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The recently developed essentially fourth-order or higher low dissipative shock-
capturing scheme of Yee, Sandham, and Djomehri [25] aimed at minimizing
numerical dissipations for high speed compressible viscous flows containing
shocks, shears and turbulence. To detect non-smooth behavior and control the
amount of numerical dissipation to be added, Yee et al. employed an artificial
compression method (ACM) of Harten [4] but utilize it in an entirely different
context than Harten originally intended. The ACM sensor consists of two
tuning parameters and is highly physical problem dependent. To minimize the
tuning of parameters and physical problem dependence, new sensors with
improved detection properties are proposed. The new sensors are derived from
utilizing appropriate non-orthogonal wavelet basis functions and they can be
used to completely switch off the extra numerical dissipation outside shock
layers. The non-dissipative spatial base scheme of arbitrarily high order of
accuracy can be maintained without compromising its stability at all parts of the
domain where the solution is smooth. Two types of redundant non-orthogonal
wavelet basis functions are considered. One is the B-spline wavelet (Mallat and
Zhong [14]) used by Gerritsen and Olsson [3] in an adaptive mesh refinement
method, to determine regions where refinement should be done. The other is the
modification of the multiresolution method of Harten [5] by converting it to a
new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained
by computing the estimated Lipschitz exponent of a chosen physical quantity
(or vector) to be sensed on a chosen wavelet basis function. Both wavelet
sensors can be viewed as dual purpose adaptive methods leading to dynamic
numerical dissipation control and improved grid adaptation indicators. Conse-
quently, they are useful not only for shock-turbulence computations but also for
computational aeroacoustics and numerical combustion. In addition, these
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sensors are scheme independent and can be stand-alone options for numerical
algorithms other than the Yee et al. scheme.

KEY WORDS: Low dissipation; high order finite difference method; shock
waves; multi resolution; wavelets; TVD schemes.

1. INTRODUCTION

Efficient and accurate numerical simulation of fluid flows containing both
sharp layers and turbulence are computationally very challenging. Resolv-
ing a wide range of length scales, including shock layers, and high shear
mixings is time consuming and costly. Numerical methods of the total
variation diminishing (TVD) type for shock capturing are too dissipative to
be useful when turbulence is present. Higher order difference methods in
conjunction with scalar or characteristics type nonlinear numerical dissipa-
tions, without appropriate adaptive sensor control, behave similarly.
Accurate methods such as spectral, spectral elements and high order spec-
tral-like compact schemes for computing turbulence, break down when
shocks are present. Although CPU intensive high order essentially non-
oscillatory (ENO), weighted ENO (WENO) and discrete Galerkin schemes,
generally exhibit less numerical dissipation than TVD schemes, never-
theless, their built in numerical dissipation still prevents the accurate cap-
turing of fine scale turbulent structures without resorting to very fine grids.
On the other hand, the switching mechanisms for multi-dimensional
complex flow structures in hybrid schemes (e.g., switch between spectral
element and ENO schemes) are extremely complicated and frequent acti-
vations of the ENO schemes are expected. As a remedy for this situation,
the artificial compression method (ACM) based filter scheme was proposed
in Yee et al. [25]. In this method one time step consists of one step with a
fourth-order or higher accurate non-dissipative spatial base scheme. Often
an entropy split form of the inviscid flux derivative (Yee et al. [27] and
Gerritsen and Olsson [3]) is used along with a post processing step, where
regions of oscillation are detected and filtered by adding the numerical dis-
sipation portion of a shock capturing scheme at these parts of the solution.
The entropy splitting of the inviscid flux derivative is considered as a con-
ditioned form of the governing equations. The idea of the scheme is to have
the spatially fourth-order or higher non-dissipative scheme activated at all
times and to add the full strength, efficient and accurate numerical dissipa-
tion only at the shock layers. Thus, it is necessary to have good detectors
which flag the layers, and not the oscillatory turbulent parts of the flow
field. It was shown in Yee et al. [25, 27, 28] that the ACM sensor, while
minimizing the use of numerical dissipation away from discontinuities,
consists of tuning parameters and is physical problem dependent. The
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objective of the present work is to develop adaptive numerical dissipation
sensors that are improvements over the ACM sensor.

Wavelets were originally developed for feature extraction in image
processing and for data compression. It is well known that the regularity of
a function can be determined from its wavelet coefficients [1, 14, 9] far
better than from its Fourier coefficients. By computing wavelet coefficients
(of a suitable set of wavelet basis functions), we obtain very precise infor-
mation about the regularity of the function in question. This information
is obtained just by analyzing a given grid function. No information about
the particular problem which is solved is used. Thus, wavelet detectors
are general, problem independent, and rest on a solid mathematical
foundation.

As of the 1990’s, wavelets have been a new class of basis functions that
are finding use in analyzing and interpreting turbulence data from experi-
ments. They are also used for analyzing the structure of turbulence from
numerical data obtained from direct numerical simulation (DNS) or large
eddy simulation (LES). See Farge [2], and Perrier et al. [16]. There are
several ways to introduce wavelets. One standard way is through the con-
tinuous wavelet transform and another is through multiresolution analysis,
hereafter, referred to as wavelet based multiresolution analysis. Mallat
and collaborators [9–14] established important wavelet theory through
multiresolution analysis. See references [21, 22] for an introduction to the
concept of multiresolution analysis. Recently, wavelet based multiresolu-
tion analysis has been used for grid adaptation (Gerritsen and Olsson [3])
and to replace existing basis functions in constructing more accurate finite
element methods. Here we utilize wavelet based multiresolution analysis to
adaptively control the amount of numerical dissipation that is inherent in
standard high-resolution shock-capturing schemes. With a proper choice of
a set of the wavelet basis functions, we have a better control on the proper
distribution and the amount of numerical dissipation leading to a more
accurate simulation than the ACM sensor, especially than the numerical
dissipations that are built-in in the TVD, ENO, and WENO schemes. The
resulting wavelet sensors are readily available as more desirable grid adap-
tation indicators than those commonly used. It is well known that numeri-
cal dissipation is the main cause of wrong speed of propagation of discon-
tinuous data in numerical combustion (LeVeque and Yee [8]) unless an
order of magnitude adaptive grid refinement and time step reduction are
used. Numerical dissipation is also a major stumbling block in efficient and
accurate simulation of aeroacoustic problems. Consequently, the proposed
wavelet based adaptive numerical dissipation control and grid adaptation
indicator can be valuable to numerical combustion and computational
aeroacoustics. In addition, this dual purpose adaptive method is scheme
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independent and can be a stand-alone option for a variety of schemes other
than what is discussed here. A procedure which adapts the appropriate
type of filters for the particular flow structures for long time integrations
is proposed and studied in Yee and Sjögreen [26] and Sjögreen and
Yee [20]. This adaptive detection/filter approach is able to distinguish
shock/shear, turbulent fluctuation and spurious high frequency oscillation,
and is valuable for high speed turbulence and combustion simulations. For
numerical experiments in [20], it appears that more than one type of filter
is needed for this type of applications.

Section 2 reviews the Yee et al. [25] high order scheme employing
ACM as a numerical dissipation sensor. Section 3 derives two multireso-
lution wavelet numerical dissipation sensors accompanied with scalar
examples. Section 4 discusses the options in applying the wavelet sensor for
highly coupled nonlinear systems of conservation laws. Numerical experi-
ments for 2-D compressible Euler and Navier–Stokes equations are given
in Sec. 5.

2. HIGH ORDER ACM BASED FILTER SCHEME

In vector notation the 2-D compressible time-dependent Euler equa-
tions in conservation form for a perfect gas can be written, in Cartesian
coordinates, as

Ut+Fx+Gy=0, (2.1)

where Ut=
“U
“t , Fx=“F

“x , and Gy=“G
“y and the U, F, G, are vectors given by

U=(r, ru, rv, e)T,

F=(ru, ru2+p, ruv, eu+pu)T, G=(rv, ruv, rv2+p, ev+pv)T.
(2.2)

The dependent variable U is the vector of conservative variables, and
(r, u, v, p)T is the vector of primitive variables. Here r is the density, u and
v are the x- and y-velocity components, ru and rv are the x- and
y-components of the momentum per unit volume, p is the pressure,
e=r[e+(u2+v2)/2] is the total energy per unit volume, and e is the speci-
fic internal energy. For constant specific heats (calorically perfect gas)
e=cvT, where cv is the specific heat at constant volume, T=p/Rr is the
temperature and R is the perfect gas constant.

The eigenvalues associated with the flux Jacobian matrices of F and G
are (u, u, u ± c) and (v, v, v ± c), where c is the sound speed. The two u, u
and v, v characteristics are linearly degenerate. Hereafter, we refer to the
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fields associated with the u ± c and v ± c characteristics as the nonlinear
fields and the fields associated with the u, u and v, v characteristics as the
linear fields.

Spatial Discretizations. The spatial discretizations of the ACM based
filter scheme of Yee et al. [25] consist of two parts, namely, a base scheme
and a filter. When numerical dissipations or filters are not used, the scheme
consists of only the base scheme. Entropy splitting, or skew-symmetric
splitting, (Yee et al. [27] and Gerritsen and Olsson [3]) can be used to
improve the nonlinear stability of the scheme. It is especially important for
long-time integrations, and enables a norm estimate of the solution. It has
been reported [20] that the onset of non-linear instability can be delayed
for an order of magnitude in the time scale, by using entropy splitting. If
entropy splitting is used, the base scheme is applied to the split form of
the inviscid flux derivatives. It is noted that the entropy splitting form
of the inviscid flux derivatives can be viewed as a more conditioned form of
the Euler equations for stability considerations. See Yee et al. [18, 27, 28]
for details. Possible non-dissipative high order base schemes for Fx and Gy

and the viscous terms (if present) are the standard fourth and sixth-order
compact and non-compact central schemes for the interior grid points.

The ACM Filter. For efficiency and ease of numerical boundary
treatment, Yee et al. [25] proposed using filter operators whose grid sten-
cils have a width similar to that of the base scheme. The filter operator
consists of the product of a sensor and a nonlinear dissipation. Denote Fj, k

as the discrete approximation of the inviscid flux F at (j Dx, k Dy), where
Dx and Dy are the grid spacings in the x- and y-directions and j and k are
the corresponding spatial indices. Let the filter vector in the x-direction be
of the form

F̃g
j+1

2, k=1
2 Rj+1

2
Fg

j+1
2
. (2.3)

F̃g
j+1

2, k is the modified form of the nonlinear dissipation portion of the
standard numerical flux. For characteristic based methods, the quantity
Rj+1

2
(with the k index suppressed) is the right eigenvector matrix of “F

“U

using Roe’s average state (Roe’s approximate Riemann solver). G̃g
j, k+1

2
is

defined in the same manner. The elements of Fg
j+1

2
(with the k index sup-

pressed), denoted by (f l
j+1

2
)g, are

(f l
j+1

2
)g=S l

j+1
2
f̃ l

j+1
2
. (2.4)

f̃ l
j+1

2
is the dissipative portion of the high resolution scheme resulting from

using a TVD, MUSCL with slope limiters, ENO or WENO scheme. For-
mulae for f̃ l

j+1
2

are well known and can be found in the literature. See
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Yee et al. [25] for details and for a discussion of other possible f̃ l
j+1

2
. Here

S l
j+1

2
is the sensor and is a mechanism for controlling excess numerical

dissipation that is inherent in the dissipative portion of standard high-reso-
lution shock-capturing schemes.

For the numerical experiments to be presented later, we use the Harten
and Yee upwind TVD numerical dissipation (Yee [23, 24])

f̃ l
j+1

2
=1

2 k̃(a l
j+1

2
)(g l

j+1+g l
j) − k̃(a l

j+1
2
+c l

j+1
2
) ã l

j+1
2
, (2.5)

c l
j+1

2
=1

2 k̃(a l
j+1

2
) 3(g l

j+1 − g l
j)/ã l

j+1
2

ã l
j+1

2
] 0

0 ã l
j+1

2
=0.

(2.6)

The a l
j+1

2
, l=1, 2, 3, 4, are the characteristic speeds of “F

“U evaluated at the
Roe’s average state. The ã l

j+1
2

are elements of R−1
j+1

2
(Uj+1, k − Uj, k). The

corresponding ã l
j+1

2
, f̃ l

j+1
2
, and Rj+1

2
using the MUSCL formulation are

instead functions of the left and right states of U. The function k̃ is an
entropy correction to |a l

j+1
2
|. One possible form is given by Harten and

Hyman [6].
The ‘‘limiter’’ function g l

j used for the numerical experiment can be
chosen as one of the following expressions

g l
j={ã l

j − 1
2
[(ã l

j+1
2
)2+d2]+ã l

j+1
2
[(ã l

j − 1
2
)2+d2]}/[(ã l

j+1
2
)2+(ã l

j − 1
2
)2+2d2}],

(2.7a)

g l
j=min mod(2ã l

j − 1
2
, 2ã l

j+1
2
, 1

2 (ã l
j+1

2
+ã l

j − 1
2
)), (2.7b)

g l
j=S · max [0, min(2 |ã l

j+1
2
|, S · ã l

j − 1
2
), min(|ã l

j+1
2
|, 2S · ã l

j − 1
2
)]. (2.7c)

Here d2 is a small dimensionless parameter to prevent division by zero and
S=sign(ã l

j+1
2
). The min mod function of a list of arguments is equal to

the smallest number in absolute value if the list of arguments is of the same
sign, or is equal to zero if any arguments are of opposite sign.

The ACM Sensor. An artificial compression method (ACM) origi-
nally proposed by Harten [4] makes use of the gradient sensor to switch
between a higher order scheme and a first-order scheme. Yee et al. [25] use
this gradient sensor as part of S l

j+1
2
. In contrast to hybrid schemes that

switch between spectral or spectral-like non-shock-capturing schemes and
high order ENO schemes, the high order non-dissipative base scheme is
always activated. For the ACM sensor, S l

j+1
2
=oh l

j+1
2
. The parameter o is
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problem-dependent. The function h l
j+1

2
is the Harten ACM gradient sensor.

For a general (2m+1)-point base scheme,

h l
j+1

2
=max(ĥ l

j − m+1,..., ĥ l
j+m), (2.8)

ĥ l
j=: |ã

l
j+1

2
| − |ã l

j − 1
2
|

|ã l
j+1

2
|+|ã l

j − 1
2
|
:p . (2.9)

Here the parameter p is an exponent \ 1 and is not the ‘‘pressure p’’ in
(2.1) and (2.2).

For smooth flows in the absence of high shears, o can be very small. It
is used to minimize spurious high frequency oscillation producing nonlinear
instability associated with pure central schemes, especially for long time
integration problems. Different physical problems require different values
of o because of the large variation in flow properties. The o value may vary
from one characteristic wave to another, and from one region of the flow
field to another region with different flow structure. Instead of varying o

for the particular flow problem, one can vary p. For larger p, less numeri-
cal dissipation is added. Note that by varying p \ 1 in the ACM sensor,
one can essentially increase the order of accuracy of the filter.

For a chosen grid spacing without grid adaptation, we would like to
point out that neither the ACM sensor nor the wavelet sensor (to be dis-
cussed next) would be able to improve the accuracy at the shock and shear
locations over the inherent shock-capturing capability of the nonlinear dis-
sipation. The accuracy of the shock and shear is dictated by the chosen flux
limiter of the nonlinear dissipation. The role of the sensors is to allow the
full amount of numerical dissipation in shock and shear regions, and to
limit the amount of numerical dissipation in regions immediately away
from shock and shear locations and the rest of the flow field. Therefore,
with a suitable sensor and flux limiter, one does not have to use CPU-
intensive high order high-resolution shock-capturing numerical dissipation.
Only when sensors are not employed the higher-order nonlinear numerical
dissipation gives a slightly more accurate solution away from discontinui-
ties but exhibits similar shock and shear resolution as second- or third-
order high-resolution numerical dissipation.

Full Discretizations. If a multistage time discretization such as the
Runge–Kutta method is desired, the high order non-dissipative spatial
differencing base scheme is applied at every stage of the Runge–Kutta
method. If viscous terms are present, they use the same order and type of
base scheme as for the inviscid terms. There are two methods for applying
the characteristic filter. Method 1 is to apply the filter at every stage of the
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Runge–Kutta step. Method 2 is to apply the filter at the end of the full
Runge–Kutta step. For inviscid and strong shock interactions, method 1
might be more stable.

If one desires a time discretization that belongs to the class of linear
multistep methods (LMMs), e.g., trapezoidal rule or three-point backward
differentiation, then the filter can be applied as a numerical dissipation
vector in conjunction with the base scheme. The filter in this case is
evaluated at Un for explicit LMMs. For implicit LMMs additional similar
filters evaluated at the n+1 time level might be involved. Alternatively,
method 2 can be applied to LMMs as well. In this case, we apply the filter
after the completion of the implicit time step.

As an example, we illustrate the complete form of the schemes for
Runge–Kutta methods with the filters applied at the completion of a full
Runge–Kutta time step. Let Ûn+1 be the solution after one full Runge–
Kutta time step using a non-dissipative spatial base scheme. Then the solu-
tion at the next time level Un+1 is

Un+1
j, k =Ûn+1

j, k +
Dt
Dx

5F̃g
j+1

2, k − F̃g
j − 1

2, k
6+

Dt
Dy

5G̃g
j, k+1

2
− G̃g

j, k − 1
2
6 . (2.10)

Here, the numerical filters F̃g
j ± 1

2, k and G̃g
j, k ± 1

2
are evaluated at Ûn+1.

Thus, the filter is applied after each full time step with the Runge–
Kutta method. For problems with very strong shocks, this might not give
enough suppression of oscillations. For such problems, it is possible to
apply the filter after each stage in the Runge–Kutta method instead. For all
computations made in this article, the filter was applied only after each
complete time step by the Runge–Kutta method.

3. WAVELET DETECTION ALGORITHMS

The ACM sensor function is not entirely satisfactory since tuning
parameters o and p are involved. We will develop here a wavelet based
sensor function to replace oh l

j+1
2
, which has the advantages of relying on a

solid theoretical foundation, and minimizing the number of problem
dependent parameters. Below we first describe the method in standard
wavelet framework. Next we show how the Harten multiresolution method
[5] can be used as a starting point for the derivation of a detection algo-
rithm, on the same form. This modified Harten multiresolution description
has the advantage of being more intuitive.

There exists today a large body of results on determining regularity of
a function from its wavelet representation. See for example [1, 13, 14]. The
wavelet technique has been especially useful in simulation of turbulence,
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where it can be used as a data analyzing tool, extracting structures from the
numerical solution, [2, 15, 16]. In [3] a wavelet based multiresolution
analysis from [14] is used to determine points where mesh adaption should
be done. We will, to some extent, follow the description in [3] but rather
utilize the wavelet technique for numerical dissipation control.

The wavelet decomposition of a function f(x) is obtained by taking
the inner product with wavelet functions km, n(x). This leads to the wavelet
coefficients,

wm, j=Of, km, jP=F
.

−.

f(x) km, j(x) dx,

m=..., −1, 0, 1,..., j=..., −1, 0, 1,... (3.1)

Here m is an index representing scale, and j is an index representing posi-
tion. The set of basis functions km, j(x) is obtained by scalings of a single
‘‘mother wavelet’’ function k(x) and is not to be confused with the k̃

in (2.6). The construction of k(x) depends on the types of application.
Among the many rich mathematical wavelet developments, one of the key
elements of the present interest is the scaling of the mother wavelet. The
other is the mathematical characterization of multiresolution scales by the
so called Lipschitz exponents [1, 13, 14].

There exist two major scalings leading to orthogonal and non-
orthogonal wavelets. There also exist different scaling factors giving rise to
different normalizations. The scaling we will use is

km, j(x)=2−mk((x − j)/2m). (3.2)

With this scaling the resulting wavelets do not form an orthonormal basis,
and this is sometimes referred to as a redundant wavelet decomposition. In
addition, the mother wavelet k(x) should have compact support, or rapidly
decrease towards infinity, so that the wavelet coefficient wm, j contains
information about how much of scale 2m is present in f(x) at the point
x=j. Additional technical conditions on k(x), for example that its integral
is equal to zero, should be imposed. Under these conditions it is possible to
compute f(x) from given coefficients wm, j.

It is even possible to make the functions km, j(x) an orthonormal basis
for L2. In fact, more known results and applications are based on ortho-
normal wavelet basis functions. In order to construct an orthonormal basis,
the scaling of the wavelet function (3.2) is replaced by

km, j(x)=2−m/2k(x/2m − j) (3.3)
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so that the number of coefficients on the coarser scale is not as densely dis-
tributed. In practice, the scaling is restricted by the chosen grid size in
numerical computations and consequently, cannot be very small. If m cor-
responds to grid levels, this scaling (3.3) would restrict us to fewer coeffi-
cients on the coarser grids, which is not unnatural. For our case, however,
since we will estimate the regularity of a function at all grid points using
several levels of wavelet coefficients, we keep all level of coefficients at all
grid points. We can then estimate the regularity of the function f(x) with
the same accuracy at all grid points. With orthogonal wavelets we would
have had a poorer estimate in between the coarse grid points. For a
redundant wavelet decomposition, the scaling (3.2) is more natural and
meets our requirement. Thus we will not use orthogonal wavelets.

We are here mainly interested in computing the wavelet coefficients
(3.1) and the information which we can obtain from them. In the wavelet
based multiresolution analysis, there exist several theorems about the rela-
tion between the regularity of a function f(x) and its wavelet coefficients
(3.1), see [1, 2, 9, 13, 16]. For example Theorem 9.2.2 in [1], which states
that if k is in C1 and has compact support, and if the wavelet coefficients
satisfy

max
j ¥ S(x0, m, E)

|Of, km, jP| [ C2ma (3.4)

for all m smaller than some limit, and for some E > 0, and some a,
0 < a < 1, then the function f has Lipschitz exponent a at x=x0,

|f(x) − f(x0)| [ C |x − x0 |a (3.5)

for all x in a neighborhood of x0. S(x0, m, E) is the extended domain of
dependence of the wavelet function,

S(x0, m, E)={j: km, j(x) ] 0 for some x ¥ (x0 − E, x0+E)}. (3.6)

The theorem was originally formulated for non-redundant wavelets. An
advantage of using a redundant decomposition is that the same theorem
holds, but without the regularity requirement that k(x) ¥ C1, see [1],
p. 302.

The assumptions on f and k for similar results to hold vary between
different references. Often it is required that f is in L2, bounded and con-
tinuous, and that k is C1 and compactly supported. Furthermore, the
number of vanishing moments of k(x) determines an upper limit on a. For
example, if the first two moments of k(x) vanish, the result is valid for
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0 < a < 2. A kth vanishing moment means that >.

−. xkk(x) dx=0. The
result in [13, 14], which is used in [3], instead gives the condition that
k(x) should be the k-derivative of a smooth function g(x) with the
property

g(x) > 0, F g(x) dx=1, lim
x Q ± .

g (k)(x)=0. (3.7)

Then the result is valid for 0 < a < k. A continuous function has a
Lipschitz exponent a > 0. A bounded discontinuity (shock) is a=0, and a
Dirac function (local oscillation) has a=−1. Large values of k can be used
in turbulent flow so that large vortices or vortex sheets can be detected.
Although the theorem above does not hold for a negative, a useful upper
bound on a can be obtained from the wavelet coefficient estimate. The
works [9, 13] are good references for more detailed results on regularity
estimates from wavelets. Before the discussion of the numerical computa-
tion of the wavelet coefficients we would like to emphasize that the
Lipschitz exponent a in (3.4) and (3.5), which measures the regularity of a
function f(x), holds the key to our wavelet based adaptive numerical
dissipation control.

3.1. Numerical Computation of the Wavelet Coefficients

For practical computations, we cannot make the scale 2m infinitely
small. The smallest scale is given by the grid, which we normalize to m=0.
For the discrete case, the index m denotes the grid level, and the index j is
the grid point index of the wavelet coefficients. The grid points are x=j,
j=1, 2,..., N. For increasing m the support of km, j(x) increases, which
means that the scale becomes larger. For the present application, the
regularity of the function that we want to analyze consists of numerical
data obtained from numerically solving a system of nonlinear partial dif-
ferential equations (PDEs) with a chosen numerical scheme (e.g. (2.10)).

For a given grid function fj, j=1, 2,..., N that we want to analyze,
we now describe how to compute numerically the coefficients wm, j for
m=1, 2,..., m0 and j=1, 2,..., N. m0 is the coarsest scale that we want to
use. Of course, we could evaluate the coefficients directly from the defini-
tion Of, km, jP, by numerical quadrature. This would be very expensive
because the support of km, j increases when m increases, and the quadrature
formulas would then involve sums where the number of terms approaches
N on the coarsest scales.
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The basis of a computational scheme in obtaining the wavelet coeffi-
cients is the introduction of a so called scaling function f(x), which belongs
to the class of smoothing functions g(x) in (3.7) satisfying

f(x)=2 C
q

k=−p
dkf(2x − k) k(x)=2 C

q

k=−p
ckf(2x − k). (3.8)

The scaling functions f(x) and fm, j(x) are not to be confused with the
nonlinear numerical dissipation f̃ l

j+1
2

in (2.4). Only a few coefficients dk

and ck should be nonzero, in order to obtain an efficient computational
method.

The functional equations (3.8) is closely associated with the multi-
resolution analysis [21, 22, 9]. In the multiresolution analysis, a sequence
of closed subspaces Vj of L2(R), j ¥ Z of different resolution is defined,

· · · … V2 … V1 … V0 … V−1 … V−2 · · ·

with the important property that if a function h(x) ¥ Vm, then h(2mx) ¥ V0,
so that all spaces are scaled versions of V0. Here R and Z are the spaces of
reals and integers respectively. Furthermore, we require that

0
m ¥ Z

Vm=L2(R) and 3
m ¥ Z

Vm={0}.

In other words, 1m ¥ Z Vm is dense in L2(R). The spaces Vm can be thought
of as representing all scales down to the mth scale. We also require that
V0 is invariant under integer translations, so that a basis on the form
{f(x − j)}j can be found. With the definition fm, j=2−m/2f(x/2m − j), we
then obtain {fm, j}j as a basis for Vm. With these definitions the scaling
relation (3.8) for f just means that we expand the function, e.g., f0, 0 in the
basis f−1, j, which can be done since V0 … V−1.

Let Wm be the orthogonal complement of Vm in Vm − 1, so that

Vm − 1=Wm À Vm,

where the symbol Á stands for direct sum. It can then be shown that a
basis {km, j(x)} for Wm can be found, where km, j=2−m/2k(x/2m − j). The
spaces Wm are orthogonal, since Wm … Vm − 1, and Vm − 1 + Wm − 1. We can
write L2 as a direct sum of Wm spaces,

L2(R)=Â
m

Wm
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so that the km, j form an orthogonal basis for L2. This is an orthogonal
wavelet basis for L2. The scaling relation for k, can then be thought of as
an expansion of k0, 0 in the basis f−1, j, which can be done since W0 … V−1.

If a scaling function f(x) satisfying (3.8) can be found, we obtain a
fast method for the evaluation of the wavelet coefficients, independent of
whether the formula was derived from an orthogonal wavelet basis, or was
found in any other way. The computational scheme becomes

Of, fm, jP= C
q

k=−p
dkOf, fm − 1, j+2m − 1kP

Of, km, jP= C
q

k=−p
ckOf, fm − 1, j+2m − 1kP

(3.9)

where we have defined fm, j(x)=2−mf((x − j)/2m). To derive (3.9) from
(3.8), insert the argument (x − j)/2m in the place of x and multiply by 2−m

to obtain

1
2m f((x − j)/2m)=

1
2m − 1 C

p

k=−q
dkf 12

x − j
2m − k2

=
1

2m − 1 C
p

k=−q
dkf 1x − j − 2m − 1k

2m − 1
2

from which we can identify the relation

fm, j(x)= C
p

k=−q
dkfm − 1, j+2m − 1k(x).

Multiplying this equation by f(x) and integrating, gives (3.9) for f. The
relation for k follows from similar computations. If the coefficients on the
finest grid Of, f0, jP are given, we can compute Of, k1, jP, Of, f1, jP, by
using the formulae (3.9). Repeating the procedure gives Of, km, jP for suc-
cessively increasing m. The formulae (3.9) are a pair of difference operators
acting on a grid function fj. We can express the algorithm as follows.
Introduce the grid operators

Afj= C
q

k=−p
dk fj+k

Dfj= C
q

k=−p
ck fj+k

(3.10)
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and their mth level expanded versions

Am fj= C
q

k=−p
dk fj+2mk

Dm fj= C
q

k=−p
ck fj+2mk,

(3.11)

where the integers p and q are related to the chosen k(x) and f(x). The
computation (3.9) can then be written as

f (m)
j =Of, fm, jP=Am − 1 f (m − 1)

j

wm, j=Of, km, jP=Dm − 1 f (m − 1)
j .

(3.12)

Starting from the grid function f (0)
j =Of, f0, jP, (3.12) is applied successi-

vely to obtain grid functions for m=1, 2, 3,..., m0. The initial f (0)
j is found

by numerical quadrature. The computation f (m)
j =Am − 1 f (m − 1)

j for a three
point operator A is outlined in Fig. 3.1. These sequences are sometimes
referred to as the impulse response of low pass and high pass filters. The
computation wm, j=Dm − 1 f (m − 1)

j follows a similar pattern, but possibly with
a different stencil width.

The mth level of wavelet coefficients can be written as

wm, j=Of, km, jP=Dm − 1Am − 2Am − 3 · · · A0 fj, m=1, 2,... . (3.13)

Once the coefficients dk and ck are determined the computation is a very
standard application of grid operators. In practice, we only use m0=3 to 5.
To be able to compute up to the boundary, we use one sided versions of
the given operators. This seems to work well in practice, although it is not
covered by the wavelet framework described above. Study on the effect of

Fig. 3.1. The computation of f (m)
j (3.12), when A has three point stencil.
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wavelets on an interval using the appropriate boundary wavelets [9] for
our application is a subject of ongoing research.

To determine the initial coefficients, Of, f0, jP from fj, we make a
numerical approximation of the integral. If the support of f(x) is small, we
can set Of, f0, jP % fj > f(x) dx.

3.2. Approximation of the Lipschitz Exponent

After we compute the wavelet coefficients, the next step is to compute
the Lipschitz exponent a, the key for our present development. Unfortuna-
tely, it is not possible to obtain a exactly. There exist in the literature dif-
ferent methods for approximating a. The method of approximating a in
[3] is based on the theorems in [14], which involves tracing a maximum
curve among the wavelet coefficients at points of singular behavior. We
choose here, instead, to base our method on Theorem 9.2.2 of [1] as
described previously. This means that we do not trace maximum lines.
Instead the procedure below is applied at all grid points. Note that the
results in both [1] and [14] are valid for functions of a continuous vari-
able, so there is some freedom of interpretation when applying them to
functions defined only at grid points.

After we have computed the wavelet coefficients, we first form the
maximum over the domain of dependence,

rm, j= max
k=−2mp, 2mq

|Of, km, j+kP| (3.14)

where the nonzero ck coefficients are enumerated from − p to q. We
estimate the Lipschitz exponent by a least squares fit of a line to the
equation

log2 rm, j=am+c. (3.15)

The slope gives an estimate of a at the point x=j. A discontinuity is
characterized by a=0. Standard numerical centered difference approxima-
tions have problems when a is small. Usually existence of several derivatives
is required for high order difference formulas to be accurate.

3.3. Detectors from the B-Spline Wavelet Basis Function

Developing the best suited wavelets that can characterize all of the
flow features might involve the switching or blending of more than one
mother wavelet k(x) and scaling function f(x), especially if one needs to
distinguish turbulent fluctuations from shock/shear and/or spurious high
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frequency oscillations. See [20, 26, 27] for some discussion. The mother
wavelet function used in [3] and described in detail in [14] meets some of
our requirements. It is obtained from second order B-splines, and is given
by

k(x)=˛
0 x > 1
− 2(x − 1)2 1/2 < x < 1
− 4x(1 − x)+2x2 0 < x < 1/2
− 4x(1+x) − 2x2 − 1/2 < x < 0
2(x+1)2 − 1 < x < − 1/2
0 x < − 1

. (3.16)

For this wavelet (3.16), there exists a scaling function, given by

f(x)=˛
0 x > 2
1
2 (x − 2)2 1 < x < 2
− (x − 1/2)2+3/4 0 < x < 1
1
2 (x+1)2 − 1 < x < 0
0 x < − 1

. (3.17)

If we apply the Fourier transform, ĥ(t)=> e−ixth(x) dx, to the relation

f(x)=2 C
k

dkf(2x − k)

we obtain

f̂(t)=b0(t/2) f̂(t/2) (3.18)

where b0(t)=;k dke ikt. From a given trigonometric polynomial b0(t), we
can find scaling functions by iterating (3.18),

f̂(t)= D
.

m=1
b0(t/2m) f̂(0)

or conversely, for a given scaling function, we can try to find the polyno-
mial b0(t) from (3.18). Taking the Ñ degree B-spline basis function as the
scaling function gives

f̂(t)=e−ist/2 1 sin t/2
t/2

2Ñ+1

,
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where s is 1 for Ñ even, and 0 for Ñ odd. From this it is not hard to verify
that

b0(t)=e−ist/2 cosÑ+1t/2

and we get the coefficients dk from this trigonometric polynomial.
The normalization is such that the integral of the scaling function

above is equal to one. The functions above are standard, and can be found
in [1]. The scaling function differs by a shift from the scaling function used
in [3], but the important relations

f(x)=1
4 f(2x+1)+3

4 f(2x)+3
4 f(2x − 1)+1

4 f(2x − 2)

k(x)=f(2x+1) − f(2x)
(3.19)

hold, and give the grid operators

Afj =(fj − 1+3fj+3fj+1+fj+2)/8, j=2,..., N − 2

Dfj=(fj − 1 − fj)/2 j=2,..., N.
(3.20)

Here p=1, q=2, d−1=1/8, d0=3/8, d1=3/8, d2=1/8, c−1=0,
c0=−1/2, c1=1/2, and c2=0 for (3.11). For example, for m0=3, the
computation of f (m)

j involves a grid stencil of 13 points. Note that the
wavelet stencil is not symmetric. In general, formula (3.9) shows that points
from p2m0 − 1 to − q2m0 − 1 are involved in the computation, giving a stencil of
totally (p+q) 2m0 − 1+1 points. The scaling function f(x) and the wavelet
function k(x) for the B-spline wavelet are shown in Figs. 3.2a and 3.2b
respectively.

–2 –1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

φ

x

Scaling Function

–1.5 –1 –0.5 0 0.5 1 1.5
–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

ψ

x

Wavelet Function

(a) (b)

Fig. 3.2. (a) scaling function, (b) wavelet function.
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For boundary operators we use

Df1=(f3 − 3f2+2f1)/2

Af1=(7f1 − 3f2+5f3 − f4)/8

AfN − 1=(7fN − 3fN − 1+5fN − 2 − fN − 3)/8

AfN=(25fN − 37fN − 1+27fN − 2 − 7fN − 3)/8.

(3.21)

The coefficients are determined so that the action on smooth functions is
close to the interior operators. The simpler formulae

Df1=(f1 − f2)/2

Af1=(7f1 − 3f2+5f3 − f4)/8

AfN − 1=(fN+3fN − 1+3fN − 2+fN − 3)/8

AfN=(7fN − 3fN − 1+5fN − 2 − fN − 3)/8

(3.22)

have also turned out to work well in practice. We will later show some
experiments with these operators. The computation consists of the follow-
ing steps. Use (3.20) with (3.21) or (3.22) as the operators (3.10). Compute
wm, n from (3.12), and estimate the regularity by (3.14) and (3.15).

3.4. Detectors from Converting Harten’s Multiresolution Scheme to
Redundant Wavelets

This section describes a procedure to modify Harten’s multiresolution
method [5] into redundant non-orthogonal wavelets and derive an alter-
nate wavelet detector which in some sense is slightly simpler than the
B-spline wavelet sensor. The multiresolution method by Harten is a way to
speed up computations by using a wavelet decomposition. See Sjögreen
[19] for a study of Harten’s multiresolution scheme. We next give a brief
description of the method.

Consider the approximation of a PDE in one space dimension, on the
uniform grid xj=j Dx, j=0, 1,..., N. The numerical solution is given by
(f0, f1,..., fN), with fj an approximation of the solution at xj. Introduce L
levels of successively coarser grids,

Gm=(x0, x2m,..., xN) m=0,..., L.

Let xm
j denote grid point j on grid Gm. Then x0

j =j Dx, and xm
j =

x0
j2m=j2mDx. Let Nm denote the number of points in Gm. Then
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Nm=2L − mNL. We let fm
j denote the numerical solution of a PDE at the

point xm
j .

Assume that the solution is given on grid Gm, and that we want to find
it on the finer grid Gm − 1. For the even numbered grid points we have

fm − 1
2j =fm

j , j=0, 1,..., Nm.

To find the solution at the odd grid points, we let I(x, fm) interpolate fm
j

on Gm, such that I(xm
j , fm)=fm

j . We then have the approximation
f̂m − 1

2j − 1=I(xm − 1
2j − 1, fm) of fm − 1

2j − 1. The interpolation error is dm
j =fm − 1

2j − 1 − f̂m − 1
2j − 1.

Thus with knowledge of fm and dm we can reconstruct the solution on
Gm − 1. We call (fm, dm) the multiresolution representation of fm − 1. Note
that the vectors fm, dm together contain the same number of elements as
does fm − 1. In summary, we switch between the representation fm − 1, and
(dm, fm) by the forward transformation

fm
j :=fm − 1

2j

dm
j :=fm − 1

2j − 1 − I(xm − 1
2j − 1, fm),

(3.23)

and the backward transformation

fm − 1
2j :=fm

j

fm − 1
2j − 1 :=dm

j +I(xm − 1
2j − 1, fm).

This is inexpensive if I(xm − 1
2j − 1, fm) is a straightforward linear interpolation

operator.
We transform consecutively on all grids

f0
Q (d1, f1) Q (d1, d2, f2) Q · · · (d1, d2,..., dL, fL).

The vectors (d1, d2,..., dL, fL) are the multiresolution representation of f0.
The interpolation errors dm contain information about the smoothness of
the solution. If dm

j is large at some grid points, this indicates that the solu-
tion is non-smooth there.

The multiresolution method does not increase the number of coeffi-
cients, and is therefore not redundant. Here, we propose instead to use a
redundant form, obtained from computing coefficients dm

j at all points on
the fine grid. To do this, we treat the fine grid as consisting of two coarse
grids. The even points are interpolated from the odd points, and vice versa.
The interpolation errors are used for wavelet coefficients. For this redun-
dant method, there is only one fine grid, with points xj, j=1, 2,..., N,
where we assume that N is odd, N=2s − 1. All grid functions fm, dm are
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defined on this fine grid. Denote I(x, {fk}b
k=a) a function which interpola-

tes the values fa, fa+1,..., fb. Let the function values fm − 1
j , j=1, 2,..., N be

given. The following formula will then replace (3.23),

fm
2j :=I(x2j, {fm − 1

2k − 1} s
k=1), j=1, 2,..., s − 1

fm
2j − 1 :=I(x2j − 1, fm − 1

2k } s − 1
k=1), j=1, 2,..., s

dm
j :=fm − 1

j − fm
j j=1, 2,..., N.

By expressing the wavelet coefficients as interpolation errors, it becomes
intuitively clear why they should be small when the function is regular.

We express the computation of the level m coefficients from the level
m − 1 coefficients in operator form as

fm
j =Am − 1 fm − 1

j

dm
j =fm − 1

j − Am − 1 fm − 1
j

where Afj is an averaging operator, coming from the interpolation
formula. We assume that the same I(x, f ) is used for the odd and the even
points. The computation is done for all j on the fine grid. At the boundary
points, we use one sided versions of the operator A. Note that (3.23) is
exactly the same form as (3.12), if we define D=I − A, with dm

j as wm, j, and
fm

j as f (m)
j in (3.12).

There is more than one choice for the interpolation function. See
Sjögreen [19] for a discussion. The exact form of the method for the com-
putations in this article will be

Afj=(fj − 1+fj+1)/2 j=2,..., N − 1

Dfj=fj − Afj j=2,..., N − 1. (3.24)

The above choice was made in order to have a simple and efficient method.
The stencil is narrower than for the B-spline formulas that were given pre-
viously. With the formula above, we also get a symmetric stencil, which is
more natural if the other parts of the computation, such as difference
approximations of PDEs are done by symmetric formulas. Furthermore,
symmetry makes periodic boundary conditions (BCs) somewhat easier to
implement. Note that the absence of symmetry for either the scaling func-
tion or the wavelet can lead to phase distortion. This can be shown to be
important for signal processing applications. Another advantage of (3.24)
is that the wavelet has two vanishing moments, one more than the B-spline
wavelet used in (3.20).

We now have a method in the same form as the wavelet detector from
the previous subsection, but derived in an intuitive way and using a more
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narrow grid stencil. For example, for m0=3, the computation of f (m)
j

involves a grid stencil of 9 instead of 13. Using the above formula, we
proceed with the Lipschitz exponent computations as before.

3.5. Two Space Dimensions

Wavelet functions can be defined in different ways in two dimensions.
One way is to use the product basis functions,

km, n, j, k(x, y)=km, j(x) kn, k(y)

giving two scales m and n at each point (j, k) at the plane. It is possible to
use instead

km, j, k(x, y)=
1

2m k((x − j)/2m, (y − k)/2m)

where only one scale is present at each grid point. The function k(x, y) is a
two dimensional version of k(x).

The computation of multi-dimensional wavelets is quite expensive,
especially in 3-D. A simple minded efficient way is to evaluate the wavelet
coefficients dimension by dimension. This means that we get two sets of
wavelet coefficients wx

m, j(y) and wy
m, k(x), where now (j, k) is the position

and m is the scale. The precise definition is

wx
m, j(y)=F f(x, y) km, j(x) dx

wy
m, k(x)=F f(x, y) km, k(y) dy.

In the sequel, our numerical method will have some terms evaluated as
finite differences in the x-direction and some which are evaluated in the
y-direction. We then use the wx

m, j(y) coefficients for the x-direction com-
putation, and the y-coefficients for the y-direction computation. When the
coefficients are evaluated along grid lines, the notation

wx
m, j, k=wx

m, j(yk) wy
m, j, k=wy

m, k(xj)

is used.
The implementation of the algorithm is made memory efficient by

computing the wavelet coefficients line by line. Only one dimensional extra
memory is needed. An outline of the computational procedure (for three
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space dimensions) is given in Algorithm 3.1. We see that the routine
requires 6 additional one dimensional arrays. Three levels of wavelet coef-
ficients are hard coded into the algorithm. However, it would be straight-
forward to use an arbitrary number of levels, by looping over the levels
instead. Algorithm 3.1 computes the I-sweep, and the operators A, D are
acting in the I-coordinate direction. In our implementation the same code
is used for all coordinate sweeps. This is possible to achieve by program-
ming the indexation of multi dimensional arrays in such a way that the
innermost index is always the sweep direction. The input is the solution
array wi, j, k defined for 1 [ i [ Ni, 1 [ j [ Nj, 1 [ k [ Nk. The output is the
adding of the filter fluxes, computed at wi, j, k, to a residual ri, j, k.

Algorithm 3.1.

for k :=1 to Nk

for j :=1 to Nj

for i :=1 to Ni

d1
i :=D0wi, j, k

f1
i :=A0wi, j, k

endfor
for i :=1 to Ni

d2
i :=D1 f1

i

f2
i :=A1 f1

i

endfor
for i :=1 to Ni

d3
i :=D2 f2

i

endfor
for i :=1 to Ni

Lipschitz exponent a computed from d1, d2, d3.
Compute sensor si+1/2 :=y(a).

endfor
for i :=1 to Ni − 1

if si+1/2 ] 0 then
Compute filter flux hi+1/2

add to residual:
ri, j, k :=ri, j, k − si+1/2hi+1/2

ri+1, j, k :=ri+1, j, k+si+1/2hi+1/2

endif
endfor

endfor
endfor
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3.6. Numerical Experiments with 1-D Test Cases

We test here the detector algorithms on one dimensional examples,
where the regularity of the functions is known. We will compare the
redundant wavelet of Harten’s multiresolution method (3.24), referred to as
RH-wavelet, and the B-spline wavelet (3.20) referred to as BS-wavelet.
A typical example from the wavelet literature is the function given in
Fig. 3.3. This function has a steep layer, a jump (a=0), a sharp peak which
on the grids that we use is under resolved and could be understood as a
Dirac pulse. A smooth bump is also present. It has the form

f(x)=˛
0 x < − 1

1/(e−15(x+3/4)+1) − 1 [ x < − 1/2

1 − 1/2 < x < 1/2

0 1/2 < x < 1.9

1 − 20 |x − 1.95| 1.9 < x < 2

0 2 < x < 3

e−15(x − 7/2)2
3 < x < 4

0 x > 4.

(3.25)

A good detector should flag the discontinuity, and the possible spike.
Figure 3.4 shows results from using the ACM sensor oh l

j+1
2

in (2.8) and
(2.9) with p=1 on the function in Fig. 3.3. We define ã l

j+1
2

as fj+1 − fj. The
cases o=1 and o=0.5 are shown. Note that o is more relevant if it is a
function of the dependent variables, and/or when more than one wave is
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Fig. 3.3. Function used for testing.
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Fig. 3.4. ACM sensor, o=1 (left) and o=0.5 (right).

involved as in systems of hyperbolic PDEs. Here o is just a scaling param-
eter. The value 1 (0.5) corresponds to non smoothness, and the value 0
corresponds to a smooth linear solution. The function was evaluated at
300 grid points. We observe that the detector is unable to distinguish a
corner (a=1 for the wavelet detectors) from a discontinuity (a=0 for the
wavelet detectors) since the ACM sensor is a single scale detector.
Furthermore, the smooth maximum also triggers the detector. Figure 3.4
indicates that numerical dissipation with the indicated amount will be used
for all of these nonzero regions.

Next, the BS-wavelet operators (3.20) are used to compute four levels
of wavelet coefficients for the function given in Fig. 3.3, evaluated at
300 grid points. A least squares fit to the line (3.15) is done. The resulting
local regularity exponent a is plotted in Fig. 3.5. If some wavelet coeffi-
cients are equal to zero, a is set equal to one, since this corresponds to
maximum regularity and one is the highest a this particular wavelet is able
to predict. As seen in Fig. 3.5, a value of alpha higher than one is sometimes
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Fig. 3.5. BS-wavelet a estimate.
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obtained from the numerical computation. Because of the theory, these
values must not be interpreted as the real regularity being higher than one.
The initial coefficients Of, f0, nP were evaluated by numerical quadrature
from function values at the grid points. In this computation a is equal to
0.13 at the jump, and − 0.46 at the spike, and is close to or above one for
the rest of the function.

Figure 3.6 shows the same computation, but with the RH-wavelet
decomposition using operators (3.24) instead. The same function as above
is decomposed into four levels of coefficients, and a least squares fit is done
to find a. The predictions are of similar type as for the BS-wavelet, but give
a somewhat lower value of a. The RH-wavelet gives the a value of 0.0 for
the discontinuity, and − 0.65 for the spike. We used a numerical quadra-
ture formula for the initial coefficients, Of, f0, nP=(fj+fj+1)/2. This was
necessary to do in order to have an exactly correct result for step functions.
In [3, 14] scaling factors, which change with the scale level, are used on the
wavelet coefficients in order to renormalize for step functions.

The number of vanishing moments for the RH-wavelet is two, one
more than for the B-spline wavelet. This is seen in Figs. 3.5 and 3.6, where,
for the smooth regions, the RH-wavelet is reaching higher values of a than
the B-spline wavelet.

Readers are cautioned not to compare Fig. 3.4 with Figs. 3.5 and 3.6
in a straight sense. The ACM sensor oh l

j+1
2

has no one-to-one correspon-
dence with the Lipschitz exponent a, even in the actual implementation of
the wavelet sensor in the numerical scheme. Figure 3.4 shows the amount of
numerical dissipation needed for the Yee et al. scheme to capture a solution
like (3.25), whereas Figs. 3.5 and 3.6 show the regularity of (3.25). The
amount of numerical dissipation determined by the wavelet sensors does
not come into play until later. In a loose sense, Figs. 3.4–3.6 illustrate the
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Fig. 3.6. RH-wavelet a estimate.
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Fig. 3.7. BS-wavelet estimate.

fact that the ACM sensor is a single scale detector as opposed to the
chosen multiple scale multiresolution wavelet sensors which are capable of
detecting all of the four features of the function (3.25).

As a second example, we investigate the capability of the detectors to
predict the exponent of the function |x|b, where 0 < b < 1. The Hölder
(Lipschitz) exponent a obtained from the BS-wavelet decomposition
(3.20) with four wavelet levels is shown in Fig. 3.7 as a function of the exact
exponent b. 300 grid points were used in this example. The same quantity
computed by the RH-wavelet decomposition (3.24) is shown in Fig. 3.8. In
the figures the exact exponent is also plotted as a line with slope one. We
note that the prediction is fairly good in the interval 0.5 < b < 1, but that
the computations tend to overestimate the regularity at the lower end of
the interval. This is probably due to poor resolution of the singularity.
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Fig. 3.8. RH-wavelet estimate.
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4. WAVELET DETECTORS IN THE HIGH ORDER ACM FILTER
SCHEME

In the previous section we described how to estimate the regularity
(Lipschitz) exponent a numerically. However, we have not yet discussed
how to use the information contained in the Lipschitz exponent. One pos-
sibility would be to let the order of accuracy of the numerical scheme adapt
to the regularity of the function. Other possibilities are either to use an
approximation adapted to the regularity of the solution similar to the
(h, p) finite element methods, or to integrate the wavelet sensor into a dif-
ference scheme, by using the Lipschitz exponent a in the same way as the
switching quantity used in the high resolution shock-capturing schemes.
These are subjects of ongoing investigations. In this paper, we discuss how
to use the Lipschitz exponent to dynamically control the numerical dissi-
pation. We concentrate on the simplest method of improving the Yee et al.
ACM based filter scheme. The straightforward procedure is to insert the
new estimator into the ACM based filter scheme to replace the ACM
sensor. This boils down to how to adaptively switch on or gradually
transition to the numerical dissipation f̃ l

j+1
2

in (2.4).
For the numerical experiments presented in Sec. 5, the wavelet sensor

is obtained by computing a vector of the approximated Lipschitz exponent
of a chosen vector function to be sensed with a suitable multiresolution non-
orthogonal wavelet basis function. Here, ‘‘vectors or variables to be
sensed’’ means the represented vectors or variables that are suitable for the
extraction of the desired flow physics. The variables to be sensed can be
the density and/or pressure, the characteristic variables, the jumps in the
characteristic variables ã l

j+1
2
, or the entropy variable vector W [3, 27]. The

choice on the type of wavelet basis functions and their scaling functions
depends on the types of features that we want to extract or detect. For the
test problems to be presented, we would like the wavelet basis function and
its scaling function to be capable of detecting shocks, shears, spurious
oscillations and turbulence. The BS and RH wavelets are two possible
choices. Study on the optimal choice of wavelet basis functions and their
scaling functions is a subject of ongoing research.

For example, if the characteristic variables are the chosen vector to be
sensed by the wavelet, the sensor S l

j+1/2 in (2.4) can be defined as

S l
j+1/2=y(a l

j+1/2) (4.1)

where a l
j+1/2 is the estimated Lipschitz exponent of the lth characteristic

component with l=1, 2, 3, 4, the four characteristic waves. y(a) is a
sensing function which decreases from y(0)=1 to y(1)=0 (for the afore-
mentioned type of wavelet). Note that the l th component of the estimated
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Lipschitz exponent a l
j+1

2
is not to be confused with the jump in the lth

characteristic variables ã l
j+1

2
in Sec. 2.

If we base instead the exponent estimate on point centered quantities,
we will use the sensor function

S l
j+1/2=max(y(a l

j), y(a l
j+1)) (4.2)

and if the exponent estimate is based on other quantities than the charac-
teristic, e.g., density and pressure, we use the switch

Sj+1/2=max
l

S l
j+1/2 (4.3)

where the maximum is taken over all components of the waves used in the
estimate, and which is thus the same for all characteristic fields.

The function y(a) should be such that y(0)=1, and y(1)=0 or a
smooth transition between 1 and 0. Three options are considered.

y(a)=˛1 a < a0

0 a \ a0

y(a)=1
2+

1
p arc tan K(a0 − a)

y(a)=max{0, min[1, (a − 1)/(a0 − 1)]}.

(4.4)

Here, a0 is a cut off exponent to be chosen. For the arctan function the
values 0 and 1 are not attained, but we take the constant K large enough,
so that the function is close to zero for a > 1, and close to one for a < 0.
We have tried values for K in the interval [200, 500].

The sensors obtained from (4.4), all lead to almost the same amount of
dissipation when a is below some limit. Alternatively, one can integrate the
actual a value into the sensor function to have a more complicated depen-
dence, especially when the sensor is used as grid adaption sensor as well.

After some experimentation, we have found that switching on the dis-
sipation at the grid points where a < 0.5 works well, i.e., taking

y(a)=˛1 a < 0.5
0 a \ 0.5.

(4.5)

In fact the method does not seem to be very sensitive to the exact value of
cut off a0, ( for 0.4 [ a0 [ 0.6) for all the test cases considered. Further-
more, the same cut off value, 0.5, works well for all problems we have
tried in Sec. 5 (except for the vortex convection case, where a0=0 should
be used in conjunction with entropy splitting [27]). Experiments with
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smoothed step functions do not give very different results. To distinguish
the high order ACM based filter scheme, we referred the scheme discussed
in Sec. 2 using the wavelet sensor (4.1)–(4.2) as the wavelet based filter
scheme.

We would like to point out that the simple minded wavelet sensor (4.4)
or (4.5) does not make full use of the Lipschitz exponent. In practice,
a better strategy is to have distinct sensors for distinct flow structures. This
might involve the use of more than one type of wavelet and filters (cf. Yee
et al., Yee and Sjögreen, and Sjögreen and Yee [20, 26, 27] for some dis-
cussion). Regardless of the amount of information on the Lipschitz expo-
nent used to design the wavelet sensor, the sensor is not really parameter
free. Unlike the ACM sensor, the parameter involved in the wavelet sensor
is, however, not arbitrary. There are theorems and guidelines on what
values of the Lipschitz exponent are to be expected for various features of
the function to be sensed.

5. NUMERICAL EXPERIMENTS FOR 2-D COMPRESSIBLE EULER
AND NAVIER–STOKES EQUATIONS

To illustrate the performance of the wavelet sensor, the same three
perfect gas test cases with distinct flow properties as in Yee et al. [25, 27]
are used. The first is inviscid and the last two are compressible full
Navier–Stokes computations. The three test cases are: (1) a 2-D inviscid
horizontally convecting vortex with periodic BCs, (2) a 2-D vortex pairing
in a time-developing mixing layer with shock waves formed around the
vortices, and (3) a 2-D shock wave impinging on a spatially evolving
mixing layer where the evolving vortices must pass through a shock wave,
which in turn is deformed by the vortex passage. Figures 5.1–5.3 (taken
from [25, 27]) show the schematic, flow conditions and the computational
domains of the three test cases.

In order to compare results with Yee et al. [25, 27], we use the same
time and spatial base scheme as in [25, 27]. The classical fourth-order
Runge–Kutta time discretization, and the non-compact central spatial
schemes with the same order of accuracy and type of base scheme for the
inviscid and viscous terms (if viscosities are present) are employed. The
filters are applied at the end of the full Runge–Kutta time step. Roe’s [17]
average states are used in (2.3), along with the Harten and Yee ([23, 24])
second-order upwind TVD dissipation portion (2.5)–(2.7) for f̃ l

j+1
2

in (2.4).
From numerical experiment, limiter (2.7a) produces the best result for test
case 1 and limiter (2.7c) for test cases 2 and 3. Results shown in Sec. 5.2
reflect these choices. For the ACM sensor the parameters p and m in
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Fig. 5.1. Test problem 1, isentropic vortex convection.

Fig. 5.2. Test problem 2, vortex pairing.
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Fig. 5.3. Test problem 3, shock impingement on a mixing layer.

(2.8) and (2.9) are set to 1 and a small value of 10−6 is added to the
denominator of (2.9) to avoid an extra logical statement for the ACM
sensor. For the wavelet sensor, the cut off Lipschitz exponent a0 is 0.5 for
test cases 2 and 3 and 0.0 for test case 1. The reason for using a0=0.0 for
test case 1 is that there are no shock waves present. The sensor is used
merely to suppressed high frequency producing nonlinear instability asso-
ciated with the central base scheme in this long time wave propagation
phenomena. These various numerical methods will be denoted as ACM or
WAV (depending on whether an ACM or wavelet is used as the sen-
sor) with the following numbers indicating the order of the spatial interior
base scheme for the inviscid and viscous terms. For example, ACM66
(WAV66) means the use of sixth-order central as the base scheme for both
the inviscid and viscous terms, and ACM as sensor (wavelet as sensor).
These wavelet sensors are computed using the dimension by dimension
method as discussed in Sec. 3.5. In order not to introduce additional nota-
tion, inviscid flow simulations are designated by the same notation, with
the viscous terms not activated. Computations using the B-spline and the
redundant form of Harten’s multiresolution method will be denoted
as ‘‘BS’’ and ‘‘RH’’ as in WAV66-BS and WAV66-RH. Computations
using entropy splitting are indicated by adding the letters ENT as in
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ACM66-ENT, WAV66-ENT-BS or WAV66-ENT-RH. Computation using
S l

j+1
2
=1, i.e., the sensor is turned off and the full amount from the upwind

TVD dissipation portion is used as the filter, will be denoted by TVD as in
TVD66. The fifth-order WENO scheme of Jiang and Shu [7] will be
denoted as WENO5.

For the second and third test cases, we lower the order of the base
scheme near the boundary points for the boundary scheme. For example,
for the sixth-order base scheme, we use a fourth-order central scheme two
points away from the boundary point and second-order central scheme one
point away from the boundary point. For the third test case, for simplicity,
slip wall BC is used for the lower wall, and the upper y-direction physical
BC is over specified and nonreflecting BC is not used. A uniform Cartesian
grid of 80 × 79 is used for test case 1. For test cases 2 and 3, a uniform
Cartesian grid is used in the x-direction and a mildly stretched Cartesian
grid is used in the y-direction with the grid size of 101 × 101 and 321 × 81
respectively.

5.1. Comparison of the Wavelet Sensor with the ACM Sensor

Before showing the comparison of the high order wavelet based filter
scheme with the high order ACM based filter scheme, we first show the
performance of the wavelet sensor using the dimension-by-dimension
approach for a 2-D complex flow structure and then compare loosely with
the ACM sensor. The initial illustration does not involve the numerical
scheme and only the performance of the wavelet sensor is demonstrated.
Fig. 5.4 shows the computed density and pressure contours at t=120 by
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Fig. 5.4. 2-D Testing discrete function, (density and pressure contours at t=120 from test
case 3).
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WAV66-RH with Dt=0.12 for test case 3. Here we only consider these
numerical data as a given two-dimensional discrete function to be analyzed
by the wavelet algorithm. The function represents a shock from the upper
left corner, impinging on a horizontal shear layer in the middle of the
domain (see Fig. 5.3). The shock is reflected from the lower wall boundary.
For more details about the problem, see Yee et al. [25, 27].

Figure 5.5 shows contours of the estimated Lipschitz exponent a for
the function in Fig. 5.4. The value a was computed here from three levels
(m0=3) of the wavelet algorithm, using the wavelet coefficient

wm, j, k=`(wx
m, j, k)2+(wy

m, j, k)2

where the one dimensional coefficients were computed by the multiresolu-
tion operators (3.24) in each coordinate direction. The coefficients were
computed for the pressure. The top figure in Fig. 5.5 shows a contours on
levels from 0.5 to 0.9. The lower figure shows the corresponding sensor, a
function which is one for a < 0.5 and zero otherwise. The wavelet sensor
clearly captures the shock and the shear layer. The low a at the upper
boundary to the right is probably due to mildly unstable boundary condi-
tions at the upper boundary.

We want to emphasize that Fig. 5.5 shows the sensor when applied to
a precomputed solution at a fixed time. No dynamic behavior was involved
(i.e., the numerical scheme is not part of the analysis). Since the ACM
sensor has no one-to-one correspondence counterparts of Fig. 5.5, no
results are shown for the ACM sensor. Next we show in Figs. 5.6 and 5.7
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Fig. 5.5. Top: a contours 0.5 [ a [ 0.9; Bottom: sensor contour at a=0.5. by the
RH-wavelet.
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Fig. 5.6. One contour at a=0.5 of the sensors used by WAV66-RH applied to the density
and pressure of test case 3.

results from actually computing the flow using the respective wavelet based
(WAV66-RH) and ACM based (ACM66) filter schemes for Dt=0.12.
Figure 5.6 shows the wavelet sensor applied to the density and pressure at
t=120 in the x- and y-directions, and the square root of the sum of these
quantities (local 2-norm) in the x- and y-directions.

Figure 5.7 shows the corresponding contours using the ACM sensor
with o=0.35. There is only one contour level plotted. The level value is in
the middle of the range, i.e., at the average of the maximum and the
minimum sensor values. The wavelet sensor was able to extract the full
features of the flow structure far better than the ACM sensor. Although
this is the case, as we can see later, the wavelet sensor exhibits accuracy
similar to the best tuned ACM sensor. This is due partly to the fact that in
actual implementation formulas (4.4)–(4.5) are used. We are not making
full use of the Lipschitz exponent.

Again one cannot compare the ACM sensor and the wavelet sensor
directly on these figures. The wavelet has more flexibility and choices
whereas the ACM sensor only compares the strength of gradients
(m=p=1 in (2.8) and (2.9)) between neighboring grid points of a chosen
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Fig. 5.7. One contour of the sensor, S l
j+1

2
used by ACM66 applied to the density and

pressure of test case 3.

physical quantity (or vector). Perhaps the comparisons would be more
relevant if we were to compare the ACM sensor using different p and m
values in (2.8) and (2.9) for the different flow features. This involves addi-
tional switching parameters and is not pursued here.

5.2. Comparison Among TVD66, WENO5, ACM66, and WAV66

Sample computations using the high order wavelet based filter scheme
WAV66 compared with the high order ACM based filter scheme ACM66
for test cases 1–3 are shown in Figs. 5.8–5.11. The accuracy of the two
wavelet sensors, B-spline wavelet (WAV66-BS) or the redundant form of
Harten wavelet (WAV66-RH) for test cases 1–3 (results not shown) is very
similar and the effect on accuracy of the choice of the physical vector to be
sensed (density and/or pressure, characteristic variables, ã l

j+1
2
, or entropy

variables W) is not pronounced. In all cases, no physical problem-depen-
dent parameter has to be tuned. The accuracy compared very well with that
of the corresponding best tuned o for ACM66 for the individual test
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Fig. 5.8. (a) Normalized temperature contours for test case 3 at t=113.16 using TVD66,
WENO5, ACM66, WAV66-BS, and WAV66-RH on a 321 × 81 grid.

cases 1–3. In particular, similar accuracy was sustained using the redundant
form of Harten wavelet sensor and entropy splitting (WAV66-ENT-
RH) for long time integrations of the vortex convection problems as
ACM66-ENT using o=0.01 and Dt=0.01.

Figure 5.8 shows the comparison among TVD66 (S l
j+1

2
=1), WENO5,

ACM66, and WAV66-RH for test case 3, illustrating the normalized tem-
perature and pressure contours at t=113.16 with o=0.35 for the nonlinear
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Fig. 5.8. (b) Pressure contours for test case 3 at t=113.16 using TVD66, WENO5, ACM66,
WAV66-BS, and WAV66-RH on a 321 × 81 grid.

fields and o=0.175 for the linear fields for the ACM66. For this set of
tuned o’s, the solution obtained is very accurate and without visible insta-
bility. The solution is comparable with the WAV66-RH. For test cases 2
and 3, only 50% of the wavelet sensor is applied to the linear fields (i.e.,
50% numerical dissipation). The resolution of the WAV66-RH is more dif-
fusive if full strength is applied to the linear fields. Observe that the wavelet
sensor was able to remove the noise generated on the upper boundary due
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Fig. 5.9. (a) density at the line y=0 at T=20 period increment for test case 1, ACM66-
ENT on a 80 × 79 grid, (b) density at the line x=5 at T=20 period increment for test case 1,
ACM66-ENT on a 80 × 79 grid, (c) density at the line y=0 at T=20 period increment for
test case 1, WAV66-ENT-RH on a 80 × 79 grid, (d) density at the line x=5 at T=20 period
increment for test case 1, WAV66-ENT-RH on a 80 × 79 grid.

to the over specified BC. Note that the normalized temperature is the most
sensitive value to examine for accuracy of the schemes [25]. By examining
temperature contours, we note that the vortices are more diffusive in the
WENO5 computations. There is a minor difference between the WENO5
computation and the other simulations. The WENO5 code has a built-in
nonreflecting BC on the upper y-direction. The WENO5 also requires more
arithmetic operations than the ACM66 or WAV66.

The long time wave propagation of the inviscid vortex convection
problem in test case 1 poses a different challenge to the numerical method.
For long time wave propagation of this nature, non-dissipative or low
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Fig. 5.10. (a) Density contours at T=10 period increment for test case 1, ACM66-ENT on
a 80 × 79 grid.

dissipative schemes usually exhibit high frequency oscillation nonlinear
instability at quite early stages of the wave propagation process. Although
numerical dissipation can suppress the high frequency oscillation, if applied
incorrectly, the vortex becomes very diffuse at a longer time integration
and eventually nonlinear instability sets in. Figures. 5.9 and 5.10 show the
long time wave propagation comparison between ACM66-ENT and
WAV66-ENT-RH for test case 1. Figures 5.9 shows the density profiles at
the centerlines y=0 and at x=5, cutting through the center of the initial
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Fig. 5.10. (b) Density contours at T=10 period increment for test case 1, WAV66-ENT-RH
on a 80 × 79 grid.

vortex, at 20 spatial period increments. The time required for one spatial
period is T=10.

The time step and grid spacing are Dt=0.01 and 80 × 79. Depending
on the time and spatial discretizations, the grid size and time step, the
vortex can drift away from the centerline after long time integrations. For
the present two methods with the indicated time step and the uniform grid
spacings, there is only a very slight drift of the vortex after a very long time
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Fig. 5.11. Normalized temperature contours for test case 2 using TVD66, ACM66, WAV66-
RH, WAV66-RHb, and WAV66-BS on a 101 × 101 grid. WAV66-RHb is same as WAV66-
RH but with 50% less filter dissipation on the linear fields.

integration (130 periods). If the computed vortex drifts away from the cen-
terline but still preserves the vortex shape and strength, the centerline
density profiles do not convey the full information and can be misleading.
We complement the comparison with snap shots of density contours at
different times up to 130 spatial periods in Fig. 5.10.

The vortex is convected 10 spatial periods between each plot. The
result from the WAV66-ENT-RH method is at least as good as the
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ACM66-ENT method. Here the base scheme is applied to the entropy split
form of the inviscid flux derivative, in order to reduce effects from non-
linear instabilities. The results using the same condition and parameters,
but with no entropy splitting of the inviscid flux derivatives, although very
stable, exhibit smearing of the vortex and severe vertical and horizontal
drifts for both ACM66 and WAV66-RH. See [27] for the ACM66 and
ACM66-ENT comparison. The use of entropy splitting in conjunction with
ACM66 (ACM66-ENT) or WAV66-RH (WAV66-ENT-RH) has preserved
a horizontally convecting vortex with great accuracy after long time inte-
gration of 130 periods. The results use a uniform and not very fine grid. To
the authors’ knowledge, highly accurate numerical simulation of this
problem previously reported in the literature were only carried out up to 10
periods of integration.

We would like to point out that the vertical and horizontal drifting (or
rather shifting) of the vortex away from the centerline y=0 and/or x=5
is quite common for all schemes beyond 30 periods. Depending on the
scheme, the amount of numerical dissipation and the time step, drifting can
occur as early as 5 periods [27]. We believe that the drifting is due largely
to the spatial numerical dissipation of the scheme provided a highly
accurate low phase error time integrator is used. We also would like to
point out that an eighth-order linear filter actually performs better (almost
perfect vortex preservation after 200 periods [20]) than the nonlinear filter
used here that is designed for shock-capturing. The main purpose here is to
show that the nonlinear filter is doing quite a good job.

Figure 5.11 shows the comparison among TVD66, ACM66, WAV66-
RH, and WAV66-BS for test case 2 with Dt=0.1. Here two different ver-
sions of the WAV66-RH method are examined. The one denoted WAV66-
RH in the figure has 50% reduced TVD dissipation on the linear fields. The
resolution of WAV66-RH and WAV66-RHb is slightly more accurate than
WAV66-BS. The result using WENO5 (not shown) is less accurate than
ACM66 but more accurate than TVD66.

6. CONCLUDING REMARKS

Improved adaptive numerical dissipation controls over the Yee et al.
ACM sensor have been constructed. The new sensors with improved
detection properties are derived from multiresolution wavelet based analy-
sis and require slightly more operations count than the ACM sensor. There
are a variety of wavelets to choose from, depending on the flow feature.
Developing the best suited adaptive numerical dissipation/filter control for
a particular flow speed and flow structure might involve the switching
on and off and/or blending of different filters by automatic sensors
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[27, 20, 26]. This method, however, is superior to the tuning of parameter,
and the use of the same filter, and especially the same amount of numerical
dissipation throughout the entire domain.

We considered two types of non-orthogonal wavelet basis functions
for our 2-D compressible Euler and Navier–Stokes numerical experiments.
One is similar to the B-spline wavelet (Mallat and Zhong [14]) used by
Gerritsen and Olsson [3] for grid adaptation and the other is a modifica-
tion of the multiresolution method of Harten [5] as a redundant multire-
solution wavelet. The B-spline wavelet sensor requires slightly more arith-
metic operations and a wider grid stencil than the redundant form of
Harten wavelet sensor. The final form of the wavelet sensor S l

j+1
2

involves
mainly nested difference operators and least squares fits. From the numer-
ical experiments, it appears that the RH-wavelet sensor exhibits a slightly
more accurate result than the BS-wavelet sensor. The proposed wavelet
sensors, unlike the ACM sensor, can detect most of the distinct flow fea-
tures, including turbulence, leading to an automatic selection of the
appropriate distribution of numerical dissipation. Since distinct Lipschitz
exponent values represent distinct flow structures, these wavelet sensors are
free of physical problem-dependent arbitrary parameters for the three test
cases presented. They are also good grid adaptation indicators [3] when
compared to the ones commonly used in practice. Consequently, a new
dual purpose adaptive method is readily available leading to dynamic
numerical dissipation controls and improved grid adaptation indicators.
This dual purpose adaptive method can also serve as a stand alone option
for other numerical schemes.

In the future, we will explore the full capability of the multiresolution
wavelet property. This will include improved wavelet basis functions and
their scaling functions for high speed compressible shock-turbulence
interaction and numerical combustion, and an improved switching function
other than the one proposed in Sec. 4. In other words, a better use of the
Lipschitz exponent information will be implemented. Another possibility is
to use an approximation adapted to the regularity of the solution similar to
the (h, p) finite element method.
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