 5 to 45⁰C  by Gong et al. (2003). 

The effect of temperature on WCR sensors has been reported in the literature. A 

significant effect of temperature variations (5 to 45⁰C) on reported θv by WCR sensors 

was witnessed in an experiment conducted by Seyfried and Murdock (2001). However, 

field studies investigating CS655 were carried out by Western and Seyfried (2005) and 

Mittelbach et al. (2012), and they found no significant effect of temperature on CS655 

reported θv. Their findings are supported by the results of our study as CS655 sensor-

reported θv was not statistically different at two temperature levels (23.9 and 35⁰C). The 

possible difference in reported effects of temperature on WCRs is most likely due to the 

incorporation of an embedded temperature adjustment for CS655, which was not 

included in its predecessors (CS616 and CS615). Sensor performance at 23.9 and 35⁰C 

was evaluated with four dataset points. Increasing the number of observations for 

comparison would increase the confidence in the findings. 
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Conflicting findings on the effect of salinity on εra and θv have been reported for 

TDR. Dalton (1992) demonstrated that an overestimation of θv by TDR occurs when the 

pore water EC is approximately equal to or greater than 8 dS m-1 due to known effects of 

ion concentration on the dielectric constant. However, the salinity across five soil types 

for our study was less than 5 dS m-1 (according to ECa reported by TDR315 sensor) even 

after adding salinity and we did not witness overestimation of θv across five soil types 

after adding salinity. In fact, the TDR315 residual sum of squares using ANOVA were 

within the range of 0.0002 and 0.0026 m3 m-3 for the drying cycles with no salinity and 

added salinity. In addition, Wyseure et al. (1997) suggested that measure of salinity of a 

soil influences the measurement of θv by TDR and if the salinity is kept less than 2 dS m-

1, the overestimation stays within reasonable limits and can be disregarded. For our study, 

salinity was around 3 dS m-1 for Cozad, Kuma, Hastings, and Wymore soil types and less 

than 2 dS m-1 for Valent soil type and the error in CS655 sensor-reported θv was less than 

0.0137 m3 m-3 with no added salinity and added salinity as determined from residual sum 

of squares using ANOVA. On the other hand, Topp et al. (1980) claimed that the 

relationship between θv and εra measured by TDR is independent of soil salinity, type, 

density, and temperature. This was further supported by Nadler et al. (1991) who 

evaluated TDR in layered soil columns and found that θv and salinity calculations were 

independent of each other. In our study both TDR315 and CS655 had significant 

differences in estimated θv when evaluated between the two salinity levels with two-tail 

p-value within the range of 2.2 × 10-16 and 0.005 for TDR315, and within 2.2 × 10-16 and 

1.7 × 10-6 for CS655. The only exception was the response of TDR315 for Valent soil 

type when evaluated at two salinity levels (two-tail p-value = 0.322), implying that the 
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increase in salinity did not statically affect the performance of TDR315 in the Valent soil, 

which has a clay content of 5 ± 1%. However, the calculated residual sum of squares 

using ANOVA for TDR315 and CS655 was less than 0.0026 and 0.0137 m3 m-3, 

respectively. This may be attributed to a large number of data points for comparison, 

which were 33 points for the round with lower salinity and 40 points for the round with 

higher salinity. The development of calibration equations for the differences between 

sensor-reported θv (using factory calibrations) and reference θv in the study with no 

salinity, fitted well for all the sensors and soil types with the drying cycle of added 

salinity. This observation suggested that the uncertainty in the sensor-reported θv was 

systematic and could be modeled through development of a calibration equation 

determining reference θv from sensor-reported θv. 

3.3.4 UNIVERSAL CALIBRATION 

In the current study, the relationship of the calculated coefficients (quadratic, 

linear, and intercept) between sensor (CS655 and TDR315) and reference (Table 3.5) 

across each soil type was investigated with respect to the clay-content of each soil type. It 

was found that the estimated quadratic (c2), linear (c1), and intercept (c0) coefficients for 

CS655 had a statistically significant linear relationship (with two-tail p-values ranging 

within 0.021 and 0.045) with clay content percentage (fig. 3.6). The LOOCV RMSD for 

c2, c1, and c0 of CS655 sensor was 0.7936, 0.8127, and 0.1771, respectively. However, 

the estimated c2 and c1 coefficients for TDR315 had a linear relationship and c0 had a 

quadratic relationship with the clay content percentage. The reported LOOCV RMSD for 

c2, c1, and c0 of TDR315 was 0.4227, 0.2652, and 0.0496, respectively.  
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Figure 3.6. Scatterplots showcasing the relationship of estimated quadratic (c2), linear (c1), and 

intercept (c0) coefficients for CS655 and TDR315 with the clay content of soil class types. The 

coefficients (c2, c1, and c0) for TDR315 and CS655 sensors came from their relationship with 

different soil types (table 5). The solid lines represent that the relationship of coefficient (c2, 

c1, or c0) with the clay content is significant and the dashed lines represent that the 

relationship is not significant. 

For CS655, the quadratic (c2) and intercept (c0) coefficients had a positive 

relationship with the clay content with R2 values of 0.869 and 0.786, respectively, and the 

linear coefficient (c1) decreased with increasing clay content (R2 of 0.839). Whereas for 

TDR315, the quadratic (c2) and linear (c1) coefficients had a negative relationship with 

clay content with R2 values of 0.249 and 0.453, respectively, and the intercept (c0) 

coefficient increased with the increasing clay content (R2 of 0.911).  The stronger 

relationship (larger R2) of the coefficients (c2, c1, or c0) with the clay content for CS655 

sensor suggest that more confidence can be entrusted in the developed relationships for 

these coefficients.  
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Figure 3.7. Interpretation of coefficients (c2, c1, and c0) for TDR315 and CS655 sensor-reported 

θv at clay content range from 5% to 45% with an interval of 10% within each level. 

A visual illustration of the universal calibration for both TDR315 and CS655 for 

clay content ranging from 5 to 45% with an interval of 10% is presented in fig. 3.7. For 

CS655, it was observed that for soils with clay content 25% and higher, there was 

overestimation of θv near the saturated end, and underestimation of θv near the drier end. 

However, for the soils with 15% clay content and below, slight underestimation of θv was 

witnessed near the wet end. On the other hand, while interpreting the coefficients for 

TDR315, underestimation of θv was witnessed at the wet end for the entire range of clay 

content (5–45 %). The degree of underestimation increased at a clay content of 45% near 

the drier end, whereas it decreased for the other range of soil types (15-35 %) at the drier 

end. 
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Figure 3.8. Comparison of TDR315 sensor-reported θv for Pullman Clay Loam soil (clay content 

= 39%) over the evaluated range of θv (0.04 to 0.47 m3 m-3) reported by Schwartz et al. (2016) 

and using the universal calibration. 

The performance of the universal calibration, which adjusts the factory 

calibrations of TDR315 and CS655 based on percent clay content, were evaluated for 

some findings in the literature. The calibration equation coefficients (c2, c1, and c0) for 

each sensor were adjusted according to the clay content setting of the study it was being 

compared with. In a laboratory experiment with ten TDR315 sensors in a Pullman clay 

loam soil (clay content – 39%), Schwartz et al. (2016) observed that the factory 

calibration consistently underestimated over the evaluated range of θv (0.04 to 0.47 m3 m-

3), and the magnitude of underestimation decreased with decreasing θv. Underestimation 

by TDR315 within the same range (0.04 to 0.47 m3 m-3) was also witnessed using the 

universal calibration for the Pullman clay loam (fig. 3.8). Furthermore, the model 

underestimated θv throughout the drying cycle, and the magnitude of underestimation 

decreased with θv between 0.35 m3 m-3 and near saturation (0.47 m3 m-3).  
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In a field experiment with Pullman clay loam soil, Chavez and Evett (2012) 

observed overestimation by CS655 sensors. Fitting a line with sensor θv as the function of 

reference θv, they obtained a slope slightly larger than unity with a small positive 

intercept. Our calibration was tested and it worked well for a θv range of 0.26 m3 m-3 to 

near saturation (0.42 m3 m-3), the results were similar with a slope slightly larger than 

unity and a small positive intercept. A comprehensive evaluation of the developed 

universal calibrations for TDR315 and CS655 based on clay content is difficult due to 

limited availability of published data on these two sensors. The universal calibration was 

validated for TDR315 and CS655 sensors placed at 0.15 and 0.76 m depths according to 

the dataset of Singh et al. (2018). It was observed that the RMSD for CS655 reduced by 

0.008 m3 m-3 at 0.15 m and 0.005 m3 m-3 at 0.76 m depth using the universal calibration. 

However, using universal calibration for TDR315 the RMSD increased in comparison to 

the factory calibration.  

Based on our results, it can be inferred that soil type had a noteworthy effect on 

the performance of CS655, but not TDR315 sensors. However, qualitative information 

about TDR315 sensor-reported θv (underestimation or overestimation) can be extracted 

from the universal calibrations. For the study, there was a wide spread in the range of 

clay content for the soils selected, as it was considered the treatment effect. For the soils 

selected in the experiment, there was a variable range in ρb (1.15 to 1.62 g cm-3) and 

OMC (2.1 to 2.6% for four soil types and 0.2% for Valent soil). In addition to clay 

content, relationship of ρb and OMC were also analyzed for comparison with the 

coefficients of sensor-reported θv. However, there was a variation and no specific trend 

for ρb and OMC with the estimated coefficients based on visual inspection of the graphs 
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(not presented). Some studies have witnessed the effect of ρb and OMC on the 

determination of θv in the literature (Adeyemi et al., 2016; Jacobsen and Schjønning, 

1993). The performance of TDR315 was investigated in an air-dried, sieved, and 

compacted sandy loam soil at ρb of 1.37 and 1.42 g cm-3 by Adeyemi et al. (2016). It was 

observed that there was a general underestimation of θv for both compaction levels, but 

the magnitude of θv underestimation increased with increasing soil ρb. While evaluating a 

conventional TDR after air-drying, sieving, and packing a range of five different textured 

soils, Jacobsen and Schjønning (1993) observed that a third-order polynomial 

relationship between θv and εra was found suitable for calibration. However, a correlation 

of ρb, clay content, and OMC with θv yielded statistically significant improvement in 

calibration.   

While transferring the calibration for external validation, potentially confounding 

factors (ρb, OMC, temperature, and salinity) should be accounted for. If the effects of 

these factors could be well-modeled, it would lead to a better calibration equation.  

3.4 CONCLUSIONS  

A laboratory experiment was conducted in a walk-in oven room setup at West 

Central Research and Extension Center, North Platte, Nebraska to analyze the 

performance of two recently developed electromagnetic (EM) sensors – TDR315, and 

CS655 in five different textured soils (Valent, Cozad, Kuma, Hastings, Wymore) 

collected across the state of Nebraska. Factory calibrations of EM sensors reported θv 

were evaluated at different levels of temperature, salinity (ECa), and clay content (soil 

type). Three columns for each soil type were packed at a bulk density (ρb) close to the 
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natural ρb of the soil types considered for the experiment. After packing the soil, a 

TDR315 and a CS655 sensor were installed in each one of the soil columns. Reference θv 

was calculated based on the average weight of three replicates of soil columns, calculated 

by a load cell. Statistical significance for the differences in θv at different levels of 

temperature, ECa, and clay content were tested. In addition, the polynomial order 

(quadratic or linear) of relationship for both TDR315 and CS655 sensors with each soil 

type was selected and then the relationship of coefficients of the polynomial order of 

sensor-reported θv for TDR315 and CS655 with clay content was determined. The 

performance of the universal calibration, which adjusts the factory calibrations of 

TDR315 and CS655 based on percent clay content, were evaluated for some findings in 

the literature.  

The regression models for both estimating θv at combined (23.9 and 35 °C) 

temperatures was not statistically different from the regression model for estimating θv at 

temperatures separately (two-tail p-value was within 0.1387 and 0.7231). In addition, the 

regression models for TDR315 and CS655 at two temperature levels witnessed low range 

of residual sum of squares using ANOVA (0.0004 to 0.0023 m3 m-3 for TDR315 and 

0.0003 to 0.0055 m3 m-3 for CS655), On the other hand, the regression models for 

TDR315 and CS655 sensors in different soil types were statistically different from each 

other at two salinity levels (two-tail p-value within the range of 2.2 × 10-16 and 0.005). 

The only exception was the response of TDR315 sensor in Valent soil which was not 

statistically different at two salinity levels (p-value = 0.322). Furthermore, the residual 

sum of squares using ANOVA for TDR315 was within 0.0002 and 0.0026 m3 m-3 and 

was within 0.0026 and 0.0137 m3 m-3 for CS655. The results of the study reveal that the 
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calibration of CS655 and TDR315 sensors varied with soil type. The regression 

calibrations for TDR315 and CS655 sensors among different soil types were determined. 

It was found that nine out of ten regressions between sensor-reported and reference θv 

were quadratic (observed p-values ranged from 2 × 10-16 to 0.004), and the regression 

calibration for CS655 in Valent soil type was linear (two-tail p value for quadratic 

relationship order = 0.676), but quadratic coefficients were reported for comparison with 

the coefficients of other soil types.  

It was found that the estimated coefficients (quadratic, linear, and intercept) for 

CS655 sensor-reported θv among different soil types had statistically significant linear 

relationships with the clay content of the corresponding soil types (the LOOCV RMSD 

for c2, c1, and c0 were 0.7936, 0.8127, and 0.1771). However for TDR315, significantly 

linear relationships of the coefficients (c2, and c1) with clay content were found (LOOCV 

RMSD for c2, and c1 was 0.4227, and 0.2652, respectively), but a quadratic calibration 

equation fitted well for the estimation of c0 (LOOCV RMSD for c0 was 0.0496). The 

developed calibration was also subjected to external validation with some studies done in 

the literature (Chavez and Evett, 2012; Schwartz et al., 2015; Singh et al., 2018).  Fitting 

the developed calibration to Chavez and Evett (2012) it was observed that the calibration 

worked well for CS655 sensor-reported θv range of 0.26 m3 m-3 to near saturation (0.42 

m3 m-3) and the results were similar with a slope slightly larger than unity and a small 

positive intercept. However, on applying the regression calibration to the observed θv 

range of Schwartz et al. (2016) for TDR315 sensor, underestimation by TDR315 within 

the range 0.04 to 0.47 m3 m-3 was witnessed with underestimation of θv throughout the 

drying cycle, and the magnitude of underestimation decreased with θv between 0.35 m3 
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m-3 and near saturation (0.47 m3 m-3). The findings of Schwartz et al. (2016) were also 

similar. At last, the universal calibration was validated for TDR315 and CS655 sensors 

placed at 0.15 and 0.76 m depths according to the dataset of Singh et al. (2018) and it was 

observed that the RMSD for CS655 reduced by 0.008 m3 m-3 at 0.15 m depth and 0.005 

m3 m-3 at 0.76 m depth using the universal calibration. However, using universal 

calibration for TDR315 the RMSD increased in comparison to the factory calibration. 

Therefore, it can be inferred that soil type had a noteworthy effect on the performance of 

CS655, but not TDR315 sensors. Potentially confounding factors (bulk density, organic 

matter, temperature, and salinity) should be accounted while transferring the calibration 

for external validation. However, limited availability of literature for evaluating accuracy 

of TDR315 and CS655 sensors comprehensively by external validation is a challenge. 

The performance of sensor-reported θv might be able to be improved with more accurate 

calibrations with the inclusion of more parameters like ρb and OMC. The relative success 

of fitting of results from general calibration with external validation is very encouraging 

and may signal new opportunities and can be explored in future research. 
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CHAPTER IV 

CONCLUSIONS 

A field study was conducted at the University of Nebraska-Lincoln West Central 

Research and Extension Center in North Platte, NE, to evaluate the performance of eight 

electromagnetic (EM) soil water sensors, TDR315, CS655, HydraProbe2, 5TE, EC5, 

CS616, Field Connect, and AquaCheck, in a loam soil at two depths. All temperature (T) 

measuring sensors followed the temporal trends in T generally within 1⁰C of each other 

at both depths. Similarly, the reported ECa among all sensors at both depths was within 1 

dS m-1 of each other. Such comparability among sensors provides confidence that the 

sensors can be used for crop modeling and planting decisions. Sensor performance 

assessment of 5TE, EC5, HydraProbe2, CS616, CS655, TDR315, Field Connect, and 

AquaCheck for θv determination with default factory, regression, and offset calibrations 

against the field calibrated neutron moisture meter (NMM) was carried out. The Topp 

equation (Topp et al., 1980) for TDR315, HydraProbe2, and EC5; manufacturer’s T 

adjustment for CS616 using T measurements by CS655; and both “generic” and the 

“loam” calibrations for AquaCheck were considered in addition to the factory 

calibrations. Among the single-sensor probes, the range of depth-combined (0.15, and 

0.76 m) RMSD for factory calibration varied from 0.039 m3 m-3 (5TE) to 0.157 m3 m-3 

(CS616).  In comparison to single-sensor probes, RMSD of Field Connect at combined 

depths (0.30, and 0.51 m) was moderate (0.083 m3 m-3), and RMSD of AquaCheck at 

combined depths (0.30, and 0.61 m) was high (0.163 m3 m-3). Using regression 

calibrations improved θv accuracy beyond factory calibration. In general, RMSD of the 
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evaluated sensors were below 0.025 m3 m-3 using regression calibrations with exceptions 

of 5TE and Field Connect. The betterment in θv accuracy gained by using offset 

calibrations was smaller and less consistent than the improvements gained by using 

regression calibrations. The relative success of offset calibrations for certain sensors in 

this field study is encouraging and may signal new opportunities. In addition, alternate 

models of sensor use, possibly analyzing trends and relative values at one or more depths 

rather than relying on conversions from raw output to water content for decision-making 

for irrigation management can be further explored in future research. 

A laboratory experiment was conducted in a walk-in oven room setup at West 

Central Research and Extension Center, North Platte, Nebraska conducted to analyze the 

performance of two recently developed electromagnetic (EM) sensors – TDR315, and 

CS655 in five different textured soils (Valent, Cozad, Kuma, Hastings, Wymore) 

collected across the state of Nebraska. Factory calibrations of EM sensors reported θv 

were evaluated at different temperatures (T), salinity (ECa) levels, and clay content (soil 

type) settings. Based on the investigated relationship of sensor θv and clay content, a 

general calibration equation for estimation of sensor-reported θv by both sensors for 

different soil types based on clay content was developed, and tested for statistical 

significance. The models for estimation of θv at hot (35°C) and cold (23.9°C) temperature 

were not significantly different from each other both statistically and practically for both 

the sensors, which was supported by the fact that the calculated RMSD was less than 0.01 

m3 m-3 for the developed models. The models for no salinity and added salinity were 

significantly different from each other (possibly due to high number of dataset points). 

But there is no practical significance of the difference as the range of RMSD for TDR315 
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sensor-reported θv varied across 0.0003 - 0.0023 m3 m-3, and the calculated RMSD 

ranged from 0.0023 – 0.0125 m3 m-3 for CS655 sensor-reported θv with the increase in 

salinity. The study revealed that CS655 (water content reflectometer) and TDR315 

calibrations varied with the soil type. CS655 sensor has a significant linear relationship 

for the estimated coefficients (quadratic, linear, and intercept) with clay content of the 

investigated soil types. For TDR315 sensor, a linear calibration equation for coefficient 

estimation from clay content was reported for quadratic and linear coefficients, and a 

quadratic calibration equation fitted well for the estimation of intercept. An 

underestimation of sensor-reported θv was witnessed at the wet end for the entire range of 

clay content with the difference in behavior at the drier end while interpreting the 

coefficients for TDR315 sensor. The developed calibration was also subjected to external 

validation with some studies done in the literature (Adeyemi et al., 2016; Chavez and 

Evett, 2012; Schwartz et al., 2015) and fitted well to the findings of those studies to a 

good extent. This validation was performed at different clay contents within the similar θv 

range for the developed calibration for both sensors. Potentially confounding factors 

(bulk density, organic matter, temperature, and salinity) should be accounted while 

transferring the calibration for external validation. However, limited availability of 

literature for evaluating accuracy of TDR315 and CS655 sensors comprehensively by 

external validation is a challenge. However, the relative success of fitting of results from 

general calibration with external validation in our study was encouraging and may signal 

new opportunities and can be explored in future research.  
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