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 Increased myocardial stiffness, which is characteristic of many 

cardiovascular diseases, leads to a loss of diastolic function and is a cause of 

diastolic heart failure. Current methods to estimate myocardial stiffness rely on 

pressure-volume relationships derived from invasive cardiac catheter 

measurements. Noninvasive methods to estimate myocardial stiffness include 

ultrasound-based and magnetic resonance-based shear wave elastography, where 

the stiffness of the tissue is related to the propagation speed of a shear wave. 

Currently, ultrasound-based cardiac shear wave elastography includes acoustic 

radiation force based methods; however, the in vivo generation and detection of 

the shear waves in myocardium is significantly degraded due to limited acoustic 

radiation force penetration and clutter noise introduced from the chest wall. A 

similar degradation of shear waves occurs in cardiac magnetic resonance 

elastography because of the external source used for shear wave generation. 

Consistently successful cardiac shear wave elastography is limited to patients with 

a thin chest wall and low body mass index. To meet the needs of the patients 

suffering from diastolic heart failure, the long-term goal of this research is to 

develop a cardiac shear wave elastography technique where the shear wave is 



generated within the heart by the mechanical stimulus of the late diastolic atrial 

kick. The amplitude of this wave is at least one order of magnitude higher than 

acoustic radiation force induced shear waves and thus more easily visualized, 

having a higher chance of detection in a broader patient population. This 

dissertation introduces a method for shear wave speed estimation in shear wave 

elastography and compares it to conventional methods. A method termed cardiac 

atrial kick shear wave elastography is introduced to measure the atrial kick shear 

wave speed. A pilot study was performed using this method which measured the 

atrial kick shear wave speed and compared it to common measures of cardiac 

health taken at the clinic and in conventional echocardiogram reports. Results 

suggest that cardiac atrial kick shear wave elastography is a promising tool that 

can be used for assessment of diastolic function and myocardial stiffness.  
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Chapter 1. 
 
 

Introduction  

1.1. Elastography: Imaging the Stiffness of Tissues 

Hippocrates, often considered the father of modern medicine, advocated for 

the study of disease by means such as palpation and auscultation, touching and 

listening to the body for signs of abnormalities. From studies on the character of 

the swelling of the body he concluded that, “Swellings that are painful, big and 

hard, indicate a danger of death in the near future; such as soft and painless, 

yielding to the pressure of the finger, are of a more chronic character (Katz and 

Katz 1962).” Nearly 2500 years ago, Hippocrates demonstrated and wrote that the 

stiffness of the tissue was a characteristic feature allowing for differentiation of 

disease. To this day physicians palpate the surface of the body, searching for 

abnormalities, trusting their experience to guide their judgment in the treatment 

of their patients.  

Elastography, in this manner, has been carried out for over two millennia. 

Physicians probe the surface of the body with their fingers and visualize 

abnormalities within the eyes of their mind. Yet, a flaw in this technique is the 

fingers are always on the surface of the body and complex structures deep within 

the body cannot be easily visualized. Medical imaging techniques such as X-ray, 

ultrasound, and magnetic resonance imaging (MRI) extended the eyes of the 

physician into the body, to see what could not be seen.  
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While truly “feeling” (with human senses) beneath the skin is not currently 

possible, it is possible to use the methods developed to see beneath the surface, 

such as ultrasound, to extend the fingers of the physician past the surface and 

further into the body, to feel what could not be felt. The research conducted and 

presented in this dissertation investigates the mechanical properties of tissues 

through the use of ultrasound imaging. To help explain this, the remainder of this 

section presents a brief introduction of ultrasound imaging and its progression 

into elastography as a tool to visualize the mechanical properties of tissues.  

Ultrasound is a noninvasive imaging modality which uses high frequency 

sound waves to visualize the internal structures of the body. Its roots reach back to 

the mid 1900’s in sonar as a method to detect objects beneath the surface of water 

and then as a method of nondestructive testing through the use of a handheld 

“reflectoscope” (Firestone 1946). This paved the way for ultrasound research of the 

human body with medical applications such as the investigation of fetal growth 

(Donald et al. 1958) and cardiac anatomy and movement (Edler and Lindström 

2004). Figure 1.1 shows an image of a heart taken with ultrasound imaging methods 

presented in Chapter 2. Here, the tissue structure and muscle appear bright and 

are delineated from the blood which has a darker appearance.  

A next natural step after visualization of the internal structure of tissues is to 

visualize deformation to the internal structures. Analysis of deformations using 
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ultrasound imaging allows for the nondestructive and noninvasive evaluation of 

the mechanical properties of tissues. This is important because often the ultrasonic 

visualization of tissue structure of not a good indicator of the physiological or 

pathologic condition of the tissue (Wagner et al. 1983; Wagner et al. 1988). This is 

shown in Figure 1.2 where a traditional ultrasound image fails to adequately 

visualize a hard inclusion embedded in a soft tissue phantom; however, the 

corresponding elastography image is able to visualize the hard inclusion and 

shows the clinical viability and necessity of elastography.  

 

Figure 1.1 Ultrasound image of the heart showing 4 chambers. Overall the image 
has a “grainy” appearance. The muscle of the heart has a brighter image 
response while the blood appears as a darker region.   

 

 

 

 

 

 

In a type of double  
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Ultrasound-based elastography is becoming more widely used in the clinic 

(Shiina et al. 2015), and different methods have been used for various clinical 

applications including the staging of liver fibrosis (Nightingale et al. 2015; Palmeri 

et al. 2008; Sandrin et al. 2003) and breast cancer (Barr et al. 2015; Evans et al. 

2010), the assessment of the condition of the musculoskeletal system (Brum et al. 

2014; Cortes et al. 2016; Eby et al. 2013), the quantification of arterial stiffness in the 

progression of atherosclerosis (Apostolakis et al. 2016; Bernal et al. 2011; Maksuti et 

al. 2015), and the investigation of the stiffness and orientation of the fibers in the 

myocardium (Couade et al. 2011; Pernot et al. 2011; Song et al. 2016b).  

 

Figure 1.2 Example of inclusion phantom where a hard inclusion is inserted into 
a soft background. (left) A traditional ultrasound image. The inclusion is 
difficult to visualize. (right) Elastography type image where the inclusion 
is better visualized. Imaged using a Verasonics Vantage with a method 
developed in Chapter 3. 
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In addition to ultrasound-based elastography, magnetic resonance 

elastography (MRE) is proving to be a useful tool for the visualization of tissue 

stiffness (Muthupillai et al. 1995; Muthupillai and Ehman 1996). MRE is being 

actively developed for clinical applications in tissues such as the liver (Venkatesh 

et al. 2013), the brain (Kruse et al. 2008; Manduca et al. 2001), the lung (Mariappan 

et al. 2012), and the heart (Elgeti et al. 2010; Elgeti et al. 2014; Wassenaar et al. 

2016).  

As a noninvasive method for mechanical testing of tissue, elastography 

methods work by first disturbing the tissue in some way and then evaluating and 

quantifying the response (Greenleaf et al. 2003). The methods previously 

implemented use an external disturbance such as a compression (O’Donnell et al. 

1994; Ophir et al. 1991), vibration (Parker et al. 1990; Yamakoshi et al. 1990; Zhao et 

al. 2014), or a push from an extended burst of sound from the ultrasound 

transducer (Bercoff et al. 2004; Chen et al. 2009; Sarvazyan et al. 1998). However, 

in some cases the disturbance can be applied not only from an external source, but 

also from normal physiological motions (Konofagou et al. 2011; Pernot et al. 2007). 

This is usually limited to motion produced from the beating of the heart. While 

ultrasound-based elastography has been performed by analyzing the disturbances 

produced by heart valve closures (Kanai 2005; Strachinaru et al. 2017; Vos et al. 

2017), and the propagation of the electrical activation of muscle contraction 

(Provost et al. 2011; Provost et al. 2013), there has been little development of cardiac 
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elastography which use the disturbances caused by muscle contractions (Pislaru et 

al. 2014).  

1.2. Long Term Goal of Research 

The long-term goal of this research is to develop an ultrasound based 

elastography method—using the cardiac muscle contraction as the impulse for 

tissue deformation—to noninvasively assess the in vivo stiffness of the heart. This 

is clinically relevant for a variety of cardiac pathologies including damage from 

myocardial ischemia and infarction, and hypertrophic cardiomyopathy. As these 

conditions progress, there is a loss of cardiac function, and this can result in 

Diastolic Heart Failure (DHF).  

1.3. Contribution of Research in this Dissertation 

To meet the long-term goal to develop a cardiac elastography method to 

assess myocardial stiffness, this dissertation is organized as follows: 

Chapter 2 provides the clinical motivations for this research, introduces the 

anatomy and physiology of the heart, and shows how increases in myocardial 

stiffness can result in DHF. From this, a more in-depth exploration of ultrasound-

based elastography is provided. The traditional methods and theory behind 

elastography as a technique to measure the in vivo stiffness of tissues will be 

explored.  

Chapter 3 demonstrates the ability of ultrasound elastography to 

characterize and image the stiffness of tissues. The response from an external 
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vibration to the surface of tissue mimicking ultrasound phantoms having different 

stiffness is imaged and quantified. A method is developed which provides an 

accurate estimation of tissue stiffness in a 2D space and allows the visualization of 

stiffness overlaid on a traditional ultrasound B-mode image.  

Chapter 4 introduces Cardiac Atrial Kick Shear Wave Elastography as a 

method to estimate the in vivo stiffness of the heart. Here, the stimulus for tissue 

deformation is not an external vibration as in Chapter 3, but rather the contraction 

of a section of the myocardium on one side of the heart which produces movement 

on an adjacent section of passive and non-contracting myocardium. An in vivo 

study was performed which correlated the result from the elastography 

measurement to conventional measures of health. 

Chapter 5 summarizes the research in this dissertation and proposes future 

research. This includes the investigation of different methods used to visualize 

tissue movement using ultrasound and a method to measure the stiffness of the 

heart from vibrations caused by the closure of heart valves.  
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Chapter 2. 
 
 

Background Information and Literature Review 

2.1. Clinical Motivation 

Aristotle identified the heart as the most important organ in the body, life 

begins and ends with the beating of the heart (Peck 1942). Centuries later, the 

physician William Harvey proposed in his work, “On the Motion of the Heart and 

Blood in Living Beings (1628)”, that blood flows in a circle throughout the body 

and that the heart, being the center of the circulatory system, was the driving force 

responsible for pumping blood throughout the body. The disruption or 

impairment of this driving force has significant negative outcomes, thus diseases 

of the heart are the leading cause of death in the United States (Heron 2016).  

The work presented in this dissertation demonstrates an ultrasound-based 

cardiac elastography method to help reduce the burden that these diseases place 

on society. To understand how ultrasound elastography fits into the initial clinical 

diagnosis and evaluation of cardiac diseases, it is necessary to first discuss the 

normal form and function of the heart. Then, with an understanding of a healthy 

heart, the pathological heart is investigated. Specifically, the condition of the heart 

as it relates to DHF is discussed and the need for the development of methods 

which quantify myocardial stiffness is presented. This chapter ends with an in-

depth analysis of the possible methods which may be used to estimate myocardial 

stiffness.  
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2.2. The Circulatory System   

The body requires a near constant supply of oxygen and nutrients in order to 

survive. Blood is the carrier for these nutrients and flows through a network of 

vessels to reach and perfuse nearly every tissue within the body. A simplified 

version of this network, or circulatory system, is shown in Figure 2.1. This total 

circulatory system is composed of two smaller circulatory systems in a type of 

double loop configuration. One loop is composed of the heart-lung or pulmonary 

circulatory system, while the other loop is the heart-body or systemic circulatory 

system.   

2.2.1. Pulmonary circulation 

The pulmonary circulation, the top loop in Figure 2.1, is responsible for 

regulating the exchange of deoxygenated blood into oxygenated blood. The 

deoxygenated blood flows from the heart through the pulmonary artery and into 

the lungs where it moves through a network of alveolar capillaries. Alveoli are 

small gas filled sacs, air pockets in the lung, and the site for the gas exchange of 

the pulmonary circulation.  Specifically, as blood passes through the alveolar 

capillaries, carbon dioxide which saturates the blood is replaced with the oxygen 

contained in the alveoli. After the gas exchange, the oxygenated blood then 

returns back to the heart through the pulmonary vein so it may enter the systemic 

circulation.  
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2.2.2. Systemic circulation 

The systemic circulation, the bottom loop of Figure 2.1, is the network of 

arteries and veins which work to supply oxygen and nutrients to the body. This 

system begins at the heart with the oxygenated blood having just exited the 

pulmonary circulation. As the heart muscle contracts, blood flows out of the heart 

to the body through the aorta. The aorta then branches off into a large network of 

arteries which sends blood to the separate parts of the body. With more and more 

branching the vessels get smaller and smaller until blood is forced through 

capillaries where oxygen and nutrients gets exchanged for carbon dioxide and 

waste products. Following this, blood then flows through veins to return to the 

heart and enters the pulmonary circulation where the process begins again.  
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2.3. Cardiac Anatomy 

The cardiac anatomy, the center of the circulatory system, can be defined by 

the type of function it is asked to perform and the pathway for blood in the body. 

The pathway for blood was shown as a double looping circulatory system 

consisting of the pulmonary and systemic circulations, where blood passes 

through the heart once for each loop. Because of this, there are two sides for the 

heart, two separate pumps for each circulatory system. These two pumps are 

 

Figure 2.1 Simplified Circulatory System. The upper loop represents the 
pulmonary circulation from heart to lungs where blood is oxygenated. 
The lower loop represents the systemic circulation from the heart to the 
body where blood transfers oxygen to the tissue.  

 

 

 

 

 

In a type of double  
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simply called the right heart and left heart. The right heart is responsible for the 

movement of deoxygenated blood into the pulmonary circulation while the left is 

responsible for the movement of oxygenated blood into the systemic circulation.  

Figure 2.2 shows the cardiac anatomy in a more in-depth manner than 

shown in Figure 2.1. The orientation of the heart and the blue and red coloring of 

arteries and veins are similar. Two chambers can be seen when looking at one side 

of the heart. These are the smaller “receiving” chamber, the atrium, and the larger 

“pumping” chamber, the ventricle. The atrium is responsible for collection of 

 

Figure 2.2 Cardiac anatomy. From nhlbi.nih.gov. 

 

 

 

 

In a type of double  
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blood as it returns to the heart, through the veins, from the body or the lungs. The 

ventricle is responsible for the delivery of blood away from the heart through 

arteries. Together, the four chambers of the heart are the right atrium (RA), right 

ventricle (RV), left atrium (LA), and left ventricle (LV). The part of the 

myocardium which separates chambers is the septum. The interventricular septum 

(IVS) separates the LV and the RV.  

Within the heart there are four valves which regulate the movement of 

blood through the circulatory system and prevent backflow. In order and along the 

pathway of blood returning from the body and filling into the RA, the valves are 1) 

the tricuspid valve, separating the RA from the RV, 2) the pulmonary valve, 

separating the RV and the pulmonary artery, 3) the mitral valve separating the LA 

from the LV, and 4) the aortic valve separating the LV from the aorta. The opening 

and closing of these valves allow the chambers of the heart to collect and store 

blood during the different phases of the heart cycle. 

2.3.1. Cardiac Functions—Systole and Diastole 

The pulsatile manner in which the heart drives blood through the 

circulatory system suggests that there are two main phases of the heart cycle—an 

“on” phase and an “off” phase. The on phase is termed systole, and reflects the 

active contraction of the ventricles as they work to pump blood toward either the 

lungs (from the RV) or the body (from the LV). Both the RV and LV pump 

approximately equal amounts of blood during the systolic phase of the heart cycle.  



14 

Following systole is the off phase termed diastole. This phase is considered the 

resting or relaxing phase of the heart where the ventricles fill up with blood which 

will later be pumped out during systole. The contraction of systole followed by the 

relaxation of diastole allows the heart to work as a pump and ensures the body is 

supplied with sufficient oxygen and nutrients to sustain life.  

Figure 2.3 shows ultrasound images of the heart which illustrate the 

differences in the heart between systole and diastole. These were taken using an 

apical 4-chamber view which allows for identification of all four chambers of the 

heart and the valves which separate them. The ventricles are noticeably larger 

during diastole as they are filling with blood. The IVS is in the middle of the image 

and appears thicker during systole. It is thinned and elongated downward during 

 

Figure 2.3 Apical 4 chamber view of the heart in (left) systole and (right) diastole. 
In this view the 4 chambers are visible as well as the mitral and tricuspid 
valves separating the atria from the ventricles. In systole, the ventricles are 
contracted and the ventricular chamber is small, the atria are filling up 
with blood. In diastole, the ventricular chambers are growing larger and 
filling with blood flowing from the atria.   
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diastole. Part of this downward elongation is discussed in Chapter 4 to form an 

ultrasound-based elastography method. 

2.3.2. Cardiac Electrophysiology 

Luigi Galvani discovered, in 1790, that by applying an electrical stimulus to 

an isolated muscle the muscle would contract as if it were alive (Piccolino 1997). 

Decades later, in 1844, Carlo Matteucci performed experiments where an isolated 

muscle was made to contract by placing it upon a beating heart. No outside 

electrical stimulus was applied. This brought about the discovery that the heart 

must produce its own electricity, and the beating of the heart was the result of its 

own spontaneous and semiperiodic generation of electricity. The first human 

recording of cardiac electrical activity, and electrocardiogram (ECG), was 

performed by Augustus Waller in 1887 (Waller 1887). Today, an ECG is performed 

by placing multiple electrodes on the surface of the body surrounding the heart 

and then calculating differences in the voltages recorded between the electrodes 

(Dubin 1996). Throughout this dissertation, all ECGs used in experiments were 

taken using a three electrode setup. The difference between two electrodes was 

calculated while the third was used as a ground reference. In this way, the 

electrical activity on the axis connecting the two differencing electrodes is 

visualized. Specifically, the propagation of electrical activity through the heart is 

visualized and deflections seen in an ECG are identified as waves. An example of 

an ECG recording is seen in Figure 2.4. Five features of the ECG signal are typically 
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identified (P, Q, R, S, T) and termed “waves.” These waves are related; each is 

primarily due to the propagation of a single electrical “event” which propagates 

throughout the heart and induces cardiac muscle contraction.  

The heart cycle, referring to the series of both electrical and mechanical 

events that includes systole and diastole, begins with the spontaneous and 

semiperiodic electrical activation of the sinoatrial (SA) node, where the SA node is 

located on the surface of the RA. Following its activation, the electrical activity 

propagates across the atria causing the myocardium of the atria to contract and is 

associated with the P-wave of the ECG. This contraction of the atria, or the atrial 

“kick”, is a final push to fill the ventricles with blood near the end of diastole. Prior 

 

Figure 2.4 An ECG recording where the P,Q,R,S, and T waves are identified. The 
QRS-complex marks the beginning of systole. Diastole generally begins 
after the onset of the T-wave. The P-wave is the start of the heart cycle, 
associated with atrial contraction, the Q,R, and S-waves are associated 
with ventricular contraction. The T-wave is associated with the 
“resetting” of the ability of the ventricles to contract.  
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to the atrial kick, ventricular filling is a passive event due to differences in pressure 

between the atria and the ventricles.  

The Q, R, and S-waves together are known as the QRS-complex and are 

associated with the rapid propagation of electrical energy spreading across the 

bulk of the ventricular myocardium causing ventricular contraction and the 

systolic phase to commence. From the P-wave to the QRS-complex, the electrical 

energy initially propagating across the atria makes its way to the ventricles 

through the atrio-ventricular (AV) node. The advancing electrical wave is unable 

to directly move from the atria to the ventricles through the myocardium because 

the myocardium of the upper and lower chambers are electrically isolated. The AV 

node is the only path for electrical propagation and the speed of conduction is 

slow when compared to the conduction speed of the myocardium. This insulation, 

and the slow conduction speed of the AV node, results in the pause between the 

end of the P-wave and the beginning of the QRS-complex. The pause between the 

contraction of the atria and the ventricles is beneficial to cardiac function as it 

allows time for the ventricles to fill with blood during the atrial kick.  

The QRS-complex is the most dominant signal in the ECG and thus is often 

used to trigger data acquisition for separate imaging techniques such as MRI and 

ultrasound for their synchronization with the heart cycle. In this way, the pattern 

of the ECG can be used to identify cardiac events throughout the heart cycle for 

different imaging modalities. In Chapter 4, the movement of the IVS which is 

caused the contraction of the atria during the atrial kick is studied.  
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2.4. Heart failure and what can go wrong 

As the main job of the heart is to supply oxygenated blood and nutrients to 

the body, when the heart fails to do this, it is termed heart failure. The incidence of 

heart failure is increasing (Velagaleti et al. 2008). It is listed as a cause of death in 

11% of deaths in the United States (Mozaffarian et al. 2015), and the cost of 

treatment was estimated at $30 billion for the year 2012 (Heidenreich et al. 2013). 

Heart failure itself is a subset of cardiovascular disease (CVD), which is the leading 

cause of death in America since 1919, and listed as a cause of death on 54% of all 

deaths in the United States for 2014 (Benjamin et al. 2017). Heart Failure is defined 

by the American College of Cardiology (ACC) and American Heart Association 

(AHA) as “a complex clinical syndrome that results from any structural or 

functional impairment of ventricular filling or ejection of blood (Yancy et al. 

2013).” Given this, heart failure can arise from many different diseases or 

conditions and may originate elsewhere in the body. It may affect one or both 

sides of the heart and impair not only the contractile function, but the relaxing 

function as well (Jessup and Brozena 2003).  

Diagnosis and determination of the underlying cause is difficult in patients 

with heart failure as the symptoms often overlap with symptoms of other diseases 

(McMurray et al. 2012). The first symptom of heart failure is often shortness of 

breath as the systemic organs suffer from inadequate blood perfusion and the body 

becomes starved of oxygen. Patients may also feel weak or fatigued and the 

symptoms are often mild and may first appear during exercise or when the heart is 



19 

stressed is some way (New York Heart Association. Criteria Committee and New 

York Heart Association 1994).   

2.4.1. Diastolic Heart Failure and Diastolic Dysfunction  

DHF refers to heart failure that has been caused by an abnormal function 

during the diastolic phase of the heart cycle—without a corresponding loss of 

function during the systolic phase. Over half of all patients with heart failure have 

DHF, and the percentage of patients diagnosed with DHF has increased from ~30% 

in 1987 to greater than 50% in 2001 (Gaasch and Zile 2004; Owan and Hodge 2006; 

Paulus et al. 2007).  

Diastolic dysfunction (DD), one of the requirements for diagnosis of DHF, 

refers to the inability to of the heart to relax and fill properly (Zile and Brutsaert 

2002). Causes for DD leading to DHF are varied. Because of the heart’s central 

location in the cardiovascular system—which then affects nearly all tissues in the 

body—conditions affecting regions both distal and proximal to the heart can lead 

to adverse cardiac conditions. These conditions include, but are not limited to, 

arterial hypertension (Diamond and Phillips 2005), valvular heart disease 

(Mandinov et al. 2000), restrictive and hypertrophic cardiomyopathy (Asher and 

Klein 2002; Maron 2002; Maron et al. 2014), myocardial ischemia (Bonow et al. 

1981), myocardial infarction (Thune and Solomon 2006), diabetes (Poirier et al. 

2001), and kidney diseases (Parfrey et al. 1996). Because of the high number of 

diseases that can lead to DD, it is common, and found in about 10-35% of the 
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general population with prevalence increasing to greater than 50% of the 

population over the age of 75 (Abhayaratna et al. 2006; Kuznetsova et al. 2009; 

Redfield et al. 2003).  

2.4.2. Cardiac Remodeling in the Presence of Disease  

DD is often the result of the response and adaptation of the heart in the 

presence of disease. The heart continuously adapts itself due to changing 

physiological conditions (Cohn et al. 2000). The most well-known example of this 

adaptation is the Frank-Starling mechanism (Frank 1959; Starling 1918), which 

simply states that in order to maintain cardiac output, the amount of blood 

supplied to the body, the heart contracts more forcefully as more blood enters the 

ventricular chambers. This mechanism does not physically change the structure of 

the heart but rather its function. Changes in the structure of the heart, cardiac 

remodeling, can occur due to chronic or acute changes in physiological conditions. 

In some cases this remodeling is beneficial for cardiac function and can occur with 

no adverse health effects, such as the physiologic enlargement of the heart of a 

trained athlete (Scharhag et al. 2002). In other cases, the remodeling of the heart is 

pathologic and results in adverse health effects and can lead to DHF.  

As an example of the progression of a disease leading to pathologic cardiac 

remodeling and DHF, the rest of this section will explore the response of the heart 

when the systemic circulation is under chronic high blood pressure 

(hypertension). This systemic hypertension may be the result of an underlying 
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disease; however, because many diseases can result in systemic hypertension a 

specific underlying disease is unimportant for this example. When the systemic 

circulation is under hypertension, the LV has to work harder to pump blood to the 

body. The Frank-Starling mechanism ensures that the same blood volume is 

delivered to the body regardless of blood pressure (Sonnenblick and Downing 

1963); however, the LV chamber is not isolated from the increased pressure and is 

itself under hypertension (Elzinga and Westerhof 1973).  

  The heart begins to remodel itself as a form of protection against the 

increased blood pressures within the LV chamber and the increased stress upon 

the chamber wall (Sasayama et al. 1974). The form of this remodeling can be 

described with the Law of Laplace for the heart, which is written as: 

 

𝜏 =  
𝑃𝑅

2ℎ
(2. 1) 

 

where  𝜏 is the circumferential wall stress, 𝑃 is internal chamber pressure, 𝑅 is the 

chamber radius, and ℎ is thickness of the chamber wall. An increased chamber 

pressure increases wall stress and the only way for the heart to reduce this stress is 

to undergo concentric hypertrophy, a thickening of the chamber wall (Grossman 

et al. 1975). The normal remodeling of the heart under concentric hypertrophy is to 

modify the myocardial extracellular matrix (ECM) to increase the amount of 

cardiomyocytes (cardiac muscle cells) within the wall. The wall becomes thicker by 

stacking the new cardiomyocytes up with the existing cardiomyocytes in parallel 
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layers (Bernardo et al. 2010). The ECM, which acts as scaffolding to guide the 

layering and growth of the cardiomyocytes, is composed of a collagen fiber 

network. The collagen fibers are mechanically stiffer than the cardiomyocytes 

which grow around them. The collagen fibers of the ECM normally synthesize and 

degrade over time (Berk et al. 2007), which results in normal hypertrophy with no 

loss of cardiac function. However, under pathological conditions, the synthesis and 

degradation of the collagen fiber network may become altered and begin to 

accumulate and undergo random crosslinking. This degrades the integrity of the 

ECM and leads to myocardial fibrosis and an increased stiffness of the myocardium 

(Weber 1989). With increasing myocardial stiffness, less blood enters into the 

ventricular chamber and DD becomes present. The heart must further adapt to 

maintain adequate blood supply to the body. If it cannot, then the outward signs 

and symptoms of DHF, such as shortness of breath, become more evident (Zile et 

al. 2004; Zile et al. 2015).  

The preceding example was of the remodeling of the heart under chronic 

systemic hypertension; however, this is not the sole cause of DHF, rather it is only 

one of the diseases which can lead to an increased myocardial stiffness and 

eventually DHF.  

2.4.3. The Need for Elastography  

A full range of both structural and functional measurements of the heart are 

needed to diagnose DHF (Nagueh et al. 2016; Paulus et al. 2007). As evidence of 
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DD is needed for the diagnosis, and an increased myocardial stiffness leads to DD, 

the measurement of myocardial stiffness is essential in the diagnosis and 

management of patients with DHF. Current methods to measure myocardial 

stiffness include cardiac catheterization, where the patient may be placed under 

general anesthesia and will experience ionizing radiation of X-ray based 

fluoroscopy. Currently, there are no standard noninvasive clinical measures of 

myocardial stiffness which can be used to assess the progression of DD and the 

cause of symptoms of those with DHF. More objective and noninvasive measures 

are needed to reduce false positives and detect its early stages (Mosterd et al. 

1997). Ultrasound elastography has the potential to provide an objective measure 

of myocardial stiffness. To better understand this, ultrasound is first introduced 

followed by a discussion of some current methods used in ultrasound 

elastography.   
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2.5. Principles of Medical Ultrasound  

Medical ultrasound is an imaging modality which uses high frequency sound 

waves, typically 1- 30 MHz, to visualize structures within the body. An ultrasound 

imaging procedure to acquire these images is performed by placing an ultrasound 

transducer on the surface of the body where the transducer acts as both the 

transmitter and the receiver to send ultrasound into the body and then record the 

resulting echoes. A gel is typically placed in between the transducer and the body 

to act as a coupling agent to improve the transfer of acoustic energy from the 

transducer face to the body. Figure 2.5 shows an example of a transducer used in 

 

Figure 2.5 Typical ultrasound transducer used in medical imaging. The light 
gray band on the face of the transducer houses the components which 
transduce electrical energy into mechanical energy, and vice versa, to 
emit ultrasound into the body and record ultrasound echoes returning to 
the transducer.  
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medical imaging. This type of transducer consists of multiple elements in an array 

rather than a single transducing element. Because single elements in the array can 

be excited individually and at different times, the array structure allows for the 

electronic manipulation of the acoustic transmit profile and provides a means to 

focus and steer the ultrasound beam. In this way, a high-resolution image can be 

formed over a large region of space. Figure 2.6 shows the setup for transmitting 

and focusing sound into one region in space. Here, one signal is split onto multiple 

channels and time delays are applied to steer the beam. The time delays for each 

channel are calculated based on 1) the distance between the desired point in space 

and the transducer element and 2) an assumed or average speed of sound in the 

body of 1540 m/s. Figure 2.6 shows delays applied to focus sound in the imaging 

plane. These delays may also be applied in such a way as to transmit unfocused 

 

Figure 2.6 Transmit structure for an N element array where xn signifies the 
transducer elements. Here the signal travels from left to right. A single 
pulse is applied and split into each channel where a time delay τ is 
applied before emitting the ultrasound into the tissue. This is a onetime 
focusing event. 
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sound into the body. This is often performed in ultrasound elastography in order 

to increase the imaging frame rate as a single unfocused transmit can cover the 

entire imaging region. These unfocused transmit methods will be discussed later.  

Figure 2.7 on the left shows the transmit profile for a conventional focused 

ultrasound data acquisition event. The brightness of this figure represents the 

acoustic energy for a single ultrasound transmit. Using the structure shown in 

Figure 2.6 the beam is focused at a depth of 70 mm and steered laterally. On the 

right of Figure 2.7 a green band is overlaid on top of the grey scale image of the 

transmit intensity. This green band signifies the region of pixels to be 

reconstructed for this particular transmit/receive event. Pixels are only 

reconstructed in the center region where the acoustic transmit intensity is the 

greatest. Data acquisition for a complete imaging frame is performed by sweeping 

 

Figure 2.7 B-mode ultrasound transmit profile where the transmit is focused at 
a depth of 70 mm. An image is formed incrementally by using multiple 
transmits and sweeping each transmit laterally across the imaging frame. 
The colorbar shown the number of contributions for a single 
transmit/receive reconstruction. 
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the transmit/receive events laterally and reconstructing pixels in the region of 

greatest ultrasound transmit acoustic energy. Because the acoustic energy is 

spread out for each transmit, there is an overlap of energy from one transmit to 

the next and pixels reconstructed in one transmit/receive event overlap with pixels 

reconstructed from spatially adjacent transmit/receive events. This overlap allows 

for the averaging of the reconstructions from spatially adjacent transmit/receive 

events and helps to improve the image signal-to-noise ratio (SNR) in the image. 

This improvement is achieved because the underlying structure being imaged 

remains the same while the acoustic noise is random and incoherent; thus, during 

summation the signal from the structure is summed coherently while the noise is 

summed incoherently and therefore reduced. Figure 2.8 on the left shows the 

 

Figure 2.8 (left) Number of coherent compounding for each pixel in the B-mode 
image reconstruction. The central region shows 2 contributions per pixel 
and the borders only 1. Each contribution is a reconstruction from 
different angled ultrasound transmits. (right) The number of 
contributions for a depth of 100 mm. Data taken from the red dashed line 
on the left. 
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number of reconstructions for each pixel in one imaging frame. A slice is taken at a 

depth of 100 mm and the number of contributions at this depth is shown on the 

right. For this data acquisition sequence two contributions are made per pixel for 

most of the imaging frame.  

As previously stated, reconstruction for an imaging frame is performed on a 

pixel by pixel basis based on the recorded echoes from the corresponding transmit 

event (Daigle 2009). Figure 2.9 shows the setup for a delay-and-sum beamformer 

which performs the image reconstruction. It is similar to the structure used for 

focusing on transmit; however, the time delays for receive beamforming can be 

applied to focus on every point in the imaging space. After the delay is applied, 

each signal is aligned in time and can be summed together. 

 

Figure 2.9 A delay and sum beamformer. Here the signals travel from right to 
left. Acoustic reflections returning to the transducer are first time aligned 
and then summed to form a final acoustic signal originating from a point 
in space. τn is the time delay applied to the nth channel. On receive, this 
can be performed for every point in the imaging space to reconstruct an 
image. 
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To further show the necessity of the delay and sum beamformer Figure 2.10 

shows the radio frequency (RF)-data echoes recorded from an ultrasound transmit 

on a 64-element transducer. This RF-data recording was taken while focusing the 

acoustic transmit beam laterally through the imaging plane. It can be seen that the 

signals on different transducer elements are not aligned in time, and the first few 

samples show how the initial acoustic reflection becomes more and more delayed 

as the element number increases. The delays between elements are reduced as the 

sample number increases for echoes returning from far away from the transducer. 

For these echoes the wave front incident on the transducer becomes flat. This can 

be seen from the high amplitude reflection starting around sample number 2500 

where the required delays are less obvious. Figure 2.11 shows a close-up of the 

ultrasound data recorded from a single element. From here the carrier frequency is 

seen as the constant oscillation. This oscillation is not used for direct imaging; 

rather, it is the amplitude of the wave which carries the information which is used 

for visualizing the tissue structure.  
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Figure 2.10 Ultrasound data recorded from a single transmit into the body. 
Here, the transducer has 64 elements. The data is aligned and summed to 
reconstruct the signal coming from a specific region in the imaging field.   
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Figure 2.11 Close-up of the ultrasound data recorded on a single element from a 
single transmit into the body.  
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2.5.1. B-Mode Imaging 

As previously mentioned, a common method in ultrasound imaging is to 

present the sonographer with an image representing the underlying structure of 

the tissue. An example of this is shown in Figure 2.12 where a heart is visualized in 

a grey scale image. This type of image is termed a B-mode image. What is 

essentially being imaged is the amplitude of the acoustic reflections, where 

brighter regions in the image are associated with higher amplitude acoustic 

reflections. This image was acquired in the same steps as previously described. 

Ultrasound is transmitted and focused into the imaging region, the RF-data is 

 

Figure 2.12 Copy of Figure 1.1. B-mode ultrasound image of the heart where the 
brightness corresponds to higher acoustic reflections.  

 

 

 

 

 

 

 

 

 

In a type of double  



33 

recorded, passed through a delay-and-sum beamformer and reconstructed for 

every pixel. However, what is reconstructed is not the real component of the RF-

data but rather the RF-data represented as a complex data set. To acquire the 

complex data set the real component of the RF-data is recorded and converted into 

an In-phase and Quadrature (IQ) complex data form using a Hilbert transform. 

The B-mode image is formed by taking the amplitude of the reconstructed IQ-data 

image and log compressing the result for display to the user.  

2.6. Methods in Ultrasound Elastography  

A simple way to translate ultrasound imaging to elastography—imaging the 

in vivo stiffness of tissues—is shown in Figure 2.13. This imaging procedure can be 

done by 1) placing the transducer on the surface of the body and collecting an 

initial B-mode image, and then 2) apply a slight force to the transducer, pushing it 

into the body causing tissue displacement, and then collecting a second B-mode 

image. Following this, a strain image may be estimated by calculating the 

deformation of the ultrasound speckle pattern between the two collected images 

(O’Donnell et al. 1994; Ophir et al. 1991). From there, Young’s modulus may be 

calculated if the stress field acting upon the tissue is homogeneous; however, this 

is rarely the case in diagnostic imaging where most tissues are heterogeneous. 

Thus, strain imaging, while able to provide a useful qualitative image of tissue 

deformation, still suffers from the same problems associated with manual 
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palpation. This problem is that further into the tissue, as the tissue becomes more 

heterogeneous, the stress field becomes complex, and non-uniform forces act upon 

the tissue causing deformation. The strain field represents the combination of the 

intrinsic stiffness of the tissue and the overall geometry (Greenleaf et al. 2003; 

Ophir et al. 2002). Thus, the question, “How hard is this?” can only be answered 

with a relative score of tissue stiffness. Young’s modulus cannot be estimated 

accurately. 

To overcome the issue with strain imaging, a technique termed Shear Wave 

Elastography (SWE) was introduced (Sarvazyan et al. 1998). SWE is a method 

which 1) generates a shear wave in a tissue and 2) tracks the speed of the wave as it 

moves through the tissue. The equation of motion describing wave propagation in 

a homogeneous, isotropic, infinite, and linear elastic media is written as: 

 

Figure 2.13 Example of strain imaging setup. (a) An initial reference image is 
acquired prior to any tissue compression, and (b) the tissue is compressed 
and a second image is acquired. The degree of displacement is then 
calculated and displayed. Softer tissues deform more than harder ones.  
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(𝜆 + 2𝜇)∇(∇ ∙ u) − 𝜇∇ × ∇ × 𝑢 = 𝜌𝑢𝑡𝑡 , (2. 2) 

 

where 𝜆 is Lamé’s 1st parameter, 𝜇 is the shear modulus, 𝜌 is the density of the 

tissue (approximately 1000 kg/m3 for soft tissues (Allen et al. 1959a; Allen et al. 

1959b)), 𝑢 is the displacement of the tissue, 𝑢𝑡𝑡 indicates the second temporal 

derivative of 𝑢, and ∇ is the del operator. Because shear waves are divergence free 

(∇ ∙ 𝑢 = 0), the first term on the left-hand side goes to zero and the shear wave 

equation of motion can be written as (Sandrin et al. 2002a):  

 

𝜇∇2𝑢 = ρ𝑢tt. (2. 3) 

 

By collecting the constants, the shear wave speed (SWS, 𝑐𝑠) is then 

proportional to the shear modulus by (Nichols et al. 2011):  

 

𝜇 = 𝜌𝑐𝑠
2. (2. 4) 

 

The shear modulus represents the ability of the tissue to resist shear stresses. 

This may be visualized as one material sliding on top of another causing 

deformation, where the forces causing deformation are parallel to the surface. This 

is contrasted to Young’s modulus where the force is perpendicular to the surface 

and causes either compression or tension. The relationship between Young’s 

modulus and Shear modulus is written as: 
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𝜇 =  
𝐸

2(1 + 𝜈)
(2. 5) 

 

where 𝜈 is Poisson’s ratio. Poisson’s ratio is a measure of lateral strain to axial 

strain and is limited to a range of 0 < ν < 0.5. For incompressible materials ν =

0.5. This means that a 1 unit axial strain results in a 0.5 unit lateral strain on both 

sides of the tissue being compressed. Because biological soft tissues are composed 

of mostly incompressible water, Poisson’s ratio is approximately 0.5 and from Eq. 

(2.5): 

 

𝜇 =
𝐸

3
. (2. 6) 

 

Thus, from Eq. (2.4) and (2.6) the intrinsic stiffness of tissues, the shear 

modulus and Young’s modulus, are proportional to the square of the SWS. This 

forms the basis of SWE, and the estimation of the SWS is critical to the accurate 

and objective assessment of the stiffness of tissues.  

2.6.1. Shear Wave Generation  

There are several methods for SWE. These can be classified by how the shear 

wave is generated. The first method implemented was by simply shaking the 

surface of the tissue (Muthupillai and Ehman 1996; Sandrin et al. 1999). In this 

method, a mechanical actuator vibrates the tissue at a low frequency, typically 50-

400Hz, and a low amplitude shear wave propagates through the tissue. This is a 
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technique which allowed multiple research teams to investigate various tissues 

using ultrasound (Nenadic et al. 2011; Sandrin et al. 2002b; Zhao et al. 2014) and 

MRI imaging systems (Manduca et al. 2001; Wassenaar et al. 2016). However, the 

ultrasound transducer and imaging setup must be significantly modified to 

perform imaging, and shear waves may have difficulty penetrating deeper or more 

complicated tissue structures such as the heart.  

Another method for SWE includes Acoustic Radiation Force (ARF) based 

SWE (Nightingale et al. 2003; Sarvazyan et al. 1998). The acoustic radiation force is 

the force associated with sound propagation. As sound propagates, it pushes 

constantly on the tissue causing displacement. Thus, in ARF based SWE, an 

acoustic push first displaces the tissue, then if the tissue has an elastic component 

and can hold a shear stress, a shear wave is generated which propagates outward 

and away from the initial push location. The shear wave in this method can be 

localized to specific areas allowing for the selective investigation of tissues; 

however, the amount of a significant push in the heart is challenging due to 

acoustic attenuation and transducer heating. Figure 2.14 shows the example setup 

for both the mechanically induced and ARF induced shear waves in SWE.  

These two methods have a source of shear wave generation external to the 

body, which have challenges generating shear waves within the heart. Other 

methods have a source of generation internal to the body and are usually 

associated with the heart cycle (Kanai 2005; Konofagou et al. 2011; Pislaru et al. 

2014; Vos et al. 2017). Because of the challenges associated with externally 
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generating a shear wave in the heart, a method has been developed that will be 

described in Chapter 4 for cardiac SWE where the source of wave generation is 

within the heart—the contraction of the atrial myocardium during the atrial kick.  

 

  

  

 

Figure 2.14 SWE based on the generation of shear waves from (a) the 
mechanical excitation at the surface of the tissue, and (b) from the ARF of 
an extended burst of ultrasound.  
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2.6.2. Shear Wave Visualization  

Regardless of the method chosen for shear wave generation, shear wave 

detection and tracking is necessary for all methods. In this dissertation shear wave 

visualization is accomplished by a phased based tissue velocity measurement 

which was first developed to image blood flow but is also used to image tissue 

movement. The change in phase is calculated from the recorded IQ echo data from 

consecutive ultrasound transmits. Because the ultrasound wavelength is directly 

related to the frequency of the transmitted ultrasound pulse and the speed of 

sound in water, a distance is calculated from the change in phase of the recorded 

IQ data. Further, because the time difference between ultrasound pulses is known 

the phase shift estimation is analogous to a velocity estimator. This is represented 

by the 1-lag autocorrelation based method and is written as (Kasai et al. 1985; 

Loupas et al. 1995): 

 

𝑣 =
𝑐

2
 

𝑃𝑅𝐹 tan−1 (
∑ ∑ [𝑄(𝑚, 𝑛)𝐼(𝑚, 𝑛 + 1) − 𝐼(𝑚, 𝑛)𝑄(𝑚, 𝑛 + 1)]𝑁−2

𝑛=0
𝑀−1
𝑚=0

∑ ∑ [𝐼(𝑚, 𝑛)𝐼(𝑚, 𝑛 + 1) + 𝑄(𝑚, 𝑛)𝑄(𝑚, 𝑛 + 1)]𝑁−2
𝑛=0

𝑀−1
𝑚=0

)

2𝜋𝑓𝑟𝑐𝑣
, (2. 7)

 

 

where 𝑣 is the axial tissue velocity, the velocity towards and away from the 

transducer, 𝑐 is the speed of sound in the body which is approximately 1540 m/s. 

The Pulse Repetition Frequency (PRF) is the frequency of ultrasound image 

acquisition, and 𝑓𝑟𝑐𝑣 is the frequency of the recorded echoes.  
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Tissue velocity should not be confused with the SWS; rather, it is the 

imaging of tissue velocity which allows for the visualization of the shear wave 

movement and for the subsequent estimation of SWS. A shear wave is typically 

defined as wave motion where the individual particle motion is perpendicular to 

the direction of wave propagation. Thus, for a wave traveling laterally (left to right 

in Figure 2.15) through an imaging region the particle motion (i.e. its tissue 

velocity) is oscillatory towards and away from the transducer (up and down in 

Figure 2.15). Because tissue velocity estimators measure movement towards and 

away from the transducer they are a potential candidate for visualization of shear 

 

Figure 2.15 Tissue velocity from the whole data imaging frame. Visualization is 
at two different times. (a) 10 ms and (b) 20 ms after the start of data 
collection. Red indicates tissue particle movement toward the transducer 
while blue indicates particle movement away from the transducer. The 
transducer is oriented at the top of the image and looking down.  From 
(a) to (b) the waves propagate left to right with the black arrows indicate 
the movement. Two points are chosen in (a) as A and B and tissue 
velocity at these points for all time are shown in Figure 2.16. 
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wave motion. An example of a shear wave is shown in Figure 2.15. The 

reconstructed tissue velocity of the wave for two whole data frames is shown for 

two different times. The wave is seen advancing from left to right. Two points 

separated by a distance of about 2 mm are labeled in this figure, A and B. Figure 

2.16 shows the tissue velocity reconstructed at these two points in the imaging 

frame for an entire data collection sequence. From here it can be seen that the 

oscillatory motion of the tissue at point B is delayed compared to the motion at 

point A. From the data shown in Figure 2.15 and Figure 2.16 the SWS can be 

detected and quantified and the mechanical properties of tissues can be 

characterized with a high dynamic range (Sarvazyan et al. 2013).  

  

 

Figure 2.16 Shear wave tissue velocity from the two points labeled in Figure 2.15 
(a). The points are separated by about 2 mm and it takes about 1 ms for 
the wave to propagate from point A to Point B.  
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2.6.3. SWS Estimation  

As previously shown in Eq. (2.3), the equation of motion for shear wave 

propagation in an isotropic, homogeneous, incompressible media can be written 

as: 

𝑢𝑡𝑡 = 𝑐𝑠
2∇2𝑢 (2.8) 

 

where 𝑢 is the 3-D shear wave spatiotemporal signal, 𝑢𝑡𝑡 is the second temporal 

partial derivative of 𝑢, and ∇2𝑢 is the Laplacian of 𝑢. For a purely elastic media the 

shear modulus 𝜇 is related through the material density 𝜌 by (Sarvazyan et al. 

2013):  

 

𝜇 = 𝜌 (
𝑓𝑚𝑒𝑐ℎ

𝑓𝑠𝑝
)

2

= 𝜌𝑐𝑠
2, (2. 8) 

 

where 𝑓𝑚𝑒𝑐ℎ is the frequency of mechanical excitation, 𝑓𝑠𝑝 is the local spatial 

frequency, and 𝑐𝑠 is the SWS.  

Many approaches have been taken for robust estimation of SWS. Imaging of 

the SWS can be performed by estimating the local spatial frequency from a 

propagating shear wave. 𝑓𝑠𝑝 has been estimated over multiple scales using local 

spatial frequency estimators and provided a robust estimation of shear elasticity 

from a single imaging frame; however, resolution was dependent on shear 

wavelength and visualization of sharp boundaries was limited (Manduca et al. 

2001). Phase based estimations selectively filter for the shear wave frequency 𝑓𝑚𝑒𝑐ℎ, 
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where the phase gradient of the resulting shear wave signal provides 𝑓𝑠𝑝. This 

technique assumes propagation of a plane wave and has been implemented 

successfully in transient elastography (Catheline et al. 1999).  

Inversion of Eq. (2.8), the second-order wave equation, was implemented 

and required second order spatial derivatives and several imaging frames for 

second order temporal derivatives (Bercoff et al. 2004). By assuming independence 

of temporal and spatial variables, a method for inversion of the Helmholtz 

equation was implemented which only relied on second-order spatial derivatives. 

This method was able to recover SWS from a single imaging frame (Oliphant et al. 

2001). Because the SWS is estimated from the equation of motion for waves in the 

media, these methods assume only waves are present in the tissue. Both 

approaches relied on second-order derivatives which were difficult to estimate 

because of inherently low SNR in the data. To overcome this limitation, time-of-

flight (TOF) based approaches to SWS estimation were introduced (McLaughlin 

and Renzi 2006; Palmeri et al. 2008; Tanter et al. 2008). These approaches can be 

broken up into various forms of cross-correlation (CC), and time-to-peak (TTP) 

methods. For an example using the signals in Figure 2.16, the SWS can be 

estimated using the following:  

𝑐𝑠 =  
∆𝑑

∆𝑡
, (2.9) 
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were ∆𝑑 is the distance between points used to produce the signals, and ∆𝑡 is the 

lag between the two signals. The CC method estimates ∆𝑡 by performing a CC of 

the signals and locating the maximum of the CC result. A 2-D approach for CC 

based TOF methods was developed and implemented to estimate SWS from any 

direction of wave propagation (Song et al. 2014a; Zhao et al. 2014). These 

approaches perform multiple cross-correlations along the direction of wave 

propagation to provide a moving average estimate for SWS. The TTP method 

tracks the arrival time of the maximum value of the shear wave signal and then 

performs a first-order spatial differentiation to estimate the SWS. TTP methods are 

often chosen because of the attenuation of the shear wave as it propagates through 

a tissue (Palmeri et al. 2008). The assumption for this method is that the 

maximum value does not change locations in the signal as the wave propagates; 

thus, tracking its location tracks the shear wave. The tracking of other locations in 

the shear wave signal have also been implemented which track zero-crossings, or 

25%, and 50% of the leading edge of the signal (Apostolakis et al. 2016; 

Shahmirzadi et al. 2012; Strachinaru et al. 2017).  
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Chapter 3. 
 
 

Validation of Shear Wave Elastography 

3.1. Introduction  

This chapter describes experiments intending to validate SWE and proposes 

a new method for 2-D SWS estimation. The theory leading to this method is 

described in section 3.1.1. The content of this chapter will demonstrate the 

feasibility of the new estimation method and compare and contrast the method to 

other current methods of 2-D SWS estimation.  

3.1.1. Theory  

In a 3-D medium, the wave field 𝒖 can be written as the superposition of 

waves originating from some source and propagating along all possible paths 

(Snieder 1999): 

 

𝑢(𝑡) =  ∑ 𝑺(𝑡; 𝑃),

𝑃

(3. 1) 

 

where 𝑃 is a unique path in the medium. 𝑺 is an arbitrary waveform associated 

with a particular path 𝑃 and may vary with time 𝑡 due to geometric spreading, 

attenuation, or interactions at interfaces along the path. By grouping terms in Eq. 

(3.3) based on the direction each path takes through space, the wave field can be 

rewritten as: 
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𝒖(𝑡) = ∑ 𝑼(𝑡; 𝜃)

𝜃

(3. 2) 

 

where U is an arbitrary time varying waveform propagating in the direction 𝜃: 

 

𝑼(𝑡; 𝜃) =  ∑ 𝑺(𝑡; 𝑃).

𝑆(𝑃)∈𝜃

(3. 3) 

 

By defining 𝜉 as a new axis along the direction of wave propagation, the 

arbitrary waveform U can be defined as existing on the characteristic curve, 𝜉 −

𝑐𝑠𝑡 = 0. Assuming the shape of U changes only due to attenuation and not 

through pathway interactions, Eq. (3.3) becomes: 

 

𝑼(𝜉, 𝑡) = 𝑼0(𝜉 − 𝑐𝑠𝑡)𝑒−𝛼𝑡,    𝑐𝑠 > 0,   𝛼 ≥ 0 (3. 4) 

𝑼0(𝜉) = 𝑼(𝜉, 0). 

 

By the method of characteristics, Eq. (3.5) is the solution to the 1-D first 

order wave equation: 

 

𝑼𝑡 + 𝑐𝑠𝑼𝜉 = −𝜆𝑼,        𝑐𝑠 > 0,   𝛼 ≥ 0, (3. 5) 

 

where 𝑼𝑡 and 𝑼𝜉 are the first derivatives of time and space respectively. The local 

inversion algorithm can be written as: 
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𝑐𝑠 = |
𝑼𝑡 + 𝛼𝑼

𝑼𝜉
| ,      𝛼 ≥ 0, (3. 6) 

 

where the absolute value forces a positive SWS. Because  𝑼𝑡 = 𝑂(𝜔𝑼) and for 

weakly attenuating waves 𝜔 ≫ 𝛼, the leading order approximation becomes: 

  

𝑐𝑠~ |
𝑼𝑡

𝑼𝜉
| . (3. 7) 

 

Thus, for this method it is required that 𝑼 be continuous and differentiable.  

3.1.2. Requirements and Experimental Validation 

This new method assumes local propagation of plane waves and relies on 

first-order partial derivatives for a robust estimate of 2-D SWS. Directional filters 

are used to meet the assumption of local plane shear wave propagation. The 

method is validated by comparing the SWS estimated from the proposed method 

to 1) conventional SWS estimation methods and 2) a mechanical compression test. 

The SWS is estimated on three homogeneous phantoms of varying Young’s 

modulus and one inclusion phantom representing heterogeneous tissue.   
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3.2. Methods 

For validation, three homogeneous gelatin phantoms were made using 5%, 

7%, and 9% gelatin by weight, and the one inclusion phantom was made which 

was composed of 5% gelatin as a background and 9% gelatin in the inclusion (See 

APPENDIX A for a description of the procedure). All phantoms contained 1% 

propanol by weight. A programmable research ultrasound system (Vantage 256, 

Verasonics Inc., Kirkland WA, USA) was configured to provide both the B-Mode 

image and the SWS map by the method proposed in section 3.1.1. A wideband, 

small parts linear array transducer with a center frequency of 10.0 MHz was used 

for imaging (L12-3v, Verasonics Inc., Kirkland WA, USA). Each phantom was 

imaged in five spatially different locations and the SWS were estimated using the 

method presented here. 

3.2.1. Shear Wave Generation and Visualization  

Shear waves were introduced by an external mechanical shaker (Type 4810, 

Brüel and Kjaer, Nærum, Denmark). A 20 cycle, 3 V amplitude, 200 Hz signal was 

produced by a function generator (Aglient 33250A, Agilent Technologies, Inc., 

Santa Clara, CA, USA). A power amplifier (Type 2716c, Brüel and Kjaer, Nærum, 

Denmark) with a gain of 18 dB was used to drive the shaker to introduce detectable 

shear waves in the phantoms. To induce shear waves into the media and limit the 

direction of wave propagation to the dominant path (directly from the shaker), a 

bar was used at the phantom-shaker interface (Gennisson et al. 2003). The 
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transducer was placed perpendicular to the long axis of the bar as shown in Figure 

3.1.  

 

 

 

Figure 3.1 Experimental setup for SWE on a gelatin phantom using an external 
mechanical vibration for shear wave generation. The setup consists of (a) 
the mechanical actuator, (b) the tissue mimicking phantom, and (c) the 
ultrasound transducer. Shear waves are generated by the up and down 
vibration of the mechanical actuator. The bar on touching the surface of 
the phantom ensures the shear waves will be quasiplanar as they 
propagate through the imaging plane of the transducer. 

 

 

 

 

(a) 

(b) 

(c) 
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Immediately following cessation of the external mechanical excitation, a 

high frame rate plane wave imaging method was used to reduce the SNR on the 

image and provide the frame rate necessary for visualization of shear wave motion 

(Tanter et al. 2002; Tanter and Fink 2014). A PRF of 6000 Hz and pulse center 

frequency of 10 MHz was used for ultrasound SWE imaging. Images were captured 

at three transmit angles (−4°, 0°, 4°). Figure 3.2 shows the plane wave transmit 

profiles and the individual transducer element delay used in this study. Plane wave 

images were formed using a pixel based beam forming approach where dynamic 

receive beamforming is performed for each pixel in the reconstructed image 

 

Figure 3.2 Ultrasound transmit profile for the SWE imaging sequence consisting 
of 3 differently angled plane wave images at (a) -4°, (b) 0°, and (c) 4°. (d) 
the individual element delays for each transmit.  
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(Daigle 2009). Axial and lateral spatial sampling for image reconstruction was 0.1 

mm.  

The final 3-D IQ data size was 256 × 256 spatial pixels and 129 frames in time. 

Shear waves were imaged following cessation of external mechanical vibration to 

ensure the entire imaging plane contained shear waves and could be used for SWS 

estimation. The total time for data collection was 121.5 ms, which included 100 ms 

used for mechanical excitation.  

Assuming no discontinuity in the shear waves, the order of partial 

differentiation is interchangeable, and any partial derivative of a solution is also a 

solution. Because the wave field is independent between dimensions, each 

dimension provides a solution. Thus, the axial velocity component of the shear 

wave field is a solution to the wave equation for shear wave propagation and can 

be used in the inverse problem. The axial component of shear wave velocity was 

estimated using a two-sample 1-D autocorrelation method on the IQ data from 

consecutive frames of the plane wave images taken from the same angle (Kasai et 

al. 1985). To remove noise, a 3 × 3 pixel (0.3 mm × 0.3 mm) spatial median filter 

was used on each frame in the shear wave signal. A three-sample temporal moving 

average of the velocity was performed to improve the SNR. A final 5 × 5 pixel (0.5 

mm × 0.5 mm) spatial average was applied to the velocity estimate. The shear wave 

imaging frame rate remained at 6000 Hz.  
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3.2.2. Directional and Temporal Filtering 

Directional filtering was performed in the 3-D spatiotemporal frequency 

domain for selection of laterally moving waves. Filtering is described using 

cylindrical coordinates rather than rectangular coordinates. The radial, azimuthal 

and height components in the cylindrical coordinate system correspond to the 

absolute spatial frequency, the direction of wave propagation, and the temporal 

frequency components of the shear wave motion signal. For a robust 3-D Fourier 

transformation, every dimension of the spatiotemporal shear wave motion signal 

was Tukey windowed with a ratio of tapered-to-constant section of 0.1. As will be 

described in section 3.2.3, the SWS was not estimated from data frames affected by 

the windowing function; thus, a Tukey window was chosen as it better preserves 

the center of the data for SWS estimation (Harris 1978). Using an inverse 3-D 

Fourier Transform for each direction, the spatiotemporal-frequency shear wave 

signal was converted back to the spatiotemporal domain to provide the analytic 

shear wave signal.  

Wideband directional filters similar to those used in (Deffieux et al. 2011; 

Manduca et al. 2003) were designed to separate two directions of shear wave 

propagation (𝜃 = 0°, 180°), where the dominant path of wave propagation was 

assumed to be in the lateral direction across the phantom. Figure 3.3 shows the 

combination of the spatial frequency and directional windowing filters as well as a 

zoomed in view of the temporally averaged spatial frequency Power Spectral 
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Density (PSD). Because waves propagating in the elevational direction may 

correspond to higher speeds, a SWS higher than 5 m/s were filtered out. These 

were filtered using a fourth-order high-pass Butterworth filter with -3 dB cutoff 

frequency of 0.4 mm-1. The windowing function for the directional filtering was a 

Tukey window with a tapered-to-constant ratio  of 0.75 (Harris 1978), where the 

bounds of the Tukey window were at ±π/3 about the desired direction.  

Figure 3.4 shows the temporal frequency filter, which was a sixth-order 

band-pass Butterworth filter with -3 dB cutoff frequencies of 128 Hz and 1.38 kHz 

to selectively filter the 200 Hz excitation signal seen in the PSD. Negative 

frequencies were kept at zero and the positive frequencies were doubled to ensure 

no loss in signal power. In this way, the signal is both temporally filtered and 

Hilbert transformed in the frequency domain (Marple 1999). 

 

Figure 3.3 Directional filter separating out the (a) leftward and (b) rightward 
propagating shear waves. (c) a zoomed in PSD of a shear wave field.   
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3.2.3. SWS Estimation 

Because the shear wave may propagate in the lateral and axial directions, it 

is necessary to estimate the 2-D SWS. Assuming the post-directionally filtered 

waves are unidirectional within the estimation kernel, the gradient magnitude 

points in the direction of wave propagation and therefore was used as an estimate 

for the spatial derivative, 𝑼𝜉 = √𝑼𝑥
2 + 𝑼𝑧

2. The local shear wave inversion used was: 

  

𝑐𝑠 = |
𝑼𝑡

√𝑼𝑥
2 + 𝑼𝑧

2
| . (3. 8) 

 

Figure 3.4 Temporal filter used to select for the shear wave mechanical 
excitation frequency of 200 Hz. The temporal filter is not symmetric as all 
negative frequencies are zeroed out. The magnitude response is 2 to 
account for the zeroing out of the negative frequencies.   
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Robust numerical differentiation was performed by estimating 𝑼𝑥 and 𝑼𝑧 

using 2-D Savitzy-Golay filters with a 4th order polynomial over a 45 × 45 pixel 

region, and 𝑼𝑡 was estimated using a 1-D 4th order Savitzy-Golay filter over 11 frames 

in the waveform (Krumm 2001; Savitzky and Golay 1964). The filters are shown in 

Figure 3.5, and were convolved with the shear wave signal to perform 

differentiation.  

 

Figure 3.5 Svatsky-Golay filters used for robust numerical differentiation. (a) the 

lateral 2-D filter used to estimate 𝑼𝑥 , (b) the axial 2-D filter used to 

estimate 𝑼𝑧  and (c) the temporal filter used to estimate 𝑼𝑡 . The frame 
rate for the temporal derivative is 6000 Hz.  
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This method for wave speed estimation was tested on a computer-generated 

data set consisting of circularly propagating waves. The MATLAB code showing 

how these were generated in shown in APPENDIX B. Figure 3.6 (a-c) shows three 

frames taken from the data set. Waves are shown propagating away from the 

source which is located in the center of the image. Wave speed decreases with 

distance. Figure 3.6 (d) shows the resulting wave speed map which matches the 

 

Figure 3.6 (a-c) Three frames taken from a data set of circularly propagating 
waves. Waves propagate away from the source located at the bottom left 
of the frame and wave speed decreases with distance. (d) Estimated wave 
speed using the 1D wave equation. The wave speed goes to infinity at the 
source.  
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pattern seen in the data set. Here, because waves are propagating away from the 

source, the local direction of propagation is always unidirectional and no 

directional filtering was necessary. However, this cannot be assumed when 

imaging real tissues and directional filtering is needed.  

 The final SWS map was calculated by weighted averaging of the 

directionally filtered speed maps. Weights were calculated in each frame from the 

percentage of total energy contained at each pixel in the shear wave signal for all 

valid frames (Deffieux et al. 2012). Only frames unaffected by the temporal Tukey 

windowing were used for averaging. A total of 214 speed maps (|𝜃| = 2, |𝑛| = 107) 

were used in the weighted averaging to produce the final SWS map, given by: 

 

𝑐𝑠(𝑥, 𝑧) =  ∑ ∑ 𝑐𝑠(𝑥, 𝑧, 𝑛, 𝜃)
|𝑼(𝑥, 𝑧, 𝑛, 𝜃)|2

∑ |𝑼(𝑥, 𝑧, 𝑛, 𝜃)|2
𝑛,𝜃

𝜃𝑛

. (3. 9) 

 

No further spatial averaging was performed on the SWS estimate.  

3.2.4. Comparison of SWS Estimation Methods 

For comparison to conventional methods, the same post-directionally 

filtered shear wave data were used to estimate the SWS. The method for 2-D CC 

used a spatial step size of 20 pixels (2.0 mm), and performed subsample peak 

estimation by cubic spline interpolation around the maximum point. All spatial 

and temporal differentiation filters used in the study were kept constant. Because 

speed estimation via the TTP method uses cyclical shear waves, this method 
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requires selection of a single shear wave from the data set. For the homogeneous 

phantoms, a region of interest (ROI) was chosen from the center of each final 

shear speed map with a spatial size of 15 mm × 15 mm and the mean and standard 

deviation were taken from the pixels in the ROI.  The inclusion phantom 

contained two ROIs, 5 mm × 20 mm for the background and an 11 mm diameter 

ROI for the inclusion. Contrast-to-noise ratio (CNR) was calculated by: 

 

CNR =  
|𝑐𝑠𝐼 − 𝑐𝑠𝐵|

𝜎𝐵
, (3. 10) 

 

where 𝑐𝑠𝐼 and 𝑐𝑠𝐵 are the mean SWS of the inclusion and background respectively 

and 𝜎𝐵 is the standard deviation of the background SWS.  

3.2.5. Mechanical Testing 

The nominal SWS was estimated from the average Young’s modulus as 

measured using a compression test (TMS-Pro, Food Tech. Corp., Sterling, VA, 

USA). Figure 3.7 shows the experimental setup of the compression testing. 

Compression tests consisted of five samples (~1 cm3) taken from each phantom, 

and compressed at a rate of 2 mm/second for 1 second. Young’s modulus was 

calculated from the average slope of the stress-strain curve and the nominal SWS 

was calculated from the relationship 𝐸 = 3𝜌𝑐𝑠
2, where 𝜌 = 1000 kg/m3 was 

assumed for all phantoms. Compression tests were performed within 2 hours of 
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the shear wave imaging.  Figure 3.8 shows representative stress-strain curves from 

the compression test, where the different slopes separate the phantoms. 

 

 

 

 

 

 

 

Figure 3.7 Mechanical testing of the ~1 cm3 blocks taken from the gelatin 
phantoms. Each gelatin block was compressed at a rate of 2 mm/s for 1 s 
to estimate Young’s modulus and nominal SWS.   

 

 

 

 

 

 

 

 



60 
 

 

   

 

Figure 3.8 Representative stress-strain curves from compression testing of the 
three phantoms of varying concentrations of gelatin.  The slopes of the 
curves separate phantoms of different gelatin concentrations. Higher 
gelatin concentrations results in increased stiffness. 
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3.3. Results 

Figure 3.9 shows the x-t plane of the 3-D spatiotemporal data taken from the 

center of each phantom (depth of 12.6 mm). The inverse slope of the characteristic 

curves is representative of the SWS. In Figure 3.9 (d), the slope can be seen to 

change in the center of the phantom, this represents changing stiffness of the 

inclusion as compared to the background. Figure 3.10 shows representative images 

of the shear wave signal from the inclusion phantom taken at 4 ms and 12 ms after 

start of imaging. This is different from the characteristic curves of Figure 3.9. The 

change is SWS is most readily visualized by the increase in the wavelength of the 

shear wave, this increase in wavelength is seen in the center of the inclusion 

phantom. The corresponding 2-D SWS estimation is shown in Figure 3.11. Similar 

2-D SWS maps were acquired from all other imaging frames. 
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Figure 3.9 Shear waves for phantoms of different stiffness and containing (a) 
5%, (b) 7%, and (c) 9% gelatin concentration. The slope of the wave 
represents the SWS. (d) Inclusion phantom showing different SWS in the 
center of the phantom than the sides. Columns represent the (left) 
unfiltered shear wave, (center) the leftward propagating shear waves, and 
(right) the rightward propagating shear waves.  
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Figure 3.10 Visualization of the continuous shear wave field at a time of (a) 4 ms 
and (b) 12 ms after the start of imaging. Columns represent the (left) 
unfiltered shear wave, (center) the leftward propagating shear waves, and 
(right) the rightward propagating shear waves.  
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For energy based weighted averaging, SWS estimates were multiplied by their 

energy content normalized to all energy in the post directionally filtered waves at 

that pixel. Figure 3.132 shows the amplitude of the left-to-right propagating wave. 

For the inclusion phantom, the right-to-left propagating wave was negligible and is 

not shown. Figure 3.12 shows representative estimates of the SWS using the 

 

Figure 3.11 Estimation of SWS from the rightward and leftward propagating 
shear waves for the times (a) 4 ms and (b) 12 ms after the start of imaging. 
An inclusion phantom was imaged. 
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proposed method for three homogeneous phantoms. These are similar across all 

images taken for each homogeneous phantom. For all methods, the representative 

means and standard deviation across the pixels within the ROI are shown in Table 

 

Figure 3.132 Shear wave energy for different times of the rightward moving 
wave. Energy attenuates as the wave propagates.  

 

 

 

 

 

 

 

  

Figure 3.12 Estimated SWS for gelatin phantoms of increasing stiffness. SWS 
within the black dashed box represents where the mean and standard 
deviation were taken.  
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3.1. All SWS estimation methods are similar to each other and the SWS estimation 

using mechanical testing . 

Table 3.1 SWS measured from individual phantoms 

 

Figure 3.14 shows the comparison of the average SWS from the compression 

test, the proposed method of inversion of the first-order wave equation, inversion 

of the second-order wave equation, the 2-D TTP, and the 2-D CC.  Because the 

compression test provides only an average estimate of SWS for each sample, the 

mean and standard deviations for the shear wave methods shown here are taken 

from the average estimate of SWS calculated from the ROI for each imaging 

sequence. Figure 3.15 shows the inclusion phantom estimated from each SWS 

estimation method. Table 3.2 shows the data used for CNR estimation for each of 

the methods, where statistics were taken from the ROIs shown in Figure 3.15 (a). 

Computational time for a single direction (256 × 256 pixel) 2-D SWS map on a 

general computing desktop with an Intel i5 CPU at 2.8 GHz took 5 s in MATLAB 

with no optimization for reduced reconstruction time. 

 

 

 SWS (m/s) 

 5% phantom  7% phantom 9% phantom 

TMS-Pro 1.56 ± 0.05 2.12 ± 0.12 2.54 ± 0.10 
Experiment 1.52 ± 0.10 1.86 ± 0.10 2.37 ± 0.15 
2nd order Wave Eq. 1.45 ± 0.07 1.87 ± 0.11 2.41 ± 0.32 
2-D TTP 1.54 ± 0.06 1.83 ± 0.29 2.36 ± 0.16 
2-D CC 1.55 ± 0.08 2.04 ± 0.10 2.69 ± 0.20 
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Figure 3.14 SWS estimates from the four ultrasound based methods and the 
mechanical compression test using phantoms of 5%, 7%, and 9% gelatin 
concentration.  
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Table 3.2 SWS measured from inclusion phantom 

 SWS (m/s) 

 Background  Inclusion CNR 

TMS-Pro 1.56 ± 0.05 2.54 ± 0.10 N/A 
Experiment 1.50 ± 0.06 2.24 ± 0.23 12.47 
2nd order Wave Eq. 1.47 ± 0.06 2.33 ± 0.44 14.19 
2-D TTP 1.50 ± 0.07 2.24 ± 0.17 10.92 
2-D CC 1.58 ± 0.07 2.34 ± 0.19 11.24 

• TMS-Pro indices are derived from the homogeneous phantom test. 

 

Figure 3.15 SWS map of for the inclusion phantom using 4 methods of SWS 
estimation. (a) the proposed 1st order wave equation, (b) the 2nd order 
wave equation, (c) the 2D-TTP method, and (d) the 2D-CC method.  
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3.4. Discussion  

There are a few approaches to estimate SWS from Eq. (3.6). The proposed 

method performs an inversion of the associated partial differential equation and 

estimates 𝑐𝑠 from Eq. (3.9). Further methods include TTP and CC based 

approaches. These methods assume some part of the shape of the wave does not 

change as it propagates along the characteristic curve. TTP tracks a single point on 

the waveform (typically a maximum point), and estimates speed based on 

movement of the single chosen point, while the CC method relies on all points in 

the waveform. TTP allows for the possibility of multiple peak tracking, where 

errors from noise can be smoothed out as more peaks pass over a region. For CC, 

estimation of 𝑐𝑠 is performed across all time and a single estimate for 𝑐𝑠 is 

recovered. Because periodic shear waves were imaged, a CC based method for 𝑐𝑠 

estimation might suffer from errors due to false peaks (Ramamurthy and Trahey 

1991). This may not be a problem when imaging a transient pulse; care must be 

taken when imaging cyclical waves. The proposed method of direct inversion of 

Eq. (3.8) relies on first-order differentiation for more robust estimates of temporal 

and spatial derivatives, and provides an estimate of 𝑐𝑠 at every time sample where 

the wave is present. Compounding multiple 𝑐𝑠 estimates per direction provides for 

a robust final estimate. Because an elasticity estimate can be made with very few 

imaging frames, real time elasticity estimation may be possible using this method. 

By implementing the proposed method, SWS can be estimated efficiently and 

accurately while using conventional laboratory equipment, and with improving 
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GPU capabilities further improvements may be made which only require the 

number of frames necessary for temporal differentiation and filtering.  

Estimates made on homogeneous phantoms using the proposed method are 

comparable to those found from inversion of the second-order wave equation, 2-D 

TTP, and 2-D CC methods. From Figure 3.14, because each measurement was taken 

from an image in different spatial locations of the phantom, the variance between 

the mean 𝑐𝑠 values from each image within the same phantom suggests good 

repeatability of measurement and homogeneity throughout the phantom. Images 

made on the inclusion phantom are comparable with the proposed method and 

most closely match the 2-D CC method. Each method estimated a slow SWS 

directly below the inclusion. This estimation was caused by the splitting of the 

shear waves which introduces a sharp gradient perpendicular to the direction of 

wave propagation and breaks the assumption of a plane wave in the estimation 

kernel. Further studies which track the true direction of wave propagation may 

help to decrease this phenomenon.  

Shear waves were generated by a mechanical excitation from a single 

location; thus, shear waves were assumed to resemble plane waves propagating 

away from the source with little to no reflection from boundaries or inclusions. In 

this experiment the shear wave is seen to propagate both laterally and axially. 

Because the direction of propagation may not be known entirely beforehand, to 

capture most of the energy in a single direction and maintain the form of the wave, 

wideband directional filters were implemented using a Tukey window with a 
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tapered-to-constant ratio of 0.75, where the window was ±π/3 about the desired 

direction of wave propagation. The truncated directional bounds allowed the 

Tukey window to have smooth/sharp drop off while maintaining directionality. If 

shear waves were assumed to be propagating in unknown directions, or generated 

at several angles by acoustic radiation force, several narrower directional filters 

would need to be implemented. This would increase SNR and provide a smoother 

final image, but may filter out sharp boundaries between tissues of significantly 

different SWS. Regardless of the number of directional filters, the method 

proposed here assumes the shear wave is approximated by a plane wave in the 

estimation kernel. A minimum number of directional filters should be used to 

meet this assumption. A study with different directional windowing functions 

might better describe reconstruction image quality for final 𝑐𝑠 estimates. 

Energy based compounding was used because higher shear wave energy 

increases the SNR used for SWS estimation. In homogeneous media the shear 

wave can be assumed to occupy the entire imaging frame. For complex media like 

a tendon, several layers of differing shear modulus may be present in the imaging 

frame and shear waves with high SNR may only exist in a given layer for a fraction 

of the imaging time. With overlapping waves propagating in multiple directions, 

attenuation due to viscosity lowers the energy of the waves over time and 

estimates closer to the source contain a higher SNR. Strong reflection from 

boundaries within the media may also be used for estimates. The energy based 

compounding method implemented here allows for selective weighted averaging 
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at times where the initial shear waves are no longer present or where reflected 

waves may be more dominant.  

This study used 20 cycles of external mechanical excitation for generation of 

near steady state conditions for propagation of shear waves over the entire media. 

This can be seen in Figure 3.9 where the post-directionally filtered waves cover the 

entire lateral imaging region for the duration of imaging.  Although the external 

shaker requirement may reduce portability and practicality in most clinical 

applications, it provides more force for generation of shear waves for imaging 

elasticity deep with the media or in a much stiffer tissue. Thus, development of an 

unobtrusive fixation device for an external excitation source may improve usability 

while providing the force needed to image stiff (such as tendon) or deep tissues 

(such as the heart).  

The use of ARF based SWE allows for the control of shear wave excitation 

and limits the dominant path of wave propagation in the imaging plane. Because 

imaging and shear wave excitation are coupled, this may provide improved system 

usability and reduce shear speed estimation variance over multiple imaging 

acquisitions. However, because the shear wave only resides in portions of the 

image at one time, the lower amount of total shear wave energy may reduce the 

SNR and degrade the estimate for shear speed. This may be overcome by 

introducing multiple acoustic impulses in a single acquisition event (Song et al. 

2012). A study implementing the proposed method of 𝑐𝑠 estimation on transient 
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waves produced from acoustic radiation might better show its use in ARF based 

SWE.  

3.5. Conclusion 

This study presented a new inversion method using first-order 

differentiation for robust estimation of 2-D SWS. This method was validated on 

homogeneous and inclusion phantoms and results were comparable to 

measurements from a compression test and three other conventional SWS 

estimation methods. Implementation on a dedicated device with optimized 

hardware and software should allow for efficient real-time imaging of the elastic 

modulus of tissue.  
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Chapter 4. 
 
 

Cardiac Atrial Kick Shear Wave Elastography  

4.1. Introduction  

Estimation of myocardial passive stiffness is important for the assessment of 

diastolic function and the differential diagnosis of disease. Current methods for 

myocardial stiffness estimation are made through invasive measures using cardiac 

catheterization, where the patient may be placed under general anesthesia and will 

undergo X-ray based fluoroscopy. Both of these are an increased risk for the 

patient due to ionizing radiation or complication during or following the 

procedure. To reduce the risks associated with cardiac catheterization, a 

noninvasive measurement of myocardial stiffness through ultrasound based SWE 

is developed and presented in this chapter. Implementation of this method helps 

to ease diagnosis for patients who are suffering, reduce risk, and improve patient 

outcomes. 

Among various methods of introducing shear waves into the myocardium, 

currently, acoustic radiation force (ARF)-based cardiac SWE shows promise 

(Couade et al. 2011; Pernot et al. 2011; Song et al. 2016b); however, in vivo 

applications in humans are limited. Difficulties in ARF-based cardiac SWE arise 

from the poor SNR inherent to cardiac ultrasound. In low SNR imaging, the 

minute displacements (~µm) of the ARF-induced shear wave are challenging to 

detect which results in unreliable SWS measurements of the myocardium. This 
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poses a challenge for clinical applications because 1) an increasing body mass 

index (BMI) is associated with reduced SNR in ultrasound, and 2) elevated BMI is a 

significant risk factor for reduced diastolic function leading to DHF (Russo et al. 

2011). Thus, the population at most risk and who might benefit most from cardiac 

SWE may not receive its benefits.  

To overcome this limitation, a method of cardiac SWE is developed and 

presented in this chapter which uses shear waves intrinsic to the heart. Here, the 

shear wave is generated from the heart itself, where the atrial contraction (atrial 

kick) during late diastole acts as a mechanical stimulus at the base of the heart to 

generate a wave traveling through the passive ventricular myocardium. This wave 

travels through the myocardium prior to the electrical activation and contraction 

of the ventricular myocardium; thus, it may be used to complement 

electromechanical wave imaging methods which image the timing and 

propagation of myocardial contraction (Costet et al. 2014; Konofagou and Provost 

2012; Provost et al. 2011). The atrial kick shear wave follows (or is associated with) 

the P-wave seen in an electrocardiogram (ECG). In this way, the atrial kick SWS is 

an indicator of late diastolic myocardial stiffness and can provide diagnostically 

useful information to clinicians.  

Previous studies performed on the heart used conventional scanning 

sequences (Pislaru et al. 2014; Pislaru et al. 2017). When imaging uses a 

conventional line by line scanning sequence the field of view needs to be narrowed 

to achieve the high frame rates necessary for SWE. Because the field of view is 
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narrowed in conventional imaging, the tissue being imaged typically needs to be 

oriented axially as in the apical 4-chamber view. Further, multiple 

echocardiograms are needed to assess different regions of the heart, such as the 

IVS and the LV free wall. The use of diverging wave imaging can help to solve the 

limitations of conventional line by line imaging, open us the use of other cardiac 

views, and reduce the time for data collection in the clinic. 

Moreover, because this method uses the atrial kick shear wave—which to 

date has only limited research in humans—it is necessary to evaluate the 

relationship of this wave with other factors/measurements of cardiac health. This 

will give clinicians a better understanding of how the atrial kick SWS fits into and 

enhances their current echocardiography reports. 

4.1.1. Pulse Inversion Imaging  

Pulse Inversion (PI) imaging is a method which has been shown to improve 

the ultrasound image resolution, contrast, imaging range, and image quality in 

hard to image patients (Gong et al. 2017; Kornbluth et al. 1998; Thomas and Rubin 

1998). Further, PI methods are shown to improve the imaging of tissue 

displacements in SWE by improving the visualization of the shear wave and thus 

the SWS estimate (Doherty et al. 2013; Song et al. 2013). This part of the research 

implements an imaging method which uses PI to better estimate the atrial kick 

SWS.  
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To understand how PI works it is first necessary to understand the nonlinear 

properties of acoustic wave propagation. Previously it was stated that acoustic 

waves propagate at an average of 1540 m/s in the soft tissues of the body. This 

speed comes from a linearization of the continuity equations defining acoustic 

wave propagation. If a second term is included, the wave equation becomes 

nonlinear and the speed of sound can be defined by (Kinsler et al. 1999): 

 

𝑐 = 𝑐0 + 𝛽𝑢, (4.1) 

 

where 𝑐 is now the nonlinear speed of sound, 𝑐0 is the original speed of sound, 

1540 m/s, 𝛽 is to coefficient of nonlinearity, and 𝑢 is the tissue particle velocity. 

Because the initial transmitted acoustic wave is a sinusoid, by differentiation the 

tissue particle velocity is then also a sinusoid. This means that the acoustic speed 

of sound is different for different parts of the wave. Because of this, the original 

transmitted sinusoid tends to distort as it propagates and the distortion increases 

as the ultrasound wave propagates further into the tissue. Figure 4.1 shows an 

example of this distortion and how it shifts the frequency content of the wave from 
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the transmit frequency to higher harmonic frequencies which are integer multiples 

of the fundamental frequency. Ultrasound harmonic imaging typically uses only 

the 2nd harmonic; thus, that is all that is shown here.  

PI imaging selectively filters for the 2nd harmonic frequency while canceling 

out the fundamental transmit frequency. The cancellation is done by adding 

together the RF-data from consecutive transmit/receive events where the transmit 

pulse waves are identical except for having an opposite polarity. Figure 4.2 shows 

the two transmit pulses used in pulse inversion. Here, no distortion has occurred 

and when the two waveforms are added together they cancel out. This cancellation 

is the way of filtering out the fundamental frequency.  

 

Figure 4.1 (a) Acoustic waveforms for a sinusoidal transmit and the distorted 
received waveform cause by nonlinear acoustic wave propagation. (b) The 
frequency content of the original and distorted waves. In the distorted 
wave the frequency is shifted up to a higher harmonics where represents 
the fundamental frequency, or transmit frequency, and represents the 2nd 
harmonic frequency (f2 = 2f1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cc 



79 

When recording the RF-data the waveforms will be distorted. This is shown 

in Figure 4.3. Because the transmit waveforms are opposite polarity the nonlinear 

distortion acts of different parts of the waveform and when adding them together 

only the fundamental frequency cancels out and the 2nd harmonic frequency is 

doubled. This cancelation of the fundamental and doubling of the 2nd harmonic 

forms the bases of PI imaging methods. One consequence of this method is the 

effective frame rate is halved when compared to non-PI methods. Because of its 

known benefits in SWE and B-mode imaging, PI is used in this part of the research 

and discussed further in section 4.2.3.  

 

Figure 4.2 Ultrasound transmit waveforms used in PI. A single pulse is 
transmitted into the body which is followed by an opposite polarity pulse. 
If they are added together they sum to zero.   
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Figure 4.3 The received and distorted waveforms from the two opposite polarity 
pulses. Because the nonlinear distortion acts on different parts of the 
waveform their summation cancels out the fundamental frequency but 
not the 2nd harmonic frequency.  
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4.2. Methods 

4.2.1. Ultrasound Data Acquisition — Cardiac Atrial Kick Shear Wave 
Elastography 

A programmable research ultrasound platform (Verasonics Vantage, 

Verasonics Inc., Kirkland, WA, USA) and a 64-element cardiac phased array 

transducer (P4-2v, Verasonics Inc., Kirkland, WA) were used for this study. The 

ultrasound machine was programmed to perform both B-mode echocardiography 

and Cardiac Atrial Kick SWE.  

Figure 4.4 shows the data acquisition sequence for the ultrasound machine. 

This sequence begins with a continuous B-mode imaging session to orient the 

transducer and find the optimal view of the heart for SWE. An apical 4-chamber 

view was chosen for data acquisition because shear wave motion is maximized in 

this view. Once the apical 4-chamber view was found the SWE mode was 

activated. Immediately prior to activation of the SWE sequence the subject was 

asked to exhale and then to hold their breath for the duration of the sequence, 

approximately 1.3 seconds.  

The SWE mode was designed to record ultrasound data in sync with the 

heart cycle. This was accomplished by triggering the start of the SWE ultrasound 

data collection from the QRS-complex of an ECG. Figure 4.5 shows the ECG unit 

and an example of the ECG signal used to synchronize data collection with the 

heart cycle. The ECG was run using a data acquisition software (MyDAQ, National 

Instruments Corp., Austin, TX) with a LabVIEW interface. Following the ECG 
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trigger, ultrasound data were recorded in two steps 1) a single B-mode image 

which was to be used as a reference image was recorded, and 2) acquisition of 1400 

frames of a high frame rate tissue Doppler imaging (TDI) sequence which was 

designed to visualize tissue motion throughout the heart cycle. The frame rate for 

this sequence was 1100 Hz. Acquisition of the TDI sequence immediately followed 

the B-mode reference image. The data were saved and the SWS was estimated 

from the TDI data offline.   

  

 

Figure 4.4 The data acquisition sequence for Cardiac Atrial Kick SWE on the 
Verasonics Vantage ultrasound machine. 
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4.2.2. The Ultrasound Imaging Sequence for B-mode and TDI 

Ultrasound imaging for both the B-mode reference image and TDI sequence 

of the SWE mode consisted of a method where diverging and unfocused 

ultrasound transmit beams—rather than conventional focused ultrasound 

transmit beams—were used to insonify the entire heart (Hasegawa and Kanai 

2011). Diverging wave transmits were chosen for the SWE mode because previous 

research has used plane wave imaging methods to insonify the entire imaging 

region (see Chapter 3); however, plane wave imaging methods do not necessarily 

 

Figure 4.5 (a) ECG circuit, (b) housing for the ECG, and (c) the ECG output in a 
Lead II configuration. 
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fit for cardiac applications. This is because in order to image the heart the 

transducer face needs to fit in an intercostal space (between the ribs); thus, it is 

much smaller than the required imaging region. Diverging waves spread out the 

acoustic intensity and allow the principles of SWE to extend to cardiac 

applications.  

Figure 4.6 shows the distribution of acoustic energy on the ultrasound 

transmits used in the TDI sequence and the corresponding individual element 

transmit delays. Transmit delays for the multiple angles were calculated by moving 

the virtual focus laterally about the center of the aperture. To calculate these 

 

Figure 4.6 Transmit Profiles for (a) leftward and (b) rightward steered and 
unfocused transmit beams used for the TDI imaging sequence. (c) The 
transducer element delay calculated for both beams. 
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delays all ultrasound transmits used a virtual focus 7 mm behind the face of the 

transducer. As seen from the transmit intensity profiles this allowed acoustic 

energy to cover the majority of the imaging region. In Figure 4.6 (a) and Figure 4.6 

(b) two similar but differently angled transmit profiles are shown. Two angles of 

insonation are used in TDI because the coherent summation of reconstructed 

ultrasound images taken using differently angled transmits helps to reduce clutter 

noise in the image and improve the SNR (Montaldo et al. 2009). A similar method 

was used in Chapter 3 to improve the SNR when visualizing the shear wave 

motion. The individual element delays for these two transmits, shown in Figure 

4.6 (c), were calculated by moving the virtual focus laterally from -1 to 1 mm 

behind the face of the transducer.  

The B-mode reference imaging consisted of the coherent summation of 12 

differently angled insonations of the heart. To do this, the individual element 

delays for each of the transmits were calculated by moving the virtual focus 

laterally in 12 equally spaced increments from -3 to 3 mm behind the face of the 

transducer. A total of 12 transmits were used for B-mode imaging because ultrafast 

imaging of the heart was not necessary. Ultrafast imaging was needed in the TDI 

sequence to visualize the shear wave motion.  

Figure 4.7 shows the TDI sequence which was designed to acquire data to 

visualize tissue movement and estimate the atrial kick SWS. From here it is seen 

that 4 total transmits are used to produce a single final image, where there are 

1400 final images. The original transmit sequence consisted of a PI sequence and 
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the coherent summation of the two differently angled diverging wave transmits. 

The element PRF was 4.4 kHz and the effective SWE PRF was 1.1 kHz. The 

maximum tissue velocity before aliasing was 122 mm/s.   
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Figure 4.7 Imaging sequence which collects 1400 imaging frames which are used 
for tissue Doppler velocity estimation and the atrial kick SWS estimation. 
(a) The original sequence of interleaved polarity pulses, (+, -) and the 
separately angled frames of diverging transmits (1,2). (b) Pulse inversion 
is performed on the recorded RF data, (c) the harmonic frames at the two 
separate angels, (d) coherent summation performed on the full imaging 
frames, and (d) the final images used for SWS estimation.  
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4.2.3. PI with Diverging Transmit Waves 

This study used an unfocused diverging wave ultrasound transmit. From Eq. 

(4.1) it was seen that the speed of sound differs with the particle velocity of the 

acoustic wave. From this, as the acoustic intensity increases the particle velocity 

also increases and this works to speed up the generation of the 2nd harmonic 

frequency. For a transmit beam focused in the imaging region, the generation of 

the 2nd harmonic signal occurs quickly at the focus; however, for diverging wave 

transmits there is no increase in acoustic intensity once the wave leaves the 

transducer and the generation of the 2nd harmonic is reduced when compared to 

focused imaging methods. Because of this, the visualization of the shear waves 

may also be reduced when using PI imaging with diverging transmit waves. To test 

the generation of the 2nd harmonic and the feasibility of using PI imaging with 

diverging waves for the SWE sequence, a series of tests were performed which 

measured the spectral content of the RF-data from both B-mode and Doppler 

transmit waveforms when transmitting into the body.  

The spectral content was estimated in the following way. From a transmit 

profile similar to those of Figure 4.6, 10 transmit/receive events were performed. 

The transmit frequency for the PI sequence was chosen as 1.75 MHz and the 2nd 

harmonic receive frequency was 3.5 MHz. These frequencies were chosen as they 

both fell within the manufacturer-specified -6 dB bandwidth of the transducer 

(1.59 MHz – 3.72 MHz).  An initial transmit with a frequency of 3.5 MHz was 

implemented for reference and comparison to the PI transmit sequence. For each 
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test, the RF-data were recorded and saved from each of the 64 elements of the P4-

2v transducer and for all 10 transmit/receive events. This produced a total of 640 

RF-data recordings. Welch’s method was used to estimate the PSD for all 

recordings. The final PSD estimate was the average of all the individual PSDs. 

Welch’s method estimates the PSD by first breaking up the signal into smaller and 

overlapping blocks of data, estimating the spectral content of each smaller block 

by Fourier transform, and then averaging the spectral content for all of the smaller 

blocks in the signal (Welch 1967). The length of each block was 1000 samples and 

the overlap factor was 90%. A Chebyshev window with sidelobes set to -200 dB 

was applied to the windowed RF-data prior to the Fourier transform. This ensured 

that any sidelobes in the resulting PSD was a consequence of the natural 

windowing of the transmit waveform. 

 Figure 4.8 (a-b) show the in vivo PSD of a 1-cycle B-mode pulse and a 4-

cycle Doppler pulse for a transmit frequency of 3.5 MHz. The solid black lines at 

1.59 MHz and 3.72 MHz represent the manufacturer-specified -6 dB cutoff 

frequencies of the transducer. The -6 dB frequencies from the estimated PSD 

generally matched the specified cutoff frequencies for the transducer. The Doppler 

pulse, a longer 4-cycle pulse, is seen to have a PSD similar in width to the more 

broadband B-mode pulse due to the two peaks at frequencies lower than the 

desired transmit frequency. It is hypothesized that these peaks are due to the 

natural rectangular windowing of the 4-cycle transmit pulse. 
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The PSD of the harmonic imaging sequence was estimated from three 

different conditions, 1) a single transmit/receive, 2) a PI sequence of two transmits 

of opposite polarity summed after receive, and 3) two transmits of equal polarity 

summed after receive.  

Figure 4.9 (a) shows the PSD of the B-mode transmit pulse when the 

transmit frequency was 1.75 MHz. The 2nd harmonic and receive frequency for this 

was 3.5 MHz. For the single and double transmit pulses without PI the main lobe is 

centered around the transmit frequency. The double transmit summation is about 

3 dB greater in magnitude than the single transmit pulse, which is expected as 3 dB 

represents double the power. The 2nd harmonic frequency is buried in what may be 

 

Figure 4.8 In Vivo PSD for (a) the 1-cycle B-mode transmit pulse, and (b) the 4-
cycle Doppler transmit pulse. The black dashed line represents the 
transmit and receive frequency of 3.5 MHz while the solid black lines 
represent the reported -6 dB cutoff frequencies of the transducer.   
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the side lobes from the main lobe. While the two side lobes appear to be elevated 

around the 2nd harmonic, suggesting it is generated, this elevation may be caused 

by the natural frequency response of the transducer.  It cannot be determined 

from here if the 2nd harmonic is being generated. Moreover, assuming it is 

generated then an image reconstructed using the 2nd harmonic will be corrupted 

by data from the fundamental frequency. Simply filtering out the fundamental 

frequency will not work in this case. After application of the PI sequence the main 

lobe on the transmit frequency as well as the side lobes obscuring the 2nd harmonic 

are reduced and the peak around the 2nd harmonic is more prominent. This 

suggests that the 2nd harmonic is generated using the diverging transmit profile 

with the 1-cycle transmit waveform and that the PI sequence is working to cancel 

out the fundamental transmit frequency. However, even after application of the PI 

 

Figure 4.9 In Vivo PSD of the transmitted B-mode pulse (a) before filtering and 
(b) after RF-data filtering.  
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sequence the magnitude of the fundamental is still several dB greater than that of 

the 2nd harmonic and filtering of the RF-data is still needed. Figure 4.9 (b) shows 

the response after applying the RF-data filter. Figure 4.11 shows the magnitude 

response of the filter.  

Figure 4.10 (a) shows the PSD for the 4-cycle Doppler transmit pulse when 

using the same 1.75 MHz transmit frequency as the B-mode pulse. As before, the 

most prominent peak is centered around the transmit frequency and this lobe is 

narrower due to the extended transmit pulse. The single and double Doppler 

transmits show a more pronounced 2nd harmonic frequency than the B-mode 

pulse. This may be because the greater power in the extended transmit pulse 

generates the 2nd harmonic frequency faster, or because the side lobes fall off faster 

for the narrower bandwidth pulse and do not obscure the 2nd harmonic peak. After 

 

Figure 4.10 In Vivo PSD of the transmitted Doppler pulse (a) before filtering and 
(b) after RF-data filtering.     
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application of the PI sequence the fundamental frequency was reduced and the 

peak around the second harmonic was increased by about 3dB. However, as before 

the fundamental frequency content dominates the 2nd harmonic and the RF-data 

would still need to be filtered. The PSD after filtering is shown in Figure 4.10 (b).  

For both B-mode and Doppler transmits, PI enhanced the power of the 2nd 

harmonic while reducing the power of the fundamental frequency. This is the 

purpose of PI imaging (Duck 2002). A perfect cancellation of the fundamental 

frequency would occur if there were no movement of the underlying tissue and 

would thus isolate the 2nd harmonic. As seen in Figure 4.8 and Figure 4.9 the 

cancelation is imperfect. This is due to the rapid movement of the heart from one 

ultrasound transmit to the next. Because of the imperfect cancelation, the RF-data 

requires filtering to further isolate the 2nd harmonic before processing and image 

display. This would suggest that PI has no purpose when imaging rapidly moving 

tissue such as the heart; however, because PI reduced the side lobes from the 

fundamental and made the 2nd harmonic peak more prominent, it was 

implemented for this part of the research along with the RF-data filter shown in 

Figure 4.11.  
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4.2.4. Estimation of the Atrial Kick SWS   

The atrial kick SWS was estimated from the tissue velocity in late diastole. 

Tissue velocity was estimated from the IQ image data using the phase based 2-D 

autocorrelation method shown in Eq. (2.7). Autocorrelation coefficients were 

smoothed spatially using a 10×10 pixel (4.4×4.4 mm) moving average and 

temporally using a 3 pixel (2.7 ms) moving average. Figure 4.12 shows four frames 

of the tissue velocity during the atrial kick overlaid on the reference B-mode 

image. The atrial kick wave is of negative velocity and propagates up through the 

heart from the base to the apex. This corresponds to the contraction of the atria 

progressively pulling down the myocardium. The direction of propagation in 

relation to the tissue motion is suggestive of a longitudinal shear wave (Catheline 

 

Figure 4.11 RF-data filter used for ultrasound data acquisition. 
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and Benech 2015). Using the B-mode as a reference, a curve was drawn through the 

IVS, tissue velocity was reconstructed along the curve and plotted against time. 

The red dashed line in Figure 4.13 shows the curve through the interventricular 

septum. Figure 4.14 shows the representative tissue velocity along the IVS and 

through the heart cycle for four subjects. The atrial kick shear wave is seen in late 

diastole and corresponds with the P-wave in the ECG. The SWS was estimated 

from the slope of a linear regression along the leading edge of the wave. The linear 

 

Figure 4.12 Wave Propagating through the heart at times of (a) 0.672, (b) 0.69, 
(c) 0.708, and (d) 0.726 seconds after the start of data collection. All 
images use the same colorbar to visualize tissue velocity. Tissue velocity 
above -15 mm/s is not shown here in order to visualize the wave 
propagating through the heart. The SWS is estimated from the wavefront. 
Arrows indicate wave propagating up through the heart.  
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regression used a least absolute residual (LAR) method for robust SWS estimation. 

The leading edge was defined as the isovelocity line at 25% of the maximum tissue 

velocity of the atrial kick wave (Shahmirzadi et al. 2012). The white dashed line in 

Figure 4.14 in late diastole represents this linear regression. This method of SWS 

estimation was chosen because it allowed for measurement of the SWS from the 

wavefront and was not influenced by the non-wave-like motion which followed the 

initial wave propagation.  

 

  

 

 

  

 

Figure 4.13 B-mode reference image. Tissue velocity is reconstructed along the 
red dashed line through the interventricular septum.  
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Figure 4.14 (a) – (d): Representative tissue velocity and ECG of four subjects 
recorded for about 1.27 seconds. Tissue velocity is reconstructed along the 
interventricular septum. The atrial kick shear wave is identified in late 
diastole and the slope of the white dashed line represents the atrial kick 
SWS. 
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Because the SWS estimate is in late diastole, the myocardium is considered 

to be relatively motionless (compared to imaging duration) before shear wave 

generation. This assumption may be violated in the event of E’-A’ fusion. This is 

when the diastolic phase of the heart cycle is shortened and atrial contraction 

begins before the end of the early filling phase. Rather than two distinct patterns 

of tissue movement in diastole there is only one. Thus, no atrial kick shear wave is 

identified. Figure 4.15 shows an example of E’-A’ fusion. SWS measurements were 

discarded when this occurred. 

  

 

Figure 4.15 Example of E’-A’ fusion from one of the subjects in this study. No 
atrial kick shear wave is seen in the tissue velocity measurement. 
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4.2.5. Subject Population 

This research described here was approved by the University of Nebraska-

Lincoln Institutional Review Board (IRB) and all participants provided their 

written informed consent before inclusion into the study. This research is 

composed of two parts, 1) a study to assess the day-to-day variability of the SWS 

estimation, and 2) a study investigating the relationship between the SWS and 

other measures of health. Four healthy adults were recruited into the first study of 

day-to-day variability while 14 healthy adults were recruited into the second study 

correlating measures of health to the SWS. Subjects were excluded if they had a 

history of heart disease.  

4.2.6. Day-to-Day Variability of the Atrial Kick SWS  

For the first study assessing the day-to-day SWS variability, participants in 

this study were scheduled for three consecutive days of ultrasound data 

acquisition. Scheduling was at the same time each day and participants were asked 

to refrain from caffeine intake and exercise prior to each visit. Each day consisted 

of a total of five ultrasound data acquisitions for a total of 15 data acquisitions per 

subject. To reduce potential bias from using the same ultrasound view for each 

data acquisition, ultrasound imaging was stopped between acquisitions and the 

transducer was removed from the surface of the body. The mean and standard 

deviation of the SWS was calculated from the five estimates on each day. A 1-way 

ANOVA test was performed to determine differences within each subject over the 

three days of data acquisition.  
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4.2.7. Comparison of Atrial Kick SWS to Common Health Measures 

For this part of the research, prior to any ultrasound imaging, common 

clinical measures were recorded. These included the participant’s age, sex, height, 

weight, blood pressure, and heart rate. Blood pressure was measured from the left 

arm using an automated blood pressure cuff. From the height and weight 

measurements the BMI and Body Surface Area (BSA) were estimated (Haycock et 

al. 1978). BSA was estimated because it is a parameter highly correlated to the size 

of cardiac structures and is commonly used as a reference measure to assess 

cardiac abnormalities (Lopez et al. 2010; Sluysmans and Colan 2005).  

Ultrasound data acquisition followed the recording of the clinical data 

measurements. The measured ultrasound data included the atrial kick SWS, the 

peak tissue velocities in systole (S’), early diastole (E’), and late diastole (A’), and 

the isovolumetric relaxation time (IVRT’). The IVRT’ was measured as the time 

between the ending of the S’ wave and the beginning of the E’ wave. From the peak 

tissue velocities in diastole the E’/A’ ratio was calculated. These measurements 

were taken using tissue velocity measurements in the IVS at the depth of the 

mitral annulus and using recommended quantification methods in 

echocardiography (Lopez et al. 2010; Nagueh et al. 2009). A total of five 

measurements were taken for all ultrasound based measures and the mean and 

standard deviation for each participant were calculated.  

Pearson’s correlation coefficient (𝑟) was calculated to investigate the linear 

relationship the conventional measurements and the atrial kick SWS. Statistical 
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significance of the linear correlations was found using a t-test, where p-values less 

than 0.05 were considered significant. Pearson’s correlation coefficient is defined 

as: 

𝑟 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
, (4.2) 

 

where 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance of the random variables 𝑋 and 𝑌 which represent 

the SWS and the other measures of health and 𝜎𝑋 and 𝜎𝑌 represent their standard 

deviations.  

The intra- and inter-rater correlation of the SWS measurement was 

estimated. The intra-rater correlation was found by having the same reader select a 

line through the IVS on two separate occasions, from which the SWS was 

estimated. The inter-rater correlation of the SWS measurement was estimated by 

having two separate readers select lines through the IVS and estimating the SWS. 

The correlation between the results was calculated using Pearson’s correlation 

coefficient. Statistical significance between the readings was found by first using a 

Fisher z-transformation on the coefficients and then performing a Z-test (Fisher 

1921).  

  The mean absolute error (MAE) of the measurements were calculated by: 

 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝐴𝑖 − 𝐵𝑖|

𝑁

𝑖=1

, (4.3) 
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where 𝑁 is the total number of SWS estimates, and 𝐴𝑖 and 𝐵𝑖 represent the SWS 

measurements from the multiple readings. A paired student’s t-test was performed 

to determine if the differences were statistically significant. Statistical significance 

was considered as a p-value less than 0.05.  
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4.3. Results 

4.3.1. Day-to-Day Variability of the Atrial Kick SWS  

Figure 4.16 shows the results of the day-to-day variability measurements. 

Subject three presented with an increased heart rate on day two which shortened 

diastole, causing E’-A’ fusion, and resulted in no SWS estimate for that day. 

Subject four fell ill during the three days scheduled for data acquisition and was 

unable to attend on the third day. From the one-way ANOVA test, there was no 

statistically significant difference in the SWS for any subject across the three 

imaging days. Significance levels were (p = 0.71, p = 0.97, p = 0 0.83, and p = 0.27) 

for subjects one through four respectively.    

 

Figure 4.16 Estimated SWS (means ± standard deviation) for 4 subjects across 
three consecutive days. E’-A’ fusions resulted in no estimate for subject 3 
on day 2 while subject 4 was unable to compete data collection.  
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4.3.2. Estimation of the Atrial Kick SWS and Correlation to Common 
Health Measures 

Figure 4.17 shows the mean and standard deviation of the atrial kick SWS for 

each of the 14 healthy subjects. Table 4.1 shows the overall subject characteristics 

in this study and Table 4.2 shows the ultrasound derived characteristics. For all 

subjects, the SWS was 1.78 ± 0.34 m/s. This falls within the range of previously 

reported SWS measurements (Couade et al. 2011; Pernot et al. 2011; Pislaru et al. 

2014; Song et al. 2014b). When correlating the SWS to the conventional measures 

of health, only the systemic diastolic pressure, E’, E’/A’, and the IVRT’ were found 

as statistically significant. Figure 4.18 visualizes these significant correlations along 

with the 95% confidence intervals and the 95% predictions intervals. There was no 

 

Figure 4.17 Mean and standard deviation of the atrial kick SWS for each subject.  
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statistically significant correlation found between systemic systolic pressure, heart 

rate, age, height, weight, body surface area, body mass index, or sex. 

 

 

 

Table 4.2 Ultrasound Derived Characteristics 

 

Table 4.1. SUBJECT CHARACTERISTICS 

 
Mean ± Std. 

(n=14) 
Range 

Corr. to 
SWS (p) 

Age (y) 24.7 ± 3.0 21.1 – 29.3 0.40 

Sex (male/female) 7/7 N/A 0.79 

Heart Rate (bpm) 75.9 ± 11.2 61 – 94 0.31 

Systolic Pressure (mmHg) 112 ± 10.7 104 – 139 0.08 

Diastolic Pressure (mmHg) 79.2 ± 7.5 68 – 93 0.002* 

Height (in) 67.9 ± 3.5 62.2 – 74 0.14 

Weight (lbs) 155 ± 31 113 – 206 0.19 

Body Surface Area (m2) 1.84 ± 0.23 1.52 – 2.19 0.17 

Body Mass Index (kg/m2) 23.4 ± 3.13 19.4 – 28.6 0.42 

*Indicates statistically significant linear correlation (p < 0.05). 

 
Mean ± Std. 

(n=14) 
Range 

Corr. to SWS 
(p) 

Atrial Kick SWS (m/s) 1.78 ± 0.34 1.25 – 2.58 N/A 

S’ (mm/s) 102.5 ± 16.2 74 – 134 0.50 

E’ (mm/s) 152 ± 18.7 105 – 177 0.024* 

A’ (mm/s) 94.2 ± 16.5 64.5 – 121 0.27 

E’/A’ 1.68 ± 0.43 1.05 – 2.59 0.028* 

IVRT’ (ms) 69.8 ± 11.2 52.4 – 92.2 0.023* 

 *Indicates statistically significant linear correlation (p < 0.05). 
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Figure 4.18 Atrial Kick SWS plotted against the four statistically significant 
correlators, (a) systemic diastolic pressure, (b) E’, (c) IVRT’, and (d) E’/A’. 
Markers and error bars represent the mean and standard deviation of the 
atrial kick SWS for each subject. The black dashed line represents the linear 
regression where the r and p-values were estimated. The dark gray band 
represents the 95% confidence interval of the linear regression and the 
light gray band represents the 95% observation prediction interval. The 
“DD” markers indicate where diastolic dysfunction is more likely to occur.  
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4.3.1. Intra- and Inter-rater Variability   

Table 4.3 shows the results from the intra- and inter-rater repeatability test 

and Figure 4.19 shows a visualization of these results. A single SWS measurement 

from different readers had a slightly higher correlation coefficient then the when 

the same reader measured the SWS. However, the MAE, measuring the average 

difference of the paired SWS measurements was lower when the same reader 

estimated the SWS. There was no statistically significant difference between the 

intra-rater and inter-rater SWS measurements for both a single estimate or the per 

subject estimate.  

 

 

Table 4.3 Intra- and Inter-rater Correlations  

  

 
SWS Estimate Corr. Coef. 

(r) 
MAE 
(m/s) 

Intra-rater  
Single SWS Estimate 0.80 0.16 

Per-subject SWS 0.85 0.13 

Inter-rater 
Single SWS Estimate 0.82 0.18 

Per-subject SWS 0.90 0.11 



108 

4.4. Discussion and Conclusion 

This study is the first to use ultrafast ultrasound imaging to estimate the 

atrial kick SWS on humans. This is because in diverging wave imaging the frame 

rate and field of view are inherently high. This not only allows the imaging of 

multiple regions of the heart in the apical view, but also allows for the imaging of 

the atrial kick shear wave from the parasternal long axis view where the tissue is 

oriented longitudinally across the imaging region. The parasternal long axis view is 

seen in Figure 4.20. Further, because the parasternal view is oriented 

perpendicular to the apical view, the orthogonal components of the shear wave 

can be evaluated. Because the SWS differs when propagating across or through the 

myocardial fibers, the different shear wave components are expected to have 

 

Figure 4.19 The intra- and inter-rater repeatability of the SWS estimate. The 
light gray dots indicate the SWS measurement from a single data 
acquisition. The dark gray dots indicate the average SWS measurement 
for a single participant. r indicates the correlations between the 
measurements and MAE is the mean absolute error.  
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different speeds (Couade et al. 2011; Song et al. 2015; Song et al. 2016a). Future 

studies will determine if the imaging view has a statistically significant impact of 

the estimated SWS.  

4.4.1. Classification of the Atrial Kick Shear Wave 

Previous cardiac SWE studies relied on the ARF for the generation of the 

shear wave (Pernot et al. 2011). Because the transducer controls this form of shear 

wave generation, the classification of the wave is well known. In contrast, the 

study here utilizes the transient force of the atrial kick as a mechanical stimulus to 

generate the shear wave. This occurs naturally in every heart cycle. In this way the 

atrial kick shear wave acts much like the shear wave generated during transient 

 

Figure 4.20 Parasternal long axis view of the heart.  
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elastography (Sandrin et al. 1999; Sandrin et al. 2002b; Sandrin et al. 2003). This 

wave may be represented as a longitudinal shear wave rather than a transverse 

shear wave (Catheline and Benech 2015). However, because the wave is generated 

naturally within the heart and not controlled from the transducer, the 

classification of the wave is unknown and need further study.  

Other methods in SWE report either the SWS (𝑐𝑆) or the shear modulus (𝜇) 

as a measure of tissue stiffness. The equation relating shear modulus to the SWS is 

𝜇 = 𝜌𝑐𝑠
2, where (𝜌) is the density of the tissue under investigation. Because the 

classification of the wave is unknown, and the shear wave movement may be 

influenced by chamber size, the wall thicknesses, the orientation of myocardial 

fibers, and the viscoelastic properties of the myocardium, this research only 

reports the atrial kick SWS. A definitive mathematical model relating SWS to 

cardiac shear modulus is needed before the atrial kick shear wave can be used to 

estimate the shear modulus. These models will need to be developed in future 

research.  

Currently the measurement of the atrial kick SWS is a global measurement 

designed for assessment of LV function and stiffness. The contribution of the RV is 

discounted. With improved modeling of the wave propagation, the separation and 

investigation of both sides of the heart will help provide clinicians with accurate 

information about the progression of diastolic function throughout the heart.  
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4.4.2. Positive Correlation of the SWS to Measures of Diastolic 
Function 

Significant correlators to the atrial kick SWS were the E’, E’/A’, IVRT’, and 

systemic diastolic pressure. For each, it was seen that the SWS was positively 

correlated to the other measures of diastolic function. This is the opposite of what 

was originally expected. This is because diastolic function is related to myocardial 

stiffness; thus, as stiffness increases the diastolic function is expected to be 

reduced. In conventional SWE, as stiffness increases the SWS also increases. Thus, 

we would expect the SWS to increase when the other measures show diastolic 

function decreasing. Reasons for the positive correlation are unknown and need 

further study. Measurement of the atrial kick SWS in conjunction with cardiac 

catheter derived measured of chamber pressure may help to determine the 

correlations seen here.  

E’ and A’ are respectively the peak tissue velocities for the early and late 

portions of the diastolic phase of the heart cycle. The E’/A’ ratio is a common 

measure of ventricular filling and reflects diastolic function because as myocardial 

stiffness increases, early filling is ineffective and late filling must compensate more 

to adequately fill the left LV. Because there was no significant correlation between 

A’ and the atrial kick SWS, this suggests the SWS does not depend on the 

magnitude of the initial pulse generating the wave (within normal physiological 

limits). Because E’ was correlated to the SWS while A’ was not, the correlation with 

E’/A’ may only reflect the correlation to E’.  
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IVRT’ is defined as the time between the closing of the aortic valve and the 

opening of the mitral valve, where the opening and closing of valves is regulated by 

chamber pressures. During this time, the LV begins to relax following the systolic 

contraction of the myocardium. The relaxation expands the LV chamber which 

causes the LV chamber pressure to fall. The end of the isovolumetric relaxation is 

at the time of mitral valve opening, which occurs when the LV chamber pressure 

falls below the LA chamber pressure. If relaxation is impaired, or the myocardium 

is stiffer, the natural reduction of LV pressure is slowed and IVRT’ increased.  

All significant correlations between the atrial kick SWS and the other health 

measures were related to current measures of cardiac function and were found in a 

healthy population. This suggests that the SWS, which has previously been shown 

to be influenced by ventricular loading and myocardial mechanical properties 

(Pislaru et al. 2014), has an underlying relationship to cardiac function in the 

absence of disease. Because of this, other factors may be needed to better assess 

the deviations of the atrial kick SWS caused by disease, and a single measurement 

of the SWS may not be enough to assess disease progression. To account for the 

deviation in the SWS measurement in a healthy population, the SWS may be 

reported along with a z-score. The z-score indicates the difference of the 

measurement from the population mean when normalized to standard deviation 

(Colan 2013). Z-scores allow for a simple clinical interpretation of abnormalities 

and are commonly reported in clinical practice for patient assessment (Lopez et al. 

2010).  
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4.4.3. Limitations 

As seen in Figure 4.21, E’-A’ fusion can be a cause of an unsuccessful estimate 

of SWS. This further shows that other physiological factors affect the generation or 

visualization of the atrial kick shear wave. In subject two, the shear wave was well 

detected on days 1 and 3; however, because of an increased heart rate reducing the 

length of diastole the shear wave was not visualized. Other potential causes for an 

unsuccessful estimate of the SWS may be because of disease directly affecting 

atrial contraction such as atrial fibrillation.  

 

Figure 4.21 Tissue velocity along the IVS for a subject 3. E’-A’ fusion occurred on day 
two and no SWS estimate was possible.  
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When comparing the SWS against other measures of diastolic function, 

measurements such as ejection fraction (EF), septal thickness, and other baseline 

measurements for cardiac chamber quantification were not estimated. Because 

these measurements are also used in the assessment of cardiac structure and 

function when designing an intervention plan for a patient with disease, Future 

research will need to relate these baseline measurements to the SWS. This will 

need to be performed on both a healthy and symptomatic population. 
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Chapter 5. 
 
 

Discussion and Summary 

5.1. Introduction  

This Chapter provides an overview of the research performed and presented 

in this dissertation and future directions of this research are provided.   

5.2. Summary  

5.2.1. Validation of Shear Wave Elastography  

The development of a method used to estimate SWS in ultrasound based 

SWE and a validation of methods used in SWE was presented in Chapter 3. The 

SWS was estimated from the ratio of 1st order spatial and temporal derivatives of 

the shear wave tissue velocity signal. Where the shear wave was generated by 

mechanical excitation on the surface of a tissue mimicking gelatin phantom. The 

method for SWS estimation was validated on three phantoms of differing stiffness 

and compared to three other methods used in SWS estimation (a 2nd order wave 

equation, a 2-D TTP method, and a 2-D CC method). The Young’s modulus of each 

phantom was measured using a destructive mechanical testing; then, from the 

equations defined in Chapter 2 the nominal SWS was estimated compared to the 

ultrasound measured SWS. All ultrasound based methods were shown to provide a 

similar SWS estimation to the nominal SWS.  This research also investigated the 

ability of the four methods of SWS estimation to resolve a hard inclusion placed in 
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a soft background of a tissue mimicking phantom. Each method was capable of 

imaging the inclusion using the same shear wave data.  

5.2.2. Cardiac Atrial Kick Shear Wave Elastography 

The researched performed in the development of Cardiac Atrial Kick SWE 

was presented in Chapter 4. This method uses diverging waves to insonify the 

heart, image the shear wave produced by the atrial kick, and then estimate the 

SWS. The SWS was estimated from a linear regression along the leading edge of 

the wave, which was a different method than the one developed and tested in 

Chapter 3. This wavefront regression based method was chosen because it allowed 

for the estimation of the SWS from the wavefront without interference from the 

non-wave-like motion which follows. The atrial kick is the contraction of the LA 

during late-diastole which allows the LV to more completely fill up with blood. 

The disturbance caused by atrial contraction propagates up through the LV 

myocardium. Because the LV myocardium is passive and not contracting at this 

time the SWS is representative of the passive stiffness of the myocardium. 

Ultrafast imaging using diverging wave transmits allows the imaging of multiple 

regions of the heart at once as well as the estimation of SWS from tissues not 

oriented directly toward the transducer.  

An in vivo pilot study was performed which estimated the atrial kick SWS in 

14 healthy adults. The resulting SWSs were correlated to other measures of health 

taken in the clinic and were found to be statistically significantly correlated to four 
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measures of diastolic function, suggesting the atrial kick SWS may also provide a 

measure of diastolic function. The correlations were positive, where the SWS 

increased as diastolic function increased. This was opposite than expected and 

future research is needed to determine the physiological reason for these 

correlations.  

The long-term goal of this research, as stated in Chapter 1, was to develop an 

ultrasound based elastography method—using the cardiac muscle contraction as 

the impulse for tissue deformation—to noninvasively assess the in vivo stiffness of 

the heart. Increased stiffness of the heart is associated with the loss of diastolic 

function which progresses to DHF. Results from the research presented in this 

dissertation showed that the measurement of a SWS can provide a quantitative 

and objective measure of the stiffness of tissues. Cardiac Atrial Kick SWE was 

introduced as a method which measures the SWS and results from this research 

show it is a promising method for the measurement of diastolic function and 

myocardial stiffness allowing for improved diagnosis and improved care of those 

suffering from DD and DHF.  

5.3. Future Directions  

5.3.1. Interleaved PI and Fundamental Tissue Velocity Estimation  

Future directions of this research will compare PI imaging and fundamental 

imaging for tissue velocity estimation with varying number of ultrasound 

transmits and transmit profiles. Because PI imaging uses consecutive transmits at 

opposite polarity, but the same transmit profile, the number of angles to be used 
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for coherent summation is reduced by a factor of two when compared to 

fundamental imaging. The question which will be answered by performing this 

research is: when imaging using weakly focused transmit beams—which have a 

poor 2nd harmonic generation—is it better to use the fundamental frequency for 

tissue velocity estimation with N coherently summed data frames, or PI for tissue 

velocity estimation with N/2 coherently summed data frames?  

To answer this question, multiple imaging sequences will be interleaved to 

provide a direct comparison of the methods under the same in vivo imaging 

conditions. These sequences will consist of 1) conventional fundamental transmits, 

2) PI transmits, 3) multiplane wave techniques for the fundamental frequency 

(Tiran et al. 2015) and 4) multiplane wave techniques for the 2nd harmonic (Gong 

et al. 2017). Figure 5.1 shows the interleaved data collection sequence to be used for 

future research. The data collection sequence was designed to keep tissue velocity 

estimation parameters the same for both methods. The parameters to be kept the 

same are 1) the number of transmits per IQ data frame, 2) the PRF, and 3) the 

receive demodulation frequency. The sequence shown is for a comparison of 

fundamental and PI tissue velocity imaging when using two transmits per IQ data 

frame. The PI sequence has consecutive transmits at opposite polarities but all 

images are taken from the same angle and no coherent summation can be used. 

The fundamental sequence uses coherent compounding and collects data by 

imaging at two separate angles. To ensure tissue velocity images are interleaved, 

rather than simply IQ data frames, the sequence is designed to interleave two IQ 
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data images for each method (1, 1, 2, 2, 1, 1, …). The tissue velocity is estimated from 

these data frames using phase based techniques. The PI sequence used a transmit 

frequency half that of the fundamental to keep the demodulation frequency the 

same. This is because PI used the 2nd harmonic while fundamental uses the 1st. In 

this way, the PRF and Nyquist velocity are similar for both methods and to a non-

interleaved sequence. 

    

 

Figure 5.1 Method of data collection for interleaving PI and fundamental tissue 
velocity images. The PI sequence changes polarity of a 1.75 MHz transmit 
pulse and receives at a frequency of 3.5 MHz. The fundamental sequence 
changes imaging angle, transmits and receives at a frequency of 3.5 MHz.  

 

 

 

 



120 

 

Figure 5.2 shows the raw tissue velocity data reconstructed along a line 

through the IVS when a total of four ultrasound transmits were used to 

reconstruct a single IQ data image. With four transmits a total of two angles of the 

PI sequence and four angles for fundamental sequence were used to image the 

tissue and then estimate its velocity. No spatial or temporal filtering has been 

performed. The PI sequence shows a visibly higher noise content than the 

fundamental sequence.  

 

Figure 5.2 Tissue velocity reconstructed along a line through the IVS for the 
interleaved fundamental and PI imaging sequences. No spatial averaging 
or median filtering was performed.  
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Figure 5.3 shows the mean and standard deviation of the tissue velocity 

taken from a 9x9 block of pixels in the center of the IVS. Here, the PI derived 

tissue velocity estimate also shows a visibly higher standard deviation than the 

fundamental. These suggest that when estimating tissue velocity in SWE methods, 

PI may not always provide the optimal SNR. The diverging waves used here may 

have not generated high enough 2nd harmonics signal to provide an improvement. 

Future research will use the interleaved method presented here to investigate how 

varying the number of coherently compounded angles and transmit profiles affects 

the SNR of the tissue velocity measurement.            
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Figure 5.3 Tissue velocity from a 9x9 block of pixels at a single point in the IVS 
from the interleaved fundamental and PI imaging sequences. The black 
line represents the mean of the block and the gray the standard deviation. 
The fundamental sequence shows less standard deviation then the PI 
method.  
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5.3.2. Estimation of Atrial Stiffness  

The long-term goal of this research is to develop a cardiac SWE method 

which estimates SWS from naturally occurring shear waves in the heart. This 

includes the estimation of wave speeds from valve closure as well as the atrial kick 

shear wave. Future research will estimate the SWS of the mitral valve induced 

shear wave in the atria. At end diastole, the mitral valve is forced closed by the 

increased pressure in the LV. As the mitral valve closes a shear wave propagates 

away from the mitral annulus and through the myocardium of both the ventricles 

and atria. Because the ventricles are beginning to actively contract, the SWS is a 

combination of their passive stiffness and their contractile state. In contrast, 

because the atria have finished contracting the resulting shear wave propagates 

through a passive atria; thus, the SWS represents its passive stiffness.  

Figure 5.4 shows the tissue velocity reconstructed along the LA (0-25 mm) 

and LV (25-80 mm) free walls. The mitral valve closes around 100 ms after the start 

of data collection. At this time, the shear wave propagates up through the LV and 

down through the LA. The SWS in the LA was at 1.06 m/s while in the LV it was 

5.33 m/s. Future research will investigate the SWS through the LA, compare it to 

the SWS through the IVS, and investigate its relationship to the myocardial 

stiffness of the LA.  
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Figure 5.4 Tissue velocity reconstructed along the LA free wall (0-25 mm) and 
the LV free wall (25-80 mm). The Mitral valve closes around 100 ms and a 
shear wave propagates up through the LV and down through the LA. The 
LV SWS was 5.33 m/s and the LA SWS was 1.06 m/s.  
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Appendices 
 

APPENDIX A. Gelatin Phantoms  

A.1. Procedure for Making Gelatin Phantoms 

Gelatin phantoms are made with a combination if water, gelatin, Metamucil 

(for ultrasound scattering), propanol, and glycerol. The following equation 

represents how much water, in mL, is required to make a 1L phantom.  

 

𝐻20 = 1000 − 𝐺𝑒𝑙 − 𝑀𝑒𝑡 − 0.803 ∗ 𝑃𝑟𝑜𝑝 − 1.26 ∗ 𝐺𝑙𝑦𝑐 (𝐴. 1) 

 

Ingredients  

1. Water (𝐻20) measured in milliliters (mL). 

2. Gelatin (𝐺𝑒𝑙) measured in grams (g). 

3. Metamucil (𝑀𝑒𝑡) measured in g. 

4. Propanol (𝑃𝑟𝑜𝑝) measured in mL. 

5. Glycerol (𝐺𝑙𝑦𝑐) measured in mL. 

A typical amount of ingredients for a 7% gelatin phantom is shown below. 

1. 808 mL (𝐻20) 

2. 70 g (𝐺𝑒𝑙) 

3. 20 g (𝑀𝑒𝑡) 

4. 25 mL (𝑃𝑟𝑜𝑝), optional  

5. 65 mL (𝐺𝑙𝑦𝑐), optional  
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The procedure to make the tissue mimicking phantom requires multiple 

beakers, hotplates, and glass thermometers, pam, a large container filled with 

water, and a small container to hold any gelatin phantoms. Do not heat up the 

gelatin mixture above 60 C. The procedure for making the phantoms is partially 

taken from (Geliko 2008). It listed below.  

 

Procedure to make Gelatin Phantom  

1. Collect deionized water  

2. Separate water into two different beakers, one containing about 250 mL of 

water for gelatin mixture and one with the remaining water which will be 

used for the Metamucil mixture. 

3. While stirring vigorously, quickly add the Metamucil into its water beaker. 

Stir until it forms a solution.  

4. Strain the Metamucil solution into a different beaker and heat to no more 

than 60 C.  

5. Into the first beaker containing only water, add the propanol and stir 

(optional). 

6. Quickly dump the gelatin in the beaker containing propanol and water. Stir 

vigorously until all gelatin is wetted and saturated. Should happen quickly.  

7. As soon as the gelatin is saturated, add it to the beaker containing the 

Metamucil solution. There is now only one beaker. 

8. Add glycerol to the mixture (optional).  
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9. Remove any clumps. 

10. To degas the gelatin mixture, leave heated to no more than 60 C. Do not 

stir.  

11. Prepare the small container to hold the phantom by spraying it with pam. 

Let sit until it creates an even layer. (optional, only if you want to take the 

phantom out of the container easily) 

12. In a large container pour water. The water is to help the gelatin phantom 

cool evenly and to catch gelatin as it spills out of the small container.  

13. Place the small container, which will hold the phantom, in the large 

container with water.  

14. Pour, smoothly, the warm gelatin solution into the small container. Pour on 

a spatula or glass rod taking care to limit the amount of bubbled formed. 

Overfill the small container and have the overflowing gelatin drip into the 

water. Because any gas bubbles will be at the top of the phantom, the small 

later with gas bubbles will overflow into the water and create a smooth 

degassed top later of the phantom and allow for ultrasound imaging. 

15. To cool the phantom, cover and place into a refrigerator for at least 6 hours, 

or leave to set at room temperature for at least 12 hours.  

 

Extra notes: The gelatin phantom will continue to solidify for a few days. If 

testing immediately after preparing the phantom, make sure all tests are done 

relatively quickly of each other.  
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A.2. Inclusion Phantoms.  

1. Place a small glass test tube through the side of the container holding the 

gelatin phantom. The test tube is placed horizontally. Don’t worry about 

small gaps in the container where the test tube is inserted. The cold water 

will quickly solidify the gelatin and fill the holes to limit leakage.  

2. When the gelatin phantom has solidified, slowly remove the glass test tube. 

The gelatin phantom may cave in as the removal of the test tube will create 

a vacuum. Poke a hole with a needle into the gap behind the tube to allow 

air in.  

3. Place the phantom sideways so the hole is facing up.  

4. Let the first phantom sit at room temperature to warm up so it does not 

immediately solidify the gelatin mixture for the inclusion.  

5. Let the gelatin solution prepared for the inclusion sit at room temperature 

until it is only warm and not hot. If it is hot it will melt the 1st phantom.  

6. Pour the inclusion gelatin into the hole of the 1st phantom which was 

created by the removal of the test tube. The heat from the gelatin solution 

will slightly melt the internal surface of the phantom and allow for a 

smooth transition from the inclusion to the background gelatin of the 

phantom.  

7. Place in fridge to let set.  
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Figure A.1 Example of inclusion Phantom. (left) B-mode image. (right) SWS 
image. Different concentrations of gelation produced a different stiffness 
for the inclusion and the background. There is a difficulty distinguishing 
the inclusion from the background in the B-mode image, but this is seen 
in the SWS image. The 5mm inclusion was made with a glass stir rod 
rather than a test tube.  
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APPENDIX B. Computer-Generated Waves  

Chapter 3 performed directional filtering of shear waves and estimated the 

speed of propagation of the waves by the ratio of spatial and temporal partial 

derivatives. Validation of these methods was done using computer-generated 

waves which could be coded to propagate in different direction. MATLAB code for 

generating these waves is shown in Figure B.1.  

 

  

 

Figure B.1 MATLAB code used to generate a video of waves propagating through 
space.   

 

 

 

  

 



145 

APPENDIX C. Materials Testing with an Axial Compression Test 

An axial compression test can be used to find the Young’s Modulus 

(stiffness) of the material.  

 

𝐸 =  
𝜎

𝜀
, (𝐶. 1) 

 

where 𝐸 is Young’s Modulus, 𝜎 is stress, and 𝜀 is strain. Stress and strain are 

defined as: 

𝜎 =  
𝐹

𝐴
, (𝐶. 2) 

 

𝜀 =  
∆𝑙

𝐿
, (𝐶. 3) 

 

where 𝐹 is the force measured during axial compression and 𝐴 is the surface area 

where force is applied, ∆𝑙 is the amount of axial compression and 𝐿 is the initial 

length of the sample. The Young’s Modulus can be measured from gelatin 

phantoms using the following procedure. 

 

Procedure to calculate Young’s Modulus 

1. Materials testing is performed on small cubes cut from the phantom. Cut 

five small cubes (about 1 cm on each side) from the center of the phantom.  



146 

2. Measure the length, width, and height of each cube and record the 

measurements in units of meters.  

3. Place a single block on the testing bed as seen in Figure C.1.  

4. Using a TMS-Pro with a small load cell (2 Newtons), compress the sample 

at 2 mm/s for a distance of 1 mm. If compression is slower than 2 mm/s the 

sample may experience creep during testing and Young’s modulus will be 

underestimated.  

5. Record the Force and Displacement as measured from the load cell. Record 

Force in Newtons and Displacement in meters.  

6. Export the raw data, for future processing. 

7. For each compression, record the starting and ending displacements in case 

the exported data is corrupted.  

8. 𝜎 =
𝐹𝑜𝑟𝑐𝑒𝑒𝑛𝑑−𝐹𝑜𝑟𝑐𝑒𝑠𝑡𝑎𝑟𝑡 

(𝑙𝑒𝑛𝑔𝑡ℎ)(𝑤𝑖𝑑𝑡ℎ)
   

9. 𝜀 =  
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑒𝑛𝑑−𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑟𝑡

ℎ𝑒𝑖𝑔ℎ𝑡
 

10. 𝐸 =  
𝜎

𝜀
  

11. Record the mean and standard deviation of the Young’s modulus for the 

five samples. 

12. Record the shear wave speed as 𝑆𝑊𝑆 =  √
𝐸

3000
. The factor of 3000 is 3 times 

the density of the material (1000 kg/m3). 
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Figure C.1 Compression test on a small block cut from a gelatin phantom.   
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APPENDIX D. Spectral Doppler  

The recommended methods for the quantification of tissue velocity in a 

clinical echocardiogram assessment is through the use of spectral Doppler 

techniques. Spectral Doppler, as it sounds, is a method which measures the 

frequency spectrum of tissue movement, where the frequency spectrum is then 

related to the tissue velocity through the Doppler equation: 

 

𝑓𝐷𝑜𝑝𝑝𝑙𝑒𝑟 =  
2𝑓𝑐𝑣 cos 𝜃

𝑐
, (𝐷. 1) 

 

where 𝑓𝐷𝑜𝑝𝑝𝑙𝑒𝑟 is the Doppler frequency, 𝑓𝑐 is the center frequency of the recorded 

ultrasound pulse, 𝑣 is the axial tissue velocity, 𝑐 is the speed of sound (1540 m/s), 

and 𝜃 is the angle between the ultrasound beam and the true direction of tissue 

motion. The angle is used as a correction factor for the calculated velocity 

measurement because only the axial tissue velocity can be measured.  

The frequency spectrum of tissue movement is estimated by 1) recording 

several (~1000) consecutive transmit receive events and reconstructing the IQ data 

for a single point in space, and 2) performing a Short-time Fast Fourier Transform 

(STFFT) through time for the reconstructed data. A STFFT is done by breaking the 

entire data set into smaller and overlapping blocks of data and them calculating 

the frequency spectrum on the smaller blocks of data. This is similar to Welch’s 

method of estimating the PSD of a signal except here each velocity spectrum is 

plotted and displayed column by column based on the average time of the data in 
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the block. Because spectral Doppler is performed at one spatial location through 

time it has a high temporal and spatial resolution. 

In the study, the data blocking size was 32 temporal pixels long and the 

overlap size was 31 temporal pixels. A Hanning window was applied on each block 

of data to reduce the sidelobes in the velocity spectrum. Because ultrasound data 

were acquired at a high frame rate for a large region of space, a 9x9 pixel (4 × 4 

mm) spatial average was taken prior to the STFFT. Figure D.1 shows the spectral 

Doppler tissue velocity measurement along with the phase based autocorrelation 

tissue velocity measurement. Three locations along the IVS are shown. There is a 

general agreement in the two velocity measurements. The borders on the spectral 

Doppler measurement are reflective of the 32-temporal pixel block size.  
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Figure D.1 Tissue velocity reconstructed at three points along the IVS. Tissue 
velocity derived from spectral Doppler is in the background and tissue 
velocity from the autocorrelation technique is the solid green line.  

 

 

 

 

 

 

 

 



151 

APPENDIX E. Institutional Review Board Consent Form  

All participants in the studies which were performed and presented in this 

dissertation provided their written informed consent before their inclusion into 

the studies. The following pages are the copy of the informed consent form which 

was approved by the University of Nebraska-Lincoln IRB.    
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