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Abstract

The adaptive multistep linear and nonlinear filters for multiscale shock/turbulence gas dynamics and magnetohydrodynamics (MHD)
flows of the authors are extended to include compact high order central differencing as the spatial base scheme. The adaptive mechanism
makes used of multiresolution wavelet decomposition of the computed flow data as sensors for numerical dissipative control. The objec-
tive is to expand the work initiated in [Yee HC, Sjögreen B. Nonlinear filtering in compact high order schemes. In: Proceedings of the
19th ICNSP and 7th APPTC conference; 2005; J Plasma Phys 2006;72:833–36] and compare the performance of adaptive multistep fil-
tering in compact high order schemes with adaptive filtering in standard central (non-compact) schemes for multiscale problems contain-
ing shock waves.
Published by Elsevier Ltd.

1. Introduction

High order compact spatial discretizations in conjunc-
tion with linear high order compact filters are methods of
choice for many incompressible and low speed turbulent/
acoustic flows due to their advantage of requiring a very
low number of grid points per wavelength and flexibility
in geometry handling. On the other hand, for unaveraged,
unsteady compressible viscous flows containing shock/
shear waves, it was observed that the use of even very high
order shock-capturing schemes is still too dissipative for
turbulence and transition predictions, especially for direct
numerical simulations (DNS) and large Eddy simulations
(LES). Methods commonly used for shock/turbulence
interactions relying on switching between spectral or high
order compact schemes and shock-capturing schemes are

not practical for multiscale shock/turbulence interactions.
One shortcoming of this type of hybridization is that the
numerical solution might experience a non-smooth transi-
tion at the switch to a different type of scheme. For 2D
and 3D complex shock wave and shear surface interac-
tions, the switch mechanism can become less trivial and fre-
quent switching between these two types of schemes can
further promote numerical instability beyond the induced
instability from the inherent strong nonlinearity and the
presence of multiscale physical processes that are dominant
features of the subject flow in question. Our highly parallel-
izable adaptive multistep linear and nonlinear filter
schemes do not rely on switching between schemes to avoid
the related numerical instability [33,40–44,46]. Instead of
solely relying on very high order high-resolution shock-
capturing methods for accuracy, the filter schemes take
advantage of the effectiveness of the nonlinear dissipation
contained in good shock-capturing schemes and standard
linear filters (and/or high order linear dissipation) as
post-processing stabilizing mechanisms at locations where
needed.
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The adaptive filter method consists of two steps, a full
time step using a spatially high order non-dissipative (or
very low dissipative) base scheme, followed by adaptive
multistep filter consisting of the products of wavelet based
flow sensors and linear and nonlinear numerical dissipa-
tions to filter the solution. The numerical dissipation con-
trol idea is very general and can be used in conjunction
with spectral, spectral element [16], finite element, discon-
tinuous Galerkin [28], finite volume and finite difference
spatial base schemes. The type of shock-capturing scheme
used as nonlinear dissipation is very general and can be
any dissipative portion of high resolution TVD, MUSCL,
ENO, or WENO shock-capturing methods [39,15,28].
The shock-capturing dissipations usually contain flux limit-
ers. The linear filter can be the standard spectral or com-
pact filter, or the product of a high order linear
dissipation and an appropriate flow sensor. By design,
the flow sensors, spatial base schemes and linear and non-
linear dissipation models are standalone modules. There-
fore, a whole class of low dissipative high order filter
schemes can be derived at ease.

To clarify some of the terms and for generality of discus-
sion we denote, loosely, the standard spectral filter, com-
pact filter and non-compact high order linear numerical
dissipation as high order linear numerical dissipations (or
linear filter). In contrast, we denote the dissipative portion
of any high resolution shock-capturing scheme as nonlin-
ear numerical dissipation, since these dissipations are non-
linear even if one applies the scheme to a linear
conservation law. When nonlinear dissipations are applied
in a filter approach (to be discussed), we denote the
approach as nonlinear filters. When high order linear dissi-
pation, (e.g., the product of a flow sensor and the AD8
term) is applied in a filter approach, we denote the
approach as high order linear filter. Although nonlinear
numerical dissipations can suppress spurious high fre-
quency oscillations, they might not be as effective as the
standard high order linear dissipations (or linear filters).
With appropriate wavelet flow sensors, locations of spuri-
ous high frequency oscillations, locations of shocks and
high gradient regions, and locations of large vortices or
vortex sheets can be detected separately. The appropriate
numerical dissipations are then applied to these locations
with the remaining regions free of numerical dissipation.
(see [33,41,43] for a discussion.)

It is noted that earlier numerical experiments by the
authors [33,40,41,43] and collaborators [22,1] indicate that
inclusion of the flow sensors as an integral part of the
shock-capturing dissipation limiting process or high order
linear dissipation process can improve numerical accuracy
over the original standard shock-capturing schemes. How-
ever, this improvement in accuracy is not as pronounced as
the inclusion of the flow sensors as part of the filter
approach.

In the finite difference approach, high order compact
and high order central (non-compact) spatial discretiza-
tions are natural choices for the spatial base schemes.

Numerical experiments using the standard sixth-order cen-
tral base scheme with nonlinear filtering indicate improved
accuracy over the standard shock-capturing schemes, stan-
dard shock-capturing scheme with flow sensors, and hybrid
schemes mentioned earlier. In light of the fact that compact
schemes are less compatible with parallel computations and
thus require more CPU time than standard non-compact
central schemes, the true efficiency and accuracy perfor-
mance of compact base schemes under our framework of
filtering and limiting is not certain. The objective is to
expand the work initiated in [45] and to compare the per-
formance of multistep filtering in compact high order
schemes with filtering in standard central (non-compact)
schemes for multiscale problems containing shock waves.

2. Adaptive filtering and limiting in high order methods

In this section, the scheme for the MHD system in uni-
form Cartesian grids is summarized. The scheme for gas
dynamics is the same except without the three extra mag-
netic field equations. The high order formulation in gener-
alized moving coordinates with freestream preservation is
reported in Vinokur and Yee [37].

2.1. Conservative symmetrizable MHD systems

Consider the 3D conservative and symmetrizable [12,27]
(non-conservative) forms of the ideal compressible MHD
equations in Cartesian geometry,

Ut þr � F ¼ 0 ðconservativeÞ; ð1Þ
Ut þr � F ¼ S ðsymmetrizableÞ; ð2Þ
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Here the velocity vector u = (u,v,w)T, the magnetic field
vector B = (Bx,By,Bz)

T, q is the density, and e is the total
energy. The notation B2 = Bx

2 + By
2 + Bz

2 is used. The
superscript ‘‘T’’ indicates the transpose of the subject col-
umn vector. aTb denotes the inner product between the vec-
tors a and b. The divergence of the outer product of two
vectors, $ Æ abT, is a vector whose ith component isX
j¼1
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The pressure is related to the other variables by
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The magnetic pressure is proportional to B2. For plasmas
and monatomic gases, c = 5/3. The vector on the right
hand side of Eq. (2) is the non-conservative portion of
the symmetrizable MHD equations and is frequently re-
ferred to in the literature as a source term vector.

The conservative and symmetrizable forms of the non-
ideal compressible MHD [9] systems (viscous, resistive
and Hall MHD) are

U t þr � F ¼ Fv;

U t þr � F ¼ Fv þ S;

Fv ¼ 0 divs fv5
1
r ðMB�rdivBÞ � bhr� ððr � BÞ � BÞ

� �T
:

The fifth component of Fv is

fv5 ¼ divðuTsÞ þ divh� 1

r
divððr � BÞ � BÞ

� bh divðððr � BÞ � BÞ � BÞ:

The vector Fv includes viscosity, resistivity, and Hall effect
with s being the viscous stress tensor, r the conductivity
coefficient, bh the strength of the Hall effect and h the heat
flux. The plasma b is bp = (plasma pressure/magnetic
pressure).

Without loss of generality we will describe our numeri-
cal methods for the inviscid x-flux of the ideal MHD Eq.
(1) on a uniform grid. The schemes to be discussed, for
the most part, only spell out the x-component terms with
the y- and z-components omitted. Let A(U) denote the
Jacobian oF/oU with the understanding that the present
F and S are the inviscid x-component of the 3D description
above. We also write the non-conservative term S in Eq. (2)
in the x-direction as N(U)Ux.

An important ingredient in our high order filter method
is the use of the dissipative portion of high-resolution
shock-capturing schemes as part of the nonlinear filters
for accurately capturing discontinuities. If the dissipative
portion of higher order Lax–Friedrichs or Nessyahu–Tad-
mor [23] type of shock-capturing schemes is not employed
(see [39] for a discussion), these nonlinear filters usually
involve the use of field-by-field approximate Riemann
solvers.

Seven of the eigenvalues and eigenvectors are identical
for the ‘‘conservative’’ Jacobian matrix A and the ‘‘sym-
metrizable’’ Jacobian matrix (A � N) [10]. For ease of ref-
erence, we refer to the distinct eigenvalue (eigenvector)
between the conservative and symmetrizable MHD as the
eighth eigenvalue (eigenvector). The eighth eigenvector of
A of the conservative system associated with the degenerate
zero eigenvalue can sometimes coincide with one of the
other eigenvectors, thereby making it difficult to obtain a
Roe-type approximate Riemann solver for the multi-
dimensional conservative MHD. On the other hand, the
eigenvectors of the symmetrizable Jacobian A* = (A � N)
always form a complete basis, and can be obtained from
analytical formulas [12,27] for 1D or higher. Here, a
Roe-type average state developed in Gallice [10] for the
multi-D symmetrizable MHD is employed to solve both

the conservative and symmetrizable systems Eqs. (1) and
(2). This form is an improvement over the Brio and Wu
[2] and Powell [27] forms. See the multistep filter section
for more discussion on the rationale of employing sym-
metrizable eigenvectors to solve the conservative system.

2.2. Description of high order filter methods

For non-ideal MHD, we apply the spatial base scheme
for the first derivative twice for the second derivatives in
the viscous terms (similarly for the resistive and Hall
terms). Basically, the filter method consists of two steps,
a divergence-free preserving spatial base scheme step (not
involving the use of approximate Riemann solvers or flux
limiters) and a multistep filter (usually involving the use
of approximate Riemann solvers and flux limiters). The
high order spatial base scheme to approximate the flux
derivative of the ideal MHD is very general. Spectral, spec-
tral element, finite element, discontinuous Galerkin, com-
pact and non-compact schemes are possible candidates.
In order to have good shock-capturing capability and
improved nonlinear stability related to spurious high fre-
quency oscillations, a multistep filter approach consisting
of a high order nonlinear filter and a high order linear filter
was investigated in [41,43,45]. The nonlinear filter consists
of the product of an artificial compression method indica-
tor or wavelet sensor [33] and the nonlinear dissipative por-
tion of a high-resolution shock-capturing scheme. The high
order linear filter consists of the product of another sensor
and a spectral-like filter or a high order centered linear dis-
sipative operator that is compatible with the order of the
base scheme being used.

2.2.1. Divergence-free preserving base scheme step

The first step of the numerical method consists of a time
step via a high order non-dissipative spatial and high order
temporal base scheme operator L*. After the completion of
a full time step of the base scheme step, the solution is
denoted by U*

U � ¼ L�ðUnÞ; ð4Þ

where Un is the numerical solution vector at time level n.
The spatial base scheme can be, e.g., any of the sixth-order
or higher central or compact discretizations. For strong
shock interactions and/or steep gradient flows, a small
amount of high order linear dissipation can be added to
the base scheme step to reduce the time step constraint
and improve stability. For example, an eighth-order linear
dissipation with the sixth-order centered non-compact and
compact base schemes to approximate F(U)x (with the grid
indices k and l for the y- and z-directions suppressed) is
written as

oF
ox
� D06F j þ dðDxÞ7ðDþD�Þ4U j; ð5Þ

oF
ox
� C06F j þ dðDxÞ7ðDþD�Þ4U j; ð6Þ
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where D06 is the standard sixth-order accurate centered dif-
ference operator, and D+D� is the standard second-order
accurate centered approximation of the second derivative.
The second terms in Eqs. (5) and (6) denoted by ‘‘AD8’’,
if needed, are the eighth-order linear dissipation. The small
parameter d of the AD8 term is a scaled value (e.g., spectral
radius of A(U)) in the range of 0.00001–0.0005, depending
on the flow problem, and has the sign which gives dissipa-
tion in the forward time direction. The D06 operator is
modified at boundaries in a stable way by the so called
summation-by-part (SBP) operators [25,24,41]. The linear
numerical dissipation operator D+D- is modified at the
boundaries to be semi-bounded [31]. The symbol C06 in
Eq. (6) denotes the sixth-order centered compact operator.
Similarly 8th-order and 10th-order central and compact
base scheme operators with the corresponding 10th-order
and 12th-order linear dissipation terms are denoted by
‘‘AD10’’ and ‘‘AD12’’ respectively.

Some comparison of the two base schemes has been
reported in [45,46]. Previous studies [43,45,46] indicated
that the two base schemes might require different amounts
of linear dissipation (or linear filter) and nonlinear filter (to
be discussed), depending on the test problem. Aside from
improving numerical stability due to long time integration
related spurious high frequency oscillations, the inclusion
of non-zero AD8 can have a different effect on the locations
where nonlinear filters are utilized than without AD8. For
example, for the coefficient of AD8 with d = 0, the wavelet
sensor would indicate that nonlinear filters are needed at
locations of spurious high frequency oscillations as well
as at discontinuity locations that experience Gibbs phe-
nomena. However, for AD8 with d 5 0, the linear dissipa-
tion would damp out some or all of the high frequency
oscillation locations. However, in the actual case this is a
very dynamic procedure and highly problem, base scheme
and filter term dependent, especially when one is dealing
with a chaotic-like flow. Ideally, AD8 should contain a
proper flow sensor to indicate where linear dissipation is
needed. For the MHD system, in order to maintain the
divergence-free preserving property of the base scheme step
in Cartesian grid, it is more desirable to apply a small
amount of AD8 uniformly. It is noted that this combina-
tion of including non-zero AD8 linear dissipation in the
base scheme and nonlinear filter might not be the optimal
approach in general. Our numerical experiment gives just
one simple-minded aspect of this study. In lieu of the
non-zero AD8 base scheme approach, the adaptive multi-
step linear and nonlinear filters suggested in [45,46] with
their own flow sensors might be an alternative. This is
the topic of the next discussion.

2.2.2. Multistep linear and nonlinear filters (suppression of

high frequency oscillations and shock-capturing)

Blending of different types of numerical dissipations – sin-

gle step linear and nonlinear filter: In the early stages of our
development, we proposed the blending of these two types
of numerical dissipation into a single filter step after a com-

plete full time step of the base scheme step (or after each
stage of the temporal discretization if multistage temporal
discretizations were employed). (See [41,43] and references
cited therein.) Subsequent studies [43,45] showed that the
blending of more than one type of filter in a single step
might create numerical instability due to the frequent
switching between filters. For the MHD system, the single
step blending of more than one filter can interfere with the
divergence-free preserving property as discussed above.

Multistep Filters: As discussed in [45,46], if instead, we
apply the linear filter and nonlinear filter in separate steps,
numerical stability is greatly improved. Moreover, the
interfering with the divergence-free property is minimized.
Our recent study indicates that a multistep filter, e.g.,
applying the nonlinear filter step after the high order linear
filter step in sequence (or vice versa) is more effective and
stable than the blending of different filters in a single step.
Studies in Yee and Sjögreen [45] and the present paper indi-
cate that if the compact base scheme Eq. (6) were used for
complex shock interactions, the multistep filter is needed (a
linear compact filter step and a nonlinear filter step).

The multistep filter or the single step filter can be applied
(a) after each stage of a multistage temporal discretization
(if such time discretization will be used), or (b) after the
completion of each full time step of the multistage time dis-
cretization. Both options were implemented and tested on a
wide variety of gas dynamics and MHD problems. Studies
indicated that even if multistage Runge–Kutta methods are
employed, there is no advantage in employing the filter step
‘‘after each Runge–Kutta stage’’ over the application of the
filter step ‘‘after a full time step’’ of the Runge–Kutta
method. On the other hand, option (b) is extremely efficient
since only one Riemann solve per time step per dimension
is required, independent of the time discretization. The next
two sections discuss filter option (b) with filter option (a)
similarly.

The following section gives a description of the nonlin-
ear filter step. It is emphasized here that the order of apply-
ing the nonlinear filter and linear filter steps might have an
effect on the final solution. Due to the dynamic filtering at
each time step, the corresponding nonlinear filter and linear
filter wavelet sensors are different, depending on the order
in which they are applied. Before the description of the
adaptive nonlinear filter step, we would like to discuss
our procedure for solving the conservative system and the
symmetrizable system if the scheme to be used requires
the knowledge of the eigensystem.

Solving the conservative system using the symmetrizable

eigenvectors

This class of filter schemes is suitable for solving both
conservative and symmetrizable non-conservative systems.
In solving the symmetrizable system, the base scheme and
the filter step are applied to the non-conservative system
Eq. (2) with a complete set of eigenvectors. However, for
strong shocks, to ensure the correct shock strength and
location, we prefer to solve the conservative MHD system.
In solving the conservative system, the base scheme step
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presents no problem. The question is how to overcome the
incomplete eigensystem issue if nonlinear filters involving
Riemann solvers are required. In this case, as described
in [42,43], we use eigenvectors of the symmetrizable form
but with the degenerate eigenvalue replaced by an entropy
correction (a small parameter � that is scaled by the largest
eigenvalue of A(U)) for the conservative form. For more
than one space dimension, a multi-dimensional entropy
correction [39] is used for each of the degenerate eigen-
values in each spatial direction. Our rationale for doing this
is that both systems share the same eigenvalues and eigen-
vectors except for one. The incorrect eigenvector for the
conservative form will be multiplied by an eigenvalue
which is close to zero. Thus the effect of this ‘‘false’’ eigen-
vector will be small. (Note that in the present context, the
use of an entropy correction is different from the standard
entropy correction associated with expansion shocks in the
Roe-type approximate solver in gas dynamics.) Another
rationale is that solving the conservative system by the base
scheme step has already ensured the correct shock speed
and location of the solution. In turn, the flow sensor is
sensing the resulting solution with the correct locations
where shock-capturing dissipation is needed. The use of
shock-capturing dissipation here is a post-processing step.
It plays a different role than if one solves the conservative
system by its full shock-capturing scheme counterpart
(using the same false eigenvector).

2.3. Adaptive nonlinear filter step (discontinuity and high

gradient capturing)

After the completion of a full time step of the diver-
gence-free preserving base scheme step, the second step is
to adaptively filter the solution by the product of a ‘‘wave-
let sensor’’ and the ‘‘nonlinear dissipative portion of a
high-resolution shock-capturing scheme’’ (involving the
use of flux limiters). The final update step after e.g., the
nonlinear filter step only can be written (with some grid
indices suppressed and assume a single step filter for ease
of illustration) as

U nþ1
j;k;l ¼ U �j;k;l �

Dt
Dx

H Nfx
jþ1=2 � H Nfx

j�1=2

h i
� Dt

Dy
H Nfy

kþ1=2 � H Nfy
k�1=2

h i
� Dt

Dz
HNfz

lþ1=2 � HNfz
l�1=2

h i
:

ð7Þ

Here, HNfx
j�1=2, H Nfy

k�1=2 and H Nfz
l�1=2 are the nonlinear filter

numerical fluxes in the x, y and z-directions, respectively.
If the dissipative portion of higher order Lax–Friedrichs
or Nessyahu–Tadmor type of shock-capturing schemes is
not employed, these nonlinear filters usually involve the
use of field-by-field approximate Riemann solvers. If Roe’s
type of approximate Riemann solver is employed, for
example, the x-filter numerical flux vector H Nfx

jþ1=2 is

H Nfx
jþ1=2 ¼ Rjþ1=2H jþ1=2;

where Rj+1/2 is the matrix of right eigenvectors of the Jaco-
bian of the non-conservative MHD flux vector (Aj+1/2 �
Nj+1/2) evaluated at, e.g., the Gallice average state [10] in
terms of the U* solution from the base scheme step Eq.
(4). The subscript in Rj+1/2 indicates the average state eval-
uated in the x-direction of the eigenvectors in terms of U*.
See [10] or Appendix A of [43] for the average state formula
for the 3D non-conservative system Eq. (2). The Hjþ1=2

(involving the use of wavelet sensors and flux limiters)
are also evaluated from the same average state. Here, the
dimension-by-dimension procedure of applying the
approximate Riemann solver is adopted.

Denote the elements of the vector H jþ1=2 by �hl
jþ1=2;

l ¼ 1; 2; . . . ; 8. The nonlinear portion of the filter �hl
jþ1=2;

l ¼ 1; 2; . . . ; 8, has the form

�hl
jþ1=2 ¼

1

2
ðsN Þljþ1=2ð/

l
jþ1=2Þ: ð8Þ

Here ðsN Þljþ1=2 is the sensor to activate the higher order non-
linear numerical dissipation /l

jþ1=2. For example, ðsN Þljþ1=2 is
designed to be zero or near zero in regions of smooth flow
and near one in regions with discontinuities. ðsN Þljþ1=2 varies
from one grid point to another and is obtained from a
wavelet analysis of the flow solution [33]. The wavelet sen-
sor can be obtained from the characteristic variables for
each wave or a single sensor for all eight waves, based on
pressure and density. Both methods were implemented
but for the numerical tests in this paper, the simpler non-
characteristic sensor was employed.

The dissipative portion of the nonlinear filter /l
jþ1=2 ¼

gl
jþ1=2 � bl

jþ1=2 is the dissipative portion of a high order
high-resolution shock-capturing scheme for the local lth-
characteristic wave. Here gl

jþ1=2 and bl
jþ1=2 are numerical

fluxes of the uniformly high order shock-capturing scheme
and a high order central scheme for the lth characteristic,
respectively. It is noted that bl

jþ1=2 might not be unique
since there is more than one way of obtaining /l

jþ1=2. The
dissipative portion of TVD, MUSCL, and WENO schemes
of orders five, seven, nine and eleven were considered.

For the numerical examples shown, three forms of non-
linear dissipation /l

jþ1=2 were considered, namely:

• Dissipative portion of the fifth-order WENO scheme
(WENO5) [44]. It can be obtained e.g., in the x-direction
by taking the full WENO5 scheme in the x-direction and
subtracting D06Fj (or C06Fj).

• Dissipative portion of the a second-order MUSCL
scheme [40].

• Dissipative portion of the Harten–Yee TVD scheme
[40,43].

This nonlinear filter if applied to the entire MHD sys-
tem, will not preserve the divergence-free magnetic field
condition in general, with the exception of certain smooth
flows. This is due to the fact that the wavelet sensor turns
off the nonlinear filter in regions of very smooth flow. For
the computations in this paper and our previous work, the
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‘‘No filter on B’’ option is chosen. That is, the nonlinear fil-
ter step only applies to the first five equations of Eq. (1) or
Eq. (2). Here the complete set of eigenvalues and eigenvec-
tors of the full symmetrizable MHD system is used to eval-
uate the first five equations of Eq. (1) or Eq. (2). With the
divergence-free spatial base scheme, the divergence-free
property should be preserved for uniform grids. Extensive
grid convergence comparison of the ‘‘no filter on B’’ with
the ‘‘filter all of the MHD equations’’ (filter all) options
were presented in [43]. Alternative approaches for obtain-
ing divergence-free preserving shock-capturing filters
follow in a similar vein as the constrained transport
approach [6].

Note that if a high order linear filter step is employed
prior to the nonlinear filter with the resulting solution
denoted by U** (right after the completion of a full time
step of the base scheme step), it is understood that the
numerical fluxes above are evaluated at U** instead of U*.

2.3.1. Flow sensor by multiresolution wavelet analysis of the

computed flow data

The basic idea in obtaining the different flow sensors
(e.g., ðsN Þljþ1=2) by multiresolution wavelet analysis of the
computed flow data can be found in Sjögreen and Yee
[33] and Yee and Sjögreen [41]. Two types of multiresolu-
tion wavelets were considered. The mathematical proce-
dures to obtain this type of flow sensor are very involved.
However, the final algorithm is very simple. Interested
readers are referred to the original papers for details. The
two papers [13,32] are sources of background material
for [33].

Wavelets were originally developed for feature extrac-
tion in image processing and for data compression. It is
well known that the regularity of a function can be deter-
mined from its wavelet coefficients [4,20,17] far better than
from its Fourier coefficients. By computing wavelet coeffi-
cients (with a suitable set of wavelet basis functions), we
obtain very precise information about the regularity of
the function in question. This information is obtained just
by analyzing a given grid function. No information about
the particular problem which is solved is used. Thus, wave-
let detectors are general, problem independent, and rest on
a solid mathematical foundation.

As of the 1990’s, wavelets have served as basis functions
that are finding use in analyzing and interpreting turbu-
lence data from experiments. They also are used for analyz-
ing the structure of turbulence from numerical data
obtained from DNS or LES. See Farge [7] and Perrier
et al. [26] for early work. There are several ways to intro-
duce wavelets. One standard way is through the continuous
wavelet transform and another is through multiresolution
analysis, hereafter referred to as wavelet based multiresolu-
tion analysis. Mallet and collaborators [17–20] established
important wavelet theory through multiresolution analysis.
See references [36,35] for an introduction to the concept of
multiresolution analysis. Wavelet based multiresolution
analysis has been used for grid adaptation (Gerritsen and

Olsson [11]), and to replace existing basis functions in con-
structing more accurate finite element methods. Here we
utilize wavelet based multiresolution analysis to adaptively
control the amount of numerical dissipation.

Our wavelet flow sensor estimates the Lipschitz expo-
nent of a grid function fj (e.g., the density and pressure).
The Lipschitz exponent at a point x; with grid size h, is
defined as the largest a satisfying

sup
h 6¼0

jf ðxþ hÞ � f ðxÞj
ha 6 C; ð9Þ

and this gives information about the regularity of the func-
tion f, where small a means poor regularity. For a C1 wave-
let function w with compact support, a can be estimated
from the wavelet coefficients, defined as

wm;j ¼ hf ;wm;ji ¼
Z

f ðxÞwm;jðxÞdx; ð10Þ

where

wm;j ¼ 2mw
x� j

2m

� �
ð11Þ

is the wavelet function wm, j on scale m located at the point j

in space. This definition gives a so called redundant wave-
let, which gives (under a few technical assumptions on w) a
non-orthogonal basis for L2. Theorem 9.2.2 in [4] states
that if w is C1 and has compact support, and if the wavelet
coefficients maxjjwm,jj in a neighborhood of j0 decay as 2ma

as the scale is refined, then the grid function fj has Lipschitz
exponent a at j0. In practical computations, we have a
smallest scale determined by the grid size. We evaluate
wm,j on this scale, m0, and a few coarser scales, m0 + 1,
m0 + 2, and estimate the Lipschitz exponent at the point
j0 by a least square fit to the line [33]

max
j near j0

log2jwm;jj ¼ maþ c: ð12Þ

Proper selection of the wavelet w is very important for an
accurate detection of the flow features. The result in
[20,19], which is used in [11], gives the condition that
w(x) should be the kth derivative of a smooth function
g(x) with the property

gðxÞ > 0;

Z
gðxÞdx ¼ 1; lim

x!�1
gðkÞðxÞ ¼ 0: ð13Þ

Then the result is valid for 0 < a < k. A continuous func-
tion f(x) has a Lipschitz exponent a > 0. A bounded dis-
continuity (shock) has a = 0, and a Dirac function (local
oscillation) has a = � 1. Large values of k can be used in
turbulent flow so that large vortices or vortex sheets can
be detected. Although the theorem above does not hold
for a negative, a useful upper bound on a can be obtained
from the wavelet coefficient estimate. See our original pa-
per on the wavelet flow sensor algorithm [33] based on
the Lipschitz exponent of a chosen computed flow vector.
The remainder of this section gives a summary of the three
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basic steps described in [33] for obtaining the wavelet flow
sensors.

Step 1: Choose a wavelet type

• Redundant form of Harten’s multiresolution form.
• Second-order or higher B-splines.
• Wavelets that can distinguish high frequency oscilla-

tions from turbulence.

Step 2: Choose flow variables to be sensed

• Density and pressure.
• Characteristic variables.
• Primitive or entropy variables.

Step 3: Flow sensors

• Apply wavelets to the flow variables to be sensed.
• Obtain the corresponding wavelet coefficient

(involves 2–4 levels of nested difference operators).
• Obtain Lipschitz exponents (least square fit of the

wavelet coefficients in domain of dependence).
• Determine the range of Lipschitz exponent values or

the cutoff Lipschitz exponent value (or a smooth
transition) for the appropriate type of numerical dis-
sipation to be applied.

• Use cutoff Lipschitz exponents as ‘‘flow sensors’’ (fil-
ter with appropriate numerical dissipations).

For example, a Lipschitz exponent with a value near
zero, �1, or wavelets with high order vanishing moments
indicate the presence of a discontinuity, spurious local high
frequency oscillations or large vortices/vortex sheets
respectively. For example, the flow sensor ðsN Þljþ1=2 to turn
on the shock-capturing dissipation using the cut off proce-
dure above is a vector (if applied dimension-by-dimension)
consisting of ‘‘1’s’’ and ‘‘0’s’’.

The computer routines to compute the wavelet coeffi-
cient of the second-order B-spline and the redundant form
of Harten’s multiresolution wavelets and their correspond-
ing Lipschitz exponents of a given grid function fj (e.g.,
density or pressure, or characteristic variables) can be
found in the Appendix.

2.4. Adaptive high order linear filter

This section discusses the non-compact and compact
high order linear filter step used in conjunction with the
sixth-order central and compact base schemes, respectively.
Other compatible linear filters for orders other than the
sixth-order base schemes follow the same vein. For ease
of discussion, we assume that the linear filter is applied
after the nonlinear filter step. The procedure is similar if
the multistep filters are reversed. Denote the solution from
the nonlinear filter step by U** (i.e., replace Un+1 from the
nonlinear filter step above by U**).

The final update step after the linear filter step can be
written (with some grid indices suppressed for ease of illus-
tration) as

Unþ1
j;k;l ¼ U ��j;k;l �

Dt
Dx

H Lfx
jþ1=2 � H Lfx

j�1=2

h i
� Dt

Dy
HLfy

kþ1=2 � HLfy
k�1=2

h i
� Dt

Dz
H Lfz

lþ1=2 � H Lfz
l�1=2

h i
:

ð14Þ

Here, H Lfx
j�1=2, HLfy

k�1=2 and HLfz
l�1=2 are the linear filter numer-

ical fluxes in the x, y and z-directions, respectively. If a
spectral filter or compact filter is used, the linear filter
numerical fluxes are the corresponding filter formulas.
The following discusses the sixth-order non-compact linear
filter.

2.4.1. Non-compact linear filter

If the linear filter step is applied to the local characteris-
tic variables, the x-filter numerical flux vector HNfx

jþ1=2 takes
the form

HLfx
jþ1=2 ¼ Rjþ1=2

bH jþ1=2;

where Rj+1/2 and bH jþ1=2 are evaluated at the Gallice aver-
age states (or Roe’s average state for perfect gas) based
on U**. Denote the elements of the vector bH jþ1=2 by
ĥl

jþ1=2; l ¼ 1; 2; . . . ; 8. They have the form

ĥl
jþ1=2 ¼ �ðsLÞljþ1=2dl

jþ1=2: ð15Þ

Here ðsLÞljþ1=2 are sensors to activate the higher order linear
filter. For example, ðsLÞljþ1=2 is designed to be zero or near
zero in regions of smooth flow and near one in regions with
spurious high frequency oscillation (due to, e.g., long time
integration of nonlinear systems). The functions dl

jþ1=2 are
the dissipative portion of the respective linear filter for
the local lth-characteristic wave in the x-direction. If a
sixth-order central base scheme is used, dl

jþ1=2 has the same
form as AD8 but utilized in a filter context. The eighth-or-
der dissipative portion of the linear filter in terms of the lo-
cal characteristic variables has the form

dl
jþ1=2 ¼

1

2
df Dx7DþðDþD�Þ3ðwl

jþ1=2 þ wl
j�1=2Þ;

or

dl
jþ1=2 ¼ df Dx7DþðDþD�Þ3wl

j:

Here wl
j is the local lth-characteristic variable in the x-

direction evaluated at U**. The term wl
jþ1=2 is the local

lth-characteristic variable in the x-direction evaluated at
the average state in terms of U**. df is a small tuning
parameter with a scaled range as the parameter d in Eq.
(5). Note that the high order linear filter is not to be con-
fused with the high order linear dissipation in the base
scheme step Eq. (5).

An alternative to applying the linear filter in terms of the
characteristic variables is to apply it in terms of the conser-
vative variables. In this case,

HLfx
jþ1=2 ¼ bH L

jþ1=2;
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where bH L
jþ1=2 now has the form

bH L
jþ1=2 ¼

1

2
swavdf Dx7DþðDþD�Þ3ðU jþ1=2 þ U j�1=2Þ;

or

bH L
jþ1=2 ¼ swavdf Dx7DþðDþD�Þ3U j:

Here swav is the wavelet sensor based on the pressure and
density at the grid point j + 1/2.

All of the above linear filters if applied to the entire
MHD system will not preserve the divergence-free mag-
netic field condition with the exception of certain smooth
flows. The linear filter without the flow sensor will preserve
the divergence-free magnetic field condition. Akin to the
nonlinear filter, the ‘‘No Filter on B’’ can be used.

2.4.2. Compact linear filter

The general form of the compact linear filter applied to a
one dimensional scalar grid function Uj is

af
�U jþ1 þ �Uj þ af

�U j�1 ¼
Xq

p¼0

ap

2
ðUjþp þ U j�pÞ;

j ¼ qþ 1; qþ 2; . . . ;N � q: ð16Þ

See [8] and references cited therein for details. Uj is the
unfiltered (input) function and �Uj denotes the filtered (out-
put) function. These functions are defined on the grid j = 1,
2, . . . ,N. We use the eighth order filter, F8 in [8], which has
q = 4 and

a0 ¼
93þ 70af

128
; a1 ¼

7þ 18af

16
; a2 ¼

�7þ 14af

32
;

a3 ¼
1� 2af

16
; a4 ¼

�1þ 2af

128
;

where we set af = 0.4. The filter at the boundary point j = 1
is �U 1 ¼ U 1. The boundary filters at the points j = 2, 3, 4 are
the filters F2 with af = 0.49, F4 with af = 0.49, and F6 with
af = 0.4, respectively. These filters are given in [8] and are
of the form Eq. (16). F2 has p = 1, order of accuracy 2,
and coefficients

a0 ¼
1

2
þ af ; a1 ¼

1

2
þ af :

F4 has p = 2, order of accuracy 4, and coefficients

a0 ¼
5

8
þ 3af

4
; a1 ¼

1

2
þ af ; a2 ¼ �

1

8
þ af

4
:

F6 has p = 3, order of accuracy 6, and coefficients

a0 ¼
11

16
þ 5af

8
; a1 ¼

15

32
þ 17af

16
;

a2 ¼ �
3

16
þ 3af

8
; a3 ¼

1

32
� af

16
:

The filters at the upper boundary points j = N � 3, N � 2,
N � 1, N are symmetric with the lower boundary formulas.

For the three dimensional MHD system, Eq. (16) filters
each solution component dimension by dimension. The
order in which the dimensions are filtered will influence
the result. Therefore, we change the filter dimension order
after each time step in the order xyz, yzx, zxy, xzy, zyx,
yxz, repeated cyclically.

2.5. Some attributes of the filtering and limiting approach

This subsection summarizes the rationale behind the
multistep filter approach. There are four subtle attributes
of our high order filter approach as compared with stan-
dard high order shock-capturing schemes. First, the filter
approach utilizes high order conservative discretizations
as base schemes with no involvement of flux limiters or
Riemann solvers for each full time step discretization.
Thus, no knowledge of the eigenstructure of the system is
required. For example, we can always solve the conserva-
tive MHD system using our base scheme step even though
it consists of an incomplete eigensystem set. After the com-
pletion of a full time step of the base scheme step, a post-
processing filter step is employed. Only the filter step might
involve the use of flux limiters and approximate Riemann
solvers as stabilizing mechanisms to remove Gibbs phe-
nomena related spurious oscillation resulting from the base
scheme step at locations where needed. The flux limiters
and approximate Riemann solvers, if needed, are not as
crucial as in standard shock-capturing schemes in the sense
of ensuring correct shock speeds and shock locations when
one is dealing with e.g., the conservative MHD system con-
taining an incomplete set of eigenvectors. Second, the phys-
ical viscosity, if present, is automatically taken into
consideration by the base scheme step. The amount of filter
numerical dissipation will be adjusted accordingly by the
flow sensor in the presence of the physical viscosity. Third,
the use of a wavelet decomposition of the computed flow
data to determine the types and the location where numer-
ical dissipation is needed is different from most existing
numerical schemes in which the numerical dissipation is
built into the discretization. In the presence of physical vis-
cosity the more scales that are resolved by the base scheme,
the less the filter is utilized, thereby gaining accuracy and
computational time. In the limit when all scales are
resolved, we are left with a ‘‘pure’’ non-dissipative centered
(or very low dissipative) high order spatial scheme. If
instead the inviscid part of the equations had been discret-
ized by a scheme with an advanced numerical dissipation
model, e.g., the TVD, ENO and WENO schemes, the
expensive computation of the numerical dissipation would
have been made everywhere in the computational domain,
even in regions dominated by physical viscosity. Fourth,
our sixth-order filter procedure in conjunction with the
classical fourth-order Runge–Kutta method, in general,
requires slightly more CPU time per time step (20%) than
the standard second-order shock-capturing schemes. This
is due to the fact that all of our filter schemes, regardless
of the base scheme used, require only one Riemann solve
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per time step per direction (independent of the time discret-
izations of the base scheme step) as opposed to two Rie-
mann solves per time step per direction by second-order
shock-capturing schemes using a second-order Runge–
Kutta method. Previous studies show that for a second-
order base scheme filter method, improved accuracy was
also realized in many multiscale shock/turbulence interac-
tions. However, the improvement in accuracy is more pro-
nounced if one uses the fourth-order or sixth-order base
scheme which costs only slightly more CPU time (using
the same second-order nonlinear filter). In fact, instead of
nonlinear filtering, employing the flow sensor inside stan-
dard shock-capturing methods (for the dissipative portion)
also results in improved accuracy. (See [1].)

3. Sample numerical results

Numerical experiments on the performance of compact
and non-compact sixth-order spatial base schemes were
conducted on the 2D test cases studied in [34,43,47].
Selected test cases are discussed here. Numerical examples
concentrate on inviscid gas dynamics and ideal MHD sys-
tems. For the MHD results, all figures shown solve the con-
servative MHD system. In general, the computed results
are slightly more accurate and stable than solving the sym-
metrizable system. For a comparison between conservative
and symmetrizable systems, see [43] for details.

The wavelet filter schemes using the dissipative portion
of WENO5, second-order MUSCL and Harten–Yee
TVD schemes with sixth-order spatial central base scheme
(d = 0 in Eq. (5)) for gas dynamics, the ideal and viscous
non-ideal MHD flux derivatives and a fourth-order Run-
ge–Kutta method are denoted by CEN66+WENO5,
CEN66+MUSfi and CEN66+HYfi, respectively. The first
number indicates the order of the base scheme for discret-
izing the inviscid flux derivatives. The second number indi-
cates the order of the scheme for discretizing the viscous
flux derivatives, if present. To adhere to the convention
of previous work, even when dealing with inviscid flows,
the same notation is used. Viscous flows are indicated with
a non-zero Reynolds number. If the coefficient d 5 0 in the
base scheme step Eq. (5) for approximating the inviscid
flux derivative, the symbol ‘‘AD8’’ is added as in
CEN66+WENOfi+AD8. Computations using the sixth-
order compact base scheme for the above filters are
denoted by Comp66 as in Comp66+WENOfi and
Comp66+WENOfi+AD8. Computations using the sixth-
order compact base scheme for the above filters in conjunc-
tion with a second compact linear filter step are denoted by
Comp66+Compfi as in Comp66+Compfi+WENOfi. Com-
putations using the same temporal and spatial scheme for
the viscous flux derivatives, and the standard fifth-order
WENO scheme (using fourth-order Runge–Kutta temporal
discretization) for the inviscid flux derivatives are denoted
by WENO5. Computations using a second-order MUSCL
and the Harten–Yee [43] TVD scheme for the inviscid
MHD flux with the second-order central scheme for the

viscous flux and a second-order Runge–Kutta method are
denoted by MUSCL and HY, respectively.

It is noted that all the numerical results concentrate on
the two base schemes for d = 0 or d 5 0 in Eqs. (5) and
(6). For the high order linear filters, results only show the
effect of compact linear filters in conjunction with the com-
pact base scheme. Studies on the different effects in apply-
ing the non-compact high order linear filter will be reported
in a forthcoming paper.

The entropy fix parameter � is in the range (0, 0.25)
[14,39] for the Harten–Yee and MUSCL, and the two non-
linear filter MUSfi and HYfi schemes (to avoid expansion
shocks and the carbuncle phenomenon). The entropy value
for the degenerate zero eigenvalue of the conservative sys-
tem is in the range of 10�7–10�10. For simplicity, the cutoff
wavelet Lipschitz exponent value b is 0.5 [33] for all the
wavelet filter schemes. Other more appropriate range of
Lipschitz exponent values to switch on the filter numerical
dissipation will be reported in a forthcoming paper. See
[33,40,41] or Appendix B of [43] for the definition of �
and b. Except for WENO5, the van Leer version of the
van Albada limiter is used. For the second-order MUSCL
scheme, the limiter is applied to the primitive variables. All
methods employed Roe’s approximate Riemann solver for
the gas dyanmics cases and the Gallice approximate Rie-
mann solver for the MHD cases using our method of solv-
ing the conservative MHD system [43]. The following
illustrates the performance of the two base schemes Eqs.
(5) and (6), and the three different nonlinear filters solving
the conservative MHD system.

3.1. 1D shock–turbulence interactions

The first test case is the 1D compressible inviscid shock–
turbulence interaction problem with initial data consisting
of a shock propagating into an oscillatory density. The ini-
tial data are given by

ðqL; uL; pLÞ ¼ ð3:857143; 2:629369; 10:33333Þ ð17Þ

to the left of a shock located at x = � 4, and

ðqR; uR; pRÞ ¼ ð1þ 0:2 sinð5xÞ; 0; 1Þ ð18Þ

to the right of the shock where u is the velocity.
Figs. 1–4 show the comparison of MUSCL, WENO5,

CEN66+WENOfi and Comp66+WENOfi using a 400-
point uniform grid. The red curves are the computed solu-
tions and the black curves are the reference solution by
WENO5 using 4000 grid points. CEN66+WENOfi and
Comp66+WENOfi exhibit similar accuracy and they are
more accurate than MUSCL and WENO5. Computations
using HY, CEN66+HYfi, Comp66+HYfi, CEN66+MUSfi
and Comp66+MUSfi are not shown. The Colella and
Woodward limiter is used for MUSCL, HY, and MUSfi
and HYfi filters. For this particular test case, the HY solu-
tion is more accurate than MUSCL and more diffusive
than WENO5. The accuracies of CEN66+MUSfi and
Comp66+MUSfi are similar and are more diffusive than
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CEN66+HYfi and Comp66+HYfi. On the other hand, the
accuracies of CEN66+HYfi and Comp66+HYfi are similar
to CEN66+WENOfi and Comp66+WENOfi. Fig. 5 shows

the computation by the 10th-order central base scheme
using the WENOfi (CEN1010+WENOfi). There is only a
slight gain in accuracy by the 10th-order base schemes at
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Fig. 1. 1D shock–turbulence problem: second-order MUSCL using 400 grid points. The solid black line is the reference solution.
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the peaks of the oscillatory solutions. The result is similar
for Comp1010+WENOfi. The very small oscillations are
characteristic of these high order base schemes. If a min-

mod or the van Albada limiter is use in conjunction with
MUSfi or HYfi, these small oscillations can be reduced.
For Comp66 and Comp1010 base schemes with the same
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Fig. 3. 1D shock–turbulence problem: CEN66+WENOfi using 400 grid points (red curve). The solid black curve is the reference solution. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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filter, these small oscillations can be reduced by including
the compact filter step. Again, their resolutions are similar.
With our filter approach, it appears that there is no visible
gain in accuracy using the high order compact base scheme
over the central base scheme of the same order but at the
same time with the shortcoming of requiring a larger
CPU time.

3.2. Magnetized Kelvin–Helmholtz instability

For the magnetized Kelvin–Helmholtz problem, the ini-
tial data are

q ¼ 1;

uðx; yÞ ¼ 5ðtanh 20ðy þ 0:5Þ � tanh 20ðy � 0:5Þ � 1Þ;

vðx; yÞ ¼ 0:25 sin 2pxðe�100ðyþ0:5Þ2 � e�100ðy�0:5Þ2Þ;
wðx; yÞ ¼ 0;

p ¼ 50;

Bx ¼ 1;

By ¼ 0;

Bz ¼ 0:

We use the same c = 1.4 as in [5], which is non-standard for
plasmas. The boundaries are periodic both in the x- and y-
directions with the computational domain 0 < x < 1, � 1 <
y < 1. The computations stop at an evolution time T = 0.5
when the solution is still smooth enough that it can be
solved by the base scheme alone in conjunction with a

small amount of linear dissipation in Eq. (5). For the com-
pact base scheme Eq. (6) with d = 0, a compact linear filter
is needed. All methods considered use uniform grid
spacing.

Computations by Comp66+Compfi using five grids
51 · 101, 101 · 201, 201 · 401, 401 · 801 and 801 · 1601
are compared. The accuracy Comp66+AD8 with
d = 0.0005 is similar. The same computations using the
sixth-order central scheme Eq. (5) with d = 0.0005, denoted
by CEN66+AD8, were conducted. As a reference solution,
computations using the eighth-order central scheme with
the 10th-order linear dissipation and a dissipation coeffi-
cient of 0.0005 as the base scheme, denoted by
CEN88+AD10, for the same six grids were used. There is
no visible difference in accuracy between Comp66+Compfi
and CEN66+AD8. Similar accuracy was obtained using
either Eq. (5) or Eq. (6) as the base scheme in conjunction
with any of the nonlinear filters discussed above. Fig. 6
shows a comparison.

3.3. Orszag–Tang vortex problem

The 2D compressible version of the Orszag–Tang vortex
problem [3] consisting of periodic boundary conditions and
smooth initial data is,

ðq; u; v;w; p;Bx;By ;BzÞ
¼ ð25=9;� sin y; sin x; 0; 5=3;� sin y; sin 2x; 0Þ:

The computational domain is 0 < x < 2p, 0 < y < 2p and
the computation stops at time T = 3.14 (�p), when compli-
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Fig. 5. 1D shock–turbulence problem: CEN1010+WENOfi using 400 grid points (red curve). The solid black curve is the reference solution. (For
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cated structure and discontinuities have formed and inter-
acted. The comparison among the three filter schemes (no
filter on B option), WENO5, MUSCL and Harten–Yee
(HY) using six uniform 51 · 51, 101 · 101, 201 · 201,
401 · 401, 801 · 801 and 1601 · 1601 grids for ideal and
non-ideal MHD were conducted in [44]. Grid convergence
was obtained by all six methods (WENO5, MUSCL, HY,
CEN66+WENOfi, CEN66+MUSfi and CEN66+HYfi)
using the 801 · 801 grid. Computations based on a
1601 · 1601 grid were used as the reference solutions. For
51 · 51 through 401 · 401 grids, small structures are better
captured by the three filter methods than by WENO5,
MUSCL or Harten–Yee. In addition, for the inviscid case,
the three filter methods are more stable than the other three
methods in the sense that a larger CFL number can be
used. WENO5 and MUSCL show a slight small oscillation.
These oscillations can be suppressed by applying the limiter
to the characteristic variables in the MUSCL scheme (fig-
ures not shown).

For the viscous case with a Reynolds number of 1000
and a conductivity coefficient of 100, the flow structure is
less complicated than the inviscid case. All computations
use a CFL number of 0.6. For coarse grids, again small
structures are better captured by the three filter methods
than by WENO5, MUSCL or Harten–Yee. In other words,
in order to exhibit similar accuracy as the three filter meth-

ods, the three standard shock-capturings methods require a
finer grid. For both the inviscid and viscous computations,
all three filter methods using the ‘‘no filter on B’’ option are
divergence-free preserving, whereas the ‘‘filter all’’ option
as well as standard WENO5, MUSCL and HY without
divergence cleaning are not divergence free. Their $ Æ B

numerical error at T = 3.14 increases as the grid is refined.
See [43] for some illustrations.

The compact base scheme in conjunction with the com-
pact linear filter also becomes highly oscillatory. The left
and middle columns of Fig. 7 show the computations by,
respectively, (a) a two-step filter, Comp66+Compfi+WEN-
Ofi, and (b) a one-step filter, Comp66+WENOfi. The right
column of Fig. 7 shows the same computation using
CEN66+WENOfi. The small spurious oscillations by
CEN66+WENOfi using the 101 · 101 grid can be sup-
pressed by adding the AD8 term As the grid is refined
(201 · 201 or larger), these small spurious oscillations van-
ished by CEN66+WENOfi alone without the aid of AD8.
For finer grids (201 · 201 or larger), the numerical solu-
tions exhibit spurious oscillations by Comp66+WENOfi
but not by CEN66+WENOfi.

These spurious oscillations become more pronounced as
the grid is refined. Unlike the central base scheme, it
appears that the compact base scheme with the nonlinear
filter alone is not able to suppress the spurious oscillation

Fig. 6. Density contours of the Kelvin–Helmholtz problem at T = 0.5 using 101 · 201 (top) and 201 · 401 (bottom) grids by Comp66+Compfi (left) and
CEN66+AD8 (middle) compared with reference solution by CEN88+AD10 (right) using 101 · 201 and 801 · 1601 grids.
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completely as the grid is refined. It needs the combination
of the compact linear filter and nonlinear filter (or adding
AD8 as part of the compact base scheme step) to suppress
the spurious oscillations. If we add d = 0.0005 in (b) above
as part of the base scheme step, there is no visible difference
in accuracy among the three methods for grids 201 · 201 or
larger (i.e., comparing Comp66+Compfi+WENOfi,
Comp66+AD8+WENOfi and CEN66+WENOfi). See
[43] for the reference solution. The same comparison was
performed on other test cases studied in [34,43,47] with
and without physical viscosity and resistivity, and the same
conclusion was arrived at as in the aforementioned two test
cases. Our recent gas dynamics and MHD studies (see also
the next example) arrive at the same conclusion drawn for
the gas dynamics case in [40] on the behavior of compact
schemes for problems containing multiscale shock interac-
tion for the gas dynamics case.

3.4. Richtmyer–Meshkov instability (RMI) [34,47]

This study illustrates many aspects of the interplay
between multiscale and multiphysics flows with numerical
simulations, e.g., the suppression of the RMI in the pres-
ence of a magnetic field, and the ‘‘failure of grid refine-
ment’’ for unsteady chaotic-like inviscid flows. We use
the expression ‘‘achieving grid convergence’’ or ‘‘a mesh
resolved solution’’ of a numerical method for a chosen
mathematical model to mean that the computed solution
converges to a discrete solution having the same global
structure as well as same key fine scale structures when
compare with well-tested commonly used scheme under
grid refinement. The chosen model is assumed to have no

known solution. We also use the term ‘‘failure of grid
refinement’’ to mean:

‘‘For a chosen model, one cannot obtain a grid conver-

gence solution by well-tested commonly used numerical

schemes with fine grid refinement. Their solution structures

are different from method to method and from one grid to

another and yet each scheme does not diverge during the

entire time evolutionary process and grid sequence process.
Aside from having very different fine scale structures, the

global structures by each method do not indicate a trend

of convergence to the same global feature as the grid is

refined.’’

Fig. 7. Density contours of the Orszag–Tang problem at T = 3.14 using 101 · 101 (top) and 401 · 401 (bottom) grids by Comp66+Compfi+WENOfi
(left), Comp66+WENOfi (middle) and CEN66+WENOfi (right).

Fig. 8. Problem definition.
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RMI occurs when an incident shock accelerates an inter-
face between two fluids of different densities. This interfa-
cial instability was theoretically predicted by Richtmyer
[29] and experimentally observed by Meshkov [21]. For
the present study, the RMI problem investigated by Samta-
ney [30] and Wheatley et al. [38] as indicated in Fig. 8 has
been chosen. The mathematical models are the 2D Euler
gas dynamics equations and the ideal MHD equations.
The computational domain is �2 < x < 6 and 0 < y < 1.
Viscous effects are considered in [47]. A planar shock at
x = � 0.2 is moving (left to right) toward the density inter-
face with an incline angle of h with the lower end initialized
at x = 0. The density ratio across the interface is denoted
by g, and the nondimensional strength of the magnetic field
b ¼ 2p0=B2

0, where the initial pressure in the preshocked
region is p0 = 1, and B0 is the initial magnetic field. The ini-
tial magnetic field is uniform in the (x,y) plane and perpen-
dicular to the incident shock front. Numerical results
shown below are for M = 2,h = 45�, g = 3, b�1 = 0 (Euler
gas dynamics) and b�1 = 0.5 (magnetic field present).
The computation stops at an evolution time t = 3.33.
For this set of parameters and all studied numerical
schemes, instability occurs for the gas dynamics case but
not for the MHD case for the entire time evolution. Our
numerical results exhibit behavior similar to the study of
Samtaney.

Computations by Comp66+Compfi+WENOfi using a
801 · 101 grid are shown in Fig. 9 (left) for the inviscid gas
dynamics (GD) and the ideal MHD equations. The same
computation using CEN66+WENOfi (WAV66+WENOfi)
is shown in Fig. 9 (right). For the MHD case, both solutions
have been converged when compared with the reference
solution by CEN66+WENOfi and CEN66+HYfi using a
6401 · 801 grid. For the Euler gas dynamics case, however,
their resulting solutions are different and it is difficult to
judge the accuracy among methods. To show their behavior,
Fig. 10 shows the same comparison of gas dynamics compu-
tations using a 1601 · 201 grid. A finer grid refinement is
needed for the gas dynamics case to evaluate the situation.
Before the gas dynamics grid refinement study, we first want

to show the MHD computation using half of the magnetic
strength as shown previously. Fig. 11 shows the same com-
parison for the MHD RMI computations for half of the
magnetic strength shown in Fig. 9. Again both solutions
have been converged using a 801 · 101 grid. The bottom
row of Fig. 11 shows the reference solution by
CEN66+WENOfi and CEN66+HYfi using a 6401 · 801
grid. Computations using Comp66+WENOfi (i.e., without
the linear compact filter step) or Comp66+Compfii (i.e.,
without the nonlinear WENOfi filter step) indicate spurious
oscillations around shock regions.

Fig. 12 shows the inviscid gas dynamics comparison
among a second-order MUSCL, CEN66+MUSfi, and
CEN66+WENOfi and for four grids (801 · 101,
1601 · 201, 3201 · 401, 6401 · 801). Not shown is the
same computation using WENO5, HY and CEN66+
HYfi. The standard shock-capturing scheme MUSCL
requires nearly 3 times finer grid size per spatial direction
than CEN66+MUSfi, CEN66+HYfi and CEN66+WEN-
Ofi in order to exhibit similar complicated (yet different)
eddy structures. The eddy structures are different among

Fig. 9. RMI problem. Comparison between Euler gas dynamics and MHD for Comp66+Compfi+WENOfi and CEN66+WENOfi using a (801 · 101)
grid at t = 3.33. MHD solutions shown are mirror images of the original computations.

Fig. 10. Euler RMI problem. Comparison between Comp66+Comp-
fi+WENOfi and CEN66+WENOfi using a (1601 · 201) grid at t = 3.33
for the gas dynamics case.
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the three filter methods and they are very different from
the Samtaney adaptive mesh refinement (AMR) simula-
tion with an equivalent uniform grid of 16,384 · 2048.
Due to the fact that the global structures of the gas
dynamics case change from method to method and from
grid size to grid size on the considered fine grid sequence,
the different behavior of all studied methods prompted us
to investigate the effect of different numerical dissipation
coefficients on the eddy structures of the computed
solutions.

The effect of high order linear dissipation added to the
base scheme in conjunction with nonlinear filters for the
RMI is reported in [47]. For completeness, Fig. 13 shows
results from [47] on the effect of linear dissipation (AD8)
added to the base scheme in conjunction with two different
filters CEN66+AD8+WENOfi and CEN66+AD8+HYfi
for four linear dissipation coefficients of AD8
(0,0.0005,0.001, 0.002) in Eq. (5) using a (6401 · 801) grid.
The top sub-figures show the computations using only a
nonlinear filter without AD8 on the base scheme. The rest
of the sub-figures are computations using three different
non-zero AD8 coefficients. With such a fine grid, the eddy
structures are very different. It appears that the considered

model exhibits chaotic-like behavior. Traditionally, when
dealing with non-chaotic turbulent type models, grid
refinement can serve as a measure of the accuracy and con-
vergence property of the numerical methods. However, due
to the chaotic-like nature of the present Euler MRI model,
the small amount of high order linear dissipation present
on the spatial base scheme actually alters the type of gov-
erning equation that we are solving. In effect, we are solv-
ing the Navier–Stokes equations with a linear viscosity
term. This in conjunction with the adaptive nonlinear filter
(i.e., shock-capturing dissipations were employed at loca-
tions that are dictated by the wavelet flow sensor), results
in a complex interplay of different types and amount of
numerical dissipation which can further alter the chosen
governing equations that we are solving in a nonlinear
way. This manifest different chaotic-like pattern of the
flow. The study can serve as a good example of failure of
grid refinement for unsteady chaotic-like inviscid flow. As
the grid is refined (in conjunction with different amounts
and types of numerical dissipations contained in each
scheme), smaller and smaller eddies are formed which
combine to affect global flow through the energy cascade
effect.

Fig. 11. MHD RMI problem. Comparison between Comp66+Compfi+WENOfi (top left) and CEN66+WENOfi (top right) using a (801 · 101) grid at
t = 3.33 for half of the magnetic strength of the previous case. The reference solutions (bottom row) are computed by CEN66+WENOfi and
CEN66+HYfi using a 6401 · 801 grid.

Fig. 12. RMI problem. Grid refinement study of the second-order MUSCL (left), CEN66+MUSfi (WAV66+MUSfi, middle) and CEN66+WENOfi
(WAV66+WENOfi, right) at t = 3.33 using (801 · 101), (1601 · 201), (3201 · 401) and (6401 · 801) grids.
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The failure of grid refinement prompted us to investigate
the same RMI problem in the presence of physical viscos-
ity. The aim is to obtain a rough estimate of the Reynolds
number when the viscous RMI ceases to exist. For Navier–
Stokes computations with Reynolds numbers higher than
10,000, the same failure of grid refinement was encountered
by all studied methods. In the presence of physical viscosity
and for Reynolds number equal to or below 10,000, grid
refinement has been achieved by all studied methods. To
achieve similar resolution, MUSCL and WENO5 required
more than double the grid points in each spatial direction
than that of filter schemes and yet the CPU time per grid
point and time step with the same grid for most of the stud-
ied methods is comparable. These results, including physi-
cal viscosity effects, are reported in [34,47].

4. Concluding remarks

Our adaptive multistep high order filter schemes
employing multiresolution wavelet analysis of computed
flow data to control the types and amount of numerical dis-
sipations have been extended to include high order com-
pact base scheme operators. This is a follow on study
initiated in [45] with numerical experiments on a variety
of gas dynamics and MHD multiscale test cases. Akin to
the high order central spatial base scheme, the combination
of the compact base scheme with multistep nonlinear and
compact linear filters can capture multiscale shock interac-
tions far better than their standard shock-capturing coun-
terparts. However, among the various test cases, we
arrive at the same conclusion drawn in [40,45] on the
behavior of compact spatial schemes for problems contain-
ing multiscale shock interaction. High order compact

schemes are methods of choice for many incompressible
and low speed turbulent/acoustic flows due to their advan-
tage of requiring very low number of grid points per wave-
length. In the presence of multiscale shock interactions and
under our filter framework, however, this desired property
of high order compact base schemes seems to have dimin-
ished in both the gas dynamic and MHD test cases that we
have studied (compared with the same order of accuracy of
non-compact central base schemes). Also the compact spa-
tial base scheme requires more CPU time per time step and
it is less compatible with parallel computations than the
central spatial base scheme. Consequently, the compact
spatial base scheme requires added CPU time in a parallel
computer framework.
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Appendix

This includes the computer subroutines to compute the
redundant form of Harten’s multiresolution wavelets and
the second-order B-spline wavelets and their corresponding
Lipschitz exponents of a given grid function fj (e.g., density
or pressure, characteristic variables, or entropy variables).
For the Harten and B-spline multiresolution wavelet for-
mula, see [33].

Fig. 13. RMI problem. Effect of linear dissipation (AD8) and nonlinear filter by two different filters and AD8 coefficients of (0,0.0005,0.001,0.002) using a
(6401 · 801) grid.
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[11] Gerritsen M, Olsson P. Designing an efficient solution strategy for
fluid flows I. J Comput Phys 1996;129:245–62.

[12] Godunov SK. Symmetric form of the equations of magnetohydro-
dynamics. Numer Methods Mech Continuum Medium 1972;13(1):
26–34.

[13] Harten A. Multiresolution algorithms for the numerical solution of
hyperbolic conservation laws. Commun Pure Appl Math 1995;48:
1305–42.

[14] Harten A, Hyman J. Self-adjusting grid methods for one-dimensional
hyperbolic conservation laws. J Comput Phys 1983;50:235.

[15] Jiang G-S, Shu C-W. Efficient implementation of weighted ENO
schemes. J Comput Phys 1996;126:202.

[16] Maday Y, Patera AT. Spectral element methods for the Navier–
Stokes equations. In: Noor AK, editor. State of the art surveys
in computational mechanics. New York: ASME; 1989. p. 71–
143.

[17] Mallat SG. A wavelet tour of signal processing. Second ed. San
Diego: Academic Press; 1999.

[18] Mallat SG. A theory for multiresolution signal decomposition: the
wavelet representation. IEEE Trans Pattern Anal Mach Intell
1989;11:674.

[19] Mallat SG, Hwang WL. Singularity detection and processing with
wavelets. IEEE Trans Information Theory 1992;38:617.

[20] Mallat SG, Zhong S. Characterization of signals from multiscale
edges. IEEE Trans Pattern Anal Mach Intell 1992;14:710–32.

[21] Meshkov YY. Instability of a shock wave accelerated interface
between two gases, NASA Tech Trans NASA TT F-13074; 1970.

[22] Müller B, Yee HC. Entropy splitting for high order numerical
simulation of vortex sound at low Mach Numbers. In: Proceedings of
the fifth international conference on spectral and high order methods;
2001.

[23] Nessyahu H, Tadmor E. Non-oscillatory central differencing for
hyperbolic conservation laws. J Comput Phys 1990;87:408–63.

[24] Nordstrom J, Carpenter MH. Boundary and interface conditions for
high-order finite-difference schemes applied to the Euler and Navier–
Stokes equations. J Comput Phys 1999;148:621–45.

[25] Olsson P. Summation by parts, projections and stability, I. Math
Comput 1995;64:1035–65.

[26] Perrier V, Philipovitch T, Basdevant C. Wavelet spectra compared to
Fourier spectra. Paris: Publication of ENS; 1999.

[27] Powell KG. An approximate Riemann solver for magnetohydrody-
namics (that works in more than one dimension). ICASE-Report 94-
24, NASA Langley Research Center, April 1994.

[28] Qiu J, Khoo BC, Shu C-W. A numerical study for the performance of
the Runge–Kutta discontinuous Galerkin method based on different
numerical fluxes. J Comput Phys 2006;212:540–65.

[29] Richtmyer RD. Taylor instability in shock acceleration of compress-
ible fluids. Commun Pure Appl Math 1960;13:297.

[30] Samtaney R. Suppression of the Richtmyer–Meshkov instability in
the presence of a magnetic field. Phys Fluids 2003;15:L53–6.
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