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Mast seeding, or masting, is a phenomenon where inter-annual seed production by 

individuals is synchronized across a population of plants. Masting is hypothesized to 

confer a selective advantage to plants by increasing rates of pollination or by decreasing 

rates of seed predation. Masting can also play a crucial role in ecosystem functioning as 

fluctuations in annual seed crops correspond with fluctuations in seed predator 

populations, which in turn have consequences that ripple throughout food webs. The 

mechanism(s) that causes masting is unresolved, but the high variability in seed 

production of masting plants is hypothesized to be caused, in part, by resource limitation. 

One hypothesized mechanism for masting that has gained support in recent years is 

known as the resource budget model (RBM). The RBM hypothesizes that plants store up 

resources across years until a threshold is reached, after which they flower and set seed, 

which depletes resources. It is still unknown how common the RBM is in masting 

species, and it is unknown whether the RBM describes a pattern of resource allocation 



that is distinctive of masting species, or if non-masting plants exhibit similar patterns. In 

this dissertation, we seek to resolve some of this uncertainty by comparing patterns of 

resource allocation and seed production among four species of California oak trees and 

shrubs. In Chapter 1, we test predictions of the RBM in two shrub species, one masting 

and one non-masting, in the Klamath Mountains of northern California. In chapter 2, we 

explore the carbon demands for acorn development of the masting species used in 

Chapter 1, in order to learn more about whether carbohydrates are limiting for seed 

production in this species. In Chapter 3, we use two masting tree species in central 

coastal California with contrasting water use strategies to test for resource limitation to 

flowering and seed production, and to compare which nutrients are the most important for 

each species. Overall, we found evidence for resource-limited reproduction in all three 

masting species. Furthermore, differences in patterns of seed production and in species 

traits matter for how resources are used for seed production. 
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Chapter 1: Introduction 

 

 The production of seeds is crucial to life on many levels. For plants that reproduce 

sexually, seeds are necessary for future generations. For seed-eating animals, they 

provide energy necessary for survival. The struggle to produce the most offspring has led 

to the evolution of a diverse array of reproductive strategies, but environmental 

conditions are often limiting and producing seeds can be costly (Obeso 2002). Plants with 

different strategies face different challenges. For an annual plant, everything must be 

sacrificed to reproduce before the growing season ends, but perennial plants can afford to 

forego reproduction in some years when it is necessary to ensure survival. Some plants 

may even gain a reproductive advantage by producing large crops of seeds in some years, 

while abandoning reproduction entirely in other years (Janzen 1976, Silvertown 1980, 

Kelly and Sork 2002). When this phenomenon of boom and bust cycles of seed 

production is synchronized across a population, it is known as ‘mast seeding’ or simply 

‘masting.’ 

 Construction costs of seeds in mast years can be substantial. For example, in a 

mast year for Fagus sylvatica fruits used 40 to 50 times more carbohydrates and proteins 

than leafy branches (Kozlowski and Keller 1966). In the past it was thought that masting 

plants manage this burden by switching resource allocation from growth to reproduction 

(Harper 1977, Koenig and Knops 1998), but some research has shown that an apparent 

trade-off between growth and reproduction can be mediated by the environment rather 

than the intrinsic costs of seed production (Knops et al. 2007). Storage (acquired 

resources that can be remobilized) has also been hypothesized to trade off with 
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reproduction in masting plants. This hypothesis has been formalized by a series of 

theoretical models where reproduction only occurs after storage has accumulated beyond 

a certain threshold (Isagi et al. 1997, Satake and Iwasa 2000). These models make very 

clear predictions that stored resources should accumulate between years with large 

reproductive efforts, and then be depleted following the large reproductive effort. A fair 

amount of research has tested these predictions in both cultivated and wild populations 

but evidence has been mixed.  

 Part of the controversy has derived from the fact that the importance of various 

currencies of storage depends on the system in question. For example, stored 

carbohydrates are the important currency in flux in the models (Isagi et al. 1997), but 

nitrogen could be more limiting in some temperate systems (Miyazaki et al. 2014), and 

phosphorous might be more important in some tropical systems (Ichie and Nakagawa 

2013). In wild populations of masting trees, there has been more evidence against the 

importance of stored carbohydrates for seed production (Ichie et al. 2005, Hoch et al. 

2013, Ichie et al. 2013) than in support (Miyazaki et al. 2002). Evidence for the 

importance of nitrogen and/or phosphorous has been much more positive (Han et al. 

2008, Han et al. 2011, Sala et al. 2012, Ichie and Nakagawa 2013, Han et al. 2014, 

Miyazaki et al. 2014), even if the number of species investigated remains few. Plant traits 

seem to be as important as biome in determining which resources are most limiting to 

reproduction. Stored carbohydrates were depleted by fruiting in an herbaceous legume 

(Crone et al. 2009) and a small tropical shrub (Marquis et al. 1997). Likewise, stored 

carbohydrates were depleted by production of citrus (Goldschmidt and Golomb 1982), 

prunes (Weinbaum et al. 1994), and persimmons (Choi and Kang 2007), but not olives 
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(Bustan et al. 2011). The hypothesis that storage is important for mast seed production is 

corroborated in many cases, but its generality is still limited. 

 Research on more species of wild plants is clearly warranted, but there are two 

more ways in which the understanding of resource allocation by masting plants needs to 

be improved. For one, individual variation in resource allocation within populations of 

masting plants is under-studied. Within populations of masting plants, even highly 

synchronous populations with strong bimodality in inter-annual patterns of seed 

production, there can be a lot of individual variation in seed production (Koenig et al. 

2003). We have little knowledge of whether the same factors that drive individual-level 

variation in seed production within a year also drive population-level variation in seed 

production across years. Another knowledge gap exists in the relationship between 

masting and non-masting species. If masting is driven by a special resource allocation 

strategy, then species with more consistent patterns of seed production should have 

markedly different resource allocation patterns. In other words, is there an intrinsic 

quality to the way species allocate resources that leads to highly variable patterns of seed 

production, or would other similar species be masting if only they had slightly different 

reproductive traits and could get in synch? The best way to test this would be with 

common gardens, reciprocal transplants, and fertilization experiments, but long 

generation times and large plants can be prohibitive to this type of approach. An 

alternative approach is to compare sympatric, related species with similar growth forms 

but different patterns of seed production. My research aims to increase knowledge in 

these areas using two species of oak trees and two species of oak shrubs in California. 
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 California oak trees are a classic system in which to do masting research (Kelly 

1994, Koenig et al. 1994). Moreover, the Fagaceae family, and especially the Quercus 

(oak) genus, can be very useful for studying masting. Quercus species are widespread in 

terms of geography and habitat types, they grow as both trees and shrubs, and they 

exhibit a wide range of variation in inter-annual patterns of seed production. 

Additionally, patterns of growth and reproduction in some populations have been well 

documented for a long time. This system is well suited to address the research questions I 

am trying to ask. 

 Oak woodlands support impressive numbers of species and acorn production 

patterns have cascading effects on wildlife populations (Jones et al. 1998, Koenig and 

Knops 2005, Clotfelter et al. 2007). Indeed, masting systems in general can have large 

effects on ecosystems (Ostfeld and Keesing 2000). The effects of masting may change, 

though, as patterns of masting have changed over the past 30 to 60 years, with masting 

events becoming more frequent (Övergaard et al. 2007) or mean seed production 

increasing (Richardson et al. 2005). Climate is hypothesized to be responsible for the 

altered patterns via increasing temperatures or atmospheric carbon dioxide concentration. 

How these changes will affect wildlife populations or plant recruitment is yet to be seen, 

but seasonal variation in temperature, carbon dioxide concentration, and precipitation 

patterns all have an impact on plant resources. Reaching a greater understanding of how 

masting plants allocate resources for reproduction can help us predict how robust masting 

systems will be to future changes.  
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Chapter 2: Testing the resource budget model for masting using two sympatric oak 

shrubs with contrasting annual seed production 

 

Abstract 

 

Mast seeding, or masting, is a phenomenon where highly variable inter-annual seed 

production is synchronized across a population of plants. The highly variable seed 

production patterns of masting plants are hypothesized to be driven, in part, by 

accumulation and depletion of stored resources. This hypothesis has been formalized into 

a resource budget model which proposes that plants store up resources until a threshold is 

reached. At resource levels above the threshold, plants flower, set seed, and the 

reproductive effort of producing seeds depletes storage below the threshold which starts 

the cycle anew. The resource budget model has received support in several masting 

species, but it is still unknown how widespread this mechanism is among masting taxa. 

Furthermore, the resource budget model has rarely been tested in both masting and non-

masting species, and therefore it is unknown whether the hypothesized pattern of 

resource allocation that produces masting is qualitatively different from how non-masting 

plants allocate resources for reproduction. The resource budget model makes three 

predictions: (1) Storage will be high at the beginning of years with high acorn production, 

and low at the beginning of years with low acorn production; (2) storage during floral 

initiation will positively relate to flowers in the following spring; (3) stored resources will 

be depleted more in plants that produce more seeds. We tested these predictions of the 

resource budget model in two sympatric, related oak shrubs with contrasting patterns of 
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inter-annual seed production: one masting species, Quercus vacciniifolia and one non-

masting species, Notholithocarpus densiflorus. We measured flower production, acorn 

production, and resources over three years, including two years of high seed production 

for the masting species. The resources we measured were trunk non-structural 

carbohydrates (NSC), branch NSC, branch nitrogen (N), and leaf N. We sample twice 

each year: before acorns start developing and after they reach full size. We found no 

support for any of the predictions in the non-masting species. In the masting species, 

branch NSC followed the predicted annual pattern; branch NSC, branch N, and leaf N 

during flower initiation had positive effects on flowering; and trunk NSC and branch 

NSC declined more in plants that produced more acorns. Our results offer support for the 

resource budget model in the masting species, and indicate that these two species with 

contrasting inter-annual patterns of seed production have qualitatively different patterns 

of resource allocation for reproduction. 

 

Introduction 

 

 Mast seed production, or masting, is a population-level phenomenon in which 

seed production by individuals is highly variable from year to year, and this variability is 

synchronized across the population. Masting is an important phenomenon from the 

perspective of plants as well as the animals that consume their seeds. For masting plants, 

the strategy is hypothesized to confer increased fitness either via increased rates of flower 

fertilization and/or decreased rates of seed predation in mast years (Kelly and Sork 2002). 

For seed predators, population numbers rise and fall depending on the size of the seed 
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crop (Elkinton et al. 1996, Ostfeld and Keesing 2000, Koenig and Knops 2005). The 

pattern of intermittent and synchronous seed production has intrigued naturalists for quite 

a long time, but mechanisms that produce it remain a matter of debate. 

 One hypothesized mechanism for masting that has gained considerable traction 

over the last two decades is known as the resource budget model (Isagi et al. 1997, Satake 

and Iwasa 2000, Crone and Rapp 2014, Abe et al. 2016, Pesendorfer et al. 2016). This 

model assumes that multiple years are required to accumulate enough resources for a 

mast seed production year, and proposes that masting plants accumulate stored resources 

during years with low seed crops. Once a threshold level of storage is reached, then 

plants flower. If no other trees flower, flowers are aborted and since flower production is 

relatively cheap, resources are not depleted and an individual will flower again in the 

next year. If a sufficient number of individuals flower within a population, trees produce 

seeds, which depletes storage and causes the cycle to start over again (Isagi et al. 1997). 

When plants are obligate outcrossers and thus depend on their flowering neighbors for 

pollen, then the pattern of individual accumulation and depletion of storage eventually 

synchronizes throughout the population (Satake and Iwasa 2000). In short, resource 

allocation dynamics are hypothesized to produce inter-annual variability in seed 

production, and pollen limitation is hypothesized to produce spatial synchrony. Elements 

of this model have been supported in species as disparate as Fagus crenata (Miyazaki et 

al. 2014), Astragalus scaphoides (Crone et al. 2009), and Chionochloa pallens (Rees et 

al. 2002). Here we focus on the resource allocation aspect of the resource budget 

hypothesis. 



13 

 

 Several questions regarding this resource budget model mechanism remain to be 

answered. First, the specific currency or currencies of stored resources that limit seed 

production by masting species do not appear to be consistent across species. The 

evidence concerning carbon storage as a limiting resource for masting has been mixed, 

with more evidence against (Hoch 2005, Ichie et al. 2005, 2013, Hoch et al. 2013, Abe et 

al. 2016) than for (Miyazaki et al. 2002, Crone et al. 2009, Rapp and Crone 2015). While 

fewer studies have examined nutrients, the accumulation and depletion of nitrogen (Han 

et al. 2008, 2011, 2014, Sala et al. 2012, Miyazaki et al. 2014) and phosphorous (Sala et 

al. 2012, Ichie and Nakagawa 2013) in relation to masting has been demonstrated in a 

few species of wild plants. In sum, evidence from empirical research that tests the 

resource budget model indicates that stored resources are likely to be important for 

masting, but the specific currency of storage apparently varies by species (Crone and 

Rapp 2014).  

A second issue is the implicit assumption that inter-annual fluctuation of stored 

resources, a key part of the resource budget model, is not related to reproduction in 

species with more regular patterns of seed production (i.e. a ‘non-masting’ species). For 

simplicity, we call this “masting” versus “non masting” species, but note that masting and 

non-masting represent ends of a continuum rather than a dichotomy (Kelly 1994, Herrera 

et al. 1998). Consequently, mechanisms for masting are likely to represent a continuum 

as well, with increasing levels of expression being associated with increasing variability 

in annual seed production. Evaluating how patterns of resource use, storage and 

accumulation differ between masting and non-masting species, will add rigor to tests of 

the resource budget model. If the resource budget model is a mechanism that produces 
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masting patterns, then it follows that the mechanism should not be present in non-masting 

species. As yet, few studies have taken a comparative approach to validating hypotheses 

for proximate causes of masting (Ichie et al. 2013, Kelly et al. 2013, Funk et al. 2016). 

We hypothesize that testing the resource budget model in masting species vs. non-

masting species can yield three possible outcomes. First, the inter-annual fluctuations of 

resources predicted by the resource budget model may be occurring in many species, 

whether they mast or not, but lead to different patterns of seed production. For example, 

perhaps sympatric populations of masting and non-masting species show the same pattern 

of fluctuation in stored resources across years, but different patterns of annual seed 

production. This would suggest that stored resource dynamics are not driving annual 

patterns of seed production, thus countering the resource budget model. Second, stored 

resources may be important for reproduction in many species, but especially important 

for masting species. For example, many species may experience stored resource depletion 

with seed production, but the stored resources of masting species may be depleted to a 

greater degree than those of non-masting species, thus leading to more pronounced inter-

annual fluctuations in stored resources (Satake and Iwasa 2000). This would support the 

resource budget model, but would not suggest that it is an intrinsic quality of masting 

species. Instead, it would suggest that the resource budget model only produces masting 

patterns in concert with key species traits that may affect resource levels, such as large 

fruit or slow growth. The third possible outcome is that the resource dynamics predicted 

by the resource budget model occur in masting species, but not in non-masting species. 

For example, stored resources may correlate with flowering and seed production in 
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masting species, but not in non-masting species. This would support the resource budget 

model and suggest that it may be an intrinsic quality of the species.  

Using a comparative approach to test hypothesized mechanisms for masting can 

be especially powerful when comparing similar or related species that occur in the same 

environment (Ichie et al. 2013, Funk et al. 2016). This helps to hold constant the abiotic 

conditions experienced by the plants as well as some functional traits that affect resource 

acquisition and allocation. It is interesting that similar and even related species occur in 

the same forests and yet have markedly different patterns of annual seed production. It 

inspires the question, why does one species mast and the other does not? 

Here we used syntopic populations of two similar, related oak shrubs (Family 

Fagaceae) with contrasting patterns of annual seed production to test the resource budget 

model for masting. Oak shrubs are ideal study species for two reasons. First, they are 

related to other well-studied masting species in the Quercus and Fagus genera, which 

helps to put our results in context of an established body of knowledge. Second, the small 

stature of shrubs allows us to count all the flowers and acorns on individuals instead of 

just subsets. Our study species, Quercus vacciniifolia Kellogg (huckleberry oak) and 

Notholithocarpus densiflorus var. echinoides (R. Br. Ter) Manos, C.H. Cannon & S. Oh 

(shrub tanoak), are sympatric evergreen shrub species that also grow in syntopy. Quercus 

exhibited highly variable and synchronous seed production during the three-year study 

period and will be referred to as a ‘masting’ species in this study. Notholithocarpus had 

less variable and synchronous seed production during the study. Other Notholithocarpus 

populations with longer term data have also shown less variable annual seed production 

compared to other sympatric oak species (W. D. Koenig and J. M. H. Knops, unpublished 
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data), so we refer to it as a ‘non-masting’ species in this study. The resource storage pools 

that we sampled were trunk non-structural carbohydrates (NSC), branch NSC, branch 

nitrogen (N), and leaf N.  

Many field studies of the resource budget model for masting tend to aggregate 

data at the population-level in order to compare treatment groups in an experiment or to 

compare resource concentration at different phenological stages (Crone et al. 2009, Sala 

et al. 2012, Ichie and Nakagawa 2013). There is, however, often considerable individual 

variation within populations of masting plants, both within and across years, that may be 

used to apply additional tests of hypotheses for masting (Koenig et al. 2003, Minor and 

Kobe 2017). We take advantage of within-year individual variation to apply a novel 

approach to testing key predictions of the resource budget model for masting. 

The resource budget model makes three clear predictions about the relationships 

among stored resources and flowers or seeds. First, stored resources are high at the 

beginning of years where there is high seed production, and low at the beginning of years 

with low seed production (Table 1, Prediction 1). This is the resource accumulation part 

of the model. Second, concentration of stored resources during floral initiation in buds 

are positively correlated with the number of flowers subsequently produced (Table 1, 

Prediction 2). This is the threshold part of the model. Finally, levels of seed production 

are negatively correlated with changes in resource storage during the growing season, 

with individuals with higher seed production experiencing a greater loss in storage (Table 

1, Prediction 3). This is the depletion part of the model. 
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Methods 

 

Study Species and Field Site 

 

 Huckleberry oak, Quercus vacciniifolia Kellogg (Fagaceae), is a shrub that occurs 

throughout much of the high Sierra Nevada Mountains, Cascade Mountains, Inner North 

Coast Mountains, and Klamath Mountains in northern California and southern Oregon, 

USA (Jepson Flora Project). Shrub tanoak, Notholithocarpus densiflorus var. echinoides 

(R. Br. Ter) Manos, C.H. Cannon & S. Oh (Fagaceae), is a shrubby variety which occurs 

in the Klamath Mountains, Cascade Mountains, and Sierra Nevada Mountains in northern 

California and southern Oregon, USA. Both shrubs are monoecious, evergreen, and 

produce biennial fruit (i.e. flowers come out and are pollinated in June or July in one 

year, and develop into acorns in August of the following year). Female flowers of both 

species are quite small when they emerge (less than 3 mm wide for Q. vacciniifolia and 

less than 4 mm wide for N. densiflorus; K. Funk, personal observation). Female flowers 

of both species grow a little bit after pollination, but the vast majority of growth occurs in 

the following year when they mature in acorns. Acorns of N. densiflorus are larger on 

average than acorns of Q. vacciniifolia (1.4 g dry mass vs. 0.4 g dry mass, respectively; 

K. Funk, unpublished data). Male and female inflorescences of Q. vacciniifolia are 

typical of the anemophilous Quercus genus. N. densiflorus inflorescences are either 

androgynous, with pistillate flowers growing at the proximal base of staminate catkins, or 

strictly male. There is evidence for insect pollination in other N. densiflorus populations 

based on observations and insect exclusion experiments (Wright and Dodd 2013). In our 
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study population we observed putative pollination by beetles, but we also observed 

abundant N. densiflorus pollen in pollen traps which leads us to suspect that N. 

densiflorus is ambophilous (K. Funk, unpublished data). In 2011, we tagged 30 

individuals of each species in Shasta-Trinity National Forest in the Klamath Mountains in 

northern California, USA (41.24°N, 122.69°W). Both species form multi-stemmed 

patches and the experimental unit we used was one stem (or trunk). In order to maintain 

independence of data, we only used trunks that were spaced apart by greater than 5 m and 

did not appear to be part of the same genet. Trunk diameter at ground height (DGH) was 

measured in 2013 with a diameter tape measure. DGH of huckleberry oaks ranged from 

2.60 cm to 8.05 cm, with a mean of 4.21 cm and a standard deviation of 1.14 cm. DGH of 

tanoaks ranged from 2.56 cm to 5.71 cm, with a mean of 3.82 cm and a standard 

deviation of 0.67 cm. 

 The study population was distributed along a forest service road on south and 

southeast facing slopes, north and upslope of Tangle Blue Creek, between 1200 m and 

1350 m elevation. The dominant overstory vegetation is composed of ponderosa pine 

(Pinus ponderosa), sugar pine (P. lambertiana), douglas fir (Pseudotsuga menziesii), 

white fir (Abies concolor), and incense cedar (Calocedrus decurrens), with the 

understory dominated by huckleberry oak and tanoak, frequently growing in adjacent 

patches. During 2011 to 2013, the mean minimum temperature was 3.9 oC, the mean 

maximum temperature was 14.3 oC, and the mean annual precipitation was 960 mm 

(PRISM Climate Group).  Most precipitation occurred between the months of October 

and May. Total precipitation in 2011 was 1035 mm, in 2012 it was 1464 mm, and in 2013 

it was 381 mm. 
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Sampling Protocol 

 

 In 2011, 2012, and 2013, we counted all female flowers and acorns on all 30 

plants of each species. We quantified vegetative growth as well, but do not report on it 

here. The ranges and means ± standard deviations of flowers and acorns for each species 

over the study period were as follows. Q. vacciniifolia female flowers: (0 – 616; 51.8 ± 

108.7). Q. vacciniifolia acorns: (0 – 150; 7.7 ± 22.0). N. densiflorus female flowers: (0 – 

106; 15.7 ± 20.4). N. densiflorus acorns: (0 – 56; 5.7 ± 9.1). 

In order to later measure nonstructural carbohydrates (NSC) and nitrogen (N), we 

harvested tissues at two key phenological stages: in mid-June after the plants had grown 

new shoots and flowers, right before acorns start developing, and in mid-August after 

acorns are full sized. We collected trunk cores at ground height and branches from sunny 

parts of the crown from 10 plants of each species in 2011 and 2012, and all 30 plants of 

each species in 2013. Some samples were lost between harvest and analysis, and final 

sample sizes for each assay are listed in Table 2. We harvested four branches from each 

plant including three years of growth. When plants had acorns in August, we harvested 

two branches with acorns and two without. Tissues were always harvested in the 

afternoon between 1300 and 1700 hours. On the same day of harvesting we microwaved 

the tissues for 90 seconds at 600 watts in order to denature enzymes that could alter the 

carbohydrate chemistry of the wood (Popp et al. 1996). Later, we dried the plants at 65 

oC for three days.  
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Non-Structural Carbohydrates Assays 

 

 All the plant tissues for chemical assays were ground to a fine powder using a 

two-step process. First, we ground them in a Wiley mill (Thomas Scientific, Swedesboro, 

New Jersey, USA) until they passed through a 0.85 mm mesh. Next, we crushed them in 

a ball mill (Cianflone 2601, Pittsburgh, Pennsylvania, USA). 

 We measured NSC in branches and the outer 1 cm of xylem in the trunk cores. 

First, we extracted 20 mg (± 1 mg) of tissue per sample in sodium acetate. Then we 

removed an aliquot to analyze for soluble sugars (sucrose, fructose, and glucose). We 

used the remaining fraction to analyze for starch by first digesting with α-amylase from 

Bacillus licheniformis (Bio-Cat, inc.), and then with amyloglucosidase from Aspergillus 

niger (Sigma A9913). Prior to the assay, we dialyzed the amyloglucosidase in sodium 

acetate to remove any glucose from the enzyme solution. After this step, both starch and 

soluble sugar fractions received the same treatment. Invertase (Sigma I4504) was used to 

digest sucrose, before putting aliquots of each fraction of each sample into wells of 96 

well microplates to be measured colorimetrically. In the microplates we digested glucose 

and fructose with a glucose assay reagent (Sigma G3293) and phosphogluco-isomerase 

(Sigma P5381), respectively. Following this final digest, we measured the absorbance of 

each well at 340 nm using a spectrophotometer (Cary 50, Varian Inc., Palo Alto, 

California, USA). The absorbance reading was directly proportional to the concentration 

of glucose in the well. We calculated the concentrations of soluble sugars and starch for 

each sample using a glucose standard curve and dilution factors. Total NSC is the sum of 

the concentrations of the soluble sugars and starch fractions. We included standards of 
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starch, sucrose, glucose, and fructose in each batch of samples assayed in order to 

confirm the effectiveness of each enzyme digest. Our threshold for soluble sugar 

recovery was 95%, and starch was consistently recovered at 90%. 

 

Nitrogen Assay 

 

 To analyze plant tissues for total N, we packed 3 to 4 mg of ground up samples 

into tin capsules, which were analyzed at the Ecosystem Analysis Lab at University of 

Nebraska – Lincoln, using a Costech Analytical ECS 4010 (Costech Analytical 

Technologies Inc., Valencia, California, USA) to measure the amount of N. 

 

Data Analysis 

 

 We tested each of the three predictions about stored resources made by the 

resource budget model (Figure 1) for each species and for each pool of stored resources 

that we sampled (trunk NSC, branch NSC, branch N, and leaf N). We performed all 

statistical analyses in R 3.2.3 (R Core Team 2015). To test the first prediction (Table 1), 

we used linear mixed models with the particular stored resource concentration (from the 

early season sampling period) as the response variable, year as a categorical fixed effect, 

and individual ID as the random effect to account for repeated sampling of individuals. 

Models used the identity link function and a Gaussian error distribution. We fit all mixed 

models using the ‘lme4’ package (Bates et al. 2015). We evaluated model significance 

with Wald type II χ2 tests using the ‘car’ package (Fox and Weisberg 2011). If models 
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were significant, we conducted multiple comparisons of means using the “multcomp” 

package (Hothorn et al. 2008). 

 To test the second prediction (Table 1), we used linear mixed models with log-

transformed flower counts (ln (flowers + 1)) as the response variable, the particular stored 

resource concentration and trunk diameter (DGH) as fixed effects, and individual ID as 

the random effect. In these models, the stored resource concentrations were of samples 

from the summer in the year prior to the flower count in the response. Floral initiation in 

oaks is hypothesized to occur in spring or summer of the year before flowers emerge 

(Merkle 1980), and therefore this is the key phenological stage when stored resources can 

affect the subsequent flower crop. We included DGH in the models as an indicator of 

plant size because we had considerable variation in plant size within both populations. 

We did not include the interaction term between the fixed effects of storage and DGH 

because we could not come up biologically meaningful explanations for all of the 

potential outcomes. Again, we fit these models using lme4 and evaluated significance of 

fixed effects with Wald type II χ2 tests.  

 We used different approaches to testing the third prediction (Table 1) in each 

species because of their different annual patterns of acorn production. Q. vacciniifolia 

produced acorns in 2011 and 2013. However, only two out of the ten plants from which 

we harvested tissues in 2011 produced more than one acorn, and thus we only used the 

2013 data to test prediction three in this species. As such, we used linear models with log-

transformed acorn counts (ln (acorns + 1)) as the response variable, and the particular 

stored resource concentration and DGH as independent variables.  
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 To test the third prediction in N. densiflorus, we used linear mixed models with 

log-transformed acorn counts (ln (acorns + 1)) as the response variable, and the particular 

stored resource concentration and DGH as fixed effects, and individual ID as the random 

effect. We included all three years of data in these models because the N. densiflorus 

population, including most of the individuals from which we harvested tissues, produced 

acorns in all three years. As above, we fit these models using lme4 and evaluated 

significance of fixed effects with Wald type II χ2 tests.  

 For all of these analyses, we used linear regression with the log-transformation 

yielded because they fit the data the best. The results were robust across the different 

statistical methods. 

 

Results 

 

 Quercus vacciniifolia, the ‘masting’ species, produced acorns in 2011 and 2013, 

but had a total crop failure in 2012 (Figure 1a). N. densiflorus, the ‘non-masting’ species, 

produced acorns in all three years, but had a smaller acorn crop in 2013 (Figure 1b).   

 Prediction 1: The only stored resource that showed the annual dynamics predicted 

by the resource budget model in Q. vacciniifolia was branch NSC (χ2 = 35.5, df = 2, P < 

0.0001; Figure 2). The only other significant model for Q. vacciniifolia was for leaf N, 

but it was in the opposite direction of the prediction (χ2 = 35.9, df = 2, P < 0.0001; Figure 

2). The annual dynamics of branch NSC in N. densiflorus were similar to those of Q. 

vacciniifolia despite having a different pattern of annual acorn production. The models 

for branch N (χ2 = 68.4, df = 2, P < 0.0001; Figure 2) and leaf N (χ2 = 11.3, df = 2, P < 



24 

 

0.01; Figure 2) in N. densiflorus also showed differences between years, but these were 

more consistent with prediction 1, with levels of stored resources lower in the lowest 

acorn production year of 2013.  

 Prediction 2: This predicts a positive relationship between stored resources during 

floral initiation and the number of flowers produced in the following year. In Q. 

vacciniifolia, we found significant positive relationships between branch NSC, branch N, 

and leaf N measured in summer of one year, and the number of flowers produced in the 

following year (Table 3; Figure 3). There were no significant effects of trunk diameter 

(DGH) on flower counts in Q. vacciniifolia (Table 3). In contrast, we found no effects of 

stored resources on flower counts in N. densiflorus (Table 3; Figure 4). There were, 

however, weak positive relationships between DGH and flower counts in all four models 

for N. densiflorus (Table 3). 

 Prediction 3: This prediction concerns the resource depletion aspect of the 

resource budget hypothesis. The prediction is that plants that produce more acorns will 

also accumulate less storage (or experience more storage depletion) during acorn 

development, than plants that produce less acorns. The changes in trunk NSC and branch 

NSC in Q. vacciniifolia were significantly negatively related with acorn production in 

2013 (Table 4; Figure 4). The effect the change in branch N during acorn development on 

acorn production bordered on statistical significance. There were significant positive 

effects of DGH on acorn counts that were mostly driven by two large plants that also 

produced many acorns (Table 4; Figure 4). In N. densiflorus, there were no significant 

effects of changes in any of the stored resources during acorn development or plant size 

on acorn production (Table 5; Figure 4).  
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Discussion 

 

 Our results indicate that these two similar and related species with contrasting 

annual patterns of acorn production have qualitatively different patterns of resource 

allocation with respect to stored resources and reproduction. We found no support for any 

of the predictions of the resource budget model in the ‘non-masting’ N. densiflorus, but 

predictions 2 and 3 were supported in the ‘masting’ Q. vacciniifolia (Table 1). 

Specifically, N and NSC appear to be important for flowering in Q. vacciniifolia, and 

NSC appears to be important for acorn maturation. This adds support to the resource 

fluctuation part of the resource budget model for masting and suggests that it may be a 

distinctive property of masting species. Therefore, if components of the hypothesized 

mechanism have been under natural selection, then they could have played a role in the 

evolution of masting. 

 The results for prediction 1 (Table 1) of the resource budget model were more 

complex to interpret than the other results. In the masting Q. vacciniifolia, there was 

support for prediction 1 only with measurements of branch NSC. That is, we found 

higher concentrations of branch NSC at the beginning of the years with acorn production 

and lower concentrations in the year with no acorn production. There were no annual 

differences in trunk NSC or branch N, and leaf N exhibited the opposite of the predicted 

pattern. We might have interpreted the results for Q. vacciniifolia branch NSC as support 

for prediction 1, except that the branch NSC in N. densiflorus followed the same annual 

pattern, with higher branch NSC in 2011 and 2013 and lower branch NSC in 2012.  
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 Acorn production by N. densiflorus was relatively high in both 2011 and 2012, 

and relatively low in 2013. This indicates that branch NSC in N. densiflorus apparently 

fluctuates independently of acorn production patterns. The fact that branch NSC in both 

species followed the same annual pattern in spite of different annual patterns in acorn 

production suggests that population-level storage dynamics across years may be driven 

by variability in abiotic conditions. Consequently, we are unable to conclude that annual 

fluctuations in branch NSC of the Q. vacciniifolia population are driving masting 

behavior in this system.  

 In Q. vacciniifolia, there was support for the threshold part of the resource budget 

model (prediction 2, Table 1) in which plants need to reached a certain concentration of 

stored resources before they flower (Isagi et al. 1997). However, a strict threshold would 

produce a different shape of the relationship between stored resources and flowers than 

what we observed. In a strict threshold model, plants with low stored resource 

concentrations would be in a straight line at zero flowers until the threshold resource 

concentration, after which there would be a positive relationship. Instead, the relationship 

we observed looks relatively linear, which is similar to the relationship observed in Fagus 

crenata between N concentration and gene expression for flowering (Miyazaki et al. 

2014).  

 Given that flowering can be an important limiting stage for mast seeding, it is 

surprising how few studies on masting and the resource budget model have investigated 

whether stored resource levels during floral initiation relate to future flowering (Crone 

and Rapp 2014). However, there is other evidence linking flowering to resources, 

including studies that manipulated available resources to plants (Cunningham 1997, 
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Miyazaki et al. 2009, Montesinos et al. 2012) or that measured stored resources before 

and after flowering (Marquis et al. 1997). Previous research has typically implicated 

carbon reserves or mineral nutrients separately, so it is interesting that we found both 

NSC and N to have significant effects on flowering. Unfortunately, we are unable to 

disentangle the relative importance of these two resources for flowering, and the issue is 

further complicated by the fact that leaf N and branch NSC are correlated. 

In support of prediction 3, we found that seasonal changes in NSC declined with 

acorn production in Q. vacciniifolia. The values for change in trunk NSC were both 

positive and negative, which indicates that acorn producing plants may not actually 

experience depletion of trunk NSC, but simply less accumulation. In contrast, most of the 

values for change in branch NSC were negative, which indicated that this pool of stored 

resources was depleted during acorn production. It is unclear how long-lasting the stored 

resource depletion effects may be. Population-level data used to test prediction 1 indicate 

that there may be longer term effects in branch NSC (Figure 2). It is just as likely, 

however, that the effects are transient, representing a temporary shift in carbon allocation 

priority from storage to acorn development. Q. vacciniifolia individuals that produced 

zero acorns had values for storage that nearly covered the entire range of variation in the 

study population. This may indicate that we included several non-reproductive ramets in 

the study population. In support of this possibility, we found that five out of the nine 

plants that produced zero acorns in 2013 also produced zero acorns in 2011. None of the 

plants produced acorns in 2012.  

 Carbon storage depletion or the competition between storage and developing 

seeds for current photosynthesis, as observed in Q. vacciniifolia, is an uncommon result 
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in large masting trees (Hoch et al. 2013, Ichie et al. 2013, Crone and Rapp 2014). 

Depletion of carbon reserves with reproduction has, however, been observed in other 

smaller masting plants like shrubs and forbs (Marquis et al. 1997, Miyazaki et al. 2002, 

Crone et al. 2009). This may reflect that larger trees have larger carbon budgets 

(Stephenson et al. 2014). Perhaps smaller plants are more likely to have carbon-limited 

reproduction. Indeed, we found positive effects of stem diameter on acorn production 

(Table 4). The carbon demands of acorn development in Q. vacciniifolia are explored 

more in another study, which found that acorn bearing branches had more leaves than 

vegetative branches, and drew photo-assimilates from neighboring vegetative branches 

(Chapter 2). 

 This study highlights the value of evaluating data at both the individual and the 

population level to evaluate hypothesized mechanisms for masting. If we had only 

evaluated population mean storage across years, then we would have concluded there was 

weak or no support for the resource budget model because the non-masting species 

showed the same resource storage dynamics across years. Instead, we found support for 

relationships between resources and flowering and fruiting that extends our 

understanding of how resource allocation relates to masting. Analyzing within-year 

individual variability can improve our understanding of processes that occur over longer 

time scales.  

 Likewise, using a comparative approach added inferential power to our study. If 

we had only evaluated the masting species, we would have interpreted the pattern of 

branch NSC across years as support for the resource budget model, instead of 

acknowledging the distinct possibility that branch NSC is merely tracking annual 
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differences in resource availability. Wherever it is possible, testing hypothesized 

mechanisms for masting in multiple sympatric species that span a range of variation in 

annual seed production will add rigor to our interpretations (Ichie et al. 2013, Funk et al. 

2016). 

 Using a comparative approach will also help inform research into the evolutionary 

origins of masting. We found that Q. vacciniifolia, a species with variable annual seed 

production, and N. densiflorus, a species with more regular annual seed production, had 

qualitatively different patterns of resource allocation with respect to reproduction. The 

resource allocation patterns of Q. vacciniifolia provide support for the resource budget 

model for masting, particularly for the prediction that flowering is linked to resource 

concentrations. Genes that control the mechanisms regulating resource allocation for 

reproduction should be investigated as potentially responsible for leading to the evolution 

of mast seed production (Miyazaki et al. 2014). 
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Tables 

 

Table 1. Predictions of the resource budget model and a summary of support found for 

each species and resource sampled. A tick indicates that the graphically represented 

prediction was observed for the particular resource and species; a dash indicates that the 

graphically represented prediction was not observed for the particular resource and 

species. 
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Table 2. Sample sizes for each species, assay, and year. 

Species Assay 2011 2012 2013 

Q. vacciniifolia Trunk NSC 6 10 28 

 Branch NSC 10 10 30 

 Branch N 10 10 26 

 Leaf N 10 10 30 

N. densiflorus Trunk NSC 6 7 26 

 Branch NSC 8 9 29 

 Branch N 9 10 28 

 Leaf N 10 10 27 
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Table 3. Fixed effects on log-transformed flower counts (2011 – 2013) from linear mixed 

models. Significant effects at P < 0.05 are in bold with corresponding significance codes. 

Species Main Effect Effect size ± SE Co-variate Effect size ± SE 

Q. vacciniifolia Trunk NSC (%) -0.103 ± 0.164   Stem 

diameter 

0.702 ± 0.457    

 Branch NSC (%) 0.713 ± 0.172*** Stem 

diameter 

0.322 ± 0.343 

 Branch N (%) 8.83 ± 2.78** Stem 

diameter 

0.378 ± 0.318 

 Leaf N (%) 8.60 ± 2.08*** Stem 

diameter 

0.446 ± 0.292 

N. densiflorus Trunk NSC (%) -0.209  0.118 Stem 

diameter 

0.869 ± 0.429* 

 Branch NSC (%) -0.393 ± 0.252 Stem 

diameter 

0.776 ± 0.467 

 Branch N (%) -1.32 ± 4.32 Stem 

diameter 

0.878 ± 0.502 

 Leaf N (%) -1.27 ± 3.10 Stem 

diameter 

0.909 ± 0.514 

Significance codes (x < P < x):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Table 4. Effects on log-transformed acorn counts (2013) in Q. vacciniifolia from linear 

models. Significant effects at P < 0.05 are in bold with corresponding significance codes. 

Main effect Effect size ± 

SE 

Co-

variate 

Effect 

size ± SE 

Model F-

value (df) 

Model 

P-value 

Adjusted 

R2 

∆ Trunk 

NSC (%) 

-0.358 ± 

0.160* 

Stem 

diameter 

0.548 ± 

0.206* 

4.84 (2 and 

25) 

0.017 0.222 

∆ Branch 

NSC (%) 

-0.673 ± 

0.304* 

Stem 

diameter 

0.551 ± 

0.198** 

4.89 (2 and 

27) 

0.015 0.212 

∆ Branch N 

(%) 

-5.820 ± 

3.010 

Stem 

diameter 

0.420 ± 

0.214 

2.90 (2 and 

23) 

0.075 0.132 

∆ Leaf N 

(%) 

-3.734 ± 

2.702 

Stem 

diameter 

0.468 ± 

0.201* 

3.17 (2 and 

27) 

0.058 0.130 

Significance codes (x < P < x):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Table 5. Effects on log transformed acorn counts (2011 – 2013) in N. densiflorus from 

linear mixed models. Significant effects at P < 0.05 are in bold, with corresponding 

significance codes. 

Main Effect Effect size ± SE Co-variate Effect size ± SE 

∆ Trunk NSC (%) 0.034 ± 0.088 Stem diameter -0.198 ± 0.271 

∆ Branch NSC (%) -0.124 ± 0.082 Stem diameter -0.037 ± 0.276 

∆ Branch N (%) -1.08 ± 0.994 Stem diameter -0.048 ± 0.270 

∆ Leaf N (%) -2.17 ± 1.44 Stem diameter -0.121 ± 0.257 

Significance codes (x < P < x):  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Figures 

 

 

Figure 1. Annual mean (± standard error) acorn production for Q. vacciniifolia and N. 

densiflorus.  
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(a) Q. vacciniifolia 

 

 

 

(b) N. densiflorus 

 

 

Figure 2. Test of prediction 1. Annual early season storage for Q. vacciniifolia (a) and N. 

densiflorus (b). Boxes include data between the 25th and 75th percentile, or the 

interquartile range (IQR); bold lines represent the median; whiskers extend to 1.5 * IQR; 

points outside that range are represented as dots.  
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(a) Q. vacciniifolia 

 

 

 

(b) N. densiflorus 

 

 

Figure 3. Test of prediction 2. Natural log-transformed flower counts vs. storage in the 

previous year for Q. vacciniifolia (a) and N. densiflorus (b). Lines are plotted for models 

where lag-1 storage had a significant effect on natural log-transformed flower counts (P < 

0.05). 
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(a) Q. vacciniifolia 

 

 

 

 

(b) N. densiflorus 

 

 

Figure 4. Test of prediction 3. Natural log-transformed acorn counts vs. the change in 

storage during acorn development (final – initial; ∆ storage) for Q. vacciniifolia (a) and 

N. densiflorus (b). Size of points for Q. vacciniifolia figures correspond to the stem 

diameter at ground height in cm. Lines are plotted for models where delta storage had a 

significant effect on natural log-transformed acorn counts (P < 0.05).  
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Chapter 3: Carbohydrate demands of acorn development in the huckleberry oak 

(Quercus vacciniifolia), a masting oak shrub 

 

Abstract 

 

There is controversy over whether carbon is a limiting resource for reproduction in 

woody plants with synchronous and variable annual seed production (i.e. “masting” 

behavior). Life history theory predicts that when resources are limited, there will be 

trade-offs in resource allocation between major life history functions such as growth, 

reproduction, and storage. Resource allocation trade-offs can be difficult to detect, 

especially in long-lived trees, because they occur over various time scales and plants may 

compensate by diverting resources from other organs. It is, however, possible to test 

corollary hypotheses. If carbon is a limiting resource for reproduction, then we expect 

that developing seeds should be demanding sinks for carbohydrates. We assessed the 

extent of carbohydrate demands during acorn maturation in the huckleberry oak Quercus 

vacciniifolia, an evergreen shrub that requires two growing seasons to mature acorns. 

Carbohydrate demand was measured at three levels: size and leaf number of acorn-

bearing branches, carbohydrate sharing with neighboring branches, and the seasonal 

change in the pool of branch nonstructural carbohydrates. We tested whether acorns grow 

on branches with greater resource acquisition potential, as indicated by branch size and 

leaf number. Acorns developed on shoots that grew in the previous year, thus minimizing 

competition for carbohydrates between shoot growth and acorn growth, given that there 

was little new growth in the year of acorn production. Therefore, if acorns are expensive 
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to produce in terms of carbohydrates, we predicted that acorns would be found on 

branches that were larger and had more leaves than vegetative branches, which is what 

we observed. Using stable isotope labeling with 13CO2, we found that acorn-bearing 

branches drew carbohydrates from adjacent vegetative branches, but not from adjacent 

acorn-bearing branches. We also found a weak negative relationship between the flux in 

mass of the branch nonstructural carbohydrate pool during the acorn maturation period 

and the number of acorns produced by a plant. This suggests that storage and fruit 

development may be competing sinks for carbohydrates. Overall, our findings suggest 

that carbohydrates may be a limiting resource for acorn production by Q. vacciniifolia. 

This result suggests that smaller masting plants, such as shrubs, are more likely than 

bigger trees to have carbon-limited reproduction. 

 

Introduction 

 

 Carbohydrates are units of chemical energy produced by photosynthesis that 

plants can invest in growth, reproduction, or storage. Once stored, non-structural 

carbohydrates (NSC) can be remobilized to support growth and reproduction (Chapin III, 

Schulze & Mooney 1990), but energy invested in growth and reproduction cannot be 

remobilized. Storage of NSC is essential for plants because the supply of carbohydrates 

from photosynthesis and the demand for carbohydrates for growth and other metabolic 

processes are often asynchronous. For example, stored carbohydrates are used to support 

new growth in spring (Chapin III 1980), or to recover following disturbances such as 

defoliation or fire (Canadell & López-Soria 1998; Mcpherson & Williams 1998; Bell & 
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Ojeda 1999). Life history theory predicts that as long as the supply of energy is limited, 

there will be trade-offs in allocation of carbohydrates among the life history functions of 

growth, storage, and reproduction (Reznick 1985; Obeso 2002).  

 Resource trade-offs have been hypothesized to lead to irregular annual patterns of 

seed production that are synchronized population-wide, or “masting” behavior. 

Specifically, masting is hypothesized to be driven by a trade-off between current storage 

and future reproduction (Sork, Bramble & Sexton 1993). The “resource budget model” 

hypothesizes that storage reserves in masting plants are accumulated across years until a 

threshold level is reached, after which plants flower and produce seeds, which in turn 

depletes storage (Isagi et al. 1997).  

Research that tests the resource budget model has been limited to only a handful 

of study systems so far, but the preponderance of evidence suggests that seed production 

by at least some masting plants is resource-limited (Rees, Kelly & Bjornstad 2002; Crone 

& Rapp 2014; Funk, Koenig & Knops 2016; Pesendorfer et al. 2016). Empirical evidence 

on the role of stored resources in mast seed production diverges when it comes to which 

specific storage compound is most important, with support for carbohydrates in some 

systems (Miyazaki et al. 2002; Crone, Miller & Sala 2009; Rapp & Crone 2015), and 

support for nitrogen and/or phosphorous in other systems (Sala et al. 2012; Ichie & 

Nakagawa 2013; Miyazaki et al. 2014). 

 Although stored carbohydrates appear to be limiting for seed production in some 

species, other studies have shown that some tree species have ample storage that is not 

depleted by masting (Ichie et al. 2005, 2013; Hoch et al. 2013). An abundance of stored 

carbohydrates has been interpreted to indicate that trees are not limited by carbon (Körner 
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2003). More evidence that suggests carbohydrates are not limiting for seed production 

comes from studies that shade or defoliate branches while still being able to mature seeds 

(Chapin III & Wardlaw 1988; Hoch 2005). When photosynthetic rates are lowered via 

shading or defoliation, plants can compensate either by drawing upon stored 

carbohydrates, increasing photosynthesis of remaining green tissues, including the fruit 

itself, and/or importing carbon from neighboring branches (Bazzaz, Carlson & Harper 

1979; Sprugel, Hinckley & Schaap 1991; Kozlowski 1992; Lacointe et al. 2004). Taken 

together, there is currently no consensus within long-lived trees as to whether seed 

production is limited by carbohydrates.  

 Trees and large shrubs have a modular architecture where branches are the basic 

units of carbon resource acquisition that repeat throughout the plant. Branches are 

necessarily integrated with the rest of the plant for uptake of water and nutrients from the 

soil, but they may be independent from each other for carbon acquisition and allocation, 

depending on the species and environmental context (Sprugel et al. 1991; Lacointe et al. 

2004). Whether or not fruit-bearing branches are autonomous for carbohydrate supply 

varies by species, just as do the results for plant-wide carbon dynamics (Hasegawa et al. 

2003; Hoch 2005; Miyazaki, Hiura & Funada 2007). To advance our understanding of 

what limits seed production, it is necessary to consider carbon acquisition and carbon 

allocation not only at the plant-wide level, but also at the local branch level where seeds 

are growing. 

 The goal of this study was to determine the sources of carbohydrates used by and 

affected by developing seeds in a plant species with intermittent and synchronized annual 

seed production. We used an evergreen shrub, the huckleberry oak Quercus vacciniifolia 
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Kellogg (Fagaceae), a slow-growing, montane, wind-pollinated species that produces 

"two-year" acorns (female flowers pollinated during the spring of one year develop into 

acorns during the summer of the following year, Fig. 1). We hypothesized that if 

carbohydrates are limiting for life history functions then developing acorns will be 

expensive in terms of carbohydrates, which will be indicated by the sources from which 

carbohydrates are drawn during acorn maturation. Potential sources of carbohydrates for 

acorn maturation include photosynthesis in the acorn itself, leaves on the acorn-bearing 

shoot, leaves on neighboring shoots, and stored carbohydrates. If acorn development is 

carbohydrate intensive for the particular shoot on which it is growing, then we predicted 

that acorn-bearing shoots will be larger and have more leaves than vegetative shoots, thus 

indicating greater potential for resource acquisition. If photosynthesis from the acorn 

bearing branch is insufficient for acorn development, then we predicted that 

carbohydrates will be drawn from neighboring vegetative branches. If acorn production is 

a carbohydrate intensive process at the level of the whole plant, then we predicted that 

plants with greater acorn production will experience greater depletion in the total pool of 

branch non-structural carbohydrates than plants with fewer acorns. 

 

Materials and Methods 

 

STUDY SPECIES AND FIELD SITE 

 

 Quercus vacciniifolia is a monoecious, evergreen shrub. It has a single flush of 

new shoots and leaves each year occurring in late spring. Its range covers much of the 
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high Sierra Nevada Range, Cascade Range, Inner North Coast Range, and Klamath 

Range in northern California and southern Oregon, USA (Jepson Flora Project). The 

study population is distributed along a forest service road in the Shasta-Trinity National 

Forest in the Klamath Range in northern California, USA (41.24°N, 122.69°W, between 

1200 m and 1350 m elevation). The dominant overstory vegetation was composed of 

Pinus ponderosa, Pinus lambertiana, Pseudotsuga menziesii, Abies concolor, and 

Calocedrus decurrens, with the understory frequently occupied by patches of 

Notholithocarpus densiflorus var. echinoides and Q. vacciniifolia. This area experiences 

a Mediterranean climate, with most precipitation falling during the winter, while 

summers are hot and dry with infrequent rain. The plants in the study population 

produced acorns in 2011 and 2013, but had total crop failures in 2012 and 2014 (K. Funk, 

unpublished data). Thus, acorn production was variable and synchronous over the study 

period. Here, however, we investigated the carbohydrate dynamics within a single 

growing season. 

 

BRANCH SIZE 

 

 To investigate the relationships between branch size and leaf number with acorn 

production, we harvested four vegetative and four reproductive branches, each with 

several years of growth (Fig. 2) from 20 plants in July 2013. We separated branches into 

cohorts based on the year in which they grew which was clearly demarcated by bud scars. 

For each branch in each cohort we counted the number of leaves, measured the length, 

and measured the width between the proximal bud scar and first leaf. Length and width 



51 

 

were measured with calipers and recorded to the nearest 0.1 mm. Branches from the 2011 

cohort were classified as either purely vegetative or reproductive based on whether or not 

there were acorns developing. Branches from the 2012 cohort, on which acorns were 

developing in 2013, were classified as vegetative, reproductive, or vegetative adjacent to 

reproductive (Fig. 2a). Because there was little new growth in 2013, we classified 

branches that developed in that year as either vegetative or reproductive. 

 

CARBON AUTONOMY 

 

 To test whether acorn-bearing branches draw carbon from adjacent vegetative 

branches, we used a stable isotope labeling experiment. The stable isotope carbon-13 

(13C) is approximately 1.1% as common as carbon-12 (12C) in atmospheric CO2 (Nier 

1950; Schlesinger 1997). Exposing photosynthesizing plants with 13C-enriched carbon 

dioxide (13CO2) causes a pulse in the relative concentration of the stable isotope in the 

photosynthates produced during the exposure, relative to pre-exposure levels. This label 

can then be traced by harvesting tissues and comparing their 13C concentrations to pre-

exposure concentrations.  

 We initiated the experiment in July 2013, when acorns were approximately half 

size. On each of eight plants, we selected four “Y” shaped branches, where two branches 

from the 2012 cohort grew out of one branch from the 2011 cohort. Each plant received 

four treatments, in which two of the Y systems had an acorn on one side, one of the Y 

systems had acorns on both sides, and one of the Y systems had no acorns. In each 

treatment we applied the labeled gas to one branch of the Y, setting up an acorn × label 
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factorial design (Fig. 3a). We removed a 1 cm strip of bark and phloem from the base of 

each Y system in order to limit carbon import and export between the experiment and the 

rest of the plant. 

 To label the branches, we placed a clear plastic bag around one side of each Y 

system, flushed the air out of it, and sealed it around the base of the twig with putty. We 

then punctured a small hole in the bag with the nozzle of the two-stage regulator attached 

to the gas cylinder of 99% 13CO2. After releasing approximately 8 ml of 13CO2 into the 

bag, we promptly re-sealed the hole in the bag with putty. We gassed the branches 

between the hours of 1000 and 1400 and then removed the bags just before the following 

dawn. We removed bags in the dark before dawn with the assumption that leaves would 

be exchanging negligible amounts of gas with the atmosphere and thus any leftover 

13CO2 would diffuse away without the occurrence of unintended labeling. To verify the 

effectiveness of the labeling procedure, we measured the baseline isotopic signature of 

branches from each experimental plant once prior to labeling. We harvested all of the 

experimental branches in mid-August when acorns were full-sized and dried them for 

several days at 70o C. 

 All plant tissues for isotopic analysis were ground to a fine powder using a two-

step process. First, we ground samples in a Wiley mill (Thomas Scientific, Swedesboro, 

New Jersey, USA) until they passed through a 0.85 mm mesh. Then we crushed samples 

into a fine powder in a ball mill (Cianflone 2601, Pittsburgh, Pennsylvania, USA). We 

packed 1.5 – 2 mg of each sample into tin capsules and samples were analyzed for 13C at 

the UC Davis Stable Isotope Facility (Davis, California, USA). 
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ACORN PRODUCTION AND CARBON STORAGE 

 

 In order to investigate the hypothesized trade-off between acorn production and 

carbon storage, we counted the number of acorns and estimated the standing mass of non-

structural carbohydrates (NSC) in branches of 30 plants in 2013. These plants were not 

those used for measuring branch size or for the stable isotope labeling experiment, but 

they grew at the same study site.  

 To measure acorn crops we counted all acorns on each plant in mid-August 2013 

when acorns were full-sized. To estimate the standing mass of NSC, we first estimated 

the standing woody biomass in branches of each plant using the following formula: 

 

𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 2011 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ∗  𝑚𝑒𝑎𝑛 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑜𝑓 2011 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 

+  𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 2012 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 ∗  𝑚𝑒𝑎𝑛 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 𝑜𝑓 2012 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 

 

 In 2011 and 2012 we counted all new shoots that each plant produced as a metric 

for growth. We counted new shoots in 2013 as well, but there was very little growth that 

year, which left us with a small sample size from which to estimate mean mass. Including 

estimates from 2013 shoots changed the overall estimates by an average of 1.3%, but did 

not change the statistical analyses. Consequently, we decided to omit the 2013 shoots 

from our analyses. Mean dry mass of 2011 and 2012 cohorts of branches came from the 

20 plants used for the ‘Branch Size’ part of this study. The mean mass for 2011 branches, 

based on 160 branches, was 0.247 g. The mean mass for 2012 branches, based on 582 
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branches, was 0.068 g. Therefore, the standing woody biomass of branches from the 

previous two years of growth for a given plant i (𝐵𝑟𝑎𝑛𝑐ℎ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑖) was estimated as: 

 

𝐵𝑟𝑎𝑛𝑐ℎ 𝑏𝑖𝑜𝑚𝑎𝑠𝑠𝑖  =  𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 2011𝑖  ∗  0.247 𝑔 +  𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 2012𝑖  ∗  0.068 𝑔 

 

 After estimating the standing branch woody biomass for each plant, we multiplied 

values by the NSC concentration in branches measured for each plant to derive an 

estimate of standing mass of NSC. We harvested branches to be used in NSC assays 

twice in 2013. The first harvest was in June, before acorns started developing, and the 

second was in August, after acorns were fully developed. This provided data on the 

change in branch NSC during acorn development. For each harvest and plant, we cut four 

branches with three years of growth on each. For the August harvest we took two 

branches without acorns and two branches with acorns from each plant that had produced 

acorns. For data analysis, we used the flux in NSC during acorn development, calculated 

as the NSC in June subtracted from the NSC in August. Thus, both developing acorns 

and NSC were quantified as fluxes in biomass.  

 

NON-STRUCTURAL CARBOHYDRATES ASSAYS 

 

 Branches for NSC assays were ground to a fine powder using the same two-step 

process described above. We conducted the assay on 20 mg (± 1 mg) of tissue per 

sample. First, we extracted the sample in 0.1 M sodium acetate, and then we removed an 

aliquot for soluble sugar (sucrose, fructose, and glucose) analysis. In the remaining 
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fraction, we digested starch first with α-amylase from Bacillus licheniformis (Bio-Cat, 

inc.), and then with amyloglucosidase from Aspergillus niger (Sigma A9913). Prior to the 

assay, we dialyzed the amyloglucosidase in sodium acetate to remove any glucose from 

the enzyme solution. From this step, the starch and soluble sugar fractions were treated 

the same. We used invertase (Sigma I4504) to digest sucrose, and then we put aliquots of 

each fraction of each sample into wells of 96 well microplates to be measured 

colorimetrically. The final digest occurred in the microplates with a glucose assay reagent 

(Sigma G3293) and phosphogluco-isomerase (Sigma P5381) to digest glucose and 

fructose, respectively. After this final digest, we used a spectrophotometer (Cary 50, 

Varian Inc., Palo Alto, California, USA) to measure the absorbance of each well at 340 

nm. The absorbance reading was directly proportional to the concentration of glucose in 

the well. Using a glucose standard curve and dilution factors we calculated the 

concentrations of soluble sugars and starch for each sample, the sum of which represents 

total NSC. In each batch of samples assayed we analyzed standards of starch, sucrose, 

glucose, and fructose to confirm the effectiveness of each enzyme digest. The acceptable 

threshold for soluble sugar recovery was 95%, while starch was consistently recovered at 

90%. 

 

DATA ANALYSIS 

 

 Analyses were performed in R (R Core Team 2015). To investigate the 

relationship between branch size and acorn production, we first compared branch sizes 

and leaf number of the 2012 cohort of branches (where acorns were developing) among 
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vegetative (N = 279), reproductive (N = 101), and vegetative adjacent to reproductive 

shoots (N = 202; Fig. 2a). We fit generalized linear mixed models (GLMMs) with a log 

link function and a Gaussian error distribution using the “lme4” package (Bates et al. 

2015). We verified the assumption of homogeneity of variance by plotting residuals 

against fitted values. In each model, individual plant ID was included as a random effect 

in order to account for the pseudoreplication caused by measuring multiple branches on 

each of the 20 plants (see BRANCH SIZE above). We constructed models with shoot 

length, width, volume, and number of leaves as response variables. Volume was 

estimated by treating the branch as a cylinder, so volume = length * π * (0.5 * width) 2. In 

each model, the fixed effect was the categorical shoot type (i.e. vegetative, reproductive, 

vegetative adjacent to reproductive). Models were evaluated with Wald type II χ2 tests 

using the “Anova” function in the “car” package (Fox and Weisberg 2011). If models 

were significant, we used the “multcomp” package (Hothorn, Bretz &Westfall 2008) to 

conduct multiple comparisons of means on the categorical fixed effect. To evaluate 

whether there was more new growth (2013 cohort) on reproductive branches versus 

vegetative branches, we used an unpaired t-test comparing the shoot volumes of the two 

shoot types. 

 To evaluate whether we succeeded in labeling branches with 13CO2, we used an 

unpaired t-test comparing the 13C atoms per mil of the baseline branches and the labeled 

branches. To evaluate differences in 13C atoms per mil among the four different acorn 

treatments of unlabeled branches, we used GLMMs as described above, again with 

individual plant ID as a random effect, followed by a Wald type II χ2 test and post-hoc 

multiple comparisons of means as described above.  
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 We tested the relationship between acorn production and branch NSC with a 

Pearson correlation test, where one variable was the log-transformed number of acorns on 

a plant and the other was the change in branch NSC mass during acorn development.  

 

Results 

 

BRANCH SIZE 

 

 In the 2012 cohort of branches, shoot types had a significant effect on length (χ2 = 

49.0, df = 2, P < 0.001), width (χ2 = 44.8, df = 2, P < 0.001), and volume (χ2 = 61.6, df = 

2, P < 0.001; Fig. 2b) of shoots. In each model, there was no difference between the two 

types or vegetative shoots (P > 0.25 for all 3 models), and reproductive shoots were the 

largest (P < 0.001 for all 3 models). Shoot type also had a significant effect on the 

number leaves (χ2 = 15.6, df = 2, P < 0.001; Fig. 2c), with reproductive shoots having 

about 1 more leaf on average than either type of vegetative shoots (P < 0.01 for both 

comparisons). Again, there was no difference between the two types of vegetative shoots 

(P = 0.97). There was no statistical difference between volumes of reproductive shoots 

and vegetative shoots from the 2013 cohort (t = -1.58, df = 11.3, P = 0.14), but this test 

was compromised by extremely poor vegetative growth that year, with only 19 new 

shoots on any of the 582 shoots from the 2012 cohort that we measured. 

 

CARBON AUTONOMY 
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 Labeled branches had significantly greater 13C atoms per mil than the baseline 

branches by a mean difference of 0.56 13C atoms per mil (t = -8.12, df = 7, P < 0.001). Of 

the unlabeled branches, the unlabeled acorn-bearing branch paired with a labeled 

vegetative branch (treatment 2) had significantly higher 13C atoms per mil than any of the 

other unlabeled treatments (χ2 = 24.7, df = 3, P < 0.001; P < 0.05 for all post-hoc 

comparisons with treatment 2; Fig. 3b). None of the comparisons among unlabeled 

branches from treatments 1, 3, and 4 were significant (P > 0.5 for all comparisons). 

 

CARBON STORAGE 

 

 The estimated mass of NSC stored in branch wood sampled at the beginning of 

the season ranged from 1.3 g to 13.1 g, with a mean (± standard deviation) of 4.9 g ± 2.9 

g. The early season mean concentration of NSC in branches was 9.74 % ± 0.82%. Log-

transformed acorn counts were weakly correlated with the flux in NSC mass in branches 

during acorn development (r = -0.35, P = 0.06; Fig. 4). The seasonal fluxes in branch 

NSC were largely driven by changes in starch concentration, rather than changes in 

soluble sugars (sucrose, fructose, and glucose). The mean change in starch concentration 

was -1.6%, whereas the mean change in soluble sugar concentration was +0.4%. 

 

Discussion 

 

BRANCH SIZE 

 



59 

 

 We found that acorn-bearing branches were larger and had more leaves than 

vegetative shoots, which supports the hypothesis that acorn development is a 

carbohydrate-intensive process. A similar pattern has been observed in branches of three 

other species of oaks, where it has been hypothesized to be due to a trade-off between 

growth and reproduction (Sánchez-Humanes, Sork & Espelta 2011; Alla et al. 2012). 

Specifically, these authors proposed that the increased carbon sink strength of acorn 

maturation either suppressed the growth of vegetative branches or incidentally enhanced 

the growth of acorn-bearing branches.  

The species used in these earlier studies produce one-year acorns that develop on 

shoots grown during the same growing season and thus there is the potential for temporal 

overlap in these putatively competing carbon sinks. In contrast, Q. vacciniifolia produces 

two-year acorns that develop on shoots mostly grown in the year prior to acorn 

maturation; that is, all of the primary growth (length), some of the secondary growth 

(width), and all of the leaf growth occurs in the year prior to acorn maturation. As a 

result, the potential for carbon sink competition between shoot growth and acorn growth 

is reduced compared to one-year acorn species. If there is a trade-off between shoot 

growth and acorn growth in Q. vacciniifolia, it is likely to be manifesting across years 

rather than in the same year.  

 An alternative explanation for acorn-bearing branches being larger than 

vegetative branches is that greater size is needed for structural support for the weight of 

the acorns. We think this is unlikely because acorns are relatively small (less than 1 gram, 

dry) and we never observed shoots sagging or breaking as a result of the acorn crop (pers. 

obs.). 
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CARBON AUTONOMY 

 

 In addition to being larger and having more leaves than vegetative branches, 

acorn-bearing branches drew carbohydrates from adjacent vegetative branches, as 

revealed by the 13CO2 pulse labeling experiment. Unlabeled branches that had acorns and 

were paired with a labeled vegetative branch had significantly higher 13C signatures than 

the unlabeled treatments. When unlabeled acorn-bearing branches were paired with 

labeled acorn-bearing branches, there was no indication of carbohydrate sharing, which 

suggests that the sink strengths of the developing acorns on each branch effectively 

cancelled each other.  

 We assumed that girdling blocked import of stored carbohydrates from other parts 

of the plant and export of photosynthates from the experimental branches, which could 

have diluted the isotopic label. This procedure may, however, have made our experiment 

less realistic, as girdling has been shown to reduce photosynthesis (Lu & Chacko 1998; 

Zhou & Quebedeaux 2003). If photosynthesis of leaves on fruit-bearing branches was 

down-regulated due to the girdling treatment, then it is possible that ungirdled fruit-

bearing branches could mature fruit autonomously. Evidence countering this possibility 

comes from research showing that the increased sink activity of fruit development 

mitigates down-regulation of photosynthesis due to girdling (Proietti & Tombesi 1990; 

Urban, Léchaudel & Lu 2004). Additionally, if the high carbon demands of acorn 

development indicated by our experimental results were an artifact of girdling, then we 
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would not have expected the observed relationship between carbon storage and acorn 

production.  

 

CARBON STORAGE 

 

 The negative relationship between acorn production and flux in branch NSC pools 

further supports the conclusion that the carbon demands of acorn development are 

substantial. We found that plants with greater acorn production also tended to experience 

greater NSC depletion during acorn development. Plants that produced no acorns were 

distributed across the range of values for the seasonal flux in NSC. This may indicate that 

something other than acorn production is driving the changes in NSC, or it could be that 

there are different storage dynamics in plants that do not produce acorns. We used a 

single stem as our fundamental experimental unit for comparisons between individuals, 

but Q. vacciniifolia can have many stems and it is possible that we accidentally selected 

some ramets that do not commonly reproduce.  

 Depletion of storage associated with seed production is a key component of the 

resource budget model for masting, which hypothesizes that masting plants must store up 

resources in years leading up to a large seed production event until a threshold is met. 

When the threshold is met, plants flower intensely and the resulting effort to produce 

seeds is so energy intensive that storage pools are left depleted (Isagi et al. 1997). 

Carbohydrates were thought to be the vital energy currency when the models were first 

published (Isagi et al. 1997; Satake & Iwasa 2000), but few studies have actually found 

depletion of carbon storage in wild populations of masting plants; instead, nitrogen 
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and/or phosphorous have more often been implicated as the important resource currency 

for masting (Sala et al. 2012; Ichie & Nakagawa 2013; Crone & Rapp 2014; Miyazaki et 

al. 2014). Still, it is curious that the carbon storage dynamics of trees appear to be 

minimally affected by such a large biomass investment as a mast seed crop. Perhaps 

reproduction is more likely to be limited by carbohydrates in shrubs than in tall, canopy 

forming trees, because carbon accumulation increases with size (Stephenson et al. 2014). 

 In our study system, we do not know whether the long term dynamics of carbon 

storage are affected by the temporary dip in NSC associated with acorn production. It is 

possible that acorns are not using stored carbohydrates for development of acorns, but 

instead storage and reproduction are competing sinks for carbon that is assimilated during 

the acorn maturation period. This explanation would be consistent with observations that 

many masting species do not use stored carbohydrates in fruit construction (Hoch et al. 

2013; Ichie et al. 2013).  

 

CONCLUSION 

 

 We have shown that the carbon demands of acorn development in Q. vacciniifolia 

can be extensive. Acorn-bearing branches are larger than, have more leaves than, and 

draw photosynthates from vegetative branches. Furthermore, plants that produce more 

acorns experience greater depletion to their branch NSC pools during the acorn 

maturation period. Our data can aid in interpretation of purported branch level trade-offs 

faced by other oak species (Sánchez-Humanes et al. 2011; Alla et al. 2012). Rather than 

acorn-bearing branches causing vegetative branches to be smaller, our data indicate that 
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smaller branches are unable to meet the immediate carbon demands of acorn maturation. 

This interpretation is consistent with the hypothesis from other oak research that trade-

offs faced by oaks manifest over multiple years rather than within a single year (Knops, 

Koenig & Carmen 2007; Barringer, Koenig & Knops 2013). 

 Our results also have implications for understanding the resource limitations of 

acorn production, especially in the context of masting. Few other studies of species with 

synchronous and variable reproduction have demonstrated carbon storage depletion 

associated with seed production. Although we did not demonstrate that carbon is limiting 

for acorn production over multiple years, our data indicate that carbon is limiting for 

acorn production within a year.  

 If acorn production is resource limited, then it may be sensitive to climate change, 

especially if the limiting resource is carbon. Patterns of seed production by populations of 

masting plants have been changing in both intensity and frequency (Richardson et al. 

2005; Övergaard, Gemmel & Karlsson 2007; Redmond, Forcella & Barger 2012). 

Understanding the mechanisms that produce variability in seed production is important 

for predicting future responses to climate change. This is particularly consequential for 

oaks because the magnitude and frequency of acorn crops have cascading effects 

throughout food webs (Elkinton et al. 1996; Ostfeld & Keesing 2000; Koenig & Knops 

2005; Bogdziewicz et al. 2016).  
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Figures 

 

 

Fig 1. Female flowers (left, next to arrow) are pollinated during in the late spring of one 

year, and acorns (right) develop during the summer of the next year. 
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Fig. 2. (a) Sampling schematic and terminology for ‘Branch Size’ part of the study. (b) 

Means ± standard errors of branch volume and (c) number of leaves on the 2012 cohort 

of shoots, as measured in 2013. Sample sizes are listed on the bars, and letters above the 

bars indicate significant differences from post-hoc tests. 
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Fig. 3. (a) Illustration of treatments for the carbon autonomy experiment. Branches were 

girdled at the base of the ‘Y.’ Branches on the left side of the drawing were pulse labeled 

with 8 mL of 13CO2. Treatment 2 is circled because interpretation of the results hinges 

upon this treatment. If acorn-bearing branches use carbon from adjacent vegetative 

branches, then we expect the unlabeled branch from Treatment 2 will have a greater 13C 

signature than unlabeled branches from the other treatments. (b) 13C atoms per mil in 

unlabeled branches. The grey box plot corresponds to the circled treatment. Different 

letters above boxes indicate significant differences from post-hoc tests.  
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Fig. 4. Log-transformed acorn counts versus the seasonal change in estimated non-

structural carbohydrate mass in branches during acorn development (final – initial). 
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Chapter 4: Constraints on acorn production in two oak species with contrasting water 

use strategies 

 

Abstract 

 

Highly variable and synchronous seed production, or ‘masting’, is hypothesized to be 

driven, in part, by resource limitation. The resources that are most relevant for limiting 

seed production differ across studies, however, and studies that include multiple masting 

species studied within the same ecosystem are rare. We studied two closely related, 

sympatric, masting oaks (Quercus lobata and Quercus douglasii) with contrasting water 

use strategies. Q. lobata avoids drought stress during the driest months of the growing 

season and is able maintain photosynthesis, whereas Q. douglasii tolerates drought stress 

during the driest months of the growing season and is able to survive with reduced 

photosynthesis. Our objectives were to test: (1) whether resources had effects on 

flowering, fruit set, or acorn crop; and (2) whether these two species differed in which 

resources were most relevant for reproduction. We measured non-structural 

carbohydrates (NSC) in trunks and branches, and nitrogen (N) in branches and leaves in 

June and September over a two-year period. In the drought avoiding Q. lobata, trees that 

retained more leaf N during flower initiation produced more flowers in the following 

spring, and trees with larger acorn crops also experienced more N depletion in branches 

during acorn maturation. There were no effects of resources on fruit set. In the drought 

tolerant Q. douglasii, trees with greater acorn crops accumulated less branch NSC. There 

were no effects of resources on flowers. Overall, we found some support for resource-
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limited seed production in both masting species, however there were different resources 

associated with reproduction. We interpret this as evidence that species functional traits, 

such as water use efficiency, are potentially important drivers of differences in limiting 

resources among masting species.  

 

Introduction 

 

 Mast-seeding, also known as masting, is an emergent ecological pattern where 

high inter-annual variability in individual seed production is synchronized across a 

population of plants. The high inter-annual variability in seed production of masting 

plants is often hypothesized to be driven, in part, by resource limitation (Sork, Bramble & 

Sexton 1993; Kelly & Sork 2002; Crone & Rapp 2014; Pearse, Koenig & Kelly 2016). 

Evidence for resource-limited seed production comes from commonly observed patterns 

of strong negative autocorrelation in annual seed production of masting populations (Sork 

et al. 1993; Kelly 1994; Koenig et al. 1994b; Koenig & Knops 2000). This has led 

researchers to hypothesize that large crops of seeds produced by masting plants deplete 

internal reserves, which then require more than one year to be replenished (Sork et al. 

1993; Koenig et al. 1994b). This hypothesis was formalized mathematically as a 

‘resource budget model’ which, in conjunction with spatially autocorrelated weather 

patterns and density dependent pollen limitation, can produce the variable and 

synchronous patterns of seed production characteristic of masting plants (Isagi et al. 

1997; Satake & Iwasa 2000, 2002). Support for resource budget models has been recently 
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reviewed, and many questions remain about their generality (Crone & Rapp 2014; Pearse 

et al. 2016).  

The specific nutrient (e.g. carbon, nitrogen, or phosphorous) that is the most 

limiting for reproduction appears to vary considerably across study systems (Crone, 

Miller & Sala 2009; Sala et al. 2012; Ichie & Nakagawa 2013; Miyazaki et al. 2014). It is 

not always clear what is driving these differences in limiting resources, although some 

are predictable. For example, phosphorous was depleted by fruiting in a tropical tree 

(Ichie & Nakagawa 2013), and for some temperate tree species seed production either 

depleted nitrogen or was enhanced by nitrogen fertilization (Smaill et al. 2011; Sala et al. 

2012; Miyazaki et al. 2014; Bogdziewicz et al. 2016). Carbon reserves appear to be 

important for masting in some species (Miyazaki et al. 2002; Crone et al. 2009; Rapp & 

Crone 2015), but not as frequently as previously predicted (Hoch et al. 2013; Ichie et al. 

2013; Miyazaki 2013). It is thus currently unknown what explains differences in the most 

relevant limiting resource for mast seed production, or if there are consistent patterns. 

One way to address this uncertainty is to study mechanisms for masting among multiple 

species in the same landscape, thus comparing varying species functional traits while 

habitat and environment remain relatively constant (Ichie et al. 2013; Funk, Koenig & 

Knops 2016).  

Here we compare two sympatric, masting oak trees from the same subgenus 

(Quercus section Quercus) with contrasting water use strategies to investigate whether 

carbon reserves and/or nitrogen are important factors in explaining variability in acorn 

production. Our study site experiences a Mediterreanean climate, which is characterized 

by cool, wet winters and hot, dry summers. Quercus douglasii is extremely drought 
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tolerant and during the dry California summers reaches very low values of both pre-dawn 

and daytime xylem water potential (Knops & Koenig 1994, 2000). During the driest 

months, which is also when acorns are developing, leaf gas exchange declines 

precipitously (Xu & Baldocchi 2003). All of this is in spite of having documented rooting 

depths of 20 m or more (Lewis & Burgy 1964). Quercus lobata is more effective at 

avoiding drought stress, as indicated by higher pre-dawn and daytime xylem water 

potentials than Q. douglasii (Hollinger 1992; Knops & Koenig 1994, 2000). Throughout 

its distribution, Q. lobata is associated with fertile, alluvial soils and relatively shallow 

water tables (Jepson 1910), even though Q. lobata can have roots up to at least 10 m 

(Lewis & Burgy 1964). The tendency of Q. douglasii to reach very negative water 

potentials during the summer suggests that carbon reserves are most important for acorn 

production in this species, while the association with fertile soils suggest that nitrogen is 

likely to be important for acorn production in Q. lobata. 

 The first goal of this study is to test predictions of the hypothesis that 

reproduction in these two oak species is resource-limited (Koenig et al. 2015; Pearse et 

al. 2016; Pesendorfer et al. 2016) by examining the relationship between carbon and 

nitrogen resources and acorn production. Masting patterns in populations of wind-

pollinated species are thought to arise from a combination of individual resource 

limitation and population-wide abiotic drivers, such as temperature, which affect 

flowering or fruit maturation success (Abe et al. 2016; Pesendorfer et al. 2016). In oaks, 

acorn production can be limited by how many flowers are produced, what proportion are 

pollinated, and by what proportion of pollinated flowers are successfully matured into 

acorns (‘acorn set’) (Pearse et al. 2016). Q. lobata have been experimentally shown to 
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experience low levels of pollen limitation that varies among years (Pearse et al. 2015). 

Flowering synchrony, which is thought to drive pollen limitation, therefore has an 

important influence on acorn production by Q. lobata (Koenig et al. 2012, 2015; 

Pesendorfer et al. 2016).  

 To complement these findings on the role of pollination, we therefore investigated 

three possible indications of resource limitation. First, we tested the prediction that an 

accumulation of carbon or nitrogen resources during the floral initiation will have a 

positive effect on the subsequent flower crop. Female flowers in oaks are initiated in buds 

during summer of the year before flowering (Merkle et al. 1980). Next, we tested the 

prediction that resource abundance will have a positive effect on acorn set (number of 

acorns per flower). Finally, we tested the prediction that the change in resources during 

acorn development will have a negative effect on acorn production; that is, that plants 

producing more acorns will deplete carbon or nitrogen reserves. 

 Our second goal is to contrast the outcomes of these three predictions among our 

two study species. Q. lobata and Q. douglasii co-occur in many places throughout our 

study site, although Q. douglasii is much more common on the drier slopes. We predicted 

that carbon reserves will be more important than nitrogen for explaining differences in 

acorn production of Q. douglasii because the species experiences low water potentials, 

indicating water limitation (Knops & Koenig 1994, 2000), with an associated decline in 

maximum photosynthetic rates during the driest months (Xu & Baldocchi 2003), which is 

also the main period of acorn development. Therefore, we hypothesized that Q. douglasii 

will either rely on carbon reserves for developing acorns or at least need to decrease 

allocation of assimilated carbon to reserves during acorn development. We predicted that 
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nitrogen will be more important than carbon reserves for explaining variation in acorn 

production of Q. lobata. Q. lobata has higher water potentials than Q. douglasii during 

the summer (Knops & Koenig 1994, 2000), indicating less water limitation and therefore 

higher photosynthetic carbon gain (Hollinger 1992). If Q. lobata is not limited by carbon, 

then nutrients from the soil, such as nitrogen, are the next most likely to be limiting.  

 

Methods 

 

Study Site and Species 

 

 We studied a population of 36 Q. lobata and 23 Q. douglasii (Fig. 1) at Hastings 

Natural History Reservation in central coastal California, which is approximately 40 km 

inland, and ranges in elevation from 460 to 950 m. The climate is Mediterranean, with 

hot, dry summers and cool, wet winters. Annual precipitation is highly variable, ranging 

from 153 to 1131 mm between 1940 and 2012, with a mean (± SD) of 526 ± 192 mm. 

Habitat is mostly oak woodland and savannah, dominated by Q. lobata, Q. douglasii, and 

Q. agrifolia, with Q. chrysolepis and Q. kelloggii mixed in at higher elevations. 

 Both Q. lobata and Q. douglasii are winter-deciduous, monoecious trees that 

produce one-year acorns. Female flowers are typically pollinated during leaf-out in 

March, and acorns are typically ripe in September (Fig. 2). Trunk diameter at breast 

height (DBH) for Q. lobata ranged from 40 to 150 cm with a mean (± SD) of 89.1 ± 30.1 

cm. Q. douglasii trunk DBH ranged from 30 to 130 cm, with a mean of 72.2 ± 24.6 cm. 

Pre-dawn xylem water potential in our population was measured in 1991 (Fig. 3) and 
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reported in a previous study (Knops & Koenig 1994). A follow up study demonstrated 

that water potentials of individuals were highly concordant among years (Knops & 

Koenig 2000). 

 

Resources 

 

 To measure tree resources, we sampled non-structural carbohydrates (NSC) in 

trunks and branches, and nitrogen (N) in branches and leaves. NSC are a form of carbon 

reserves that consist of starch and soluble sugars such as glucose, fructose, and sucrose. 

NSC can be stored and remobilized for use in future biosynthesis (Mooney 1972; Chapin 

III, Schulze & Mooney 1990). We sampled wood from trunks using an increment borer 

and assayed the distal 3 cm of sapwood for NSC. From each tree, at each sample period, 

we harvested four branches from the crown using our hands or a telescoping tree pruner. 

Harvested branches consisted of two to four years of growth (estimated by bud scars). 

We harvested tissues in early June and mid-September in 2013 and 2014. In terms of 

acorn development, these sample dates cover the period of acorn development. In June, 

female flowers are already pollinated but still very small and in September they are full-

sized. In September, if the tree had acorns, we harvested two branches with acorns and 

two without acorns. We always harvested samples in the afternoon, between 1300 and 

1700 hours. After harvesting, we microwaved samples for 90 seconds at 600 watts to 

denature enzymes that could alter the carbohydrate chemistry of the plant tissues (Popp et 

al. 1996). Following the microwave shock treatment, we dried samples at 50 °C for five 

to seven days. 
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 All of the plant samples for NSC or N assays were ground to a fine powder using 

a two-step process. First they were chopped up coarsely in a Wiley mill (Thomas 

Scientific, Swedesboro, New Jersey, USA) and then we crushed them in a ball mill 

(Cianflone 2601, Pittsburgh, Pennsylvania, USA). NSC were assayed following the same 

methods described in Chapters 1 and 2. Samples were extracted, fractionated, and 

digested with a series of enzymes, until they were measured colorimetrically in the final 

step. We calculated sample concentrations of starch and soluble sugars (glucose, fructose, 

and sucrose) using a standard curve and dilution factors. The sum of starch and soluble 

sugar concentrations yielded total NSC. We verified enzyme activity in every batch of 

samples using prepared standards of starch, glucose, fructose, and sucrose. 

 Branch and leaf samples were assayed for total N by the Ecosystem Analysis Lab 

at University of Nebraska – Lincoln, using combustion gas chromatography with a 

Costech Analytical ECS 4010 (Costech Analytical Technologies Inc., Valencia, 

California, USA). 

 

Flowers and Acorns 

 

 We estimated flower crops by arbitrarily choosing two branches on each tree and 

counting all of the flowers and leaves. (Pearse et al. 2014). This provides a measure of 

flower density (flowers/leaves), which is a way to control for sampling different sized 

branches among trees. We counted flowers and leaves in the late spring, after pollination 

occurs, marked the sampled branches, and returned in fall of the same year to count 

acorns to determine acorn set (acorns/flowers). Within trees, data from both sampled 
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branches were pooled. On Q. douglasii, we counted flowers only in 2015. On Q. lobata, 

we counted flowers in 2013, 2014, and 2015. 

 To measure acorn production, two observers counted acorns on different parts 

each tree for 15 s. The two counts were summed for a total count per 30 seconds per tree. 

This method correlates closely with estimates from seed traps, but avoids underestimating 

due to acorn removal by avian seed predators (Koenig et al. 1994a).  We counted acorns 

in all years of the study. 

 

Statistical Analysis 

 

 We tested three predictions of the hypothesis that acorn production by Q. lobata 

and Q. douglasii is resource-limited. The first prediction was that resource concentrations 

during floral induction, in year t – 1, will have a positive effect on flowers in year t. For 

each species, we tested the effects of branch NSC, branch N, and leaf N, from both 

sampling dates, and the difference between the sampling dates (∆ resources: final – 

initial), for a total of nine statistical models for each species. We did not combine 

independent variables into the same models because of issues with collinearity, and we 

did not use a model selection approach because interpreting the results was 

straightforward. For Q. lobata, we used mixed effects generalized linear models 

(GLMMs) with Poisson distributed error structures and log link functions. In each model, 

we included a random effect of individual ID on the intercept in order to account for 

repeated sampling of the same individuals (Zuur et al. 2009). Models were overdispersed, 

so we also added an observation level random effect (OLRE) which had the effect of 
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correcting the overdispersion and making P-values more conservative (Harrison 2014). In 

each model, the dependent variable was the pooled number of flowers from both sampled 

branches of each tree in year t and the independent variable was the resource of interest in 

year t – 1. In each model we included an offset of the number of leaves from both 

sampled branches of each tree in year t, which effectively scales the number of flowers 

sampled on each tree to the number of leaves sampled on each tree (Pearse et al. 2015). 

For Q. douglasii, we only had one year of flower data, and thus we used generalized 

linear models (without random effects) with a quasi-Poisson distribution and log link 

function. Again, we included an offset of the number of leaves sampled on each tree. The 

dependent variable was the pooled number of flowers from both sampled branches of 

each tree in 2015 and the independent variable was the resource of interest in 2014. 

 Second, we tested the prediction that resources early in the growing season will 

predict acorn set (acorns/flowers) in the fall. We could only test this prediction in Q. 

lobata because we counted flowers in Q. douglasii in a year when we did not measure 

resources. For Q. lobata, we tested the effect of trunk NSC, branch NSC, branch N, and 

leaf N from the June sampling date on acorn set, which gives a total of four models. We 

used the same methods as for the first prediction: Poisson GLMMs with individual ID 

and OLRE as the random effects. The dependent variable was acorns pooled from the 

sampled branches for each tree, the independent variable was the resource of interest, and 

the offset was the pooled flowers from the sampled branches for each tree.  

 The third prediction we tested was that the change in resources during acorn 

development (∆ resources: final – initial) would relate negatively with acorn production. 

We used linear mixed effects models (LMMs) with individual ID as a random effect, to 
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test the effect of ∆ trunk NSC, ∆ branch NSC, ∆ branch N, and ∆ leaf N on ln-

transformed acorn counts, which yielded four models for each species. We obtained P-

values from Wald Type II chi-squared tests. 

 Some samples were lost during analysis, so actual sample sizes for analyses are 

reported in the results. All analyses were performed with R version 3.3.3 (R Core Team 

2017). We fit GLMMs and LMMs using the ‘lme4’ package, version 1.1-12 (Bates et al. 

2015). We performed Wald Type II chi-squared tests using the ‘car’ package, version 

2.1-4 (Fox & Weisberg 2011). 

 

Results 

 

Acorn production 

 

 Mean annual ln-transformed acorn production (± SD) for our study population of 

Q. lobata from 1980 to 2014 was 1.94 ± 1.18, with a range of 0.13 to 4.24. In 2013 mean 

ln-transformed acorn production for Q. lobata was 1.67, and in 2014 it was 1.90. Thus, 

the two years in which we measured resources were close to average in terms of acorn 

production. 

 For our study population of Q. douglasii, mean annual ln-transformed acorn 

production (± SD) from 1980 to 2014 was 1.88 ± 0.96, with a range of 0.28 to 3.81. In 

2013 mean ln-transformed acorn production for Q. douglasii was 1.25, and in 2014 it was 

0.73. Thus, the two years in which we measured resources had below average and low 

acorn production, respectively.  
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Prediction 1: Resources in during flower initiation (year t – 1) will have a positive effect 

on the number of flowers in year t 

 

In Q. lobata, ∆ leaf N had a significant positive effect on the relative number of 

flowers (n = 62, Z = 3.87, P < 0.001; Fig. 4). 80% of the values for ∆ leaf N were 

negative, so Q. lobata trees that produced more flowers retained more N in their leaves 

during the previous summer, when flower initiation starts in buds. No other models of Q. 

lobata flower production had significant effects (Table 1). Likewise, we found no effect 

of resources on flower production in the drought stress tolerant Q. douglasii (Table 2). 

 

Prediction 2: Resources in the spring (after flowers are pollinated, but before they start 

developing into acorns) will have a positive effect on acorn set (acorns/flowers) 

 

We found no significant effects of resources during the spring on acorn set in Q. 

lobata (Table 3). 

 

Prediction 3: ∆ resources (the change in resources from June to September) will vary 

negatively with acorn production 

 

 In Q. lobata, ∆ branch N had a negative effect on ln-transformed acorn counts (n 

= 61, χ2 = 4.73, P = 0.03; Fig. 5a). 70% of values for ∆ branch N were negative, so trees 

that produced more acorns also experienced more depletion in branch N during the 



87 

 

summer, when acorns were developing. No other resources had significant effects on ln-

transformed acorn counts (Table 4). 

In Q. douglasii, ∆ branch NSC had a negative effect on ln-transformed acorn 

counts (N = 21, χ2 = 7.37, P = 0.007; Fig 5b). All but one of the values for ∆ branch NSC 

were positive, so trees that produced fewer acorns accumulated more NSC in branches 

during the growing season. No other resources had significant effects on ln-transformed 

acorn counts (Table 4). 

 

Discussion 

 

 Our results suggest that different resources are important for these two closely 

related oak trees with different water use strategies. In drought avoiding Q. lobata, the 

change in leaf N during flower initiation had a positive effect on flowering, and the 

change in branch N during acorn maturation varied negatively with acorn production. In 

the drought tolerant Q. douglasii, there was no effect of the resources we measured on 

flowering, but the change in branch NSC during acorn maturation varied negatively with 

acorn production. Collectively, this evidence suggests that N and NSC are important for 

explaining variation in acorn production for Q. lobata and Q. douglasii, respectively. 

Furthermore, there is support for some predictions of the hypothesis that acorn 

production in these two species is resource limited.  

 Based on what we know about the water relations of these trees, the differences in 

the key nutrients for reproduction is perhaps unsurprising. Q. douglasii reaches very low 

water potentials during the summer (Knops & Koenig 1994, 2000), which is likely to 
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limit rates of carbon assimilation (Xu & Baldocchi 2003). There is likely to be a cost to 

other functions for Q. douglasii to develop large crops of acorns during this period of 

relative carbon famine. Our data suggest that one cost may be to branch carbon reserves. 

This is an unusual result for masting trees, as only two prior studies have found effects of 

fruiting on carbon reserves (Miyazaki et al. 2002; Rapp & Crone 2015). 

 Q. lobata does not reach such low water potentials as Q. douglasii (Knops & 

Koenig 1994, 2000), and thus is not likely to experience the same constraints on carbon 

assimilation during the dry months. Therefore, the next most likely limiting factors are 

nutrients from the soil. Indeed, soil N was important for flowering and fruiting in several 

other temperate masting tree species (Han, Kabeya & Hoch 2011; Smaill et al. 2011; Sala 

et al. 2012; Miyazaki et al. 2014; Bogdziewicz et al. 2016). There is a general association 

of Q. lobata with fertile soils (Jepson 1910), but that is unlikely to driving the species 

differences we observed, as a previous study at our site found no difference in soil 

fertility between Q. lobata and Q. douglasii (Knops & Koenig 1997). The same study 

did, however, find that Q. douglasii retranslocated more N from its leaves before 

abscission in the fall than did Q. lobata. Consequently, differences in limiting nutrients 

between our two study species are likely to be driven by functional traits such as water 

use efficiency and nitrogen use efficiency, rather than differences in habitat.  

 Although we found support for predictions of the hypothesis that acorn 

production in these species is resource limited, we were unable to conclusively 

demonstrate resource limitation for several reasons. For one, we did not manipulate 

resource availability. Previous studies on masting trees have successfully increased seed 

production by adding fertilizer to the soil (Smaill et al. 2011; Bogdziewicz et al. 2016), 
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but it would be difficult manipulate these large trees’ carbon budgets. Furthermore, we 

are unable to reveal anything about the longer term dynamics of the resources we 

measured. The effects we observed could be transient during the dry growing season, and 

resource levels may rebound when temperatures cool and rain returns in the fall. Lastly, a 

mast year did not occur during our study period. Although, we had some individuals with 

very high seed production, resource allocation patterns may be qualitatively different in 

years where most individuals have large seed crops. 

 We found that water potential correlated with some of the resources we measured, 

but in unexpected ways. First, the resources that most correlated with water potential in 

each species were reversed compared to the patterns observed for acorn production. NSC 

correlated with water potential in Q. lobata and N correlated with water potential in Q. 

douglasii. Moreover, the direction of the correlation was surprising: drier plants had more 

resources. This is intriguing, especially in light of previous research that showed that 

water potential correlated positively with acorn production in both of our study species 

(Barringer, Koenig & Knops 2013). All things considered, trees with less access to water 

may be generally more conservative with their resources than trees with greater access to 

water. Alternatively, resources may build up in trees with less access to water due to 

growth ceasing in response to drought stress faster than photosynthesis does (Muller et al. 

2011). 

 In conclusion, we found support for patterns predicted by the hypothesis that seed 

production is resource-limited in masting plants. We also found that two closely related 

plants living in the same habitat contrasted in which resources were most relevant for 

reproduction. This suggests that in addition to the abiotic environment, species functional 
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traits are important for determining which resources are most relevant for limiting 

reproduction in masting species. This is germane for future research on proximate 

mechanisms for masting because it implies that there may not be a widespread 

evolutionarily conserved mechanism for masting. Even between these two sympatric and 

closely related taxa, we found evidence for differences in resource limitation, which is 

hypothesized to be a fundamental part of the mechanism driving masting (Sork et al. 

1993; Kelly & Sork 2002; Crone & Rapp 2014; Pearse et al. 2016). 
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Tables 

 

Table 1. Model results for prediction 1 in Q. lobata for each resource analyzed. b ± SE is 

the unstandardized regression coefficient ± standard error. 

Resource b ± SE z P 

Δ Branch NSC -0.04 ± 0.22 -0.16 0.87 

Δ Leaf N 2.93 ± 0.76 3.87 0.0001 

Δ Branch N -0.27 ± 1.63 -0.16 0.87 
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Table 2. Model results for prediction 1 in Q. douglasii for each resource analyzed. b ± SE 

is the unstandardized regression coefficient ± standard error. 

Resource b ± SE z P 

Δ Branch NSC -0.72 ± 0.31 -2.31 0.05 

Δ Leaf N -2.69 ± 1.52 -1.77 0.09 

Δ Branch N 2.00 ± 2.20 0.91 0.37 
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Table 3. Model results for prediction 2 in Q. lobata for each resource analyzed. b ± 

standard error is the unstandardized regression coefficient ± standard error. 

Resource b ± SE z P 

Δ Trunk NSC -0.02 ± 0.06 -0.33 0.74 

Δ Branch NSC -0.16 ± 0.33 -0.48 0.63 

Δ Leaf N -1.17 ± 1.-1 -1.16 0.25 

Δ Branch N 2.06 ± 2.07 1.00 0.32 
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Table 4. Model results for prediction 3 in Q. lobata and Q. douglasii for each resource 

analyzed. b ± standard error is the unstandardized regression coefficient ± standard error. 

Species Resource b ± SE χ2 P 

Q. lobata Δ Trunk NSC -0.06 ± 0.06 0.97 0.33 

 Δ Branch NSC 0.10 ± 0.25 0.17 0.68 

 Δ Leaf N 0.09 ± 0.84 0.01 0.92 

 Δ Branch N -4.10 ± 1.89 4.73 0.03 

Q. douglasii Δ Trunk NSC 0.12 ± 0.09 1.78 0.18 

 Δ Branch NSC -0.48 ± 0.18 7.37 0.007 

 Δ Leaf N -1.34 ± 1.63 0.68 0.41 

 Δ Branch N 0.52 ± 0.63 0.67 0.41 
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Figures 

 

 

Figure 1. Left, Q. lobata leaves and acorns in September. Right, Q. douglasii leaves and 

an acorn in early development, center, in June. 
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Figure 2. Reproductive phenology of Q. lobata and Q. douglasii, and potential stages at 

which acorn production can be limited. 
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Figure 3. Histogram of pre-dawn xylem water potential of Q. douglasii (red) and Q. 

lobata (blue) in our study population (data from Knops and Koenig 2000). 
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Figure 4. Relationship between the change in leaf nitrogen concentration from June to 

September and relative flower production in sampled branches of Q. lobata. 
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a)     b) 

 

Figure 5. Relationship between the change from June to September in either branch 

nitrogen concentration (a; Q. lobata) or branch non-structural carbohydrates 

concentration (b; Q. douglasii) and natural log-transformed acorn counts. Points are 

colored according to year of sampling. 
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