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The goal of this study is to gain some physical insights and an understanding of the

computational challenges for the simulations related to the hypersonic nonequilibrium

multi-species and multi-reaction experiments on the NASA Electric Arc Shock Tube (EAST).

While experimental measurement does not provide any information about the radial

structure of this type of flow, accurate and reliable numerical simulations can provide

more insight into the physical structure of the flow to aid the design of atmospheric entry

spacecrafts. The paper focuses on the spurious numerics which take place in numerical

simulations of the subject physics containing stiff source terms and discontinuities. This

paper is based on the knowledge gained from Yee et al. on simple reacting test cases (Yee

et al. 2013, [9]) as a guide to reveal the computational challenges involved for such an

extreme flow type. The results of the 1D and 2D EAST viscous and inviscid simulations

using a simplified physical model are presented. The computation reveals, for the first

time, that the 2D viscous model which contains both shocks and shears exhibits Tollmien–

Schlichting-like instability complex patterns at the boundary layer. In addition to exhibiting

spurious numerical behavior of wrong propagation speed of discontinuities by typical

shock-capturing methods, there is improved understanding on the cause of numerical

difficulties by previous investigators. One example is that the relative distance between

the shocks and shear/contact is different from one grid spacing to another for each

considered high order shock-capturing scheme. The results presented can provide insight

on the numerical instability observed by previous investigations and future algorithm

development for this type of extreme flow.
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1. Introduction

The Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center is used to generate high-enthalpy gas tests

for studying high-speed atmospheric entry physics. The shock tube consists of two sections: (1) a 10.16 cm diameter long

tube (>8 m) containing the test gas mixture at the desired test pressure, and (2) a 1.3 L conical section containing the

driver gas. The two sections are separated by a thin stainless steel diaphragm. The driver gas is heated by a high voltage

electric arc discharge through it causing the pressure to increase to very high levels. At the high pressure generated by

the discharge, the diaphragm bursts, forming a shock wave that travels at high speed through a long cylindrical tube. As

the shock propagates downstream, the shock-heated gas radiates, and in a test section emission spectroscopy is used to

determine the radiative signature and thereby the thermo-chemical and radiative properties of the medium.

The experiments [1,2] make use of helium as a driver gas and synthetic air (N2 + O2) as a test gas (or driven gas). The

shock velocities obtained in EAST experiments range between 9 and 16 km/s. The distance between the diaphragm and the

test section is 7.0 m. At the test section the spectrally and spatially resolved shock-layer radiance is analyzed by taking a

snapshot of the shock wave and the following gas as they pass in front of an optical access window. It should be noted that

whereas the EAST shock tube has a circular cross-section, the present simulations use 1D or 2D rectangular geometries.

It is important to note that optically probing the shocked gas does not provide any information about the radial structure

of the flow in the shock tube. The experiments only provide integrated measurements that include all the absorption and

emission across the tube. The experimental data obtained are useful in the verification/validation of simulation tools used

in the aerothermal design of atmospheric entry spacecraft. Currently there have been very few attempts at simulating the

unsteady flow in the EAST, even though simulation tools built around mathematical models incorporating the best physics

can provide good insights into the nature of the flow, especially about absorption in the boundary layer that develops on

the wall of the tube. Such viscous effects cannot be discerned through experiment alone.

However, there are challenges in a CFD computation of this problem. One major challenge lies in the specification of

the thermochemical state of the arc-heated driver gas, i.e., the initial state. Although energy deposition into the driver

gas is time dependent, the current approach has been to adjust the initial temperature until the target shock velocity is

reproduced. Several other challenges arise from the need to capture accurately the spatial-temporal evolution of the flow

field in order to characterize boundary layer growth on the shock tube wall. The boundary layer is the primary cause of the

shock wave’s deceleration, and it has important implications for re-absorption of shock layer radiation prior to instrument

detection. These phenomena are unsteady and must be treated as such. For flight experiments one usually seeks a steady

state solution, so that the simulation is not constrained by time accuracy requirements, and various acceleration techniques

can be used. The shock tube flowfield, however, develops in time and thus requires, at a minimum, second order time

integration and minimization of numerical instabilities due to the multiscale physics and stiff source terms of the flow.

Similarly, the spatial relaxation scale has to be resolved accurately, and all wave interactions have to be accounted for.

Initial simulations of the EAST facility have demonstrated strong sensitivity to the choice of numerical method. Therefore,

schemes with high-order spatial accuracy and low dissipation are desired. The fine grid and numerical stability requirements

for high speed shock-boundary layer interaction simulations is an added challenge in CFD. Furthermore, the length of the

EAST facility is roughly 8 m, which translates to enormous grids. The combination of these temporal and spatial resolution

requirements demands significant computer resources and simulation time to account for all important phenomena.

An additional, less well-known challenge, involves the stiffness of the source terms in the governing equations. The tem-

perature in the shock during the experiment is above 20,000 K, which means that chemical reaction rates in the vicinity

of the shock become very high and the source term describing the chemical reactions becomes stiff. As most common

shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlin-

ear and/or stiff source terms these methods can result in spurious solutions, even when solving a conservative system of

equations with a conservative scheme. This kind of behavior can be observed even for a scalar case [3] as well as for the

case with two species and one reaction [4]. For further information concerning this issue see the work of LeVeque and Yee,

Griffiths et al., Lafon and Yee and Yee et al. [3,5–9].

For a brief introduction and earlier CFD simulations of EAST see Refs. [8,10]. Because of the asymmetric nature of

the driver flow, partially due to the incomplete opening of the diaphragm and the non-symmetrical configuration of the

discharge, a full 3D computation should be carried out for this problem. In the present investigation we perform less CPU-

time-intensive 1D and 2D computations for the purpose of gaining first-hand understanding of the simulation challenges

involved. Regarding the simulation challenges, the main focus of this study concerns the phenomena that the discontinu-

ity locations depend on grid spacing and numerical method. For a chosen shock-capturing method, the difference in the

computed discontinuity locations can be very large from one grid spacing to another for most of the standard high order

methods.

The outline of this paper is as follows: In order to reveal the computational challenges for such an extreme flow related

to EAST, a review of previous work done by Yee et al. [9] is given in Sections 2 and 3. Yee et al. provide with systematic anal-

ysis of spurious numerics for two simple single reaction detonation test cases. The review is to convey the spurious behavior

of typical high order shock-capturing schemes. Section 2 gives a brief description of two recently developed shock-capturing

methods with numerical dissipation control to minimize spurious numerics for problems containing stiff source terms [4,

11–14]. The two shock-capturing methods are high order methods using the Harten subcell resolution procedure and the

nonlinear filter counterparts of high order shock-capturing methods. Section 3 gives a summary of [9] on the comparison of
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these low dissipative schemes with standard shock-capturing schemes in terms of spurious behavior of the numerical meth-

ods for problems with stiff source terms and discontinuities. The comparison include the performance of the Harten and Yee

second-order TVD method [15,16], and standard fifth-order and seventh-order WENO schemes (WENO5 and WENO7) [17].

Although the subcell resolution idea and its filter counterparts are applicable to any high order shock-capturing method,

here the study is focused on the class of WENO schemes. From here on the subcell resolution counterparts of WENO5

and WENO7 will be denoted by WENO5/SR and WENO7/SR [4]. The nonlinear filter counterparts of WENO5 and WENO7

without the subcell resolution procedure are denoted by WENO5fi & WENO7fi. If the Ducros et al. preprocessing step [18]

is employed, they are denoted by, e.g., WENO5fi+split. The comparison includes the various stability and spurious behav-

iors found in different approaches in solving reactive governing equations, i.e. solving fully coupled system vs. fractional

step procedure using the Strang splitting of the governing equations. Knowledge gained from [9] guides us to have stable

simulation by employing the Strang splitting of the governing equations for a simplified flow condition that is related to

the EAST experiments. Studies indicate that using the same temporal discretization, solving the fully coupled reacting flow

equations with stiff source terms and discontinuities for the EAST related flow model is not stable even using a very small

CFL (results not shown). These new results are presented in Section 4.

2. Overview of two recently developed high order shock-capturing schemes

Here we briefly describe two newly developed high order numerical methods with different numerical dissipation con-

trols [4,11–14]. For simplicity of discussion only 2D reactive Euler equations are considered. It is noted that the considered

schemes are applicable to 3D reactive flows. The Wang et al. [4] high order scheme with subcell resolution [4] is only

developed for a single reaction case and further extension to multi-reaction cases is still under investigation. The regular

WENO scheme and the Yee and Sjögreen and Sjögreen and Yee high order nonlinear filter scheme [11–14,19] are applicable

to any number of species and reactions.

2.1. 2D reactive Euler equations

Consider a 2D inviscid reactive flow containing two species

(ρ1)t + (ρ1u)x + (ρ1v)y = K (T )ρ2 (1)

(ρ2)t + (ρ2u)x + (ρ2v)y = −K (T )ρ2 (2)

(ρu)t + (
ρu2 + p

)
x
+ (ρuv)y = 0 (3)

(ρv)t + (ρuv)x + (
ρv2 + p

)
y
= 0 (4)

Et + (
u(E + p)

)
x
+ (

v(E + p)
)
y
= 0 (5)

where ρ1 is the density of burned gas, ρ2 is the density of unburned gas, u and v are the mixture x- and y-velocities, E is

the mixture total energy per unit volume, p is the pressure, K (T ) is the chemical reaction rate and T is the temperature.

The pressure is given by

p = (γ − 1)

(
E − 1

2
ρ
(
u2 + v2

) − q0ρ2

)
, (6)

where the temperature T = p/ρ and q0 is the chemical heat released in the reaction.

The mass fraction of the unburned gas is z = ρ2/ρ . The mixture density is ρ = ρ1 + ρ2.

The reaction rate K (T ) is modeled e.g. by an Arrhenius law

K (T ) = K0 exp

(−Tign

T

)
, (7)

where K0 is the reaction rate constant and Tign is the ignition temperature.

2.2. High order finite difference methods with subcell resolution for advection equations with stiff source terms

The general fractional step approach based on Strang-splitting [20] for the 2D reactive Euler equations written in vector

notation is as follows:

Ut + F (U )x + G(U )y = S(U ) (8)

The numerical solution Un+1 at time level tn+1 is approximated by

Un+1 = A

(
�t

2

)
R(�t)A

(
�t

2

)
Un. (9)
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Here, U is the conservative variable vector, and F and G are the convection fluxes in the x and y directions, respectively. S is

the source term vector. The reaction operator R is over a time step �t and the convection operator A is over �t/2. The two

half-step reaction operations over adjacent time steps can be combined to save cost. In order to obtain more accurate results

in the reaction zone we can consider the reaction step that consists of Nr sub steps of the reaction difference operator, i.e.,

Un+1 = A

(
�t

2

)
R

(
�t

Nr

)
· · · R

(
�t

Nr

)
A

(
�t

2

)
Un (10)

Any high order shock-capturing scheme can be used for the convection operator. The convection operator A is defined

to approximate the solution of the homogeneous part of the problem on the time interval, i.e.,

Ut + F (U )x + G(U )y = 0, tn � t � tn+1. (11)

The reaction operator R is defined to approximate the solution on a time step of the reaction problem:

dU

dt
= S(U ), tn � t � tn+1. (12)

In case of viscous flows, the corresponding viscous flux derivatives should be added to (11).

For the majority of the numerical experiments, the original Jiang–Shu 5th-order WENO (WENO5) using the Roe flux and

RK4 (4th-order Runge–Kutta) time discretization is used for the convection operator. If there is no smearing of discontinu-

ities in the convection step, any ordinary differential equation (ODE) solver can be used as the reaction operator. However,

all the standard shock-capturing schemes will produce a few transition points in the shock when solving the convection

equation. These transition points are usually responsible for causing incorrect numerical results in the stiff case. Thus, a di-

rect application of a standard ODE solver at these transition points will result in incorrect shock speed. To avoid this, here

the Harten subcell resolution technique [21] is employed before calling the ODE solver. If Nr > 1, the subcell resolution

technique is performed at every Nr sub-iteration step.

2.3. Well-balanced high order filter schemes for reacting flows [11–14,19]

The high order nonlinear filter scheme of Yee et al. [11,12,19], if used in conjunction with a dissipative portion of a

well-balanced shock-capturing scheme as the nonlinear numerical flux, is a well-balanced scheme [14]. The well-balanced

high order nonlinear filter scheme for reacting flows, when used to solve the fully coupled system (8), consists of three

steps.

2.3.1. Preprocessing step

Before the application of a high order non-dissipative spatial base scheme, a preprocessing step is employed to improve

the stability. The inviscid flux derivatives of the governing equation(s) are split in the following three ways, depending on

the flow types and the desire for rigorous mathematical analysis or physical argument.

• Entropy splitting of Olsson and Oliger [22] and Yee et al. [23,24]. The resulting form is non-conservative and the deriva-

tion is based on entropy norm stability with boundary closure for the initial value boundary problem.

• The system form of the Ducros et al. splitting [18]. This is a conservative splitting and the derivation is based on physical

arguments.

• Tadmor entropy conservation formulation for systems [25]. The derivation is based on mathematical analysis. It is a

generalization of Tadmor’s entropy formulation to systems and has not been fully tested on complex flows.

See Honein [26] for a comparison of the entropy splitting and other earlier momentum conservation methods. It is noted

that the splitting of the governing equations to an equivalent form as the preprocessing step is not to be confused with the

Strang splitting procedure in solving the reactive equations.

2.3.2. Base scheme step

A full time step is advanced using a high order non-dissipative (or very low dissipation) spatially central scheme on

the split form of the governing partial differential equations (PDEs). Summation-by-parts (SBP) boundary operator [27,28]

and matching order conservative high order free stream metric evaluation for curvilinear grids [29] are used. High order

temporal discretization such as the third-order or fourth-order Runge–Kutta (RK3 or RK4) method is used. It is remarked

that other temporal discretizations can be used for the base scheme step.

2.3.3. Post-processing (nonlinear filter step)

After the application of a non-dissipative high order spatial base scheme on the split form of the governing equation(s),

to further improve nonlinear stability from the non-dissipative spatial base scheme, the post-processing step of Refs. [11,

12,19] is used to nonlinearly filter the solution by a dissipative portion of a high order shock-capturing scheme with a

local flow sensor. The flow sensor provides locations and amounts of built-in shock-capturing dissipation that can be further
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reduced or eliminated. The idea of these nonlinear filter schemes for turbulence with shocks is that, instead of solely relying

on very high order high-resolution shock-capturing methods for accuracy, the filter schemes [12,19,23,30,31] take advantage

of the effectiveness of the nonlinear dissipation contained in good shock-capturing schemes as stabilizing mechanisms

(a post-processing step) at locations where needed. At each grid point, a local flow sensor, e.g., a multi-resolution wavelet,

would be employed to analyze the regularity of the computed flow data. Only the discontinuity locations would receive the

full amount of shock-capturing dissipation. In smooth regions no shock-capturing dissipation would be added. In regions

with strong turbulence a small fraction of the shock-capturing dissipation would be added to improve stability. The nonlinear

dissipative portion of a high-resolution shock-capturing scheme can be any shock-capturing scheme. For reacting flow it is

best to employ the dissipative portion of a well-balanced shock-capturing scheme.

Some attributes of the high order filter schemes are:

• Spatial Base Scheme: High order and conservative (no flux limiter or Riemann solver)

• Physical Viscosity: Contribution of physical viscosity, if it exists, is automatically taken into consideration by the base

scheme in order to minimize the amount of numerical dissipation to be used by the filter step

• Efficiency: One Riemann solve per dimension per time step, independent of time discretizations (less CPU time and

fewer grid points than their standard shock-capturing scheme counterparts)

• Accuracy: Containment of numerical dissipation via a local wavelet flow sensor

• Well-balanced scheme: These nonlinear filter schemes are well-balanced schemes for certain chemical reacting

flows [14]

• Stiff Combustion with Discontinuities: For some stiff reacting flow test cases, it appears that the high order filter scheme

is able to obtain the correct propagation speed of discontinuities on coarse, underresolved meshes for which the stan-

dard high order shock-capturing (e.g., WENO) schemes cannot (see the results in the next section)

• Parallel Algorithm: Suitable for most current supercomputer architectures

The nonlinear filter counterpart of the subcell resolution method employing, e.g., WENO5 or WENO7 as the dissipative

portion of the filter numerical flux (WENO5fi or WENO7fi) can be obtained in a similar manner with the nonlinear filter

scheme used for the convection operator and will be denoted by WENO5fi/SR or WENO7fi/SR.

3. Spurious behavior of numerical schemes

To make the paper more self-contained, this section reviews the recent work of Yee et al. [9]. Before showing the effects

of the spurious numerics encountered in the EAST simulations, we first illustrate the commonly occurring and yet not well

known phenomenon in practical CFD of the wrong propagation speed of discontinuities on coarse grids for problems with

stiff source terms reported. Yee et al. [9] and references cited therein show that the degree of error in the propagation

speed of discontinuities is highly dependent on the amount of numerical dissipation and accuracy of the numerical method.

The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of

numerical dissipation being employed plays a major role. Depending on the numerical method, time step and grid spacing,

the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent

solution, (c) a wrong propagation speed of discontinuities or (d) other spurious solutions that are solutions of the discretized

counterparts but are not solutions of the governing equations. The test case is the Arrhenius case considered in several

papers (see Refs. [4,9,32–34]). The initial values consist of totally burned gas on the left-hand side and totally unburned gas

on the right-hand side. The dimensionless density, velocity, and pressure of the unburned gas are given by ρu = 1, uu = 0

and pu = 1.

The initial state of the burned gas is calculated from the Chapman–Jouguet (C–J) condition:

pb = −b + (
b2 − c

)1/2
, (13)

ρb = ρu[pb(γ + 1) − pu]
γ pb

, (14)

SCJ =
[
ρuuu + (γ pbρb)

1/2
]
/ρu, (15)

ub = SCJ − (γ pb/ρb)
1/2, (16)

where

b = −pu − ρuq0(γ − 1), (17)

c = p2
u + 2(γ − 1)puρuq0/(γ + 1). (18)

The heat release q0 = 25 and the ratio of specific heats is set to γ = 1.4. The ignition temperature Tign = 25 and K0 =
16,418. The computation domain is [0,30]. Initially, the discontinuity is located at x = 10. At time t = 1.8, the detonation

wave has moved to x = 22.8. The reference solution is computed by the regular WENO5 scheme with 10,000 uniform grid

points and CFL = 0.05.
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Fig. 1. 1D C–J detonation problem, Arrhenius case for the original stiffness K0 at t = 1.8: Pressure and density comparison among three standard shock-

capturing methods (TVD, WENO5, WENO7) using 50 uniform grid points with CFL = 0.05.

Fig. 2. 1D C–J detonation problem, Arrhenius case for the original stiffness K0 at t = 1.8: Temperature and density comparison among standard high order

shock-capturing methods and low dissipative methods (WENO5, WENO5/SR, WENO5fi+split and WENO5fi/SR+split) using 50 uniform grid points with

CFL = 0.05.

3.1. Initial study of scheme behavior [35]

Fig. 1 shows the pressure and density comparison among the standard TVD, WENO5 and WENO7 using 50 uniform grid

points and CFL = 0.05 for the same stiffness K0 = 16,418 used in Yee et al. [35]. Fig. 2 shows the pressure and density com-

parison among the standard WENO5 scheme, WENO5/SR, WENO5fi and WENO5fi+split using 50 uniform grid points. For

this particular problem and grid size, all standard TVD WENO5 and WENO7 exhibit wrong shock speed of propagation with

the lower order and more dissipative schemes exhibiting the largest error. WENO5fi+split compares well with WENO5/SR

for the computed pressure solution. WENO5/SR and WENO5fi+split can capture the correct structure using fewer grid points

than those in Helzel et al. [33] and Tosatto and Vigevano [34]. It is remarked that with such a coarse grid it is not possi-

ble to resolve the detonation front within one to several grid cells. Here we are only concerned with the correct speed of

discontinuities propagation using a very coarse grid.
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Fig. 3. 1D C–J detonation problem, Arrhenius case using 50 uniform grid points: Density comparison for seven CFL numbers using WENO5 (left). Number

of grid points away from the reference solution (Err) as a function of the CFL number (128 CFL values with 6.316455696× 10−3 equal increment) for three

stiffness coefficients 100K0,1000K0,10,000K0 using WENO5. All the CFL values for the inviscid simulations are based on the convection part of the PDEs.

3.2. Scheme behavior as a function of CFL, grid refinement and stiffness of the source terms

A systematic study of the spurious numerics for the same test case has been performed in Refs. [4,9,32]. Here, a sum-

mary of results reported in the aforementioned publications is described. Fig. 3 shows the effect of the time steps for five

CFL values that are under the CFL limit (left subfigure), using 50 grid points and WENO5. The right subfigure shows the

error in terms of the number of grid points away from the reference shock location (Err) for three stiffness coefficients

K0,100K0 and 1000K0 as the function of 128 discrete CFL values. The 128 discrete CFL values are (0.0001� CFL� 0.803)

with 6.316455696×10−3 equal increment. Here, Err is rounded down to the nearest integer number. Note that the CFL limit

for WENO5/SR and its filter counterparts are lower than 0.8 due to the explicit Euler reaction step. For all plots related to

this study, a negative “Err” value indicates the number of grid points behind the reference shock position. For certain values

of CFL divergent solutions might occur that are outside the plotting area. All the CFL values for the inviscid simulations are

based on the convection part of the PDEs. Fig. 4 illustrates the error for 128 discrete CFL values for the three improved

high order shock-capturing schemes (WENO5/SR, WENO5fi+split and WENO5fi/SR+split). The study is for three uniform

grids 50, 150 and 300 (left to right columns in the plot) and the three stiffness coefficients K0,100K0 and 1000K0 (top to

bottom in the plot). As the stiffness coefficient increases, it is more and more difficult to obtain the correct shock locations

using WENO5/SR.

3.3. Solving fully coupled reactive equations vs. Strang Splitting of the reactive equations

All of the above computations (including the EAST computation to be shown) are performed by solving the reactive

equations via the Strang splitting procedure. Comparison of the solution behavior between solving the fully coupled reactive

equations (without the Strang Splitting procedure) and the Strang Splitting procedure is reported in Kotov et al. [32]. Studies

show that solving the fully coupled reactive equations is very unstable for standard shock-capturing schemes as well as for

their high order filter counterparts. Using a very small CFL for K0, and the same three grids and CFL range, a similar wrong

propagation speed of discontinuities is observed by standard shock-capturing schemes for all considered CFL. However,

WENO5fi+split and WENO7fi+split are able to obtain the correct shock speed using the same small CFL (with the exception

of the one grid point error for WENO7fi+split using 300 grid). For stiffness coefficients 100K0 and 1000K0 using the same

three grids, no stable solutions are obtained except in the case of 100K0 and 300 grid points using CFL = 6.316455696 ×
10−3 (in which case a wrong speed solution is obtained). See Fig. 5 for the K0 result. To further examine the difference

between the two procedures in solving the reactive equations, we compare the fully coupled solution procedure with the

Strang splitting procedure using 10,000 grid points. For fine enough grid resolution, both procedures produce the same

result. WENO5/SR is not present on the figure as it requires Strang splitting.
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Fig. 4. 1D C–J detonation problem, Arrhenius case at t = 1.8: Number of grid points away from the reference shock position (Err) as a function of the CFL

number (128 discrete CFL values with 6.316455696× 10−3 equal increment) for three low dissipative shock-capturing methods using 50,150,300 uniform

grid points (across) and for stiffness K0,100K0,1000K0 (top to bottom). See Fig. 3 for additional information.

Fig. 5. No Strang splitting results for the 1D C–J detonation problem, Arrhenius case at t = 1.8: Number of grid points away from the reference shock

position (Err) as a function of the CFL number (128 discrete CFL values with 6.316455696×10−3 equal increment) for three low dissipative shock-capturing

methods using 50,150,300 uniform grid points (across) and for stiffness K0.

3.4. Effect of employing a cut-off safeguard procedure

All of the results presented employ a cut-off safeguard procedure if densities are outside the permissible range. Fig. 6

shows the same computation without the cut-off safeguard procedure using the Strang splitting. The procedure is also

very unstable. For K0, and the same three grids and CFL range, a similar wrong propagation speed of discontinuities is

observed by WENO5 for small CFL. However, WENO5/SR and WENO5fi+split are able to obtain the correct shock speed

using the same small CFL. WENO5fi/SR+split is not able to obtain the correct shock speed for even the smallest con-

sidered CFL value (CFL = 6.316455696 × 10−3). One of the possible causes might be due to the incompatibility of the

combined Strang splitting using Nr = 2, and the nonlinear filter procedure. For stiffness coefficients 100K0 and 1000K0

using the same three grids, no stable solutions are obtained except in the case of 100K0 and 300 grid points using CFL =
6.316455696 × 10−3 (a wrong speed solution is obtained). See Fig. 6 for the K0 result. The solution behavior of solving the
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Fig. 6. No cutoff safeguard procedure and Strang splitting results for the 1D C–J detonation problem, Arrhenius case at t = 1.8: Number of grid points away

from the reference shock position (Err) as a function of the CFL number (128 discrete CFL values with 6.316455696 × 10−3 equal increment) for three low

dissipative shock-capturing methods using 50,150,300 uniform grid points (across) and for stiffness K0.

fully coupled reactive equations is similar to using the Strang splitting without the cut-off safeguard procedure. Studies of

Kotov et al. [32] also indicate that there is no visible difference in solution behavior in using the cut-off safeguard procedure

or not when solving the fully coupled reactive equations.

Most often, under an extreme flow condition, a positivity preserving version of WENO5 might help improve accuracy and

spurious numerics, see [36] for a study. For this particular problem positivity preserving WENO5 provides only a minimal

improvement.

4. EAST related computations

In this section we will give the formulation of the problem related to EAST and give some details of the numerical

simulations. Then we will discuss the results of the 1D and 2D computations and compare the results obtained by several

standard shock-capturing methods and their filter counterpart schemes [11,19] for the early time evolution of the flow. Note

that for this viscous simulation all the CFL values are based on the convection and viscous parts of the PDEs.

4.1. Governing equations

Consider the 3D reactive Navier–Stokes equations for a one-temperature energy model:

∂ρs

∂t
+ ∂

∂x j
(ρsu j + ρsdsj) = Ωs (19)

∂

∂t
(ρui) + ∂

∂x j
(ρuiu j + pδi j − τi j) = 0 (20)

∂

∂t
(ρE) + ∂

∂x j

(
u j(ρE + p) + q j +

∑
s

ρsdsjhs − uiτi j

)
= 0, (21)

where i = 1,2,3, (ρs,ρui,ρE) are the conserved variables and ρs are the partial densities with k = 1, . . . ,Ns for a mixture

of Ns species. The mixture total density, the pressure, and the total energy per unit volume are

ρ =
∑
s

ρs, p = RT

Ns∑
s=1

ρs

Ms
, ρE =

Ns∑
s=1

ρs

(
es(T ) + h0s

) + 1

2
ρv2, (22)

where R is the universal gas constant, h0s are the species formation enthalpies, and Ms are the species molar masses. The

viscous stress tensor is

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
− μ

2

3

∂uk

∂xk
δi j. (23)

The diffusion flux is

dsj = −Ds
∂ Xs

∂x j
, (24)

where Ds is the diffusion coefficient and Xs is the mole fraction of species s. The conductive heat flux is

q j = −λ
∂T

∂x j
, (25)

where λ is the thermal conductivity of the mixture. The chemical source term is
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Fig. 7. Viscous and inviscid comparison of the 1D, 13 species EAST problem: Second-order Harten–Yee TVD simulation for four levels of grid refinement

with CFL = 0.8 and tend = 3.25× 10−5 s. The �x grid size is: 10−3 m, 5× 10−4 m, 5× 10−5 m, 2.5× 10−5 m. Left: viscous case, right: inviscid case.

Ωs = Ms

Nr∑
r=1

(bs,r − as,r)

[
k f ,r

Ns∏
m=1

(
ρm

Mm

)am,r

− kb,r

Ns∏
m=1

(
ρm

Mm

)bm,r
]
, (26)

where a and b are the stoichiometric coefficients, and the forward reaction rate coefficients, k f r , are given by Arrhenius’

law:

k f r = A f ,r T
n f ,r exp(−E f ,r/kT ). (27)

The backward reaction rate coefficients are computed as kb,r = k f ,r/K
eq
c,r , where K

eq
c,r , is the equilibrium constant. The details

of formulation for the particular 1D and 2D EAST problems will be given in the sections below.

4.2. Numerical simulation

All the computations employ the multi-dimensional high order single/overset grid nonequilibrium code ADPDIS3D

[37,38]. 1D and 2D simplifications of the 3D EAST problem are considered using a single block option in the code. In

addition, a one-temperature model is used, though the two-temperature model is required in order to obtain better agree-

ment with the experiments. For the 2D case axisymmetric geometry is not used as this option has not been implemented

into ADPDIS3D; planar geometry is used instead. The MUTATION library [39,40], developed by Thierry Magin and Marco

Panesi, is used to provide reaction rates and transport properties.

All the results are obtained using the fractional step approach employing the Strang splitting [20] of the reactive gov-

erning equation. The integration of the convection equations is performed using the Runge–Kutta (RK) method of the

appropriate order, i.e. second-order (RK2) for TVD and fourth-order (RK4) for high-order WENO. For the integration of

the source terms first the analysis of the chemical rates for each grid point is performed. If the rates are low so that the

resulting ODE is not stiff, simple explicit Euler or first-order RK (RK1) is used. For the integration of the ODE in a stiff case

the DLSODE routine from the ODEPACK [41] package is used.

As the stiff reactions for the EAST problem take place mostly in the shock zone, the number of points with stiff reac-

tions is relatively small, and they are mostly concentrated in a relatively small geometrical region. This result in a loss of

efficiency when computing the problem using multiple processors. In order to increase the efficiency of the multiprocessing

computations, all points with stiff chemical reactions are treated separately. All the local data of each point needed for solv-

ing the stiff ODE are uniformly redistributed among all the processors. Then each processor solves stiff ODE using ODEPACK

and the result is distributed back to the processor of origin. The list of points with stiff ODE is updated dynamically as the

shock propagates. This algorithm was found to significantly increase the performance of the multiprocessing computations

for the EAST problem.

4.3. 1D EAST simulations

The computational domain has a total length of 8.5 m. At the initial time the left side of the domain with length 0.1 m

is a high pressure region. The right side of the domain, with length 8.4 m is a low pressure region. Since the temperature in

the vicinity of the shock can reach more than 20,000 K, ionized species must be taken into account. Here we consider the

gas mixture as consisting of 13 species: e− , He, N, O, N2, NO, O2, N
+
2 , NO+, N+, O2+, O+, and He+. The reaction mechanism

consists of 25 reactions with the Arrhenius law (27) rate parameters given in Table 1.

The initial conditions of the high and low pressure regions are listed in Table 2. The initial driver gas temperature

is taken to be 6000 K, as in McCorkle and Hassan [10], and the pressure p = 12.7116 MPa is chosen to obtain a shock

velocity of approximately 10 km/s in our computation, which is a typical velocity observed in the experiment. For the

left-side boundary an Euler (slip) wall condition is applied, and for the right-side a zero gradient condition is applied for all

variables.
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Table 1
Reaction rate parameters according to Arrhenius law (27).

Reaction A f ,r , molem−3/s n f ,r E f ,r , K Comment

N + e− = N+ + 2e− 2.50E+034 −3.82 168,600

O+ e− = O+ + 2e− 3.90E+033 −3.78 158,500

O+N = NO+ + e− 8.80E+008 1 31,900

N2 +M = 2N +M 3.00E+022 −1.6 113,200 M = N,O,N+,O+

N2 +M = 2N +M 7.00E+021 −1.6 113,200 M = N2,NO,O2,N
+
2 ,O+

2 ,NO+

N2 +M = 2N +M 1.20E+025 −1.6 113,200 M = e−

O2 +M = 2O+M 1.00E+022 −1.5 59,500 M = N,O,N+,O+

O2 +M = 2O+M 2.00E+021 −1.5 59,500 M = N2,NO,O2,N
+
2 ,O+

2 ,NO+

NO +M = N+ O+M 1.10E+017 0 75,500 M = N,O,N+,O+

NO +M = N+ O+M 5.00E+015 0 75,500 M = N2,NO,O2,N
+
2 ,O+

2 ,NO+

NO +O = O2 +N 8.40E+012 0 19,450

N2 + O = NO +N 6.40E+017 −1 38,400

O+ O = O+
2 + e− 7.10E+002 2.7 80,600

N+N = N+
2 + e− 4.40E+007 1.5 67,500

O+NO+ = N+ + O2 1.00E+012 0.5 77,200

N2 +N+ = N+N+
2 1.00E+012 0.5 12,200

N+ O+
2 = O2 +N+ 8.70E+013 0.14 28,600

NO +O+ = O2 +N+ 1.40E+005 1.9 26,600

N2 + O+
2 = O2 +N+

2 9.90E+012 0 40,700

O+ O+
2 = O2 + O+ 4.00E+012 −0.09 18,000

N+NO+ = O+ +N2 3.40E+013 −1.08 12,800

NO+ + O2 = O+
2 +NO 2.40E+013 0.41 32,600

NO+ + O = O+
2 +N 7.20E+012 0.29 48,600

O+ +N2 = N+
2 + O 9.10E+011 0.36 22,800

NO+ +N = N+
2 + O 7.20E+013 0 35,500

Table 2
High (left) and low (right) pressure region initial data

ρ 1.10546 kg/m3

T 6000 K

p 12.7116 MPa

YHe 0.9856

YN2
0.0144

ρ 3.0964 × 10−4 kg/m3

T 300 K

p 26.771 Pa

YO2
0.21

YN2
0.79

Fig. 8. 1D, 13 species EAST problem: Comparison among methods using 601 point grids with CFL = 0.6 and tend = 3.25 × 10−5 s. Left subfigure: Reference

solution (TVD on a 10,001 point grid), TVD, ACMTVDfi using κ = 0.5, WENO5-llf, WENO5P-llf, WENOPH-llf. Right: ACMTVDfi using κ = 1,0.5,0.3,0.2,0.15.

See text for method notation.

Uniform 1-D grids are used for these simulations. To save computational cost, an initial computational domain of

(−0.1,0.4) m is generated. During the computation the shock location is calculated at each time step. When the shock

is close enough to the right boundary, the computational domain is increased on the downstream side by 0.5 m.

Fig. 7 shows a four level grid refinement study comparing the difference between the viscous and inviscid computations.

The left subfigure of Fig. 7 shows the viscous case computation using the Harten–Yee second-order TVD scheme [15,16] for

four grids with �x = 10−3 m, 5 × 10−4 m, 5 × 10−5 m and 2.5 × 10−5 m at time tend = 0.325 × 10−4 s. One can observe
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Fig. 9. 1D, 13 species EAST problem: shock velocity time dependance solution using �t = 5 × 10−7 s on four �x: 10−3 m, 5 × 10−4 m, 5 × 10−5 m,

2.5× 10−5 m.

Fig. 10. 1D, 13 species EAST problem: pressure evolution during full shock tube length calculation on two grids with �x = 10−3 m and 5 × 10−4 m.

Snapshots for t = 1× 10−4 s, 2.5× 10−4 s, 5× 10−4 s and 7× 10−4 s.

a significant shift in the shear (left discontinuity) and the shock (right discontinuity) locations as the grid is refined. The

distance between the shear and the shock shrinks as the grid is refined. The difference between shock locations obtained

on the grids with �x = 5 × 10−5 m and 2.5 × 10−5 m is less than 0.3%. Thus the solution using �x = 5 × 10−5 m can be

considered as the reference solution. The right subfigure of Fig. 7 shows the same study using the same scheme for the

inviscid case. In this case the convergence to the reference solution occurs a little slower and in a nonlinear way.

The left subfigure of Fig. 8 shows a comparison among five methods obtained on a coarse grid (�x = 10−3 m) with the

reference solution. The scheme labels are defined as follows:

• ACMTVDfi: Second-order central base scheme using ACM flow sensor. See Yee et al. [30] for further information on filter

schemes

• WENO5-llf: Fifth-order WENO (WENO5) using the local Lax–Friedrichs flux

• WENO5P-llf: Positive WENO5 of Zhang and Shu [42] using the local Lax–Friedrichs flux

• WENO5PH-llf: Positive WENO5 of Hu et al. [43] using the local Lax–Friedrichs flux

The right subfigure of Fig. 8 shows a comparison of ACMTVDfi using a different weight parameter κ of the ACM flow

sensor. The smaller the κ , the smaller the amount of TVD dissipation that is used. Among the considered schemes, Fig. 8

indicates that the least dissipative scheme predicts the shear and shock locations best when compared with the reference

solution. The results indicate that ACMTVDfi is slightly more accurate than WENO5-llf. This is due to the fact that ACMTVDfi

reduces the amount of numerical dissipation away from high gradient regions. Using the subcell resolution method of Wang

et al. [4] by applying it to only one of the reactions in this multireaction flow does not improve the performance over

standard schemes.

Fig. 9 shows the shock velocity time dependence obtained on the four levels of grid refinement with �x = 10−3 m,

5 × 10−4 m, 5 × 10−5 m, and 2.5 × 10−5 m. The shock velocity is computed by taking a numerical derivative of the

shock location as a function of time with some smoothing. During the first 5 × 10−6 s the computed velocity has a strong

dependence on the grid. After this initial duration the computed velocities on the four grids asymptotically approach the

same level. The result suggests that the major contribution to the error in shock location obtained on the coarse grid is due

to the first 5×10−6 s. A similar behavior has been observed by other authors; see e.g., Refs. [44,45] for the perfect gas case.

Figs. 10 and 11 show time evolution of pressure during full shock tube length calculation on two grids with �x = 10−3 m

and 5 × 10−4 m. With respect to the scale of the figure the difference between shock location obtained on these two grids
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Fig. 11. 1D, 13 species EAST problem: pressure evolution during full shock tube length calculation on two grids with �x = 10−3 m and 5× 10−4 m. Zoom

of snapshots for t = 1× 10−4 s and 2.5× 10−4 s (top row), 5 × 10−4 s and 7× 10−4 s (bottom row).

Fig. 12. Computational domain for the 2D EAST problem.

is negligible. However, there is some difference in the vicinity of the contact (e.g. compare the plots near x = 2 m on the

second subfigure). During the flow evolution the rarefaction wave reflects from the left boundary and hits the shock at

approximately t = 7× 10−4 s; see the last subfigure.

Note that the high order nonlinear filter schemes using the Roe flux (except ACMTVD) are not stable for the EAST

simulations. The high order subcell resolution method is not applicable for this multi-reaction and multi-species problem.

4.4. 2D EAST simulation

For the 2D case the computational domain in y is half of the 2D shock tube height. It has total length 8.5 m and height

0.0508 m (see Fig. 12). Other parameters and initial conditions of the high and low pressure regions are the same as for

the 1D case. The bottom boundary is treated as an isothermal wall with the constant temperature Twall = 300 K. The top

boundary is treated as a symmetrical boundary condition.

In the x-direction both uniform and non-uniform grids are used for these simulations. For uniform grids the same

strategy is applied in the x-direction as for the 1D case. For non-uniform grids the shock and shear locations are computed

for each time step, and the grid points are clustered in the x-direction between the shear and shock locations with some

tolerance to avoid interpolation errors during the re-grid process. This clustered portion of the grid moves as time advances.
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Fig. 13. 2D, 13 species EAST simulation using TVD for CFL = 0.7 on a grid with clustering between shear and shock for tend = 2.125 × 10−4 s. From top to

bottom: temperature contours, pressure contours and grid (shown each 50th line in X and each 10th line in Y ). The shock location is xs = 2.1 m.

A grid stretching is also applied to smooth the transition from the coarse to the fine grid zone. At each time step the shock

and shear locations are analyzed. If the shock/shear positions change by a prescribed distance, a re-grid is invoked and

the data is interpolated onto the new grid. Note that in our case the interpolation is needed only in the vicinity of the

transition between coarse and fine grid zones. The shock and shear locations are computed far away from the boundary

layer. However, as the boundary layer develops, the shear layer becomes more curved so that the tolerance for the shear

side of the grid-clustering zone is increased. In the y-direction all grids use the same stretching algorithm so that the grid

points are clustered in the vicinity of the boundary layer.

The temperature and pressure contours computed for the time tend = 2.125 × 10−4 s together with the computational

grid are shown in Fig. 13. The total computation up to given tend took approximately 7 days on a maximum of 2048 CPUs

(less number of CPUs is required for the early stages of the computation when the grid size is small). The solution is

obtained on the grid with clustering between the shear (x = 1.98 m) and the shock (x = 2.1 m). For the grid in Fig. 13

only every 50th line in X and every 10th line in Y are shown. The grid spacing parameters are �xmin = 5 × 10−5 m,

�xmax = 8 × 10−4 m, and �ymin = 10−5 m. At the given tend the grid size is 5106 × 121. The flow behind the shock has

a complex structure which includes Tollmien–Schlichting waves which noticeably develop at approximately t = 3 × 10−5 s.

Some details of the flow structure development are shown in Figs. 14 and 15. Fig. 14 shows the pressure contours for the

time tend = 1.512 × 10−4 s between x = 0.7 m and x = 1.3 m. Fig. 15 shows the pressure and temperature contours for

the time tend = 2.125 × 10−4 s between x = 1.4 m and x = 1.6 m. The complexity of the flow structure shown on these

figures implies a high demand on the accuracy of the numerical computation. For the chosen grid the simulation has already

revealed a Tollmien–Schlichting-like instability complex pattern near the wall.

For this 2D test case it is not practical to obtain a very accurate reference solution due to the CPU-intensive nature of

the problem. Here, three levels of refinement are conducted. Fig. 16 shows the computed temperature contour results at

time tend = 10−5 s using CFL = 0.7 with TVD for three levels of x- and y-direction grid refinement. The top row shows three

x-direction grid refinements of 601 × 121, 1201 × 121, and grid clustering between shear and shock in the x-direction of

691×121. The minimum grid step in the x-direction for the grid clustering is �xmin = 5×10−5 m. All y grids use boundary

grid stretching with a minimum of �y = 10−5 m. The bottom row shows the same two x-direction grid refinements 1201×
121 and grid clustering between shear and shock in the x-direction of 691 × 121 (fine block). All y grids use boundary

grid stretching with a minimum of �y = 5 × 10−6 m. Comparing the two rows of the grid refinement study indicates that

refining the x-direction grid while keeping the y-direction the same has a big effect on the locations of the shear and shock.

This is due to the fact that aside from inside the boundary layer, the shear and shock are nearly one dimensional. However,
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Fig. 14. 2D, 13 species EAST simulation using TVD for CFL = 0.7 on a grid with clustering between shear and shock. Pressure contours for tend =
1.512× 10−4 s.

Fig. 15. 2D, 13 species EAST simulation using TVD for CFL = 0.7 on a grid with clustering between shear and shock. Pressure (top) and temperature (bottom)

contours for tend = 2.125 × 10−4 s.
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Fig. 16. 2D, 13 species EAST simulation using TVD for CFL = 0.7 and tend = 10−5 s: Top row: Three x-direction grid refinements: 601× 121, 1201× 121 and

grid clustering between shear and shock in the x-direction (691 × 121 total). All y-grids use boundary grid stretching with a minimum of �y = 10−5 m.

Bottom row: Two x-direction grid refinements: 1201 × 121 and grid clustering between shear and shock in the x-direction (691 × 121 total). All y-grids

use boundary grid stretching with a minimum of �y = 5× 10−6 m.

Table 3
Shock and Shear maximum temperature grid dependence at time tend = 10−5 s. Nx indicates the grid spacing in the x-direction. The last two columns are

grid clustering results for two different minimum y-grid stretching.

Grid Nx 601 1201 1201 691 691

Cluster in x no no no yes yes

Min �y,m 10−5 10−5 5× 10−6 10−5 5× 10−6

Shock Tmax, K 15,846 18,851 18,848 25,098 25,015

Shear Tmax, K 11,301 11,203 11,203 10,598 10,598

comparing the last two columns of the grid refinement study indicates that refining the y-direction grid while keeping the

x-direction the same has no effect on the locations of the shear/shock, but improves the boundary layer prediction.

As in the 1D EAST simulation, the discontinuity locations shift as the x-direction grid is refined, and the distance between

the shear and the shock shrinks as the grid is refined. The shear and shock strengths are also different. Table 3 indicates

the maximum shear and contact temperature for each set of grids. For the minimum grid stretching of �y = 10−5 m, the

maximum shear temperature is 11,300 K, and the maximum shock temperature is 15,846 K for the 601×121 grid. However,

the shear and shock strengths have a maximum shear temperature of 11,200 K and a maximum shock temperature of

18,851 K for the 1201× 121 grid. For the stretched grid the shear and shock strengths have a maximum shear temperature

of 10,600 K and maximum shock temperature of 25,098 K. As we decrease the minimum grid stretching to �y = 5×10−6 m,

the shear and shock strengths have a maximum shear temperature of 11,200 K and a maximum shock temperature of

18,848 K for the 1201× 121 grid. For the stretched grid the shear and shock strengths have a maximum shear temperature

of 10,600 K and a maximum shock temperature of 25,015 K. Aside from the different shock/shear locations, the results in

the last column show that the maximum temperature at the shock location is higher than the result indicated in the middle

and the first columns.

To ensure that grid clustering with �xmin = 5 × 10−5 m is enough in terms of shock location error, we performed a

computation on a grid twice-refined in the x-direction. The comparison of these results and a similar computation for the 1D

problem are shown in Fig. 17. The 2D result profiles are taken on the upper boundary of the computational domain, where

they have the best correspondence with the 1D case. The 2D results with the same �x but different values of �y almost

coincide. The difference in the shock location for all five profiles does not exceed 1%. Note that these 2D computations

are expected to have a slightly smaller shock speed than in the 1D case with the same grid resolution because of the

shock-boundary layer interaction. This is confirmed by Fig. 17.
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Fig. 17. 1D and 2D, 13 species EAST simulations using TVD for tend = 3.25×10−5 s: 1D, �x = 5×10−5 m, 1D, �x = 2.5×10−5 m, 2D, �xmin = 5×10−5 m,

�ymin = 10−5 m, 2D, �xmin = 5 × 10−5 m, �ymin = 5 × 10−6 m, 2D, �xmin = 2.5 × 10−5 m, �ymin = 10−5 m. All 1D simulations are on a uniform grid

and all 2D simulations are on grids with clustering between shear and shock.

Fig. 18. 2D, 13 species EAST simulation for tend = 10−5 s on the same grid with refinement between the shear and the shock: WENO5-llf for CFL = 0.2

(left), WENO5P-llf for CFL = 0.4 (center) and TVD CFL = 0.7 (right).

The comparison among three numerical schemes is shown in Fig. 18. The three methods are regular TVD for CFL = 0.7,

regular WENO5 with Lax–Friedrichs flux (WENO5-llf) for CFL = 0.2 and a positivity preserving version of WENO5-llf [42],

designated as WENO5P-llf, for CFL = 0.4. It is well known that WENO-llf is very diffusive. This results in larger errors in

the shock location in comparison with TVD, as can be observed in Fig. 18. WENO5P-llf obtains results similar to regular

WENO5-llf, but it appears to be stable even for higher CFL numbers for which regular WENO5-llf obtains an oscillatory

solution.

5. Conclusions

Studies indicate that using the same temporal discretization, solving the fully coupled reacting flow equations with stiff

source terms and discontinuities for the EAST related flow model is not stable even using a very small CFL. Employing the

fractional step approach by the Strang splitting in solving the reacting flow equations is more stable and allows a compu-

tational feasible CFL number for this viscous flow. Based on the knowledge gained from Yee et al. (2013) as a guide, the

authors were able to reveal new results on some physical understanding, computational accuracy, instability and spurious

numerics of this type of hypersonic nonequilibrium flow.

For the first time, we have presented a realistic hypersonic nonequilibrium flow that mimics the spurious behavior of

more simple model problems that allow systematic nonlinear analysis. The 2D unsteady computation has been conducted

for a long time evolution (physical time up to 2.125E-4 s) which corresponds to more than 2 meters of the shock tube

length; see Figs. 13–15. Previous studies by other investigators encountered instability at a very early stage of time evolution

(private communication with the NASA EAST experimental/computational group, 2013). For the first time, our computations

reveal the Tollmien–Schlichting-like instability complex flow patterns at the boundary layer by the 2D viscous, 13 species

model.
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The present study demonstrates some important numerical challenges affecting the accuracy of 1D and 2D numerical

solutions in simulations of NASA EAST experiments. In the early stages of the time evolution at around t = 10−5 s the

importance of obtaining very high accuracy of the discontinuities, in order to avoid an overestimation of the shock velocity,

has been shown. For the 2D case, to obtain high resolution results, a moving grid with grid clustering only in key regions

of the computational domain is needed in order to avoid the use of the full computational domain and unnecessary grid

clustering for the entire time evolution. The precise cause of the observed grid-dependence on discontinuity locations of

the computed solution is not fully understood and requires further investigation. One conjecture for the spurious behavior

might be the stiff source terms, or, at least, the grid dependence may be amplified when the stiffness of the considered Ωs

is high enough. As discussed in Refs. [4,8] the level of grid- and scheme-dependence for obtaining the correct locations of

discontinuities is normally dictated by the degree of stiffness of the source terms and the accuracy and amount of numerical

dissipation contained in the scheme.

The present study also indicates the danger in practical numerical simulations for problems containing stiff source terms

where there is no reliable means of assessing the accuracy of the computed result other than by extreme grid refinement,

which may be beyond the capability of current supercomputers. Another alternative would be to develop methods that

obtain the correct speed of discontinuities on coarse grids, e.g. using ideas similar to one proposed by Wang et al. [4]

with further development for multi-species and multi-reaction systems. This approach might be very useful when there is

a need to perform 3D computations for such experimental facilities as EAST. Knowledge gained will provide guidance for

future 3D CFD simulations. Although simplified viscous 1D and 2D EAST simulations show a trend similar to our previous

inviscid studies, more advanced simulations of EAST may require further systematic analysis. Future investigation including

the comparison with the experimental data is planned.
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