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Advisor: Daniel Piatkowski 

This thesis aims to understand trends of trees in transportation planning and to determine 

if street trees have a negative or positive influence on crash frequency and severity. As 

roadways become more walkable and livable, they become safer. Street trees are a vital 

component of this trend. Planners must understand the impacts of trees on roadway user 

safety as they work to reduce crash risk. Although spatial analysis suggests there may be 

a negative relationship between trees and crash frequency, correlation models find a 

significant correlation between trees and crash severity, but no significant correlation 

between trees and crash frequency. Regression models of crash reports, tree inventory 

data, and other related variables in the city of Des Moines, Iowa, show that the presence 

of trees has a positive relationship on crash severity but no relationship on crash 

frequency. For every one unit increase in trees there is a 1.428 increase in predicted 

severe crashes, but an increase in trees does not result in any statistically significant 

influence on crash frequency. These findings are useful in gaining an understanding of 

tree influences on crash frequency and severity at the block group level, but further 

analysis of other variables is necessary for any further conclusions to occur. 
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Introduction 
Trees have the potential to provide communities significant social, economic, and 

environmental benefits including storm water capture and retention, filtration of water 

and air pollutants, aesthetic benefits, softening of hard architectural lines, soil 

improvements, and reduction of the urban heat island effect (Simons & Johnson, 2008). 

While trees can positively affect a community, an urban tree canopy is not made up of 

park and backyard trees alone. Street trees are a vital component of an urban community 

tree canopy as well, and thus hold the potential for many of these same benefits. 

Although street trees are considered important in an overall urban forest system, they 

pose implications on traffic safety for both vehicular and pedestrian traffic (Dixon & 

Wolf, 2007). The purpose of this thesis is to explore the influence of urban street tree 

canopy management on traffic and pedestrian safety and quality of life. 

Research Intent, Hypothesis, and Questions 
The intent of this thesis is to investigate the influence of street trees on driver and 

pedestrian safety issues through analysis of crash reports, demographic data, street tree 

inventory, and other related variables for the city of Des Moines, Iowa. The research aims 

to understand trends of trees in transportation planning and to determine to what extent 

street trees positively or negatively influence traffic safety issues. This thesis analyzes the 

relationships between multiple variables related to traffic crash instances to establish 

correlations and relationships between trees and traffic safety. If the right trees are 

planted in the right places, they may instead foster positive influences on the safety of 
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roadway users. The purpose of this thesis is to generate data that supports planning 

options that maximize urban canopy and minimize traffic and safety issues. 

 Research Question: Is there a relationship between street trees and roadway 

safety? 

 Hypothesis 1: There is a positive relationship between street trees and crash 

frequency.  

 Hypothesis 2: There is a positive relationship between street trees and crash 

severity. 

CHAPTER 1 LITERATURE REVIEW 

Roadway Design Background 
Attempts to minimize perceived traffic hazards caused by an urban grid (gridiron) street 

network that was made popular in the 19th Century resulted in these disconnected 

residential neighborhoods and the placement of retail along arterial roadways as the 

desire to move traffic quickly and separate land uses grew in the 20th century (Dumbaugh 

& Rae, Safe Urban Form: Revisiting the Relationship Between Community Design and 

Traffic Safety, 2009). Early planning for traffic safety resulted in issues such as 

disconnected neighborhoods and retail on arterial roadways, creating conditions that 

inhibit pedestrian mobility and favor the personal vehicle as a primary mode of transport 

(Rifaat, Tay, & de Barros, 2012). 
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The purpose of the grid network was to promote rapid land development by maximizing 

the number of corner lots (Rifaat, Tay, & de Barros, 2012). Cities like New York and 

Chicago continued to expand these grid networks as they quickly grew. (Dumbaugh & 

Rae, Safe Urban Form: Revisiting the Relationship Between Community Design and 

Traffic Safety, 2009) 

As growth of the personal automobile increased during the 20th century, Fredrick Law 

Olmstead Jr. lead efforts to move street planning away from the traditional grid pattern 

(Dumbaugh & Rae, Safe Urban Form: Revisiting the Relationship Between Community 

Design and Traffic Safety, 2009). A goal of transitioning from a grid system to a 

disconnected system with limited side road access was to create roads that serve specific 

functions (Elvik, 2001). For example, the function of high speed highways and 

thoroughfares was to move traffic as quickly and efficiently as possible (Elvik, 2001). 

Around the same time period efforts took place to beautify and reforest urban areas 

(Simons & Johnson, 2008). These efforts were met with the conflict of keeping high 

speed roadways open and clear of visual obstruction, resulting in much of the greening 

and beautification remaining confined to residential neighborhoods (Simons & Johnson, 

2008). 

The new planning strategy separated high speed roadways from neighborhoods, with new 

neighborhoods characteristic of disconnected features such as cul-de-sacs (Rifaat, Tay, & 

de Barros, 2012). By promoting traffic on high speed thoroughfares and highways, 

intersections are eliminated, and drivers are given greater sight lines and stopping 
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distances in order to improve safety conditions (Rifaat, Tay, & de Barros, 2012). Over 

time land use changes associated with this new planning strategy led to a phenomenon 

referred to as “homogenization”, where urban and residential ecosystems and landscapes 

all tend to be alike, replacing the diverse ecosystems that used to occupy those spaces 

across the nation (Groffman, 2014). Impacts of urbanization, and consequently 

homogenization, have led to both ecological and social trends (especially related to 

transportation safety) at both regional and global scales (Groffman, 2014). 

One method of improving roadway safety conditions is called traffic calming. The 

concept of area wide traffic calming was developed in the 20th Century by Frederick Law 

Olmstead Jr. and is aimed at increasing safety on both arterial and suburban roadways by 

moving traffic from neighborhoods to arterials (Elvik, 2001). Area-wide traffic calming 

schemes are road systems such as street closures, one-way systems, or speed reducing 

devices that aim to move traffic volume away from residential streets and onto main 

arterial roadways (Ewing & Brown, Traffic Calming Progress Report, 2009).  In traffic 

calming systems, arterial roads are improved to safely and efficiently handle increased 

traffic load. 

Traffic calming schemes can reduce injury accidents by 15% (averaged between 

approximately 25% on residential streets and 10% on main roads) (Elvik, 2001). With a 

goal of moving residents in and out of neighborhoods rather than through them by 

moving roadway traffic to arterial streets to increase safety, it became increasingly 

difficult for pedestrians to walk or bike to these services (Dumbaugh & Rae, Safe Urban 
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Form: Revisiting the Relationship Between Community Design and Traffic Safety, 

2009). While the goal of these systems was to improve safety and efficiency on arterials, 

the system may foster unintended consequences on neighborhood streets. By reducing 

traffic on neighborhood streets and improving sight distances, drivers may become 

comfortable with increasing their speeds, heightening the risk for increased crash 

frequency and severity. 

Pedestrian and Vehicle Safety 
Although the purpose of these design changes was to improve roadway safety, the 

movement of commercial and retail uses to arterial roads and the redesign of 

neighborhoods into suburbs has brought new, more severe safety issues to light (Ewing & 

Dumbaugh, The Built Environment and Traffic Safety, 2009). Pedestrians no longer have 

easy or safe walkable access to services located along the arterial roadways, and crashes 

along these roadways have become more severe and frequent due to increased traffic 

speeds (Dumbaugh & Rae, Safe Urban Form: Revisiting the Relationship Between 

Community Design and Traffic Safety, 2009). Dense, lower speed urban areas are 

actually found to be safer than higher speed and less dense suburbs due to higher crash 

severity along higher speed suburban roadways (Ewing & Dumbaugh, The Built 

Environment and Traffic Safety, 2009). Traditional urban roadways characteristic of 

narrow lanes, developed street tree canopies, and other traffic calming measures are also 

considered more forgiving in the instance of a crash than faster suburban roadways 

(Ewing & Dumbaugh, The Built Environment and Traffic Safety, 2009). 
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There are many benefits to planning for a healthy street tree canopy within a 

transportation plan. Trees offer great social, economic, and environmental benefits to a 

neighborhood. They also provide a great aesthetic addition to a roadway by softening 

hard architectural lines, providing shade, and adding color to a landscape. As beautiful as 

they may seem along streets and sidewalks though, there is a fear that trees pose a threat 

to both pedestrians and vehicles. It is commonly argued by roadway engineers that trees 

should be removed along arterial streets to increase driver visibility and increase safety 

(Simons & Johnson, 2008). This opinion is not well supported and should not be cause 

alone to eliminate trees from roadway planning all together (Macdonald, Williams, 

Harper, & Hayter, 2006-2011). When appropriately selected and maintained, the benefits 

of trees may outweigh the costs, and these benefits should all be considered in 

transportation planning (McPherson, Simpson, Peper, Maco, & Xiao, 2005).  

Strategies to Improve Pedestrian and Vehicle Safety  
Increased traffic has led to an increased need for traffic calming techniques (Garrick, 

2005). Traffic calming techniques are important for improving the safety of both 

pedestrians and drivers through reduction in traffic speed and volume (Knapp, 2000). 

Some examples of these techniques include traffic circles and speed humps (Knapp, 

2000). There is currently a national debate regarding the use of traffic calming schemes 

on large arterial roadways when they have traditionally been limited to residential roads 

(Ewing & Brown, Traffic Calming Progress Report, 2009). When implementing these 

types of traffic calming designs it is important that users are notified of upcoming 
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physical roadway changes such as speed bumps or speed changes with signage in order to 

decrease negative impacts of changes in daily driving routines (Ewing & Brown, Traffic 

Calming Progress Report, 2009). 

Two traditional methods of performing “traffic calming” measures are by traffic volume 

control (examples: barriers, cul-de-sacs, dead ends) and by speed control (examples: 

speed humps and speed bumps) (Knapp, 2000). Speed humps are the most common form 

of traffic calming control in the US. They are also the only traffic control measure that 

has national guidelines (Knapp, 2000). In 2009 the American Society of Civil Engineers 

published the U.S. Traffic Calming Manual, a national guide for engineers and planners 

to use in traffic calming roadway design (Ewing & Brown, Traffic Calming Progress 

Report, 2009). In some cases speed reduction traffic calming measures may promote the 

use of alternative modes of transportation (bus, bicycle, etc.) by reducing speeds and 

supporting sustainable alternatives as feasible methods of commuting (Randall, 

Churchill, & Baetz, 2005). The traffic calming techniques suggested here are all designed 

by engineers, but have argued that trees successfully function as a more affordable traffic 

calming measure due to their aesthetic appeal (Simons & Johnson, 2008). 

Traffic calming is one method of protection for pedestrians, but for planners an 

alternative to this is neighborhood and roadway design safety considerations. The safest 

street pattern for pedestrians is the gridiron pattern because of its walkable and connected 

design (when compared to loop and lollipop designs that are characteristic of 

disconnected streets and sidewalks), but crashes between two vehicles are more common 
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on this street pattern because of the increased number of intersections (Rifaat, Tay, & de 

Barros, 2012). Although the loop and lollipop street pattern is designed to increase safety 

by decreasing through traffic, it may decrease safety by decreasing driver line of sight 

distance (Rifaat, Tay, & de Barros, 2012). 

Traffic calming measures and roadway design considerations may be implemented 

differently based on location and situation. Techniques may also be used on their own or 

in combination with others. Design standards for traffic calming devices may be set 

locally, but there are no nationally set standards for any traffic calming measures other 

than speed humps. Some factors that may influence the design of traffic calming 

measures include traffic safety and mobility, street maintenance and emergency vehicle 

accessibility, rule enforcement (police involvement or self-enforcement), and how the 

system will impact the neighborhood and connecting streets. Development of a plan and 

design should be an open and multi-disciplinary process that involves all stakeholders. 

(Knapp, 2000) 

An alternative to traffic calming measures for improving safety is roadway design that 

focuses on multi-use roadways that optimize social controls such as legible streets, self- 

explaining streets, or shared streets, rather than structural controls such as stop lights 

(Garrick, 2005). These concepts lower traffic speeds and optimize physical guidance for 

users along the roadway rather than traditional signs and markings (Garrick, 2005). This 

method allows for integration of streets into the urban form (where all users have shared 

access) rather than just as a mode of moving traffic through a space (Ewing & 
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Dumbaugh, The Built Environment and Traffic Safety, 2009). Although speeds are 

reduced, shared streets often improve movement efficiency by eliminating street signs 

and promoting continual flow of all users (Garrick, 2005). 

Environmental Safety Concerns 
Traffic fatalities are one of the most common causes of preventable death in the US, and 

crash severity increases as vehicular speed increases, especially with crashes involving 

fixed objects (Elvik, 2001). Trees are the least likely to become a safety hazard when 

they are planted in areas that do not obstruct driver visibility and are located on low-

speed residential streets (Simons & Johnson, 2008). Because collisions are more severe 

as traffic speed increases, trees pose the most risk when located along high speed roads. It 

is important to give the greatest care to tree plantings in areas of high speed traffic to 

avoid planting trees in spaces that block driver visibility. It is also important to keep clear 

zones and horizontal clearance areas free of vegetation that may inhibit the utilization of 

these spaces by vehicles in need of safely exiting a roadway (Artimovich, Clear Zones 

and Roadside Terrain, 2011). 

A roadway design should be linked to its environmental setting. A roadway will always 

exist within an environment, and an environment can foster a natural ecosystem, meaning 

wildlife and other ecosystem features may be present (Dumbaugh, Safe Streets, Livable 

Streets, 2005). Vegetation is a naturally occurring part of every ecosystem and an 

important component of environmental health and sustainability. Because of this it should 

be given adequate consideration in transportation management (Artimovich, Highway 
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Safety and Trees: The Delicate Balance, 2011). Community design impacts roadway 

safety greatly, and future design trends will continue to be important in the safety of 

future communities. 

Tree Collisions 
According to the Federal Highway Administration (FHWA) and  the American 

Association of State Highway and Transportation Officials (AASHTO), single-vehicle 

collisions with trees make up about 25% of all fixed-object accidents each year, making 

them the reported object involved in 48% of all fixed-object accident fatalities (based on 

1990 data) (Wolf & Bratton, 2006). Trees are commonly involved in many vehicular 

accidents, but the cause of the accident is not the tree itself. A crash is a consequence of 

road design and driver behavior (Wolf K. , Trees in Urban Streetscapes: Research on 

Traffic Safety and Crash Risk, 2005). Trees are sometimes a casualty of a crash, and 

drivers who hit them as a fixed object are often subject to increased injury severity. 

Roadways designed for increased speeds are increasing crash risk, thereby increasing the 

severity of fixed object crashes with trees. It is important for planners to weigh the pros 

and cons of including trees in transportation planning as well as allow for design that 

optimizes these benefits and minimizes the risks.  

Wolf and Bratton (2006), made distinctions between urban and rural data used in 

descriptive, comparative, and predictive analysis to determine the influences of trees on 

crashes and found that tree collisions accounted for about 1.9% of all traffic accidents 

analyzed. Collisions with trees occur the least frequently overall, but injury rates for these 
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instances are higher than all other crashes with 61% of tree collisions resulting in definite 

injury. Accidents in rural areas also have a higher chance of resulting in serious injury. 

About 6.1% of rural crashes were with fixed objects, while only 3.8% of urban crashes 

were with fixed objects. Although the rate of fixed-object collisions was higher in rural 

areas than urban areas, the percentages of these incidents involving trees was relatively 

the same in both cases (1.1% in rural and 0.7% in urban) (Wolf & Bratton, 2006). 

This comparison of urban to rural environments found that rural roadside crashes are 

more frequent than those in urban areas, collisions with fixed objects are more frequent in 

rural than urban areas, and crashes in urban areas are more likely to result in more serious 

injury or death than those in urban areas. Risk assessment as well as consideration for 

community values should both be a consideration when planning for trees along 

roadways. This balance is important as cities attempt to plan for walkable and livable 

communities that are tied together by multi-use transportation and green corridors, thus 

promoting safer multidiscipline oriented transportation systems. (Wolf & Bratton, 2006) 

 Urban Design 
Throughout time the most practiced method of improving roadway safety was through 

roadside design. Some ways of increasing safety by design include removing an obstacle, 

redesigning to avoid an obstacle, reducing crash severity by allowing breakaway devices, 

or shielding obstacles with barriers (Dumbaugh, Safe Streets, Livable Streets, 2005). 
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Clear Zones 
One method of making roadways safer through urban design is by creating a clear zone. 

A clear zone is the buffer space along a roadside that is open for vehicles to safely move 

off the roadway when needed, allowing for horizontal clearance (Dumbaugh, Safe 

Streets, Livable Streets, 2005).  

Horizontal clearance is the lateral area adjacent to a roadway necessary to provide 

vehicles with clearance when parked along a roadside, and this clearance area must safely 

accommodate the width of a vehicle with open doors. This area can be referred to as a 

shoulder, recoverable slope, non-recoverable slope, or a clear run-out area. The design of 

a clear zone is situational, project specific, and dependent on speed, traffic volume, and 

natural roadside slope and curvature. Design may also be limited to location, 

environmental and built surroundings, and available right-of-way. (Artimovich, Clear 

Zones and Roadside Terrain, 2011) 

The recommended clear zone width for high volume roads with a level right-of-way is 

about 29.7 feet, and the recommended clear zone for low volume and low speed roads is 

only about 9.9 feet (Federal Highway Administration, 2017). These clearance distances 

vary based on individual cases and variables (grade of the space, presence of fixed 

objects, etc.) (Wolf & Bratton, 2006). Although a clear zone was a commonly used 

method for increasing safety along roadways, professionals are now considering the 

possibility that clear zones may actually decrease safety by allowing traffic to stop along 

the roadway and act as a hazard (Wolf K. , Trees in Urban Streetscapes: Research on 
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Traffic Safety and Crash Risk, 2005). Traffic calming measures such as clear zones may 

also create dangerous road conditions by promoting a false sense of security in drivers, 

resulting in increased roadway speeds. 

Designing for Trees 
Trees and green spaces are a vital component of urban design (Nadera, Kweon, & 

Praveen, 2008). Only 2 out of 91 national standardized crash reports include data about 

roadside vegetation, making it difficult to analyze the impact of vegetation on traffic 

safety at a national scale (Wolf K. , 2010). Because trees are fixed objects and allow for 

little buffer or padding to vehicles upon impact, they have the potential to increase injury 

and fatality risk in vehicle accidents (FDA, 1990). Driver choice and behavior influences 

the outcomes of moving vehicles and safety, but roadway design can minimize the risk of 

accidents (Dumbaugh, Safe Streets, Livable Streets, 2005). Wolf (2010) speculated that 

roadways lined with trees may provide an edge effect that results in positive influences 

on driver behavior and perception, leading to better driver safety and awareness (Wolf K. 

, 2010). 

An analysis of national collision data was used to look at urban trees in relation to traffic 

safety, specifically in crash incidence and severity (Wolf & Bratton, 2006). The goal of 

the analysis was to use its conclusions as guiding tools for future flexible transportation 

design that aligns with Context Sensitive Solutions (national policy to integrate local 

values with transportation planning) (Wolf & Bratton, 2006). The fifth edition of the 

AASHTO Policy on the Geomentric Design of Highways and Streets, known as the 
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"Green Book" is a set of highway and road design guidelines adopted by the FHWA 

(Wolf & Bratton, 2006). The goal of the Green Book is to provide uniform criteria for 

design that follows safety and operational consistency in a way that is economically 

friendly (Wolf & Bratton, 2006). 

Roadway design includes details for streetscape materials (e.g. signage, lighting, and 

traffic signals). Engineers may design urban and rural roadways in a manner that 

minimizes the use of trees, when the standards set along high speed roads may not be 

necessary along residential streets where speeds are slower and trees are less likely to 

cause safety issues or block visibility (Wolf & Bratton, 2006). By keeping trees and other 

visual barriers away from roadways, sight distances are increased. One goal of improving 

sight distances is to improve safety by improving a driver’s ability to analyze their 

surroundings. Like the concept of clear zones, this traffic calming measure may actually 

lower roadway safety by providing drivers with a false sense of security, leading to an 

increase in driving decisions like speeding and increasing the vehicle’s crash risk (Wolf 

& Bratton, 2006). 

Designing for Community Values 
A growing trend in transportation planning is the incorporation of community values and 

needs into the planning process while still planning for safety. Values and needs of 

pedestrians, cyclists, mass transit, and individual vehicles should all be integrated into a 

transportation plan. The national policy called Context Sensitive Solutions promotes the 

integration of these local needs and values into transportation plans. A component of 
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satisfying local needs in transportation is the inclusion of trees and landscaping along 

roadsides. The inclusion of properly managed vegetation along roadways gives 

economic, social, and environmental benefits to a community. If properly planned, 

planted, and managed, this vegetation does not result in obstructed driver visibility or 

decreased traffic safety. (Wolf K. , 2010) 

In transportation planning trees are often only analyzed for their aesthetic benefits and 

not always given consideration for their other economic and environmental benefits. 

Safety is the most important concern when planning for successful roadways that serve 

the public, and when trees are viewed as a safety hazard they are often omitted from 

transportation plans (Dumbaugh, Safe Streets, Livable Streets, 2005). Roads with well-

maintained street trees give communities a better perception to drivers, and shoppers tend 

to travel further to shops with better landscapes and spend more money at these shops 

(Dumbaugh, Safe Streets, Livable Streets, 2005). Because of the sense of relaxation and 

calmness of a scenic road lined with trees, drivers also prefer these routes over faster 

expressways not buffered by rows of trees and vegetation (Dumbaugh, Safe Streets, 

Livable Streets, 2005). Commuting can be a stressful part of an individual's day, and the 

added calmness of driving along a scenic route can reduce stress, frustration, and 

aggression when driving (Wolf K. , 2010). 
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Streets and Street Trees 

Impact of Trees on Driver Safety 
More than 4,000 fatalities and more than 100,000 injuries are the result of vehicle 

collisions with trees each year (Artimovich, Highway Safety and Trees: The Delicate 

Balance, 2011). Balancing the preservation of trees for environmental benefits and the 

removal of trees for traffic safety is a delicate process. Governing bodies, planners, and 

the public must work together to reach consensus when managing such a sensitive issue. 

A pilot study was conducted in 2008 to determine the impact of street trees on driver 

safety by measuring the effect of perception of safety and edge on driver safety using a 

simulated environment that guided users through a series of four worlds that varied in 

city form (urban and suburban) and landscape type (with and without trees) (Nadera, 

Kweon, & Praveen, 2008). The simulation and its preliminary questions found that on 

average the presence of trees had a greater influence on driver perception of safety than 

other surrounding land uses and that average simulation cruising speeds dropped 3.02 

miles per hour in simulations where trees were present (Nadera, Kweon, & Praveen, 

2008). A similar study conducted by the University of California at Berkeley 

Experimental Social Science laboratory tested 96 participants using a drive-through 

simulation to study the effects of street trees and other fixed objects on intersection 

visibility and found that the presence of parked cars and newspaper racks near 

intersections has a greater impact on driver visibility than the presence of high branching 

trees along sidewalks (Macdonald, Williams, Harper, & Hayter, 2006-2011).  
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Minimizing Tree Hazards (FHWA Standards) 
Trees are dangerous traffic hazards because they act as a stagnant or “fixed” object in a 

vehicle collision (FDA, 1990). Because trees are sturdy and large they have little to no 

cushioning effect in the event of a collision (FDA, 1990). Trees create unsafe conditions 

that lead to more frequent accidents by acting as visual obstructions to drivers and are 

often planted at safe distances from a roadway to avoid the potential of collision (Dixon 

& Wolf, 2007). Sight distances, sign visibility, and visibility of pedestrians are most 

likely to be blocked by trees at intersections, driveways, and curves (FDA, 1990). 

Local ordinances typically set requirements for line-of-sight clearance at intersections 

(Simons & Johnson, 2008; Tempelton & Rouse, 2015). This clearance restriction is often 

referred to as an intersection sight triangle, and the distance required to allow for a safe 

driver line of sight is dependent on traffic speed (FDA, 1990). High speed roadways 

require more line-of-sight clearance than slower streets (FDA, 1990). Clearance 

restrictions may set requirements for spacing between vegetation or other objects and the 

roadway (Simons & Johnson, 2008). Jurisdictions may also restrict vegetation or object 

height within the sight triangle area where vegetation or object placement is allowed, and 

restrictions can be set along roadways as well as within roadway medians (FDA, 1990). 

Trees may become an overhead hazard if large limbs are allowed to grow or overhang a 

roadway, and local or state ordinances often set standards for overhead clearance 

dependent on roadway usage (the FHWA recommends a 9-foot clearance over roadways 

and sidewalks) (FDA, 1990). For example, roadways that often accommodate large 



18 

 

 

 

trucks will require more clearance than residential streets (FDA, 1990). In some cases, 

pruning is not necessary because trees are constantly disturbed by passing traffic and 

growth is restricted by contact and interference by vehicles (Tempelton & Rouse, 2015). 

In some cases, trees cause accidents due to falling branches or failure of entire trees into 

roadways endangering pedestrians or vehicles and blocking roadways (FDA, 1990) Trees 

are most likely to drop limbs or fall into roadways when they are structurally damaged 

and at risk (FDA, 1990). Proper forestry management techniques and regular monitoring 

and maintenance should occur along roadsides to minimize the risk of tree failure (FDA, 

1990). 

It is better to be proactive in designing and maintaining a healthy street tree canopy now 

than to be reactive in responding to failing trees in the future from both a financial and a 

safety perspective (Simons & Johnson, 2008). Trees can successfully be maintained 

along roadsides if they are properly managed and kept a safe distance away from the 

roadside’s edge (Dumbaugh, Safe Streets, Livable Streets, 2005). To successfully utilize 

trees to their fullest potential along streets the right tree must be planted in the right place 

(Simons & Johnson, 2008). 

Evidence of traffic accidents where sight lines are restricted indicates trees should not 

block driver visibility (Artimovich, Clear Zones and Roadside Terrain, 2011). Strategies 

to keep sight lines clear of blockage by trees include clearance restrictions set by local 

regulations as well as design consideration that utilize vegetation that will not grow large 

enough to block driver visibility or the installation of plantings behind sidewalks 
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(Artimovich, Highway Safety and Trees: The Delicate Balance, 2011). In addition to tree 

planting and maintenance considerations drivers should also be educated on the 

importance of safe driving techniques to minimize any distraction or inattentiveness that 

may result in collisions (Wolf K. , Freeway Roadside Management: The Urban Foresty 

Behond the White Line, 2003). 

Along with driver safety education and landscape vegetation design that allows for clear 

visibility, roadways may be made safer by flattening curves, adding signage, repainting 

pavement markings, and other infrastructure safety improvements (Rifaat, Tay, & de 

Barros, 2012). All of these improvements are beneficial in improving road safety, but 

collisions may still occur. Although residents and environmental advocates may support 

the preservation of trees to maintain environmental benefits and aesthetic value, trees 

may still need to be removed in areas where they are the main cause of driver visibility 

limitation (Wolf K. , Trees in Urban Streetscapes: Research on Traffic Safety and Crash 

Risk, 2005). Open discussion meetings with all involved stakeholders should occur to 

address these situations, and decisions should be made collaboratively on a case-by-case 

basis (Artimovich, Highway Safety and Trees: The Delicate Balance, 2011). 

A Study of Methodologies Used in Similar Research 

Spatial and Regression Analysis  
Dumbaugh and Rae (2009) completed a GIS-based spatial analysis of crash reports in 

San Antonio, CA and analyzed the impacts of community design on traffic safety using 

ESRI’s ArcGIS (ESRI, 2011). In their research, private and public roadway data was 
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overlaid with parcel-level land use data and demographic data for the spatial analysis. 

Neighborhoods were defined by census block groups (Dumbaugh & Rae, Safe Urban 

Form: Revisiting the Relationship Between Community Design and Traffic Safety, 

2009). 

Dumbaugh and Rae (2009) encountered spatial issues where some roadways ran along 

the border of a census block group making it difficult to define in which block group an 

accident fell. To remedy this situation Dumbaugh and Rae (2009) created buffers around 

each of the census block groups, treating those entire areas each as their own 

neighborhoods. If a crash fell within the buffer, it was counted within that 

neighborhood’s analysis (Dumbaugh & Rae, 2009). This methodology resulted in some 

crashes being analyzed within multiple neighborhoods (Dumbaugh & Rae, 2009). 

Dumbaugh and Rae (2009) analyzed each neighborhood separately instead of the entire 

city as a whole, meaning each crash could be represented more than once if it influenced 

more than one neighborhood.  

Negative binomial regression models using ArcGIS were also used by Dumbaugh and 

Rae (2009) to analyze crash frequency and severity. This is a linear model of the 

percentage change of dependent variables (the count of times an event occurs) occurring 

with each unit of change in the independent variable (Dumbaugh & Rae, 2009). 

Dumbaugh and Rae (2009) found crashes increased with an increase in speed. Human 

behavior also played an uncountable role in crash rates (Dumbaugh & Rae, 2009). Safety 

improvements such as roundabouts decreased the rate of fatal crash occurrences; 
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however, the rate of less severe crashes increased (this may also be due to human 

behavior and issues of unfamiliarity with new intersection designs) (Dumbaugh & Rae, 

2009). 

Rifaat, Tay, and de Barros (2012) analyzed crash data from the city of Calgary, Alberta to 

examine the impacts of urban street pattern and design on traffic safety. Crashes were 

overlain with the 227 community and included streets, schools, liquor stations, and train 

stations GIS layers for the City of Calgary (Rifaat, Tay, & de Barros, 2012). Rifaat, Tay, 

and de Barros (2012) focused on the variables of street pattern, driver age, driver sex, 

driver condition, traffic control device present, environmental condition, road surface 

condition, collision location, and other special road conditions in their work to understand 

relationships between urban street pattern and design on traffic safety (Rifaat, Tay, & de 

Barros, 2012). 

Rifaat, Tay, and de Barros (2012) found the street pattern safest for pedestrians was the 

gridiron pattern, but that crashes between two vehicles are more common on this street 

pattern because of the increased number of intersections. The study found that although 

the loop and lollipop street pattern was designed to increase safety by decreasing through 

traffic, it may decrease safety by decreasing driver line of sight distance. Some final 

findings were that crashes were more severe under extreme weather conditions or in 

cases where drivers were under the influences of alcohol (Rifaat, Tay, & de Barros, 

2012). 
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Brooks, Kelley, and Amiri (2016) investigated relationships between socio-economic 

status and street trees using ArcGIS., finding an inverse relationship between socio-

economic status and the number of street trees decreased in an area of Spokane, WA. 

Brooks et al. (2016) used ordinary least squares (OLS) regression models as an indicator 

of inequality and for spatial autocorrelation by utilizing a hot spot analysis to search for 

density of tree canopy and other variables in relation to pedestrians. The study area in 

Spokane was analyzed at the census tract level. The spatial analysis delineated the 

pedestrian realm within the city, identified and quantified trees within that that area, and 

assessed socio-economic status within the area (Brooks, Kelley, & Amiri, 2016). 

Brooks et al. (2016) modeled crash occurrences on median home value, household 

density, and average year structures built. Ordinary least squares regression and 

exploratory regression (ArcGIS function to model linear regression to build OLS models) 

were used to analyze percent tree canopy (Brooks, Kelley, & Amiri, 2016). Spatial 

autocorrelation of variables was analyzed using a hot spot analysis to identify areas of 

where the socio-economic features are densely aggregated (indicating a high presence of 

the factor in that area in comparison to surrounding areas) (Brooks, Kelley, & Amiri, 

2016). 

Other Methods of Analysis 
Dumbaugh (2005) tested his hypothesis that livable streetscapes are less safe due to their 

reduction in clear zone width by examining crash data for Colonial Drive (a major 

connector between downtown Orlando, FL and eastern and western suburbs). Dumbaugh 
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(2005) did not consider Colonial Drive as a livable street, but believed it had many 

attributes of a livable street due to its continuous sidewalk, narrow lane widths, on street 

parking, and protections for pedestrians (Dumbaugh, 2005). Dumbaugh (2005) compared 

the section between the downtown of Orlando and surrounding suburbs to a section of 

similar distance (0.9 miles) along Colonial Drive located less than 4 miles east 

(Dumbaugh, 2005). The comparison section of roadway was similar in all characteristics 

such as street design, average number of crashes per intersection, and mean age of driver 

(Dumbaugh, 2005). The difference between the two sections was that the section located 

further from downtown Orlando had wider lanes and a wider clear zone (Dumbaugh, 

2005). The posted speed limit on this section was also 45 mph where the posted speed 

limit along the livable section was only 40 mph, but this was considered a minor 

difference and did not inhibit the study (Dumbaugh, 2005). 

Dumbaugh (2005) found the livable section of roadway to be safer, supporting his 

hypothesis that livable streets with more narrow lanes and clear zones are safer than 

roadways with wider lanes and clear zones. Dumbaugh (2005) also found no fatal mid-

block crashes along the livable section of roadway while there were 6 fatal crashes along 

the comparison section. Pedestrian and cycling accidents were also lower in the livable 

section where there is a greater buffer between these users and drivers (Dumbaugh, 

2005).  

A major benefit of the Dumbaugh (2005) study was that the two comparison areas were 

located along the same roadway, giving better control of driver population. To compare 
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the two sections of roadway the crash numbers were normalized by determining the 

number of crashes per 100 million vehicle miles traveled. Safety was also analyzed based 

on the number of mid-block crashes per mile to minimize the influences of traffic volume 

on crash rates. There was no significant difference between crash rates in either analysis 

model, and the general finding was that the livable street section was safer than the 

comparison street section. (Dumbaugh, Safe Streets, Livable Streets, 2005) 

To further support this finding, Dumbaugh also analyzed roadways utilizing similar 

livable conditions to those studied in downtown Orlando (dense development, narrow 

lanes and clear zones) by analyzing two 0.5 mile sections located within the historic 

districts of DeLand and Ocala, FL (Dumbaugh, 2005). These 0.5 mile sections were each 

compared to 5-miles sections (10 mph faster) of the same roadway located on either side 

of each historic district, and in both cases the average number of crashes reported was 

lower in the livable sections within the historic districts (Dumbaugh, 2005). There were 

also no fatal crashes reported within the historic districts (Dumbaugh, 2005). From these 

findings Dumbaugh concludes that wider lanes and clear zones may reduce driver’s 

perception of risk, causing them to not focus as much on driving safety and possibly 

engage in riskier driving behaviors (Dumbaugh, 2005). This conclusion suggests that 

further research should be conducted on drivers’ perceptions of risk (Dumbaugh, 2005). 

In another case Kathleen Wolf and Nicholas Bratton (2006) utilized archived crash data 

to discern the influences of trees on crashes and whether or not there are differences in 

these trends between urban and rural settings. Data from 2002 was taken from the 
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General Estimates System (GES) database generated by the National Automotive 

Sampling System and collected by the U.S. National Center for Statistics and Analysis 

(Wolf & Bratton, 2006). In total, 91 variables were analyzed including driver gender and 

age, alcohol consumption, posted speed, and road characteristics (Wolf & Bratton, 2006). 

Accidents on roadways in areas where the population was greater than 50,000, the 

number of travel lands was four or less, and speeds were posted at less than 45 miles per 

hour were considered urban (Wolf & Bratton, 2006). All other accidents were considered 

rural (Wolf & Bratton, 2006). 

Wolf and Bratton (2006) found that rural roadside crashes are more frequent than those in 

urban areas, collisions with fixed objects are more frequents in rural than urban areas, and 

crashes in urban areas are more likely to result in more severe injury or death than those 

in urban areas. Risk assessment as well as consideration for community values should 

both be a consideration when planning for trees along roadways; this balance is the true 

goal of Context Sensitive Solutions, especially as cities attempt to plan for walkable and 

livable communities (Wolf & Bratton, 2006). The comparison of urban to rural 

environments as well as considerations for community values in planning for trees along 

roadways in this case was a successful method of comparing different street design and 

its impact on traffic safety (Wolf & Bratton, 2006). 

CHAPTER 2 METHODS 
Many studies described in the review of methodologies have analyzed influences of trees 

on crash severity and frequency, but have not directly analyzed the relationship between 
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street tree density and crash occurrences. Crash reports are required components of this 

research. These are important in analyzing crash occurrences in relation to street trees. 

This data is available in varying levels of detail at the city level. Another essential 

component in this thesis is the analysis of the community’s public tree canopy, that is, 

canopy provided by trees in the public right-of-way. Of these, public trees along 

roadways are the primary focus in this research.  

Study Area and Data 
Des Moines, Iowa was the chosen study area for due to the city's availability of crash 

statistics and tree inventory data. The tree inventory data provided by the Des Moines 

City Public Works Department, 2010 U.S. income and population data, and crash report 

data generated by the Iowa Department of Transportation was mapped and analyzed both 

numerically using SPSS® as well as spatially using ArcGIS®.  

Initial Des Moines City crash data analysis displays a uniform distribution of crash 

frequencies over a 12 month period with the greatest number of both fatalities and 

injuries in the months of August and September and the lowest crash frequencies in the 

months of February and March (Table 1). Based on the uniform distribution of crash 

frequencies over a 12 month period, it is decided that seasonal influences will not be 

included in this analysis. 
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Table 1 Percent Fatalities and Injuries by Month 

 

Spatial Analysis 
Crash data, tree inventory data, and land use data were input into ArcGIS® software 

using a 1984 World Geodetic System Geographic Coordinate System (GCS_WGS_1984) 

to address Hypothesis 1: there is a positive relationship between trees and crash 

frequency.  ArcGIS® was used to display crash data spatially as well as to aid in the 

analysis itself by working as a tool to group the data by Census Block Groups. A hot spot 

analysis of crash location frequency was then completed (ESRI, 2011). Tree inventory 

data was plotted by latitude and longitude coordinates and displayed using green point 

symbology. Likewise, crash data was plotted using latitude and longitude coordinates and 

displayed using red point symbology. The Des Moines city boundary is indicated using a 

black polygon outline, and data sources are described in the figure. 

Figure 1 Des Moines, IA Public Tree Locations and Vehicular Crash Occurrences. clearly 

displays where trees are located and where crashes have occurred across the city, giving 

initial visual understanding of the research question if street trees influence roadway 
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safety. After identifying relationships between the variables a hot spot analysis by 

aggregate polygon block groups of vehicular crash occurrences was conducted using the 

ESRI Moran’s I model to identify spatial autocorrelation (Figure 2; Appendix A). In 

order to analyze feature locations and feature values in unison to identify clustering of 

crash occurrences in Des Moines, IA Global Moran’s I was the chosen model for hotspot 

analysis. 

The Moran’s I model generated by ArcGIS® calculates an index value and evaluates the 

significance of the index using z-scores and p-scores. The goal of the hot spot analysis 

was to help determine sample zones for spatial analysis, and the goal of including spatial 

analysis in this thesis was to work as a visual aid to provide readers with a connection to 

Des Moines at the neighborhood level by ultimately displaying the difference between 

what can be viewed on a map and what statistical numbers show. The hot spot map 

shows a clear area of high crash frequencies in the center of the city. The remainder of 

the city shows crash frequencies at a rate that is non-significant, and the northwest corner 

of the city displays an area of low crash frequency. 

Results of the Moran’s I analysis indicate that, with an R square value of 0.497, about 

50% of the variation in crash occurrences in Des Moines, IA is explained by the 

independent variables (Appendix A). This is evidence that countless other unknown 

variables are also attributable to crash occurrences. The Significance F is 0.000. Because 

this value is less than 0.5 the model finds that there is statistical significance between 

crash rates and the independent variables. The model z-score of 11.98 is relatively high, 
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indicating significant relationship between the dependent and independent variables. 

Further analysis and interpretation of these relationships is warranted and is evaluated 

using SPSS® software. 

The initial hot-spot analysis was conducted at a city level in order to identify areas of 

highest crash frequency, and deeper analysis was conducted over areas of high interest 

(referred to as “sample zones”) at the block group level to give simple insight as to where 

crashes are happening most frequently. Sample zone block groups were chosen at random 

within areas of high (most number of crashes when compared to the city totals), medium 

(average number of crashes when compared to the city totals), and low crash frequencies 

(lowest number of crashes when compared to the city totals). Traffic counts were not 

included in this analysis due to limitations in data availability. Roadway speeds were 

displayed using line segments. Spatial analysis also includes additional variable layers 

such as trails, land use, neighborhood boundaries, zoning, and street centerlines to 

complete the spatial analysis. The additional variables add depth to understanding outside 

influences on traffic crashes. 
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Figure 1 Des Moines, IA Public Tree Locations and Vehicular Crash Occurrences. 
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Figure 2 Des Moines, IA Hot Spot Analysis of Vehicular Crash Occurrences using Morans I.  
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In determining study sample locations in Des Moines, IA it was decided that six 

selections would be made in the North East quadrant of the city to help minimize location 

variables. Cold spots block groups, not significant block groups, and hot spot block 

groups are all found within the North East quadrant, making this an ideal area for further 

analysis. Research sample zones are identified in Figure 3 in yellow polygon outline 

symbology. There are two cold spot sample zones, two not significant sample zones 

(referred to as “neutral areas”), and two hot spot sample zones chosen, all of them 

encompassing a variety of speed limits. After determining sample zones, further analysis 

and mapping was completed. Variables mapped include crash data, street centerlines, 

2016 tree inventory data, health centers, education buildings, fire stations, police stations, 

city facilities (libraries, juvenile centers, parks, shelters, community centers, parking 

ramps, pools, recreational centers, armories, laboratories, event centers, city buildings, 

etc.), and park trail systems. 
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Figure 3 Des Moines, IA Street Tree Impacts on Roadway User Safety Research Sample Zones 
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Statistical Analysis 
All of the steps in the statistical analysis are used to answer the research question “is 

there a relationship between street trees and roadways safety” by either supporting or 

failing to support Hypothesis 1 that there is a positive relationship between street trees 

and traffic frequency and Hypothesis 2 that there is a positive relationship between street 

trees and traffic severity. To do this, crash data is standardized in order to address spatial 

issues and discrepancy at the block group level using street distances as the 

standardization value, and the dependent variable of traffic crashes per mile is considered 

in relation to the independent variables of population density, income, tree size, and tree 

density by block group (IBM Corp., 2016). Des Moines, IA is comprised of 200 block 

groups, all of different shapes and sizes, and all of varying road lengths. These spatial 

differences may play a role in the rate of crashes per block group. For example, a block 

group with limited street miles may report fewer crashes than a larger block group 

comprised of more street miles. Differences in crash frequency per block group may be 

influenced by the number of street miles per block group, and this spatial attribute must 

be accounted for in analysis. By dividing total crashes by street miles per block group, 

the crashes are standardized by street mile to account for spatial differences between 

block groups. Analysis at the block group level allows for a “neighborhood” analysis 

suitable for the questions posed in this research. 

To test Hypothesis 1, independent variables of income and population density are used to 

provide a proxy for how urban and dense a place is, and the independent variable of tree 

size and density and the dependent variable of crash density control for built environment 
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characteristics. The independent variable of roadway speeds (included in the spatial 

analysis) was omitted from further statistical analysis due to its inability to be generalized 

at the block group level.  

Analysis at the block group level testing Hypothesis 1 includes a descriptive analysis 

using t-tests to compare sample means with data standards (test values that are used to 

compare variable data mean values to a locally accepted or comparable standard), a 

histogram to identify normal distribution, correlation tests to identify correlations 

between variables, a multicollinearity test to identify issues between variable 

relationships, and regression tests (linear and negative binomial) of the data to identify 

relationships between the independent and dependent variables (IBM Corp., 2016). 

Because the distribution of the crash data per mile is not normal, a negative binomial 

regression model is found to be more appropriate than the linear regression model, but 

both outputs are included in results and discussion as an exploratory measure and 

comparison. The negative binomial regression model is used to provide a more 

conservative test of the coefficients than a traditional linear regression model. In the 

negative binomial regression model the dependent variable Crashes per Mile values were 

rounded to the nearest integer in order to perform the analysis, and 200 cases were 

analyzed using the Generalized Linear Model (negative binomial regression with log rate 

of 1) function in SPSS (IBM Corp., 2016). The output also included analysis of 

interactions between independent variables. The goal of this process is to test Hypothesis 

1: there is a positive relationship between trees and crash frequency. 
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After these relationships were identified, a similar analysis took place testing only 

relationships between severe crashes (dependent variable) and trees by selecting only 

crashes identified as “severe” to be included in the statistical models (IBM Corp., 2016). 

The first step in this final analysis included descriptive tests, frequency tests, and 

histograms to understand distribution and descriptive characteristics of the variables. 

Next, linear and negative binomial regression models are used to better understand this 

relationship and its significance in order to test Hypothesis 2: there is a positive 

relationship between trees and crash severity and to test interaction between the variables. 

Because the data is found to be skewed, a negative binomial regression model is found to 

be more appropriate than the linear regression model, but both outputs are included in 

results and discussion. In the negative binomial regression model the dependent variable 

Severe Crashes per Mile values were rounded to the nearest integer in order to perform 

the analysis, and 200 cases were analyzed using the Generalized Linear Model (negative 

binomial regression with log rate of 1) function in SPSS (IBM Corp., 2016). 

CHAPTER 3 RESULTS AND DISCUSSION 

Spatial Analysis 
The first in a series of sample zone maps is of Zone 1, an area of lowest crash frequencies 

in the city of Des Moines (Figure 4). Various amenities including a school, health 

facility, and park are all located in or near Zone 1. As shown in the map, more crash 

occurrences are located along roadways with higher roadway speeds than lower speed 

roads. There are also more trees located along lower speed roadways than higher speed 

roadways, where the crashes are occurring. 
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Figure 4 Des Moines, IA Street Tree Impacts on Roadway User Safety Research Sample Zones: Zone 1, Cold Spot 
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Figure 5 Des Moines, IA Street Tree Impacts on Roadway User Safety Research Sample Zones: Zone 2, Cold Spot 
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Alike to Zone 1, Zone 2 is a sample of an area of low crash frequency within the city 

(Figure 5). Trends are also similar in that more occur along high speed roadways than at 

slower speeds. One notable difference between Zones 1 and 2 is that there is a greater 

population of street trees along higher speed roadways in Zone 2 than there was in Zone 

1. The presence or absence of street trees does not seem to influence the trend of more 

crashes occurring on higher speed roadways than lower speed roadways. 

A notable feature of Zone 3 is the 55 mile per hour speed zone running along the lower 

boundary of the sample area where there is a high frequency of traffic crashes and where 

no trees are present in the public right-of-way (Figure 6). This suggests that crashes occur 

within the zone whether or not trees are present along the roadways. Zone 3 is the first 

study area located in the neutral area where crash occurrences are occurring at rates 

considered average for the city. Although crashes are happening at a higher rate than 

Zones 1 and 2, the trend is the same. More crash occurrences are located along roadways 

with higher roadway speeds and fewer trees than lower speed roads. 
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Figure 6 Des Moines, IA Street Tree Impacts on Roadway User Safety Research Sample Zones: Zone 3, Neutral Area 
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Figure 7 Des Moines, IA Street Tree Impacts on Roadway User Safety Research Sample Zones: Zone 4, Neutral Area 
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Zone 4 is the second area reviewed in what is considered as the neutral area where crash 

frequencies are similar to averages found across the city (Figure 7). A notable feature of 

Zone 4 is the park trail system that runs within and along the perimeter of the study zone, 

introducing additional conflict into the transportation system. Although the trail system is 

present, crashes still tend to occur along the higher speed roadways (where fewer trees 

are present than lower speed roadways) rather than where trails run. 

Zone 5 is the first sample area mapping a part of the city where crashes are most frequent 

(Figure 8). Crashes in the Zone 5 map seem to occur along every roadway. City 

amenities, parks, trails, and other variables plotted on the map are also more frequent in 

this zone than previous areas reviewed, indicating a more active environment. The 

busyness of this map makes trends harder to discern than Zones 1-4. Historical practices 

of maintaining trees along lower speed roadways but removing them from busier and 

faster roads can still be noted. More crashes still appear to occur along high speed 

roadways where fewer trees are present than at lower speeds, although an overall increase 

in all crashes within the zone is apparent (as compared to Zones 1-4). 
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Figure 8 Des Moines, IA Street Tree Impacts on Roadway User Safety Research Sample Zones: Zone 5, Hot Spot 
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Figure 9 Des Moines, IA Street Tree Impacts on Roadway User Safety Research Sample Zones: Zone 6, Hot Spot 
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Findings in Zone 6, another area of highest crash frequency within the city, are 

comparable to findings in Zone 5 (Figure 9). Crashes tend to occur more along higher 

speed roads than slower roads. There is a notable lack of trees within this zone compared 

to that of Zones 1-5. There are factors other than roadway safety that may be influencing 

this lack of street trees. However, the decision to not maintain trees within the area may 

have been in part in attempt to improve traffic safety in a high-traffic area of the 

downtown area. It is clear though that crashes are still occurring, even in the absence of 

street trees.   

It is important to remember that the 2016 tree inventory only includes public tree 

information. Public trees are only those found in the public right-of-way (ROW), so this 

map is not a depiction of all trees found within the city. It is mainly a depiction of only 

street and park trees. With this understanding it does make sense that crashes would 

occur in the same vicinity as trees because many of the trees displayed here are those 

located along streets. 

In all six sample zones trees are absent from street edges in high speed areas, but have 

been maintained in lower speed zones (Artimovich, Highway Safety and Trees: The 

Delicate Balance, 2011). The goal of maintaining greater clearance of street trees along 

high speed roadways is to minimize risk of fixed object crashes at higher speeds as well 

as to promote safety by improving sight lines along roadways that are designed to move 

traffic faster (Dixon & Wolf, 2007). A significant finding in these maps, however, is that 

crashes are still occurring at higher frequencies along these faster streets. This suggests 
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then that simply removing street trees is not a viable option for making streets safer. If 

crashes occur with or without street trees present, then their presence may be of more 

overall environmental, social, and economic value to a city than their absence.  

Statistical Analysis 
Analysis of street tree and crash data gives spatial understanding of locations of crashes 

in relation to street trees. However, spatial analysis alone is not enough to support or fail 

to support either Hypothesis 1: there is a positive relationship between street trees and 

crash frequency or Hypothesis 2: there is a positive relationship between street trees and 

crash severity. After gaining an overall spatial understanding of traffic crashes in relation 

to the independent variables, the statistical analysis is used to scientifically identify and 

quantify relationships and answer the research question “is there a relationship between 

street trees and roadway safety?” (IBM Corp., 2016).  

To understand Hypothesis 1, there is a positive relationship between street trees and crash 

frequency, a t-test was first conducted. The t-test is used to understand descriptive 

information about the variables by identifying if the difference between variable means is 

statistically significant. Each variable was analyzed and compared to a normally accepted 

mean average. Sources for mean comparisons (test values) are listed within the tables. 

Crash data per mile is available at a state-wide level, but this does not serve as a suitable 

mean comparison to the city of Des Moines due to the rural nature of the state. Mean 

crashes per mile in Cedar Rapids, Iowa is the chosen standard of measurement because 

Cedar Rapids is the closest city in population to Des Moines in the state. Cedar Rapids 
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reported a population of 126,714 in 2010 and is made up of 108 Block Groups, and in 

2010 Des Moines reported a population of 203,433 and is made up of 200 block groups 

(US Census Bureau). Tree inventory data is not available at a national or statewide level, 

so test values for this variable are compared to Madison, WI values (average number of 

trees by block group) (Madison, 2017). Madison was chosen as the standard comparison 

for the tree density t-test because of its availability of data, proximity, and relative size to 

Des Moines. In 2010 Madison reported a population of 233,631, and the city is 

comprised of 196 total block groups, and in 2010 Des Moines reported a population of 

203,433 and is comprised of 200 block groups (US Census Bureau).  

Results of the t-test in Table 2 show that the p-value (Sig. [2-tailed]) is 0.000, a value less 

than 0.05 (standard measure at a 95% confidence interval), indicating that mean value of 

crash frequencies in Des Moines, Iowa is statistically different than standard test value 

mean of crash occurrences for the entire state (Department of Transportation, 2015). With 

a t-value of 6.536 evidence shows that there is a positive difference between the variable 

mean and the test value, suggesting that the mean value of crash frequency in Des 

Moines, Iowa is higher than the mean value of crash frequencies for the entire state. This 

information it important in understanding the significance of crash frequency in Des 

Moines relative to the state as a whole. In this case, crashes appear to happen more 

frequently in Des Moines than the source city for the test value, Cedar Rapids. This may 

be due to the larger population in Des Moines, but it still raises awareness of the high 

crash frequency in Des Moines relative to the second most populated city in the state. 



48 

 

 

 

Table 2 Crash count data t-test 

  

According to the t-test in Table 3, the p-value value is 0.000, a value less than 0.05 

indicating that the observed mean of tree density in Des Moines, Iowa is statistically 

different than the standard test value mean (Madison, 2017; US Census Bureau). A t-

value of -15.540 suggests that the mean value of tree density in Des Moines is 

significantly lower than the mean value of the test value of tree density in Madison, WI. 

This difference in mean tree density between these cities may be reason to think that 

there is room for canopy growth in Des Moines when compared to Madison. Other 

variables are involved in understanding the potential for tree density increase in Des 

Moines and the associated risks and benefits, especially in relation to traffic safety and 

crash frequency. 
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Table 3 Tree count data t-test 

 

Table 4 shows a p-value of 0.217, a value greater than 0.05, indicating that the observed 

mean of population density in Des Moines, Iowa is not statistically different than the 

standard test value mean (US Census Bureau). This data concludes that population 

density in Des Moines is similar to population across the entire state of Iowa. 

Incorporating characteristics of population density into this research process helps to give 

a better degree of understanding to how urban and dense Des Moines is in relation to the 

rest of the state. Although crashes occur more frequently in Des Moines when compared 

to the standard (Table 2), the city’s population density is similar to that of Iowa as a 

whole, giving reason to believe that population density may not be the cause of increased 

crash frequency, but not reason enough to eliminate it entirely from statistical analysis. 
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Table 4 Population Density t-test 

 

Findings in the t-test in Table 5 show a p-value of 0.000, a value less than 0.05 indicating 

that the observed mean value of median household income in Des Moines, Iowa is 

statistically different than the standard test value mean (US Census Bureau).  With a t-

value of -58.339, the t test in Table 5 concludes that the mean of median household 

income in Des Moines is significantly lower than the mean of median household income 

for the entire state of Iowa. This finding suggests that there is a significant difference 

between income in Des Moines and that of the state, a factor that warrants further 

investigation of the independent variable and its relationship with crash frequency per 

mile. 
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Table 5 Median household income t-test 

 

Scatterplots of independent variables (population density, median household income, tree 

density, and tree size based on diameter at breast height) along a line of best fit 

determined by the dependent variable (crashes per mile) were created to determine linear 

relationships (Appendix B). Finding no statistically significant correlations between the 

variables at a 95% confidence interval, a correlation model was next conducted to give 

further understanding of variable relationships. The p-values (Sig. [2-tailed]) for all 

independent variables are greater than 0.05, indicating no statistical significance in 

correlation between crash counts and population density, median household income, tree 

count, or average DBH at a 95% confidence level (Table 6). This model observes slight 

correlations between each independent variable and the dependent variable, but there is 

not enough evidence to conclude that this correlation exists in the population based on the 
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non-significant p-values for all variables. This finding fails to support Hypothesis 1: there 

is a positive relationship between trees and crash frequency. 

Table 6 Correlation analysis of crash counts per mile, tree counts, population density, and median household income 

variables. 

Correlations   

 

Crashes 

per mile 

Population 

Density 

Median 

Household 

Income Tree Count Average DBH 

Crashes per 

mile 

Pearson 

Correlation 

1 -.015 .018 .132 -.054 

Sig. (2-tailed)  .828 .796 .062 .445 

N 200 200 200 200 200 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

A test of multicollinearity is found in Table 7. In the Coefficients portion of the Table 7 

output, no VIF values are greater than 5, indicating no significant issues with 

multicollinearity. Likewise, there are no tolerance levels below 0.20, another indication 

that there is not multiple correlation between the variables. Finally, no Eigenvalues in the 

diagnostic test are close to 0, indicating that the predictors are not inter-correlated and 

will not cause issues in further statistical testing. 
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Table 7 Test of multicollinearity of variables 

Coefficientsa 
  

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Tolerance VIF 

B Std. Error Beta 
Collinearity Statistics 

1 (Constant) 90.826 15.570 
 

5.833 .000   

Population 
Density 

-3.725E-7 .000 -.079 -1.024 .307 .839 1.19
2 

Median 
Household 
Income 

.000 .001 .029 .399 .690 .967 1.03
4 

Tree Count .055 .027 .157 2.055 .041 .859 1.16
4 

Average 
DBH 

-.873 1.472 -.042 -.593 .554 .991 1.00
9 

a. Dependent Variable: Crashes per mile 

Collinearity Diagnostics   

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions   

(Constant) 
Populatio
n Density 

Median 
Household 

Income 
Variance 

Proportions 
Variance 

Proportions 

1 1 2.621 1.000 .03 .01 .03 Tree 
Count 

Tree 
Count 

2 1.070 1.565 .00 .50 .00 .05 .05 

3 .780 1.833 .01 .26 .02 .03 .03 

4 .401 2.558 .01 .13 .21 .02 .02 

5 .127 4.536 .95 .10 .74 .71 .71 

a. Dependent Variable: Crashes per mile 

 

A linear regression model was next performed to test linear relationships between the 

dependent and independent variables in order to address Hypothesis 1: there is a positive 

relationship between trees and crash frequency (Appendix B). In the linear regression 

model testing Hypothesis 1, the Pearson Chi-Square value in the Goodness of Fit value is 

greater than 0.05, concluding that the model does fit the data and further interpretation of 

the results is useful to research (Table 8). However, the Test of Model Effects finds the 
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only independent variable in the model to be statistically significant is the tree count 

variable. The dispersion parameter set by the statistic package is 1. This adjusts the 

standard error, creating a more conservative test of the coeffecients than a linear 

regression model. Based on the parameter estimate results, for every one unit increase in 

tree count there is a 0.055 increase in predicted crash occurrences per mile, and this is 

statistically significant because the p-value for this variable is less than 0.05. Although 

this data is part of the exploratory process of developing statistical analysis to answer the 

research question “is there a relationship between trees and traffic safety”, this model is 

only appropriate when distribution of the data is normal and interaction effects are not 

further assessed in this model, so the identification of distribution trends is necessary. 

Table 8 Generalized Linear Model test of linear regression to test Hypothesis 1 

Goodness of Fita 

 Value df Value/df 

Deviance 1958550.315 195 10043.848 

Scaled Deviance 200.000 195  

Pearson Chi-Square 1958550.315 195 10043.848 

Scaled Pearson Chi-Square 200.000 195  

Log Likelihoodb -1202.727   

Akaike's Information Criterion 

(AIC) 

2417.455   

Finite Sample Corrected AIC 

(AICC) 

2417.890   
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Bayesian Information 

Criterion (BIC) 

2437.245   

Consistent AIC (CAIC) 2443.245   

Dependent Variable: Crashes per mile 

Model: (Intercept), Population Density, Median Household Income, Tree 

Count, Average DBHa 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 

Test of Model Effects  

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 34.877 1 .000 

Population Density 1.084 1 .298 

Median Household Income .163 1 .687 

Tree Count 4.338 1 .037 

Average DBH .360 1 .548 

Dependent Variable: Crashes Per Mile 

Model: (Intercept), Population Density, Median Household Income, Tree 

Count, Average DBH 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper Wald Chi-Square 

(Intercept) 90.802 15.3753 60.667 120.937 34.877 
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Population Density -3.740E-7 3.5920E-7 -1.078E-6 3.301E-7 1.084 

Median Household Income .000 .0007 -.001 .002 .163 

Tree Count .055 .0264 .003 .107 4.338 

Average DBH -.872 1.4532 -3.721 1.976 .360 

(Scale) 9792.752a 979.2752 8049.791 11913.103  

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig. 

(Intercept) 1 .000 

Population Density 1 .298 

Median Household Income 1 .687 

Tree Count 1 .037 

Average DBH 1 .548 

(Scale)   

The histogram in Table 9 shows a skewed dataset of Des Moines crash frequency per 

mile. Because the data is skewed toward the 0 y-axis the dataset was checked to 

determine if the skew comes from an abnormal number of 0’s in the data. No block 

groups report 0 crash reports, leading to the conclusion that a negative binomial 

regression model is appropriate due to over-dispersion of count variable (not normal 

distribution; the mean is lower than the variance of the variable).   
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Table 9 Histogram of dependent variable: crashes per mile 

 

In the negative binomial regression model testing Hypothesis 1, the Pearson Chi-Square 

value in the Goodness of Fit value is greater than 0.05, concluding that the model does fit 

the data and further interpretation of the results is useful to research (Table 10). The 

regression model was run a second time to test for interaction effects between tree counts 

and the other independent variables (Appendix B). Finding issues with effects of 

interaction between the Median Household Income and Tree Count variables, Median 

Household Income was removed from the model and the model was re-computed 

(Appendix B). Omitting this variable from the analysis is acceptable as relationships 

between it and the dependent variable were not statistically significant in the first model. 

The dispersion parameter set by the statistic package is 1. This adjusts the standard error, 

creating a more conservative test of the coeffecients than a linear regression model. In the 
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second run of the regression model, the Pearson Chi-Square value in the Goodness of Fit 

value is greater than 0.05, indicating the model still fits the data. The Test of Model 

Effects finds no relationships between the dependent and independent variables in the 

model to be statistically significant (all p-values are greater than 0.05). Based on these 

results, no parameter estimates are useful in further analysis and it is concluded that trees 

do not have a significant positive relationship on crash frequency, failing to support 

Hypothesis 1: there is a positive relationship between trees and traffic safety. 

Table 10 Generalized Linear Model test of negative binomial regression to test Hypothesis 1 

Goodness of Fita 

 Value df Value/df 

Deviance 211.709 194 1.091 

Scaled Deviance 211.709 194  
Pearson Chi-Square 174.210 194 .898 

Scaled Pearson Chi-Square 174.210 194  
Log Likelihoodb -1131.857   
Akaike's Information Criterion (AIC) 2275.715   
Finite Sample Corrected AIC (AICC) 2276.150   
Bayesian Information Criterion (BIC) 2295.505   
Consistent AIC (CAIC) 2301.505   

Dependent Variable: Crashes per mile 
Model: (Intercept), Population Density, Tree Count, Average DBH, Population x Tree Count Interaction, 
Average DBH x Tree Count Interaction 
a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information criteria. 

Tests of Model Effects 

Source 
Type III 

Wald Chi-Square df Sig. 

(Intercept) 1238.474 1 .000 

Population Density .935 1 .334 

Tree Count 3.112 1 .078 

Average DBH 1.837 1 .175 

Population x Tree Count Interaction 1.402 1 .236 

Average DBH x Tree Count Interaction 1.319 1 .251 

Dependent Variable: Crashes per mile 
Model: (Intercept), Population Density, Tree Count, Average DBH, Population x Tree Count Interaction, 
Average DBH x Tree Count Interaction 
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Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval 

Hypothesis 

Test 

Lower Upper 

Wald Chi-

Square 

(Intercept) 4.506 .1280 4.255 4.757 1238.474 

Population Density -3.549E-9 3.6709E-9 -1.074E-8 3.645E-9 .935 

Tree Count .001 .0006 .000 .002 3.112 

Average DBH -.034 .0252 -.084 .015 1.837 

Population x Tree 

Count Interaction 

-2.298E-7 1.9407E-7 -6.101E-7 1.506E-7 1.402 

Average DBH x Tree 

Count Interaction 

.000 .0001 -9.152E-5 .000 1.319 

(Scale) 1a     

(Negative binomial) 1a     

Parameter Estimates (cont.) 

Parameter 

Hypothesis Test 

df Sig. 

(Intercept) 1 .000 

Population Density 1 .334 

Tree Count 1 .078 

Average DBH 1 .175 

Population x Tree Count Interaction 1 .236 

Average DBH x Tree Count 

Interaction 

1 .251 

(Scale)   

(Negative binomial)   
Dependent Variable: Crashes per mile 

Model: (Intercept), Population Density, Tree Count, Average DBH, Population x Tree Count Interaction, 
Average DBH x Tree Count Interaction 
a. Fixed at the displayed value. 

Crashes defined as “severe” were next pulled from the crash dataset (dependent variable) 

and analyzed alongside tree density (independent variable) to aid in furthering the 
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understanding of the influence of tree density on crash severity. Descriptive statistics and 

histograms of the variables found skewed distributions for both (Appendix B).  

Next a correlation model was run to determine if there is a statistically significant 

relationship between tree density and crash severity in Des Moines, IA (Table 11). The p-

value for relationships between trees and crash severity per mile by block group is 0.045, 

a value statistically significant at the 95% confidence level. This finding supports the idea 

that there is a relationship between trees and crash severity, but details of this relationship 

are yet unclear. 

Table 11 Correlation descriptive statistics of severe crashes and tree density 

Correlations Tree Count 

Severe Crashes Per Mile Pearson Correlation .142* 

Sig. (2-tailed) .045  

N 200 

*. Correlation is significant at the 0.05 level (2-tailed). 

A linear regression model was next performed to test linear relationships between the 

dependent and independent variables in order to address Hypothesis 2: there is a positive 

relationship between trees and crash severity (Table 12, Appendix B). In the linear 

regression model testing Hypothesis 1, the Pearson Chi-Square value in the Goodness of 

Fit value is greater than 0.05, concluding that the model does fit the data and further 

interpretation of the results is useful to research (Table 12). The Test of Model Effects 

finds the relationship between trees and severe crashes per mile to be statistically 

significant. The dispersion parameter set by the statistic package is 1. This adjusts the 
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standard error, creating a more conservative test of the coeffecients than a linear 

regression model. Based on the parameter estimate results, for every one unit increase in 

tree count there is a 0.002 increase in predicted severe crashes per mile, and this is 

statistically significant because the p-value for this variable is less than 0.05. Although 

this data is part of the exploratory process of developing statistical analysis to answer the 

research question “is there a relationship between trees and traffic safety”, this model is 

only appropriate when distribution of the data is normal and interaction effects are not 

further assessed in this model. 

Table 12 Generalized Linear Model test of linear regression to test Hypothesis 2 

Goodness of Fita 

 Value df Value/df 

Deviance 3778.505 198 19.083 

Scaled Deviance 200.000 198  

Pearson Chi-Square 3778.505 198 19.083 

Scaled Pearson Chi-Square 200.000 198  

Log Likelihoodb -577.664   

Akaike's Information Criterion (AIC) 1161.329   

Finite Sample Corrected AIC (AICC) 1161.451   

Bayesian Information Criterion (BIC) 1171.224   

Consistent AIC (CAIC) 1174.224   

Dependent Variable: Severe crashes per mile 

Model: (Intercept), Tree Counta 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing information criteria. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-Square df Sig. 

(Intercept) 75.582 1 .000 

Tree Count 4.114 1 .043 

Dependent Variable: Severe crashes per mile 

Model: (Intercept), Tree Count 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper Wald Chi-Square df 

(Intercept) 3.605 .4147 2.793 4.418 75.582 1 

Tree Count .002 .0011 7.333E-5 .004 4.114 1 

(Scale) 18.893a 1.8893 15.530 22.983   

Parameter Estimates (cont.) 

Parameter 

Hypothesis Test 

Sig. 

(Intercept) .000 

Tree Count .043 

(Scale)  

Dependent Variable: Severe crashes per mile 

Model: (Intercept), Tree Count 

a. Maximum likelihood estimate. 
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In the negative binomial regression model test for Hypothesis 2, the Pearson Chi-Square 

value in the Goodness of Fit value is greater than 0.05, concluding that the model does fit 

the data and further interpretation of the results is useful to research (Table 13). Likewise, 

the Test of Model Effects finds the model to be statistically significant at the 95% 

confidence level with a p-value less than 0.05. The dispersion parameter set by the 

statistic package is 1. This adjusts the standard error, creating a more conservative test of 

the coeffecients than a linear regression model. 

Based on these results, for every one unit increase in trees there is a 1.428 increase in 

predicted severe crashes, and this is statistically significant because the p-value for this 

variable is less than 0.05. Although results from the linear regression model in Table 12 

were not assumed to be definite due to the model’s inappropriate nature when analyzing a 

skewed dataset, findings in the negative binomial regression support initial linear 

regression results. Based on this model it is concluded that an increase in trees results in 

an increase in predicted severe crashes, supporting Hypothesis 2: there is a positive 

relationship between trees and crash severity.  
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Table 13 Generalized Linear Model test of negative binomial regression to test Hypothesis 2 

Goodness of Fita 

 Value df Value/df 

Deviance 199.984 199 1.005 

Scaled Deviance 199.984 199  
Pearson Chi-Square 178.869 199 .899 

Scaled Pearson Chi-Square 178.869 199  
Log Likelihoodb -507.848   
Akaike's Information Criterion 
(AIC) 

1017.697 
  

Finite Sample Corrected AIC 
(AICC) 

1017.717 
  

Bayesian Information 
Criterion (BIC) 

1020.995 
  

Consistent AIC (CAIC) 1021.995   
Dependent Variable: Severe Crashes Per Mile 
Model: (Intercept)a 
a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing 
information criteria. 

Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 328.913 1 .000 

Dependent Variable: Severe Crashes Per Mile 

Model: (Intercept) 

Parameter Estimates 
 

Parameter B 
Std. 
Error 

95% Wald Confidence 
Interval Hypothesis Test 

 

Lower Upper 
Wald Chi-

Square df Sig. 

Tree Count 1.428 .0787 1.274 1.582 328.913 1 
.000 

(Scale) 1a       

(Negative 
binomial) 

1a 
      

Dependent Variable: Severe Crashes Per Mile 
Model: (Intercept) 
a. Fixed at the displayed value. 
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CHAPTER 4 CONCLUSIONS AND PROFESSIONAL APPLICATIONS 
By comparing the frequencies of recorded crashes with the Des Moines tree inventory 

and other related variables this thesis explores the research question “is there a 

relationship between street trees and roadway safety” by supporting or failing to support 

Hypothesis 1 that there is a positive relationship between street trees and crash frequency 

and Hypothesis 2 that there is a positive relationship between street trees and crash 

severity. Data findings here show that mean crash frequency is higher in Des Moines than 

the standard (Table 2). One reason for this finding may be due to the fact the Des Moines 

is the most populated city in the state, but this issue should still be a cause of concern for 

planners and decision makers in the city. Findings also show that population density in 

Des Moines is not statistically different from that of the entire state, supporting the idea 

that population count is not the sole reason for high crash frequency in Des Moines 

(Table 3). As planners work to minimize risk of crash occurrences in Des Moines, 

understanding the impacts of trees on roadway user safety will be an important 

component of the planning process. 

If human beings had no error in decision making, cars would never speed, stop signs 

would never be ignored, and theoretically there would be no road conflict. Although this 

seems ideal, this concept is not a reality. In the future, cars may evolve enough to remove 

human error from the equation. Currently, technologies that eliminate the chance of error 

such as adaptive cruise control and lane departure warning systems are common. 

However, it will be many years before driverless cars become widespread. As long as 
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humans are maneuvering the roadways, conflict will occur and accidents will happen. 

The duty of the planner is to work to minimize the risk of conflict when attempting to 

design safer systems. 

Historical trends for planning safer and more productive transportation systems discussed 

in the literature review have resulted in greater sight lines, wider shoulders, and 

consequently increased speed limits (Dumbaugh & Rae, Safe Urban Form: Revisiting the 

Relationship Between Community Design and Traffic Safety, 2009). By providing 

drivers with an increased sense of security and safety, drivers are more comfortable with 

allowing themselves to increase their speeds even more and succumb to other distractions 

such as cell phones, ultimately worsening safety conditions rather than improving them 

(Dumbaugh, Safe Streets, Livable Streets, 2005). 

Increased risk of accidents combined with increased speeds results in more severe 

collisions, especially those involving fixed objects (Federal Highway Administration, 

2017). When a vehicle strikes a tree at a high speed the likelihood of the accident 

becoming fatal increases because trees are sturdy and provide no cushion upon impact 

(FDA, 1990). It is easy then to conclude that if a tree is located along a roadway, that 

roadway may be made safer by removing that tree, but this is not enough cause to assume 

correlation.  

Similar to findings in the literature review, spatial maps reviewed here indicate that 

crashes on roadways with high traffic speeds and fewer street trees are more frequent 

than in areas of lower speed limits with more street trees, providing initial support to 
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Hypothesis 1: there is a positive relationship between street trees and crash frequency, 

with this relationship being negative. However, correlation analysis for Des Moines finds 

no statistical significance between tree density and crash frequency per mile, failing to 

support the hypothesis that there is a positive relationship between street trees and crash 

frequency.  The linear regression model testing Hypothesis 1 finds that trees have a 

positive relationship with crash frequency, but further interpretation of this model is not 

warranted due to issues related to running a linear regression model with a skewed 

dataset. Finally, the negative binomial regression model finds no statistically significant 

relationships between trees and crash frequency, failing to support Hypothesis 1: there is 

a positive relationship between trees and crash frequency. 

The correlation model used to determine if there is a statistically significant relationship 

between tree density and crash severity in Des Moines, IA shows that the p-value for 

relationships between trees and crash severity per mile by block group falls below 0.05, 

indicating statistical significance for correlations between these variables. Likewise, the 

linear and negative binomial regression models find that for every one unit increase in 

tree density there is an increase in predicted severe crashes (a 0.002 increase in the linear 

regression model and a 1.428 increase in the negative binomial regression model), 

supporting Hypothesis 2 that there is a positive relationship between trees and crash 

severity. 

With these findings in mind, any planning for street trees at a neighborhood level cannot 

be supported by decision makers if it is not supported by the public. Awareness of the 
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issues is important in fostering public support, and it is critical for all stakeholders to 

understand the potential benefits as well as risks of maintaining a street tree canopy along 

any roadway (Dixon & Wolf, 2007). If the right tree is planted in the right place, and 

continued proper pruning and care is maintained, the tree should be considered an asset to 

a community rather than a risk (Macdonald, Williams, Harper, & Hayter, 2006-2011). 

Evidence in this research ultimately fails to support Hypothesis 1: there is a positive 

relationship between street trees and crash frequency but supports Hypothesis 2 that there 

is a positive relationship between street trees and crash severity. Although the presence of 

trees in this analysis doesn’t prove a statistically significant influence on crash frequency, 

it is apparent that the presence of trees increases the risk of crashes becoming more 

severe. 

This thesis does not present enough evidence to place blame on trees for causing traffic 

accidents, but it does present conclusions that suggest trees should be given valuable 

consideration as to planting location, species selection, pruning techniques, and other best 

management practices that may reduce the risk of trees along roadways by improving tree 

structure and optimizing driver sightlines. As long as there is potential for driver error, 

there will always be driver error. It is not reasonable to plan for the same type of urban 

tree canopy along a high speed freeway as what can be found along a lower speed multi-

use street. However, the environmental, social, and economic benefits of maintaining 

street trees in livable and walkable areas outweigh the potential costs, and deserve to be 

included in any transportation planning discussion.  
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Research Limitations 
There are many research limitations involved when assessing crash statistic data. Issues 

related to crash data are extremely complex and involve countless outside variables and 

influences. One important component of understanding the influence of trees on crash 

frequency is the understanding of whether or not trees were the cause of the accidents in 

these cases. A second important component in understanding this topic is understanding 

driver perceptions of trees on traffic safety. Both of these issues are increasingly complex 

and beyond the scope of this research. 

Another limitation in this thesis is the use of Global Moran’s I hot spot analysis rather 

than a local hot spot analysis method (such as Getis-Ord Gi*). When analyzing each 

feature in a Global Moran’s I analysis, only neighboring feature values are considered in 

each feature analysis, whereas a local hot spot model would include both the value being 

analyzed and its neighboring values in the analysis. This difference may result in 

significantly different results between models depending on the scale of analysis. Hot 

spots may be occurring where traffic is most frequent, and the inclusion of traffic counts 

within the analysis would be a method of addressing this issue that was omitted from this 

analysis due to availability of the data.  

This thesis researches conditions relevant to neighborhood planning decisions rather than 

street level design decisions due to the limiting nature of available crash data. It is 

impossible to conclude or assume every detail involved with every variable in all Des 

Moines crash reports, especially at the street level.  Completing a block group level 
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analysis provides a picture of conditions as the neighborhood level and is a method of 

analyzing the data presented. Standardizing the data by street mile helps account for 

spatial variances between block groups. Further analysis of outside variable relationships 

such as traffic speed, traffic counts, driver behavior, and other built environment 

conditions, would provide greater understanding to both hypotheses and is an opportunity 

for future research potential. The main reason for data omissions in this thesis were due 

to data availability. 

Future Research Potential 
As a potential future research project, a study that included a series of cities offering 

opportunities for comparison between the areas could be completed. An alternative 

option is to conduct an analysis at an even smaller scale. This would involve a 

comparison analysis between livable streets and other segments of roadway with wider 

lanes and clear zones along just one segment of road. A local scale analysis would require 

the comparison of segments along the same roadway to help control outside variables 

such as traffic population. An analysis at this scale would require a greater level of detail 

in the crash reports, and this level of detail is not available in Des Moines, Iowa. This 

thesis focuses on data for the city of Des Moines, leaving the door open for future 

comparisons between cities as part of a larger project. Any future research would also 

benefit from additional variable analysis omitted from this research including roadway 

speeds, driver behavior, and other build environment conditions. It would be important to 

consider all research limitations developed within this thesis when approaching any 

future research.
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APPENDIX 

APPENDIX A: MORAN’S I SPATIAL AUTOCORRELATION OUTPUT 

Spatial Autocorrelation Report 
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Global Moran’s I Summary 

Moran's Index: 0.189227 

Expected Index: -0.005495 

Variance: 0.000264 

z-score: 11.984396 

p-value: 0.000000 

 

Dataset Information 

Input Feature Class: BlockGroup_Crash_Tree_Street1 

Input Field: COUNT_ 

Conceptualization: ZONE_OF_INDIFFERENCE 

Distance Method: EUCLIDEAN 

Row Standardization: False 

Distance Threshold: 10387.4222 US_Feet 

Weights Matrix File: None 

Selection Set: False 
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APPENDIX B: SPSS OUTPUT 

Hypothesis 1 Statistical Data Analysis 
Descriptive Statistics 

Descriptive Statistics 

 

N Minimum Maximum Mean 

Std. 

Deviation Skewness 

Statistic Statistic Statistic Statistic Statistic Statistic 

Std. 

Error 

Crashes per mile 195 .67342977

4 

648.888056

500 

109.992557

52989 

100.236254

207746 

2.222 .174 

Population Count 200 0 5169 1192.21 630.390 2.602 .172 

Median Household 

Income 

200 0 81695 15148.44 9590.716 2.574 .172 

Tree Count 200 0 2345 259.02 286.649 3.491 .172 

Average DBH 200 .000000 19.640449 1.91321026 4.84836746

0 

2.411 .172 

Valid N (listwise) 195       

Frequencies  

Frequency Statistics 

 Crashes per mile Population Density 

Median 

Household 

Income 

Tree 

Count 

Average 

DBH 

N Valid 200 200 200 200 200 

Missin

g 

0 0 0 0 0 

Mean 107.24274359164 1868179.055335173 15148.44 259.02 1.91321026 

Median 83.43820490500 4790.228499000 13204.00 196.50 .00000000 

Mode .000000000 .0000000a 13278a 0 .000000 
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Std. Deviation 100.45517037590

6 

21319061.063032630

0 

9590.716 286.649 4.84836746

0 

Skewness 2.201 13.551 2.574 3.491 2.411 

Std. Error of 

Skewness 

.172 .172 .172 .172 .172 

Kurtosis 7.056 187.740 12.623 18.513 4.383 

Std. Error of 

Kurtosis 

.342 .342 .342 .342 .342 

Percentile

s 

25 44.14715208250 2588.303532250 9103.75 90.75 .00000000 

50 83.43820490500 4790.228499000 13204.00 196.50 .00000000 

75 141.37288667500 8132.621594000 18946.25 326.00 .00000000 

Histograms 
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Scatterplots 
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Correlations 

Variable Correlations   

 

Crashes 

per mile 

Population 

Density 

Median 

Household 

Income Tree Count Average DBH 

Crashes per 

mile 

Pearson 

Correlation 

1 -.015 .018 .132 -.054 

Sig. (2-tailed)  .828 .796 .062 .445 

N 200 200 200 200 200 

Population 

Density 

Pearson 

Correlation 

-.015 1 .175* .364** -.035 

Sig. (2-tailed) .828  .013 .000 .626 

N 200 200 200 200 200 

Median 

Household 

Income 

Pearson 

Correlation 

.018 .175* 1 .019 -.013 

Sig. (2-tailed) .796 .013  .785 .851 

N 200 200 200 200 200 

Tree Count Pearson 

Correlation 

.132 .364** .019 1 -.092 

Sig. (2-tailed) .062 .000 .785 .132 .194 

N 200 200 200 .062 -.054 

Average DBH Pearson 

Correlation 

-.054 -.035 -.013 200 .445 

Sig. (2-tailed) .445 .626 .851 .364** 200 

N 200 200 200  -.035 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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T-Tests 
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Test of Multicollinearity 

Model Summary 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate 

1 .157a .025 .005 100.213940251003 

a. Predictors: (Constant), Average DBH, Median Household Income, Tree Count, Population Density 

ANOVAa      

Model Sum of Squares df 
Mean 

Square F Sig. 

1 Regression 49804.415 4 12451.104 1.240 .295b 

Residual 1958352.595 195 10042.834   

Total 2008157.010 199    

a. Dependent Variable: Crashes per mile 

b. Predictors: (Constant), Average DBH, Median Household Income, Tree Count, Population Density 

Coefficientsa 
  

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

Tolerance VIF 

B Std. Error Beta 
Collinearity 
Statistics 

1 (Constant) 90.826 15.570  5.833 .000   

Population 
Density 

-
3.725E-

7 

.000 -.079 -1.024 .307 .839 1.192 

Median 
Household 
Income 

.000 .001 .029 .399 .690 .967 1.034 

Tree Count .055 .027 .157 2.055 .041 .859 1.164 

Average 
DBH 

-.873 1.472 -.042 -.593 .554 .991 1.009 

a. Dependent Variable: Crashes per mile 
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Collinearity Diagnosticsa 
  

Model Dimension Eigenvalue 
Condition 

Index 

Variance Proportions   

(Constant) 
Population 

Density 

Median 
Household 

Income 
Variance 

Proportions 
Variance 

Proportions 

1 1 2.621 1.000 .03 .01 .03 Tree Count Tree Count 

2 1.070 1.565 .00 .50 .00 .05 .05 

3 .780 1.833 .01 .26 .02 .03 .03 

4 .401 2.558 .01 .13 .21 .02 .02 

5 .127 4.536 .95 .10 .74 .71 .71 

a. Dependent Variable: Crashes per mile 

Generalized Linear Model (Linear Regression) 

Model Information 

Dependent Variable Crashes Per Mile 

Probability Distribution Normal 

Link Function Identity 

Case Processing Summary 

 N Percent 

Included 200 100.0% 

Excluded 0 0.0% 

Total 200 100.0% 

Continuous Variable Information 

 N Minimum Maximum Mean 

Dependent Variable Crashes Per Mile 200 0 649 107.22 

Covariate Population Density 200 .0000000 297166666.700

0000 

1868179.05533

5173 
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Median Household Income 200 0 81695 15148.44 

Tree Count 200 0 2345 259.02 

Average DBH 200 .000000 19.640449 1.91321026 

Continuous Variable Information 

 Std. Deviation 

Dependent Variable Crashes Per Mile 100.462 

Covariate Population Density 21319061.0630326300 

Median Household Income 9590.716 

Tree Count 286.649 

Average DBH 4.848367460 

Goodness of Fita 

 Value df Value/df 

Deviance 1958550.315 195 10043.848 

Scaled Deviance 200.000 195  

Pearson Chi-Square 1958550.315 195 10043.848 

Scaled Pearson Chi-Square 200.000 195  

Log Likelihoodb -1202.727   

Akaike's Information Criterion 

(AIC) 

2417.455   

Finite Sample Corrected AIC 

(AICC) 

2417.890   

Bayesian Information 

Criterion (BIC) 

2437.245   

Consistent AIC (CAIC) 2443.245   
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Dependent Variable: Crashes per mile 

Model: (Intercept), Population Density, Median Household Income, Tree 

Count, Average DBHa 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 

information criteria. 

Omnibus Testa 

Likelihood Ratio 

Chi-Square df Sig. 

5.031 4 .284 

Dependent Variable: Crashes per mile 

Model: (Intercept), Population Density, 

Median Household Income, Tree Count, 

Average DBHa 

a. Compares the fitted model against the 

intercept-only model. 

Test of Model Effects  

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 34.877 1 .000 

Population Density 1.084 1 .298 

Median Household Income .163 1 .687 

Tree Count 4.338 1 .037 

Average DBH .360 1 .548 
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Dependent Variable: Crashes Per Mile 

Model: (Intercept), Population Density, Median Household Income, Tree 

Count, Average DBH 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper Wald Chi-Square 

(Intercept) 90.802 15.3753 60.667 120.937 34.877 

Population Density -3.740E-7 3.5920E-7 -1.078E-6 3.301E-7 1.084 

Median Household Income .000 .0007 -.001 .002 .163 

Tree Count .055 .0264 .003 .107 4.338 

Average DBH -.872 1.4532 -3.721 1.976 .360 

(Scale) 9792.752a 979.2752 8049.791 11913.103  

Parameter Estimates 

Parameter 

Hypothesis Test 

df Sig. 

(Intercept) 1 .000 

Population Density 1 .298 

Median Household Income 1 .687 

Tree Count 1 .037 

Average DBH 1 .548 

(Scale)   
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Test of Interaction Effects 

Tests of Model Effects (Interaction Effects) 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 405.005 1 .000 

Population Density 5.372 1 .020 

Median Household Income 5.512 1 .019 

Tree Count 1.050 1 .306 

Average DBH 1.765 1 .184 

Population x Tree Count 

Interaction 

.956 1 .328 

Median Household Income and 

Tree Count Interaction 

5.651 1 .017 

Average DBH x Tree Count 

Interaction 

1.213 1 .271 

Dependent Variable: Crashes per mile 

Model: (Intercept), Population Density, Median Household Income, Tree Count, 

Average DBH, Population x Tree Count Interaction, Median Household Income x 

Tree Count Interaction, Average DBH x Tree Count 

Parameter Estimates (Interaction Effects) 

Parameter B Std. Error 

95% Wald Confidence 

Interval 

Hypothesis 

Test 

Lower Upper 

Wald Chi-

Square 

(Intercept) 5.027 .2498 4.537 5.516 405.005 
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Population Density -1.575E-8 6.7966E-9 -2.907E-8 -

2.432E-

9 

5.372 

Median Household Income -3.312E-5 1.4108E-5 -6.078E-5 -

5.472E-

6 

5.512 

Tree Count -.001 .0009 -.003 .001 1.050 

Average DBH -.034 .0256 -.084 .016 1.765 

Population x Tree Count 

Interaction 

-1.982E-7 2.0276E-7 -5.956E-7 1.992E-

7 

.956 

Median Household Income and 

Tree Count Interaction 

1.180E-7 4.9657E-8 2.072E-8 2.154E-

7 

5.651 

Average DBH x Tree Count 

Interaction 

.000 .0001 -9.920E-5 .000 1.213 

(Scale) 1a     

(Negative binomial) 1a     

Parameter Estimates (Interaction Effects Continued) 

Parameter 

Hypothesis Test 

df Sig. 

(Intercept) 1 .000 

Population Density 1 .020 

Median Household Income 1 .019 

Tree Count 1 .306 

Average DBH 1 .184 

Population x Tree Count Interaction 1 .328 

Median Household Income and Tree Count Interaction 1 .017 
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Average DBH x Tree Count Interaction 1 .271 

(Scale)   

(Negative binomial)   

Generalized Linear Modal (Negative Binomial Regression) 

Model Information 

Dependent Variable Crashes per Mile 

Probability Distribution Negative binomial 

Link Function Log 

Case Processing Summary 

 N Percent 

Included 200 100.0% 

Excluded 0 0.0% 

Total 200 100.0% 

Continuous Variable Information  

 N 

Minimu

m Maximum Mean 

Std. Deviation 

Dependent 

Variable 

Crashes 

per mile 

20

0 

0 649 107.22 100.462 

Covariate Populatio

n Density 

20

0 

.000000

0 

297166666.70000

00 

1868179.0553351

73 

21319061.06303263

00 

Tree 

Count 

20

0 

0 2345 259.02 286.649 

Average 

DBH 

20

0 

.000000 19.640449 1.91321026 4.848367460 

Populatio

n x Tree 

Count 

Interactio

n 

20

0 

.00 5887491.00 358883.6050 620306.23637 
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Average 

DBH and 

Tree 

Count 

Interactio

n 

20

0 

.00 7440.00 367.8850 1070.85780 

Goodness of Fita 

 Value df Value/df 

Deviance 211.709 194 1.091 

Scaled Deviance 211.709 194  

Pearson Chi-Square 174.210 194 .898 

Scaled Pearson Chi-Square 174.210 194  

Log Likelihoodb -1131.857   

Akaike's Information Criterion 

(AIC) 

2275.715 
  

Finite Sample Corrected AIC 

(AICC) 

2276.150 
  

Bayesian Information Criterion 

(BIC) 

2295.505 
  

Consistent AIC (CAIC) 2301.505   
Dependent Variable: Crashes per mile 
Model: (Intercept), Population Density, Tree Count, Average DBH, Population x 
Tree Count Interaction, Average DBH x Tree Counta Interaction 
a. Information criteria are in smaller-is-better form. 
b. The full log likelihood function is displayed and used in computing information 
criteria. 

Omnibus Testa 

Likelihood Ratio 

Chi-Square df Sig. 

8.117 5 .150 

Dependent Variable: Crashes per mile 
Model: (Intercept), Population Density, Tree Count, 
Average DBH, Population x Tree Count Interaction, 
Average DBH x Tree Counta Interaction 
a. Compares the fitted model against the intercept-only 
model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 1238.474 1 .000 

Population Density .935 1 .334 

Tree Count 3.112 1 .078 

Average DBH 1.837 1 .175 

Population x Tree 

Count Interaction 

1.402 1 .236 

Average DBH x Tree 

Count Interaction 

1.319 1 .251 

Dependent Variable: Crashes per mile 
Model: (Intercept), Population Density, Tree Count, Average DBH, Population x Tree Count Interaction, 
Average DBH x Tree Count Interaction 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 

Wald Chi-

Square 

(Intercept) 4.506 .1280 4.255 4.757 1238.474 

Population Density -3.549E-9 3.6709E-9 -1.074E-8 3.645E-9 .935 

Tree Count .001 .0006 .000 .002 3.112 

Average DBH -.034 .0252 -.084 .015 1.837 

Population x Tree 

Count Interaction 

-2.298E-7 1.9407E-7 -6.101E-7 1.506E-7 1.402 

Average DBH x Tree 

Count Interaction 

.000 .0001 -9.152E-5 .000 1.319 

(Scale) 1a     

(Negative binomial) 1a     

Parameter Estimates 

Parameter 

Hypothesis 

Test 

df Sig. 

(Intercept) 1 .000 

Population Density 1 .334 

Tree Count 1 .078 
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Average DBH 1 .175 

Population x Tree 

Count Interaction 

1 .236 

Average DBH x 

Tree Count 

Interaction 

1 .251 

(Scale)   

(Negative 

binomial) 
  

Dependent Variable: Crashes per mile 
Model: (Intercept), Population Density, Tree Count, Average DBH, Population x Tree Count Interaction, Average DBH 
x Tree Count Interaction 
a. Fixed at the displayed value. 

Hypothesis 2 Statistical Data Analysis 
Descriptives 

Descriptive Statistics 

 

N Minimum Maximum Mean Std. Deviation Skewness 

Statistic Statistic Statistic Statistic Statistic Statistic 

Severe Crashes Per Mile Rounded 200 0 27 4.17 4.402 2.049 

Tree Count 200 0 2345 259.02 286.649 3.491 

Valid N (listwise) 200      

Descriptive Statistics (cont.) 

 

Skewness Kurtosis 

Std. Error Statistic Std. Error 

Severe Crashes Per Mile Rounded .172 5.803 .342 

Tree Count .172 18.513 .342 

Valid N (listwise)    
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Frequencies 

Frequency Statistics 

 Tree Count 

Severe Crashes 

Per Mile 

N Valid 200 200 

Missing 0 0 

Mean 259.02 4.17 

Median 196.50 3.00 

Mode 0 0 

Std. Deviation 286.649 4.402 

Skewness 3.491 2.049 

Std. Error of Skewness .172 .172 

Kurtosis 18.513 5.803 

Std. Error of Kurtosis .342 .342 
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Histograms 
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Scatterplot 

 

Correlation Descriptive Statistics 

 Mean Std. Deviation N 

Severe Crashes Per Mile 4.17 4.402 200 

Tree Count 259.02 286.649 200 

Correlations 

 
Severe Crashes 

Per Mile Tree Count 

Severe Crashes Per Mile Pearson Correlation 1 .142* 

Sig. (2-tailed)  .045 

N 200 200 

Tree Count Pearson Correlation .142* 1 

Sig. (2-tailed) .045  

N 200 200 

*. Correlation is significant at the 0.05 level (2-tailed). 
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Generalized Linear Model (Linear Regression) 

Model Information 

Dependent Variable Severe crashes per mile 

Probability Distribution Normal 

Link Function Identity 

Case Processing Summary 

 N Percent 

Included 200 100.0% 

Excluded 0 0.0% 

Total 200 100.0% 

Continuous Variable Information 

 N Minimum Maximum Mean 

Dependent Variable Severe crashes per 

mile 

200 0 27 4.17 

Covariate Tree Count 200 0 2345 259.02 

Continuous Variable Information 

 

Std. 

Deviation 

Dependent Variable Severe crashes per mile 4.402 

Covariate Tree Count 286.649 
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Goodness of Fita 

 Value df Value/df 

Deviance 3778.505 198 19.083 

Scaled Deviance 200.000 198  

Pearson Chi-Square 3778.505 198 19.083 

Scaled Pearson Chi-Square 200.000 198  

Log Likelihoodb -577.664   

Akaike's Information Criterion (AIC) 1161.329   

Finite Sample Corrected AIC (AICC) 1161.451   

Bayesian Information Criterion (BIC) 1171.224   

Consistent AIC (CAIC) 1174.224   

Dependent Variable: Severe crashes per mile 

Model: (Intercept), Tree Counta 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing information criteria. 

Omnibus Testa 

Likelihood Ratio Chi-Square df Sig. 

4.072 1 .044 

Dependent Variable: Severe crashes per mile 

Model: (Intercept), Tree Counta 

a. Compares the fitted model against the intercept-only model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-Square df Sig. 

(Intercept) 75.582 1 .000 

Tree Count 4.114 1 .043 

Dependent Variable: Severe crashes per mile 

Model: (Intercept), Tree Count 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper Wald Chi-Square df 

(Intercept) 3.605 .4147 2.793 4.418 75.582 1 

Tree Count .002 .0011 7.333E-5 .004 4.114 1 

(Scale) 18.893a 1.8893 15.530 22.983   

Parameter Estimates (cont.) 

Parameter 

Hypothesis Test 

Sig. 

(Intercept) .000 

Tree Count .043 

(Scale)  

Dependent Variable: Severe crashes per mile 

Model: (Intercept), Tree Count 

a. Maximum likelihood estimate. 
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Generalized Linear Model (Negative Binomial Regression) 

Model Information 

Dependent Variable Severe Crashes Per Mile 

Probability Distribution Negative binomial (1) 

Link Function Log 

Case Processing Summary 

 N Percent 

Included 200 100.0% 

Excluded 0 0.0% 

Total 200 100.0% 

Continuous Variable Information 

 N Minimum Maximum Mean 

Dependent Variable Severe Crashes Per Mile 200 0 27 4.17 

Covariate Tree Count 200 0 2345 259.02 

Continuous Variable Information (cont.) 

 Std. Deviation 

Dependent Variable Severe Crashes Per Mile 4.402 

Covariate Tree Count 286.649 
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Goodness of Fita 

 Value df Value/df 

Deviance 199.984 199 1.005 

Scaled Deviance 199.984 199  

Pearson Chi-Square 178.869 199 .899 

Scaled Pearson Chi-Square 178.869 199  

Log Likelihoodb -507.848   

Akaike's Information Criterion 

(AIC) 

1017.697   

Finite Sample Corrected AIC 

(AICC) 

1017.717   

Bayesian Information 

Criterion (BIC) 

1020.995   

Consistent AIC (CAIC) 1021.995   

Dependent Variable: Severe Crashes Per Mile 

Model: (Intercept)a 

a. Information criteria are in smaller-is-better form. 

b. The full log likelihood function is displayed and used in computing 
information criteria. 

Omnibus Testa 

Likelihood Ratio 

Chi-Square df Sig. 

.000 . . 

Dependent Variable: Severe Crashes Per 
Mile 

Model: (Intercept)a 

a. Compares the fitted model against the 
intercept-only model. 
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Tests of Model Effects 

Source 

Type III 

Wald Chi-

Square df Sig. 

(Intercept) 328.913 1 .000 

Dependent Variable: Severe Crashes Per Mile 

Model: (Intercept) 

Parameter Estimates 

Parameter B Std. Error 

95% Wald Confidence Interval Hypothesis Test 

Lower Upper 

Wald Chi-

Square df 

(Intercept) 1.428 .0787 1.274 1.582 328.913 1 

(Scale) 1a      

(Negative binomial) 1a      

Parameter Estimates (cont.) 

Parameter 

Hypothesis Test 

Sig. 

(Intercept) .000 

(Scale)  

(Negative binomial)  

Dependent Variable: Severe Crashes Per Mile 
Model: (Intercept) 
a. Fixed at the displayed value. 
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