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High order finite difference methods with subcell

resolution for stiff multispecies detonation capturing

Wei Wang∗, Chi-Wang Shu†, H. C. Yee‡, Dmitry V. Kotov§and Björn Sjögreen¶

February 24, 2014

Abstract

In this paper, we extend the high order finite-difference method with subcell
resolution (SR) in [33] for two-species stiff one-reaction models to multispecies and
multireaction chemical reactive flows, which are significantly more difficult because
of the multiple scales generated by different reactions. For reaction problems, when
the reaction time scale is very small, the reaction zone scale is also small and the
governing equations become very stiff. Wrong propagation speed of discontinuity
may occur due to the underresolved numerical solution in both space and time.
The present SR method for reactive Euler system is a fractional step method. In
the convection step, any high order shock-capturing method can be used. In the
reaction step, an ODE solver is applied but with certain computed flow variables in
the shock region modified by the Harten subcell resolution idea. Several numerical
examples of multispecies and multireaction reactive flows are performed in both
one and two dimensions. Studies demonstrate that the SR method can capture
the correct propagation speed of discontinuities in very coarse meshes.

Key words: stiff reaction term, shock capturing, detonation, WENO, ENO subcell
resolution, multispecies, multireactions
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1 Introduction

When simulating high speed reactive flows, a wide range of reaction rates may be present,
and the chemical time-scales are often orders of magnitude smaller than the typical
relaxation time of fluid dynamics, leading to the stiffness of the problem.

The mathematical model for chemical reactive flows can be described by the reactive
Euler equations coupled with source terms. Consider the reactive Euler equations in two
dimensions in the form

Ut + F (U)x + G(U)y = S(U), (1)

where U , F (U), G(U) and S(U) are vectors. If the time scale of the ordinary differential
equation (ODE) Ut = S(U) for the source term is orders of magnitude smaller than
the time scale of the homogeneous conservation law Ut + F (U)x + G(U)y = 0 then the
problem is said to be stiff. In high speed chemical reacting flows, the source term rep-
resents the chemical reactions which may be much faster than the gas flow. This leads
to problems of numerical stiffness. Insufficient spatial resolution may cause an incor-
rect propagation speed of discontinuities and nonphysical states for standard dissipative
numerical methods.

This numerical phenomenon was first observed by Colella et al. [12] in 1986 who con-
sidered both the reactive Euler equations and a simplified system obtained by coupling
the inviscid Burgers equation with a single convection/reaction equation. LeVeque and
Yee [21] showed that a similar spurious propagation phenomenon can be observed even
with scalar equations, by properly defining a model problem with a stiff source term.

Numerically resolving all the chemical small scales will result in tremendous com-
putational cost. Therefore, many works have contributed to the analysis and devel-
opment of underresolved numerical methods which are able to capture the correct
shock/discontinuities location and speed without resolving the small chemical scales.
Examples include the level set and front tracking methods [22, 18, 6, 25, 29], random
choice method [10, 11, 12, 23], random projection method [1, 2, 3] and many other works
[4, 26, 5, 30, 7, 14, 8, 9, 13, 16, 31, 24]. See Wang et al. [32] for a comprehensive overview
of the last two decades of this development. Wang et al. [32] also proposed a new high
order finite difference method with subcell resolution for advection equations with stiff
source terms for a single reaction to overcome the difficulty.

In this work, we extend the subcell resolution method to multispecies and multi-
reaction problems, which are significantly more difficult because of the multiple scales
generated by different reactions. The proposed SR method for the reactive Euler sys-
tem is a fractional step method. In the convection step, any high order shock-capturing
method can be used. However shock-capturing schemes will produce transition points
due to the numerical dissipation. Here, transition points mean the smeared numerical
solution in the shock region. In the reaction step, an ODE solver is applied but with
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the values of certain computed flow variables at the transition points in the shock region
modified by a reconstructed polynomial using the idea of Harten’s subcell resolution
method. Here, we only address the issue in developing methods to obtain the correct
propagation speed of discontinuities using a coarse grid without resolving the detonation
peak correctly as the width of the detonation front consists of 1-2 grid points only.

2 Review of the method for 1D scalar problems

We first review the finite difference method with subcell resolution (SR), introduced in
[33] for the scalar model problem in [21].

Consider
ut + f(u)x = S(u), (2)

S(u) = −µu (u − α) (u − 1), (3)

with the initial condition

u(x, 0) =

{
1, x ≤ x0

0, x > x0
, (4)

where α is a parameter, 0 < α < 1, and x0 is the position of the initial discontinuity.
The SR method uses a fractional step approach. The numerical solution at time level

tn+1 is approximated by
un+1 = R(∆t)A(∆t)un. (5)

The convection operator A is defined to approximate the solution of the homogeneous
part of the problem on the time interval, i.e.,

ut + f(u)x = 0, tn ≤ t ≤ tn+1. (6)

The reaction operator R is defined to approximate the solution on a time step of the
reaction problem:

du

dt
= S(u), tn ≤ t ≤ tn+1. (7)

In the Strang-splitting in [28], the numerical solution at time step tn+1 is computed by

un+1 = A

(
∆t

2

)

R(∆t)A

(
∆t

2

)

un, (8)

where the convection operator is over a time step ∆t and the reaction operator is over
∆t/2. This strategy improves the time accuracy to second order. The two half-step
reaction operations over adjacent time steps can be combined to save cost.

Any high resolution shock capturing operator can be used in the convection step.
The purpose in this step is to minimize the transition points in the shock region, but
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not to remove them completely (which is not realistic). In this paper, we use the fifth-
order finite difference WENO schemes [19] with a third-order TVD Runge-Kutta time
discretization.

In the convection step, we apply an ODE solver with Harten’s subcell resolution
technique. The procedure can be summarized in the following steps:

(1) Use a “shock indicator” to identify cells in which discontinuities are believed to
be situated. We consider the following minmod-based shock indicator in [15, 27]. Let

si = minmod{ui+1 − ui, ui − ui−1}, (9)

define the cell Ii as troubled if |si| ≥ |si−1| and |si| ≥ |si+1|, with at least one being
a strict inequality. Notice that this troubled cell-identifying method will only find the
“worst” cell inside a shock transition. That is, if there are several consecutive transition
cells, only the worst one will be identified as a troubled cell.

(2) In a troubled cell identified above, we continue to identify its neighboring cells.
For example, we can define Ii+1 as troubled if |si+1| ≥ |si−1| and |si+1| ≥ |si+2| and
similarly define Ii−1 as troubled if |si−1| ≥ |si−2| and |si−1| ≥ |si+1|. If the cell Ii−s and
the cell Ii+r (s, r > 0) are the first good cells from the left and the right (i.e., Ii−s+1 and
Ii+r−1 are still troubled cells), we compute the fifth order ENO interpolation polynomial
pi−s(x) and pi+r(x) for the cells Ii−s and Ii+r, respectively. Because of the high order,
high resolution WENO scheme (sometimes with anti-diffusive corrector) used in the
convection step, r and s will not be larger than 2 in general. The modified cell point
value ui is computed by

ũi =

{
pi−s(xi), θ ≥ xi

pi+r(xi), θ < xi
, (10)

where the location θ is determined by conservation

∫ θ

xi−1/2

pi−s(x)dx +

∫ xi+1/2

θ

pi+r(x)dx = ui ∆x. (11)

When ∆x is sufficiently small, it can be shown that there is a unique θ satisfying Eq.
(11) (see [15]). Numerically the unique θ exists in all of our numerical tests. In practice,
knowing whether θ is in [xi−1/2, xi) or [xi, xi+1/2] is sufficient for obtaining ũi. To avoid
actually solving θ, we can perform the following simple check: If F (xi−1/2)F (θ) < 0,

then θ < xi, where F (x) =
∫ θ

xi−1/2
pi−s(x)dx +

∫ xi+1/2

θ pi+r(x)dx − ui ∆x.

If there is no solution for θ or there are more than one solution, we choose ũi = ui+r.
Actually there is no difference to take ũi from left or right for the scalar case because
the source term will be zero when ui = 0 or 1. However, in the system case we would
like to have the shock travel ahead of the reaction zone, so we take the value of u ahead
of the shock.
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(3) Use ũi instead of ui in the ODE solver if the cell Ii is a troubled cell.
For simplicity, consider the Euler forward method

un+1
i = un

i + ∆tS(un
i ), (12)

Eq. (12) is modified to
un+1

i = un
i + ∆tS(ũi), (13)

if the cell Ii is a troubled cell.
When extending to a multi-stage Runge-Kutta method, SR is applied for each stage.

For example, for second-order Runge-Kutta, at the trouble cell Ii, ui and u
(1)
i are mod-

ified to ũi and ũ
(1)
i by SR in the source term:

u
(1)
i = un

i + ∆tS(ũi), (14)

un+1
i =

1

2
un

i +
1

2
u

(1)
i +

1

2
∆tS(ũ

(1)
i ). (15)

Here we would like to give a remark. Explicit time-stepping methods are used in this
paper, because the troubled values un

i need to be modified explicitly. Implicit methods,
which can hopefully enlarge the time step and improve efficiency, constitute undergoing
work. The subcell resolution technique developed in [32] is only designed for the spatial
discretization and is frozen during the time step evolution. As the stiffness increases, the
CFL number in the reaction step solving the ODE needs to decease in order to obtain
a stable solution. See Yee et al. [33] for some studies. In our numerical examples, Nr

sub-steps are used in one reaction step, i.e. Eq (8) is modified by

Un+1 = A

(
∆t

2

)

R

(
∆t

Nr

)

· · ·R

(
∆t

Nr

)

︸ ︷︷ ︸

Nr

A

(
∆t

2

)

Un. (16)

3 The method for 1D reactive Euler equations with

multispecies

In this section, we extend our approach to the 1D reactive Euler equations with multi-
species and multireactions.

Consider the reactive Euler equations that model the time-dependent flow of inviscid,
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compressible, multispecies reacting flows with ns species

ρt + (ρu)x = 0, (17)

(ρu)t + (ρu2 + p)x = 0, (18)

et + (u(e + p))x = 0, (19)

(ρz1)t + (ρuz1)x = w1, (20)

. . . (21)

(ρzns−1)t + (ρuzns−1)x = wns−1, (22)

where ρ is the total density, u is the velocity and e is the total energy. zm is the mass

fraction for the mth species and

ns∑

m=1

zm = 1. The pressure p is given by

p = (γ − 1)

(

e −
1

2
ρu2 − ρz1q1 − ρz2q2 − · · · − ρznsqns

)

, (23)

and the temperature is defined as T = p/ρ.
The source term S(U), appearing as wm in the last equations involving ρzm, describes

the chemical reactions occurring in the gas flows which result in changes in the amount
of mass of each chemical species. We assume there are R reactions of the form

ν ′

1,rX1 + ν ′

2,rX2 + · · ·+ ν ′

ns,rXns → ν ′′

1,rX1 + ν ′′

2,rX2 + · · ·+ νns,rXns, r = 1, . . . , R, (24)

where ν ′

1,r and ν ′′

1,r are respectively the stoichiometric coefficients of the reactants and
products of species i in the rth reaction. For non-equilibrium chemistry, the rate of
production of species i due to chemical reaction may be written as

wi = Mi

R∑

r=1

(ν ′′

i,r − ν ′

i,r)

[

kr(T )
ns∏

s=1

(
ρs

Ms

)ν′

s,r

]

, i = 1, . . . , ns. (25)

For each reaction r, the reaction rate kr(T ) is assumed to be a known function of the
temperature. We consider the Heaviside kinetics form

kr(T ) = BrT
αrH(T − Tr), (26)

where H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0. Tr is the ignition temperature for
the rth reaction.

3.1 Convection operator

In the system case, we use the fifth-order WENO with local Lax-Friedrichs flux splitting
(WENO-LLF) and the local characteristic decomposition with RK3 for time discretiza-
tion as the convection operator in the reactive Euler problems. We refer to [19] for more
details of this algorithm.
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3.2 Reaction operator

The reaction step for the system case is slightly different from the scalar case because
there are more component variables involved in the source term. The key point here
is to identify transition points correctly and to extrapolate the temperature T and the
mass fraction product

∏ns

s=1 zs
ν′

s,r (r = 1, . . . , R) in the source term.
(1) We use one mass fraction z to identify transition cells. We take the one with zero

value on the left-hand side state. If there is more than one or none, we choose the one
with the biggest jump.

We identify the cell Ii as troubled if |si| ≥ |si−1| and |si| ≥ |si+1| (with at least one
strict inequality) where

si = minmod{(zs)i+1 − (zs)i, (zs)i − (zs)i−1}, (27)

for a prechosen zs. Then we continue to identify whether its neighboring cells Ii−1

and Ii+1 are troubled cells. For simplicity, in Steps (2) and (3) below, we assume the
neighboring cells Ii−1 and Ii+1 are not troubled.

(2) After a troubled cell Ii is identified, first find the shock location θ by solving the
conservation Eq. (11) with the variable u taken as the total energy E

∫ θ

xi−1/2

pi−1(x; E)dx +

∫ xi+1/2

θ

pi+1(x; E)dx = Ei ∆x, (28)

where the ENO interpolation polynomials pi(x; E) are computed based on values of E.
The energy E is chosen because it is a conserved variable. We assume the shock locations
are the same for all variables.

Then we extrapolate the temperature T and the mass fraction product in the reaction
Πr =

∏ns

s=1 zs
ν′

s,r (r = 1, . . . , R) separately. The new mass fraction product Π̃r (r =
1, . . . , R) and temperature T̃ are obtained from the ENO interpolation polynomials.

{
˜(Πr)i = pi−1(xi; Πr), r = 1, . . . , R, T̃i = pi−1(xi; T ), if θ ≥ xi

˜(Πr)i = pi+1(xi; Πr), r = 1, . . . , R, T̃i = pi+1(xi; T ), if θ < xi

. (29)

(3) For simplicity, we use the explicit Euler method as the ODE solver in the reaction
step

(ρzs)
n+1
i = (ρzs)

n
i + ∆tws(T̃i, ρ̃i, ˜(z1)i, . . . ,

˜(zns)i), s = 1, . . . , ns − 1. (30)

4 Extension to 2D reactive Euler equations with

multispecies

Next, we extend the proposed method to the two-dimensional reactive Euler equations.
The considered two-dimensional problem is the extension of the one-dimensional prob-
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lem. Consider the reactive Euler equations that model the time-dependent flow of in-
viscid, compressible, multispecies reacting flows with ns species

Ut + F (U)x + G(U)y = S(U). (31)

Here U , F (U) and S(U) are column vectors with m = ns + 3 components

U = (ρ, ρu, ρv, e, ρz1, . . . , ρzns−1)
T , (32)

F (U) = (ρu, ρu2 + p, ρuv, (e + p)u, ρz1u, . . . , ρzns−1u)T , (33)

G(U) = (ρv, ρuv, ρv2 + p, (e + p)v, ρz1v, . . . , ρzns−1v)T , (34)

S(U) = (0, 0, 0, 0, w1, . . . , wns−1)
T , (35)

where ρ is the total density, u is the x-component velocity, v is the y-component velocity
and e is the total energy. The pressure p is

p = (γ − 1)

(

e −
1

2
ρ(u2 + v2) − ρz1q1 − ρz2q2 − · · · − ρznsqns

)

and the temperature is T = p/ρ. The source term is the same as that for the 1D reactive
Euler system (24) and (25).

In the convection step, we use fifth-order WENO-LLF with RK3 time discretization.
In the reaction step, we apply the subcell resolution procedure dimension by dimen-

sion.
(1) Identify the transition points by the shock indicator in both x- and y-directions.
Define the cell Iij as troubled in the x-direction if |sx

ij | ≥ |sx
i−1,j| and |sx

ij| ≥ |sx
i+1,j|

with at least one strict inequality where

sx
ij = minmod{ui+1,j − uij, uij − ui−1,j}. (36)

Similarly we can define the cell Iij as troubled in the y-direction if |sy
ij| ≥ |sy

i,j−1| and
|sy

ij| ≥ |sy
i,j+1| with at least one strict inequality where

sy
ij = minmod{ui,j+1 − uij, uij − ui,j−1}. (37)

If Iij is only troubled in one direction, we apply the subcell resolution along this
direction. If Iij is troubled in both directions, we choose the direction which has a
larger jump. Namely, if |sx

ij| ≥ |sy
ij|, subcell resolution is applied along the x-direction,

otherwise it is done along the y-direction.
In the following steps (2)-(3), without loss of generality, we assume the subcell reso-

lution is applied in the x-direction.
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(2) Modify the mass fraction product in the reaction
∏ns

s=1 zs
ν′

s,j (r = 1, . . . , R), Tij

and ρij in the troubled cell Iij by the ENO interpolation polynomials according to the
location θ. The location θ is determined by the conservation of energy E

∫ θ

xi−1/2

pi−1,j(x; E)dx +

∫ xi+1/2

θ

pi+1,j(x; E)dx = Eij∆x. (38)

The treatment of the situation where θ satisfying (38) does not exist is the same as in
the 1D case.

(3) For simplicity, explicit Euler is used as the ODE solver in the numerical tests.

(ρzs)
n+1
ij = (ρzs)

n
ij + ∆tws(T̃ij, ρ̃ij , ˜(z1)ij , . . . ,

˜(zns)ij), s = 1, . . . , ns − 1. (39)

5 Numerical examples

In this section, we test the proposed method on both one-dimensional and two-dimensional
detonation waves. The proposed method uses a fifth-order WENO-LLF with RK3 as
the convection operator, and an explicit Euler based on the subcell resolution as the
reaction operator, denoted by WENO5/SR. For most of the examples, we compare the
numerical results with the splitting WENO method. The splitting WENO5 denotes the
Strang splitting fifth-order WENO method using the local Lax-Friedrichs Flux with RK3
as the convection operator, and an explicit Euler as the reaction operator. For all the
one-dimensional examples, the reference solutions are computed by regular fifth-order
WENO-LLF (without Strang splitting) with RK3 with 10, 000 grids and CFL=0.5. In
all the one-dimensional examples, we have used the positivity-preserving limiter [17]
to enhance numerical stability. Notice that this limiter does not affect the high order
accuracy of the scheme away from vacuum, as shown in [17]. No cut off safeguard (e.g.
cut off the densities which are outside the permissible range) is used in any example.

Example 5.1. A 1D detonation wave with 3 species and 1 reaction.

In the first example, we consider a reacting model with three species and one reaction.
This example was studied in [3]. Consider the reaction model

2H2 + O2 → 2H2O.

The parameters are T1 = 2.0, B1 = 500, α1 = 1, q1 = 1000, q2 = 0, q3 = 0, M1 = 2, M2 =
32, M3 = 18. Initially there is mixture of hydrogen and oxygen on the right-hand side.
On the left-hand side, the hydrogen and oxygen generate water. The initial data are

(ρ, u, p, z1, z2, z3)(x, 0) =

{
(ρl, ul, pl, (z1)l, (z2)l, (z3)l) x ≤ 2.5,
(ρr, ur, pr, (z1)r, (z2)r, (z3)r) x > 2.5,

(40)
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Figure 1: Numerical solutions of Example 5.1 at t = 3 with N = 50, CFL=0.1, Nr = 100.
Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: pressure. Right: density.

where ρl = 2, ul = 10, pl = 40, (z1)l = 0.325, (z2)l = 0, (z3)l = 0.625 and ρr = 1, ur =
0, pr = 1, (z1)r = 0.4, (z2)r = 0.6, (z3)r = 0. The computational domain is [0, 50].

The exact solution consists of a detonation wave, followed by a contact discontinuity
and a shock, all moving to the right. We compare the results obtained by the proposed
WENO5/SR method and the splitting WENO5 using the same mesh N = 50 (∆x = 1),
CFL=0.1 and Nr = 100.

Figures 1-3 show the pressure, density, temperature and mass fractions compari-
son results between the proposed WENO5/SR (red dashed dot line) and the splitting
WENO5 (green dashed line), against the reference “exact” solution. Clearly, the pro-
posed WENO5/SR method is able to capture the correct propagation speed of the
detonation wave with this coarse mesh, while the splitting WENO5 produces spurious
numerical results.

Example 5.2. A 1D detonation wave with 4 species and 1 reaction.

In this example, we test our method on a reacting model with four species and one
reaction. A prototype reaction for this model is

CH4 + 2O2 → CO2 + 2H2O.

This example was also studied in [3].
The parameters are T1 = 2.0, B1 = 106, α1 = 0, q1 = 500, q2 = 0, q3 = 0, q4 = 0, M1 =

16, M2 = 32, M3 = 44, M4 = 18. The initial data are given by

(ρ, u, p, z1, z2, z3, z4)(x, 0) =

{
(ρl, ul, pl, (z1)l, (z2)l, (z3)l, (z4)l) x ≤ 2.5,
(ρr, ur, pr, (z1)r, (z2)r, (z3)r, (z4)r) x > 2.5,

(41)
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Figure 2: Numerical solutions of Example 5.1 at t = 3 with N = 50, CFL=0.1, Nr = 100.
Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: temperature. Right: mass fraction of z1.
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Figure 3: Numerical solutions of Example 5.1 at t = 3 with N = 50, CFL=0.1, Nr = 100.
Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: mass fraction of z2. Right: mass fraction of z3.
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Figure 4: Numerical solutions of Example 5.2 at t = 3 with N = 50, CFL=0.1, Nr = 100.
Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: pressure. Right: density.

where ρl = 2, ul = 10, pl = 40, (z1)l = 0, (z2)l = 0.2, (z3)l = 0.475, (z4)l = 0.325 and ρr =
1, ur = 0, pr = 1, (z1)r = 0.1, (z2)r = 0.6, (z3)r = 0.2, (z4)r = 0.1. The computational
domain is [0, 50]. The exact solution consists of a detonation wave, followed by a contact
discontinuity and a shock, all moving to the right.

Figures 4-6 show the pressure, density, temperature and mass fractions comparison
results between the proposed WENO5/SR method (red dashed dot line) and the splitting
WENO5 (green dashed line), against the reference “exact” solution, using the same mesh
N = 50 (∆x = 1), CFL=0.1 and Nr = 100. Again, the proposed WENO5/SR method
is able to capture the correct propagation speed of the detonation wave with this coarse
mesh, while the splitting WENO5 produces spurious numerical results.

Example 5.3. A 1D detonation wave with 5 species and 2 reactions.

In the last one-dimensional example, we consider the reactive Euler system with
multireactions. Consider

H2 + O2 → 2OH, 2OH + H2 → 2H2O,

with N2 appearing as a catalyst. In this example, there are five species and two reactions.
The parameters are T1 = 2.0, T2 = 10, B1 = B2 = 106, α1 = α2 = 0, q1 = 0, q2 = 0, q3 =
−20, q4 = −100, q5 = 0, M1 = 2, M2 = 32, M3 = 17, M4 = 18, M5 = 28. We use similar
parameters as those in [3] except that we increase the reacting rate B1 and B2 ten times
larger for more stiffness.
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Figure 5: Numerical solutions of Example 5.2 at t = 3 with N = 50, CFL=0.1, Nr = 100.
Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: temperature. Right: mass fraction of z1.
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Figure 6: Numerical solutions of Example 5.2 at t = 3 with N = 50, CFL=0.1, Nr = 100.
Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR. Green
dashed line: splitting WENO5. Left: mass fraction of z2. Right: mass fraction of z3.
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Figure 7: Numerical solutions of Example 5.3 at t = 3 with N = 50, CFL=0.05, Nr =
400. Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR.
Green dashed line: splitting WENO5. Left: pressure. Right: density.

The initial data are

(ρ, u, p, z1, z2, z3, z4, z5)(x, 0) =

{
(ρl, ul, pl, (z1)l, (z2)l, (z3)l, (z4)l, (z5)l) x ≤ 2.5,
(ρr, ur, pr, (z1)r, (z2)r, (z3)r, (z4)r, (z5)r) x > 2.5,

(42)
where ρl = 2, ul = 10, pl = 40, (z1)l = 0, (z2)l = 0, (z3)l = 0.17, (z4)l = 0.63, (z5)l = 0.2,
and ρr = 1, ur = 0, pr = 1, (z1)r = 0.08, (z2)r = 0.72, (z3)r = 0, (z4)r = 0, (z5)r = 0.2.
The computational domain is [0, 50]. The exact solution consists of a detonation wave,
followed by a rarefaction wave and a shock, all moving to the right. We compare the re-
sults obtained by the proposed WENO5/SR method and the splitting WENO5, against
the reference “exact” solution, using the same mesh N = 50 (∆x = 1), CFL=0.05 and
Nr = 400. Figures 7-9 show the pressure, density, temperature and mass fractions com-
parison results between the proposed WENO5/SR method (red dashed dot line) and the
splitting WENO5 (green dashed line). From all the results, the proposed WENO5/SR
method is able to capture the correct shock location in coarse mesh, but the regular
WENO method produces spurious wave from the location x = 40. We remark that un-
like the one reaction examples, the proposed WENO5/SR scheme needs a smaller CFL
number (about one half for the present example) for stability compared to the splitting
WENO5 in this multireaction example.

Example 5.4. A 2D detonation wave with 4 species and 1 reaction.

Now we test our method on two-dimensional problems. The first two-dimensional
example is one with radial symmetry analogous to Example 5.2. The same example was
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Figure 8: Numerical solutions of Example 5.3 at t = 3 with N = 50, CFL=0.05, Nr =
400. Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR.
Green dashed line: splitting WENO5. Left: temperature. Right: mass fraction of z1.
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Figure 9: Numerical solutions of Example 5.3 at t = 3 with N = 50, CFL=0.05, Nr =
400. Solid line: reference solution. Red dashed dot line with symbols: WENO5/SR.
Green dashed line: splitting WENO5. Left: mass fraction of z2. Right: mass fraction of
z3.
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studied in [3] and a similar one with two species was studied in [16]. The parameters
T1, B1, α1, q1, q2, q3, q4 are the same as those in Example 5.2 except q1 = 200. The initial
values consist of totally burnt gas inside of a circle with radius 10 and totally unburnt
gas everywhere outside this circle. The set up is as follows

(ρ, u, v, p, z1, z2, z3, z4)(x, y, 0) =

{
(ρl, ul, vl, pl, (z1)l, (z2)l, (z3)l, (z4)l) r ≤ 10,
(ρr, ur, vr, pr, (z1)r, (z2)r, (z3)r, (z4)r) r > 10,

(43)
where r =

√

x2 + y2, ρl = 2, ul = 10x/r, vl = 10y/r, pl = 40, (z1)l = 0, (z2)l = 0.2, (z3)l =
0.475, (z4)l = 0.325 and ρr = 1, ur = 0, vr = 0, pr = 1, (z1)r = 0.1, (z2)r = 0.6, (z3)r =
0.2, (z4)r = 0.1. The computational domain is [0, 50] × [0, 50].

This is a radially symmetric problem and the detonation front is circular. The
boundary conditions are solid-wall boundary conditions on the left and lower boundaries
and outflow boundary conditions on the right and upper boundaries. Figures 10-11
show the pressure, density and mass fractions z1 and z2 at t = 2. We compare the
results between the proposed WENO5/SR method and the splitting WENO5 using the
same mesh size Nx × Ny = 25 × 25 (∆x = ∆y = 2), CFL=0.1 and Nr = 100. The
reference solution is computed by standard WENO5 scheme with a mesh of 1000×1000
grid points. The proposed scheme clearly has captured the detonations well in the
coarse mesh, however the regular WENO scheme produces spurious waves in all figures.
Figures 12 and 13 show the velocity contour by the proposed WENO5/SR scheme at
four different times t = 1, 2, 4 and 6. We can see the circular detonation front moving
nicely. There is no spurious nonphysical wave generated.

Example 5.5. A 2D detonation wave with 5 species and 2 reactions.

The second 2D example is the 2D case analogous to Example 5.3 with 5 species and
2 reactions. The parameters T1, T2, B1, B2, α1, α2, q1, q2, q3, q4, q5 are the same as those
in Example 5.3. The initial condition is given by

(ρ, u, v, p, z1, z2, z3, z4, z5)(x, y, 0) =

{
(ρl, ul, vl, pl, (z1)l, (z2)l, (z3)l, (z4)l, (z5)l) x ≤ ξ(y),
(ρr, ur, vr, pr, (z1)r, (z2)r, (z3)r, (z4)r, (z5)r) x > ξ(y),

(44)
where

ξ(y) =

{
12.5 − |y − 12.5|, |y − 12.5| ≤ 7.5,
5, |y − 12.5| > 7.5,

(45)

and ρl = 2, ul = 10, vl = 0, pl = 40, (z1)l = 0, (z2)l = 0, (z3)l = 0.17, (z4)l = 0.63, (z5)l =
0.2 and ρr = 1, ur = 0, vr = 0, pr = 1, (z1)r = 0.08, (z2)r = 0.72, (z3)r = 0, (z4)r =
0, (z5)r = 0.2. The computational domain is [0, 150] × [0, 25]. The inflow boundary
conditions are used on the left boundary and the outflow boundary conditions are used
on the right boundary. The top and bottom boundaries are solid walls. The same
example was studied in [3]. A similar problem with 2-species was computed in our
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Figure 10: Numerical solutions of Example 5.4 at t = 2 with Nx × Ny = 25 × 25,
CFL=0.1, Nr = 100. Solid line: reference solution. Red dashed dot line with symbols:
WENO5/SR. Green dashed line: splitting WENO5. Left: pressure. Right: density.
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Figure 11: Numerical solutions of Example 5.4 at t = 2 with Nx × Ny = 25 × 25,
CFL=0.1, Nr = 100. Solid line: reference solution. Red dashed dot line with symbols:
WENO5/SR. Green dashed line: splitting WENO5. Left: mass fraction of z1. Right:
mass fraction of z2.
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Figure 12: Numerical solutions of Example 5.4 by WENO5/SR with Nx ×Ny = 25×25,
CFL=0.1, Nr = 100. Velocity fields. Left: at t = 1. Right: at t = 2.
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Figure 13: Numerical solutions of Example 5.4 by WENO5/SR with Nx ×Ny = 25×25,
CFL=0.1, Nr = 100. Velocity fields. Left: at t = 4. Right: at t = 6.
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Figure 14: Numerical solutions by WENO5/SR of Example 5.5 at t = 2 with 100 × 51
on domain [0, 50] × [0, 25], CFL=0.1, Nr = 100. Solid line: reference solution. Red
dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left:
pressure. Right: density.

previous work [32]. One important feature of this solution is the appearance of triple
points, which travel along the detonation front in the transverse direction and reflect
from the upper and lower walls, forming a cellular pattern. Behind the detonation front,
there is a strong shock.

We first show the comparison of WENO5/SR and splitting WENO5 with the same
mesh size ∆x = ∆y = 0.5, CFL=0.1 and Nr = 100 at the 1D cross section y = 12.5 at
t = 2 in Figures 14 and 15. Since at t = 2 the flow has not touched x = 50, the results are
computed on the cutoff computational domain [0, 50]× [0, 25] with Nx ×Ny = 100× 51.
It is easy to see from the pressure, temperature and mass fraction results that the regular
WENO scheme already produces spurious waves (around x = 35 to x = 40) at t = 2.

Next, the density contours are computed by WENO5/SR with the mesh Nx ×Ny =
300× 51 (same mesh size ∆x = ∆y = 0.5) on the whole domain [0, 150]× [0, 25]. Figure
16 show the results at nine evolutionary times from t = 0 to t = 8. It is clear that there
are no spurious waves in the wave front by our proposed scheme.

6 Concluding remarks

In this paper, we extend our previous work [32] of SR from two species single-reaction to
multi-species multi-reaction, which is significantly more difficult because of the multiple
scales generated by different reactions. The proposed scheme is a fractional scheme
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Figure 15: Numerical solutions by WENO5/SR of Example 5.5 at t = 2 with 100 × 51
on domain [0, 50] × [0, 25], CFL=0.1, Nr = 100. Solid line: reference solution. Red
dashed dot line with symbols: WENO5/SR. Green dashed line: splitting WENO5. Left:
temperature. Right: mass fraction of z1.

with the flexibility of choosing any spatial high-order shock-capturing scheme in the
convection step. In the reaction step, any explicit ODE solver can be used with the
transition points reconstructed by Harten’s ENO subcell resolution idea. The method
has high order accuracy in space for smooth flows. It is able to capture the correct
location of discontinuity in very coarse mesh. We remark that our method can use
fewer points than the previous methods in [3] to obtain similar results for the similar
examples. The reason may be due to the high order accuracy of the spatial scheme in
the convection step.

Although the underresolved temporal mesh problem is not solved, as the stiffness
increases, small time step is only needed for the reaction step with more sub-steps.
Ongoing work is to investigate implicit time discretization in the ODE step to address
this small time step issue.

For more complex fully coupled multi-species and multi-reaction flows, further in-
vestigations are needed. For example, in a 13-species and multi-reaction hypersonic
simulation on a hypersonic spacecraft earth-entry-like condition simulation, the relative
distance between the shear/contact and shock is different from one grid spacing to an-
other as well as their discontinuity locations for each numerical method indicated in
Kotov et al. [20]. This spurious behavior of shock-capturing methods has not appeared
in the literature.
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Figure 16: Computed density for Example 5.5: WENO5/SR with 300 × 51 on domain
[0, 150]× [0, 25], CFL=0.05 and Nr = 100 at nine different evolutionary times from t = 0
to t = 8.
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