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a  b  s  t  r  a  c  t

Accurate  estimation  of  a  crop’s  yield  potential  (Yp) is  critical  to addressing  long-term  food  security  via
identification  of  the exploitable  yield gap.  Due  to  lack  of  field  data,  efforts  to  quantify  crop  yield  potential
typically  rely  on crop  models.  Using  the  ORYZA  rice  crop  model,  we  sought  to  estimate  Yp  of  irrigated
rice  for  two  widely  used  rice  varieties  (M-206  and  CXL745)  in three  major  US  rice-producing  regions
that  together  represent  some  of  the highest  yielding  rice  regions  of the  world.  Three  major  issues  with
the  crop  model  had  to  be  addressed  to achieve  acceptable  simulation  of  Yp;  first,  the  model  simulated
leaf  area  index  (LAI)  and  biomass  agreed  poorly  for  all  direct-seeded  systems  using  default  settings;
second,  cold-induced  sterility  and  associated  yield  losses  were  poorly  simulated  for  environments  with
a large  diurnal  temperature  variation;  lastly,  simulated  Yp  was  sensitive  to  the  specified  definition  of
physiological  maturity.  Except  for the simulation  of  cold-induced  sterility,  all issues  could  be  remedied
within  the  existing  model  structure.  In contrast,  simulation  of  cold-induced  sterility  posed  a  continuing
challenge  to accurate  simulation—one  that  will  likely  require  changes  to ORYZA’s  formulation.  Estimates
of  Yp  from  the  modified  model  were  validated  against  large  multi-year  data  sets  of  experimental  yields
covering  the  majority  of US  rice  production  areas.  Validation  showed  the  adjusted  model  simulated  Yp
well,  with  most  top  yields  falling  within  85%  of Yp for both  varieties  (77%  and  78%  observed  yields  within
15%  of Yp for  CXL745  and M-206  respectively).  Maximum  estimated  Yp  was  14.3  (range  of  8.2–14.5)  and
14.5  (range  of  8.7–15.3)  t ha−1 for  the  Southern  US and  CA, respectively.

©  2016  The  Author(s).  Published  by Elsevier  B.V. This  is  an open  access  article  under  the CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

By definition, yield potential (Yp) is the yield obtained when
an adapted crop variety is grown under optimal conditions with-
out limitations from water supply, nutrients, weeds, insect pests,
or disease (Evans and Fischer, 1993). Under these conditions, crop
yield is limited only by solar radiation and temperature during the
growing season. In trying to produce crops at Yp levels, however, it
is difficult to know whether all biophysical limitations on growth
have been eliminated. Hence, it is a challenge to identify field stud-
ies in which yields approach the yield potential ceiling. Yields from
high-yielding field studies managed explicitly to eliminate all bio-
physical stresses, winning yields from sanctioned yield contests,

∗ Corresponding author.
E-mail address: mespe@ucdavis.edu (M.B. Espe).

and the top yielding fields amongst a population of farmers have
been proposed as proxies for estimating Yp (Duvick and Cassman,
1999; Lobell et al., 2009; van Ittersum et al., 2013). Previous lit-
erature has suggested that few farmers are ever able to achieve
Yp, with most well managed fields achieving between 70–85% of
Yp (Cassman, 1999; Cassman et al., 2003; Fischer, 2015). The dif-
ference between actual yields and 85% of Yp has been termed
the exploitable yield gap (van Ittersum et al., 2013; Connor et al.,
2011).

Physiological crop models have been suggested as a method to
estimate Yp while avoiding some of the above challenges with esti-
mating Yp from field studies. Broadly, physiological crop models
are seeing increased use for a wide variety of applications, including
predicting climate change impacts (Wang et al., 2014; Angulo et al.,
2012), assessing effects and implications of management and policy
changes (Amiri et al., 2014; Artacho et al., 2011), as well as for yield
gap assessments (van Ittersum et al., 2013; Van Wart et al., 2013).

http://dx.doi.org/10.1016/j.fcr.2016.04.003
0378-4290/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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This increased use is largely due to the ability of these models to
conduct broad quantitative assessments which integrate genotype,
environment, and management effects that are otherwise difficult
to capture (Loomis et al., 1979).

One such model is ORYZA (2000/v3) (hereafter ORYZA), a
physiological rice model which was originally developed to
simulate rice yield potential in tropical, transplanted rice sys-
tems (Bouman et al., 2001). The current version represents
the third major version which includes simulation of water
and nutrient-limited situations. ORYZA has been widely used
in Asia, where it has been calibrated and validated for many
common rice varieties (IRRI; https://sites.google.com/a/irri.org/
oryza2000/calibration-and-validation/calibrated-varieties). Addi-
tionally, ORYZA has been used in more diverse environments,
including rice production systems in Africa (van Oort et al., 2015),
South America (Artacho et al., 2011), Australia (Gaydon et al., 2012),
and Europe (Casanova et al., 2000). However, to our knowledge,
ORYZA has not been calibrated or validated for rice production sys-
tems in the US, which are temperate direct-seeded systems that
grow both tropical and temperate japonica rice varieties.

US rice production systems achieve some of the highest rice
yields in the world (FAOSTAT, 2015), and the US is currently the
world’s fourth largest exporter of rice, making up over ten per-
cent of annual global rice trade volume (USDA Economic Research
Service, 2015). Due to population growth and increasing ethnic
diversity, the US’s global role as an exporter will be threatened
unless rice production can be increased substantially. Given the
yield plateaus seen in many high intensity rice production systems
(Grassini et al., 2013), it is essential to be able to estimate Yp to
answer whether this increase in production will require additional
irrigated land, or whether the increased production can come from
higher yields on existing land. Yet, to date, there has been no con-
certed effort to estimate US rice yield potential, partially because
there are currently few well-validated models which can do so.
Therefore, there is substantial interest in calibrating ORYZA for US
production systems to evaluate and quantify Yp.

US rice production can be split into three ecological zones, the
Upper Sacramento Valley (CA), the Gulf Coast (TX, LA, and parts
of MS), and the Mississippi River Valley (AR, MO,  and parts of MS)
(Livezey and Foreman, 2004). Although each of these regions has
unique climate characteristics, the climate in the two Southern
regions (generally humid with a small range of diurnal temperature
variation) is more similar to the environment for which ORYZA was
originally developed (the Philippines) compared to the climate in
CA (generally arid/semi-arid with a large range of diurnal temper-
ature variation). Diurnal temperature variation in CA rice growing
areas is driven by cool night winds originating from the San Fran-
cisco Bay (termed the “Delta breeze”). Furthermore, CA growers use
primarily medium-grain temperate japonica rice varieties, whereas
growers in the Southern regions primarily use long-grain tropical
japonica and hybrid rice varieties. By comparison, most varieties
that ORYZA has been calibrated for are long-grain indica and hybrid
types.

In the course of calibration and validation of ORYZA for simula-
tion of Yp in US rice systems, we encountered three challenges with
model performance in terms of agreement between measured and
simulated Yp: (1) LAI simulations in direct-seeded rice exhibited
systematic error correlated with planting density, (2) poor agree-
ment at locations where cool temperatures can cause reduction
of fertile spikelets, and (3) high sensitivity of Yp to the determi-
nation of physiological maturity. The objective of this study is to
investigate via sensitivity analyses of model responses the causes
and potential solutions to these three issues. We  then assess the
suitability of ORYZA for modeling US direct-seeded, temperate rice
production systems using large, multi-year multi-site data sets of
yields from well managed research plots.

2. Methods

2.1. Weather data

Following protocols established for the Global Yield Gap Atlas
(GYGA; www.yieldgap.org), weather stations were selected to
obtain the greatest coverage of rice production area within a 100 km
radius of selected stations (van Bussel et al., 2015) (Figs. 1 and 2).
We selected weather stations first from COOP stations (i.e., stations
operated by state agricultural agencies or grower co-operative net-
works; e.g. agricultural research stations) where available. In cases
where such stations were not available, we  selected stations from
the National Oceanic and Atmospheric Administration National
Centers for Environmental Information database (NOAA-NCEI;
https://www.ncei.noaa.gov). Local agronomists were consulted
during the selection stage to ensure chosen weather stations were
representative of rice production areas in each region. Locations
and elevations of selected weather stations are provided in sup-
plementary information (Table S1). For consistency, incident solar
radiation data from the Prediction of Worldwide Energy Resource
data set from the US National Aeronautics and Space Adminis-
tration (NASA-POWER; http://power.larc.nasa.gov/) were used for
all simulations since incident solar radiation was not collected for
most stations. Previous work has shown that these data are suitable
for Yp modeling purposes (Van Wart et al., 2013, 2015).

2.2. Crop data

Two rice varieties, M-206 and Clearfield XL745 (CXL745) were
chosen to represent the two widely-planted rice types grown in CA
(M-206) and the Southern US (CXL745). M-206 is a widely planted
medium grain japonica rice currently grown on approximately
50% of CA rice area (CA Cooperative Rice Research Foundation,
2014). CXL745 is a non-transgenic, herbicide-resistant hybrid rice
variety widely planted in most Southern states (the most widely
planted rice variety in the USA) (RiceTec, 2015). US  rice produc-
tion systems are direct seeded; CA rice is primarily water-seeded
(i.e.—pre-soaked seed is applied to flooded fields via airplane),
whereas Southern US rice is primarily drill-seeded. Although data
was not collect on site-specific management, management was
assumed to follow recommended best practices at each site. Like-
wise, we assume both varieties are planted at recommended rates;
350 seeds m−2 for M-206 (Hill, 2013) and 50 seeds m−2 for CXL745
(Runsick and Wilson, 2009).

For each variety, calibration data were collected that included
observed dates of key growth stages; emergence, panicle initiation,
50% heading, and R7 (defined as when the first grain on the panicle
transitions from green to yellow color; Counce et al., 2000). For M-
206, the calibration data set included plot-level yields from nine
sites over two  years. For CXL745 the calibration data set included
three or four plots per year at a single location in AR over three
years. All experimental plots were well managed with the goal of
avoiding yield loss from nutrient deficiencies, weeds, insect pests
and disease.

For this project, physiological maturity was  defined as 225 heat
units (approximately 12–17 d) after observed R7 for M-206 and
300 heat units (approximately 15–20 d) for CXL745 (Counce et al.,
2015). Heat units were determined using ORYZA’s hourly approxi-
mation technique (see Bouman et al., 2001 for further detail). Since
R7 typically occurs roughly 15 d following 50% heading, this defini-
tion of physiological maturity coincides with the general guideline
that physiological maturity falls 35–40 d after 50% heading for most
rice varieties (IRRI, 2013). Sensitivity of simulated yields to this def-
inition of physiological maturity is addressed in a following section.
For the southern-most CA site, R7 was  not observed and the date
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Fig. 1. Locations of weather stations and validation data collection sites for the
Sacramento Valley (CA) used for the calibration and validation of ORYZA for rice
variety M-206. Cool night-time winds originating from the San Francisco Bay create
a  temperature gradient from the Delta region (coolest) to the Upper Sacramento
Valley (warmer).

of R7 was estimated based on the relationship between R7 for this
site and the Northern sites in 2015.

To validate the model, we used a larger data set consisting of
experimental plots (M-206 in CA; Fig. 1) or strip-trials (CXL745
in the Southern US; Fig. 2). Both CA and Southern US validation
data were from variety testing trials conducted in farmers’ fields
and under commercial management. For CA, this data set included
plot-level data from the Statewide Variety Trials over 15 years
(1999–2014). Each year, M-206 was planted at six to eight locations
across the Upper Sacramento Valley (Fig. 1). At each location, plots
were 3 m × 6 m replicated three or four times in a completely ran-
domized design. Replicate plot yields (n = 533) were pooled by trial
prior to comparison to simulated Yp (n = 115). Since CA varieties
are pre-soaked prior to seeding, emergence date was assumed to
be the day after sowing. For the Southern US, the validation data set
consisted of strip trials conducted by RiceTec (www.ricetec.com;
Houston, TX) from 2007 to 2014 (n = 223) across locations in the
Southern US (AR, MO,  MS,  LA, and TX) (Fig. 2). Observed emergence
date was recorded for all Southern locations. These data were the
mean yield from two replicate 0.4 ha long strips across a field.

To compare simulated Yp to cases in the validation data set most
likely to be non-limited, we split the data by year and geographic
region (Sacramento Valley, Gulf Coast, and Mississippi Valley) and
the highest yielding 30% of observations in each subset was  com-
pared to simulated Yp. This was deemed necessary because the
validation data was collected from farmers’ fields and not explic-
itly managed to avoid nutrient or pest stresses. The threshold of
30% was used for two reasons: (1) to avoid sites where crop and

Fig. 2. Locations of weather stations and validation data collection sites for the
Gulf Coast and Mississippi Valley (Southern US) rice production areas used for the
calibration and validation of ORYZA for rice variety CXL745.

soil management may  not have been optimal, and (2) to ensure
at least three observations per year per region. All observed yields
were corrected to 14% grain moisture.

2.3. Calibration

Crop and soil management at test sites used for model calibra-
tion were based on recommended “best management” practices
and, in the case of on-farm trials, on farmer experience. Such man-
agement regimes seek to maximize profit by achieving highest
cost-effective yield levels and are not designed to eliminate all bio-
physical stresses. Therefore, it was  expected that a well-calibrated
model would predict Yp values greater than observed yields in most
cases, consistent with work on other crops attempting to quantify
Yp (Cassman, 1999; Lobell et al., 2009). On the other hand, due
to sampling variability and measurement error in both yield and
weather data, it can be expected that simulated Yp will be less
than observed yields at some sites, but these cases should be a
minority in a model that simulates Yp well. Unlike many calibration
efforts where the goal is to minimize the RMSE or absolute error,
we expected the calibrated model would not perform well by these
measures. In effect, the model was intentionally “biased” towards
over-prediction. In this case the “bias” represents the real-world
difficulty to achieve Yp. For example, irrigated maize producers
in central Nebraska consistently achieve yields that are 85% of Yp
(Grassini et al., 2011). Hence, in calibrating the model, we used the
threshold of no more than 10% of observed yields could be larger
than the associated simulated Yp. Ten percent is the expectation
when mean observed yields are 85% of Yp with a coefficient of
variation of 15%.

http://www.ricetec.com
http://www.ricetec.com
http://www.ricetec.com
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Previous work calibrating ORYZA for a range of environments
identified phenological development rates (Table 2) as the most
sensitive factors governing model performance (van Oort et al.,
2011,2015) The base crop file used for both calibrations was  the
“standard crop” file included with ORYZA(v3). Two  other calibrated
crop files of medium-grain varieties (“Nipponbare” and “Takanari”)
were also used as starting points for calibration for M-206 (also
a medium-grain variety), but resulted in poorer predictions com-
pared to the standard crop file. Development parameters were first
tuned using the DRATES(v2) program included with ORYZA(v3).
DRATES(v2) calculates “optimal” values for each of the four devel-
opment rate parameters given the calibration dataset.

After calibration via DRATES(v2), more than 10% of observed
yields were greater than their associated simulated Yp and further
calibration was required. First, we verified that the model simu-
lated the timing of flowering and heading accurately. Development
rates for panicle initiation and flowering were further adjusted
to decrease the absolute prediction error of each of these events
against the calibration set. Then the final development rate for grain
filling was adjusted such that: (1) simulated yields were greater
than observed yields in 90% or greater cases, (2) the timing of pan-
icle initiation and 50% heading were well predicted in each case
(within 4 d of observed), and (3) simulated heat units from planting
to physiological maturity fell within 50 heat units of our observed
physiological maturity (i.e. R7 + 225 GDDs) for each variety.

2.3.1. Relative growth rate of leaves
Using default settings, the model simulated harvest index out-

side of the expected 50–55% (typical of modern high yielding
cultivars in experimental plots; Hill, 2013). Harvest index sim-
ulations were linked to simulated LAI, which was only weakly
responsive to changes in development rates (data not presented).
ORYZA uses planting density only at initialization of the model,
where the LAI at time step 1 is calculated as the product of the
state variable “initial LAI” (LAPE) and the user provided plant den-
sity. After this point, LAI is part of a feedback loop, where (1)
increased LAI leads to greater carbon assimilation, (2) greater car-
bon assimilation increases biomass, including leaves, which in turn
(3) increases LAI at the next time step (Bouman et al., 2001). The
increase in biomass and LAI is moderated by the increasing respira-
tion demands for assimilate by biomass and diminishing assimilate
gains from additional LAI. However, under high planting densities,
LAI and biomass increase too quickly due to the larger starting LAI.
This leads to greater simulated biomass and an associated higher
maintenance demand for assimilate before simulated grain forma-
tion in the model. Therefore, planting density only enters into the
model once, but can lead to larger biomass, lower net-assimilate
available for grain formation, and hence a lower than expected
harvest index. To adjust LAI and thereby harvest index values, the
maximum relative growth rate of leaves (RGRLMX) was  calibrated
for each variety. Changes were made iteratively in 1.0 × 10−4 steps
until harvest index values for both varieties fell within the expected
range of 50–55%. Unfortunately, data was not collected that allowed
independent validation of the RGRLMX calibrations.

2.3.2. Additional calibration (M-206)
Recent work has shown that in arid and semi-arid environments

such as CA, ORYZA’s phenology simulation can have systematic
errors that are correlated with mean temperatures from emergence
to flowering (van Oort et al., 2011, 2015). To mitigate this potential
error, we followed van Oort et al. (2011) and adjusted the cardinal
temperatures (the temperature thresholds used to calculate heat
units) to minimize both the RMSE of predictions from emergence to
50% flowering and the slope of this correlation for the calibration of
M-206. The base (TBD), optimum (TOD), and maximum (TMD) tem-
peratures for phenological development where calibrated using the

‘pheno opt rice3′ program and the “bilinear1” routine. Two search
patterns were used: (1) large steps with TMD  up to 999 ◦C, and
then (2) small steps to narrow in on optimal values. ORYZA was
then calibrated as above using the values for TBD, TOD, and TMD
that resulted in the lowest correlations between temperature and
phenology prediction error from emergence to flowering. This cal-
ibration was then compared to the default cardinal temperatures.

In CA, a temperature gradient exists running north to south that
is driven by the aforementioned “Delta breeze.” Historically, rice
production in the Delta areas of CA (Fig. 1) has experienced lower
yields due to cold-induced spikelet sterility. Parameters control-
ling cold-induced sterility were adjusted for M-206 and simulated
yields compared to observed yields from the sites most likely to be
cold-affected to produce a ‘cold-calibration’ data set (CAL-cold). In
ORYZA, cold-induced sterility is controlled by adjustments to the
threshold (COLDREP, ◦C Tmean), which is the temperature thresh-
old at which cold-induced spikelet sterility occurs. ORYZA’s cold
induced sterility routine accumulates cooling degree-days dur-
ing the critical time just after simulated panicle initiation until
after simulated 50% heading and then applies an adjustment to
grain number at the end of the accumulation period based on the
total cooling degree-days. Adjustments to the threshold were made
incrementally in 0.1 ◦C steps, checking at each step that simulated
yields for the non-cold calibration data set were unaffected by the
changes and the absolute yield prediction error was  reduced for the
CAL-cold data set.

2.4. Sensitivity analyses

During calibration, several anomalies in the simulations
prompted investigation of model performance using sensitivity
analyses. These anomalies fell in two general categories: (1) con-
tinued poor agreement between observed and simulated yields at
sites where weather data indicated low temperatures below the
COLDREP threshold and (2) sensitivity to the designation of physi-
ological maturity.

2.4.1. Cold induced yield losses
To investigate how the model simulated cold stress in responses

to changes in the COLDREP threshold (independent of calibration),
we created a series of altered weather data with adjusted Tmin
between panicle initiation and 50% heading. For this, we used an
artificially constructed data file consisting of the 15-year average
daily values for the Southern-most site in CA, which typically expe-
riences cold induced yield losses. Deviations ranging from −5 to
+5 ◦C were added to the daily observed Tmin during the period
from panicle initiation to 50% heading (as predicted by the model
using the unaltered weather file). Then, five different values of
the cold-induced sterility threshold (COLDREP) from the default
21–29 ◦C were used to simulate spikelet sterility and yield. All other
crop parameters and input data were kept constant. This analysis
provided an illustration of model performance over a range of con-
ditions, some more extreme than might be observed. By doing this,
model irregularities can be observed that might not be seen when
simulating more moderate conditions.

2.4.2. Physiological maturity
In calibration of crop development rates in ORYZA, the user spec-

ifies the dates of panicle initiation, 50% heading, and physiological
maturity (i.e. the time at which there is no further increase in grain
yield). These dates define the duration of vegetative and reproduc-
tive stages, and accurate simulation requires robust assessment of
each these events. Of the three, 50% heading is the most clearly
defined and easiest to observe. Given an accurate date of 50% head-
ing, panicle initiation can be estimated and ultimately has relatively
small impact on the model results. Physiological maturity, on the
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Fig. 3. Simulation results for the validation set for ORYZA calibrated for rice variety
CXL745. Only the top performing sites are shown (top 30%). Each point represents
the average yield from two replicate strip trials conducted by RiceTec from 2007 to
2014. Out of 70 observations in the validation data set, 77.1% were within 15% of
yield potential (Yp), with only 5.7% of observed values being greater than estimated
yield potential. For this project, it was  expected that most observed values should
fall within 15% of estimated Yp.

other hand, is difficult to estimate accurately from other events
but has a large impact on simulated yields. Physiological matu-
rity marks the end point of the simulations and is most accurately
determined by daily measurements of grain carbohydrate accumu-
lation. Most researchers use a proxy measurement which is easier
to observe but may  not reflect true physiological maturity.

Amongst the many different proxy indicators of physiological
maturity used in the literature are: (1) grain moisture thresh-
olds (e.g., 28% grain moisture; Espe et al., 2015), (2) number of
days since planting or heading (e.g., 35 days following 50% head-
ing; IRRI, 2013), and (3) the firmness of the grain (e.g., IRRI,
2013; Moldenhauer and Slaton, 2015). The definition listed in the
ORYZA(v3) training manuals (IRRI) is: “Physiological maturity is
visually identified when the grains on the lower portion of sec-
ondary and tertiary panicles harden and begin to lose their green
color.” However, even this measure is uncertain as the develop-
ment of grain on secondary and tertiary panicles will depend on
tillering density and rate, which is closely linked to planting den-
sity (Hill, 2013). Due to this uncertainty, the date designated as
physiological maturity could differ by 5–10 d, which gives rise to a
large difference in grain filling time and Yp.

We evaluated the ramifications of this uncertainty by adjusting
the development rate for the final crop stage (DVRR), for a single
site/year in CA (‘Canal’ 2013). This site was chosen for its high-yield
potential and close proximity to a reliable weather station (<10 km).
To allow for different grain-filling lengths, DVRR was adjusted from
1.0 × 10−3 to 4.0 × 10−3. This altered the length of the simulated
grain filling time over a range of roughly 40 d.

2.5. Data formatting and analysis

All model output files were analyzed using the R statistics pro-
gram (v. 3.2, R Core Team, 2015). Likewise, weather files were
programmatically constructed from source files or online data
sources using R (v. 3.2, R Core Team, 2015) and the RCurl package (v.
1.95, Temple Lang, 2015). Weather files were assessed for outlier
values and extreme values (e.g. − 40 ◦C Tmin), and suspect values

Fig. 4. Simulation results for the validation set for ORYZA calibrated for rice vari-
ety M-206. Only the top performing sites within each year are shown (top 30%).
Each point represents the mean of three or four experimental plots in the California
Statewide Variety Trials from 1999 to 2014. Open points are the sites that regularly
experience cool temperature induced sterility. Out of 37 observations in the val-
idation data set, 78.4% were within 15% of yield potential (Yp), with only 5.4% of
observed values being greater than estimated yield potential. For this project, it was
expected that most observed values should fall within 15% of estimated Yp.

and missing values were replaced with values from the NASA-
POWER database. In all cases, outlier and missing data consisted
of less than 5% of seasonal measurements.

3. Results

3.1. Validation

For CXL745 in the Southern US, the model simulated yields
well, with 77% of observed yields falling ±15% around simulated Yp
(Fig. 3). Fewer than 6% of observed yields were greater than simu-
lated. Despite only calibrating phenological parameters, the model
captured variations in observed yields quite well, although sev-
eral simulations were conspicuously under-predicted by the model.
Average estimated Yp was  12.3 t ha−1 for the Southern US, with a
range of 8.2–14.5 t ha−1. Observed yields across all sites averaged
9.8 t ha−1, with a range of 4.3–14.2 t ha−1.

For M-206, however, comparable simulation results were
obtained only after calibration of COLDREP (Fig. 4). The number
of observed yields greater than simulated Yp (5.4%) and percent-
age of observed yields within 15% of Yp (78%) were similar to
CXL745. Although the range of observed yields was relatively nar-
row due to selecting the top 30% of observed yields by year, the
model was able to capture differences between yields at several
sites with low Yp. Adjustments to cardinal temperatures as rec-
ommended by van Oort et al. (2011) were able to reduce the
correlation between temperature and prediction error, but at the
cost of increasing prediction error from emergence to 50% head-
ing (Supplemental Fig. 1). Best model performance was achieved
by using default cardinal temperatures, despite some persistent
error in phenology prediction (Fig. 5). Therefore, the final calibra-
tion for M-206 used the default cardinal temperatures (TBD = 8 ◦C,
TOD = 30 ◦C, and TMD  = 42 ◦C). The persistent phenology error
resulted in over-prediction of days to heading in cases where head-
ing was  accelerated and under-prediction in cases where heading
was delayed (Fig. 5). Average estimated Yp for CA was 12.9 t ha−1
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Fig. 5. Observed vs predicted days to 50% heading for rice variety M-206. Cases
where heading was delayed or accelerated compared to average (85 d) are less
accurately predicted by ORYZA.

with a range of 8.7–15.3 t ha−1 (cool sites included) or 14.3 t ha−1

(cool sites excluded). Observed yields across all sites averaged
10.4 t ha−1, with a range of 7.8–14.1 t ha−1.

3.2. Relative growth rate of leaves

The adjustments to RGRLMX required to bring the simulated
harvest index within the range of 50–55% were opposite the plant-
ing densities for each variety. For M-206, which is planted at high
density (350–470 plants m−2, UCCE, 2015), the relative growth rate
had to be decreased from the default of 0.0085–0.0060 (Table 1).
For CXL745, which is planted at low density (40–150 plants m−2,
Runsick and Wilson, 2009), the relative growth rate was increased
to 0.0110 (Table 1). (For the response of harvest index to changes
in both RGRLMX and planting density, please refer Supplemental
Fig. 2).

3.3. Cold responsiveness

Model response to cold temperature was improved with adjust-
ments to COLDREP without influencing simulations of non-cold
affected sites, but the influence of cool temperatures on yield was
still not fully captured by the model (Fig. 4). Sensitivity analyses
revealed simulated yields were only responsive to changes in COL-
DREP greater than 25 ◦C (Fig. 6). Despite greater than 60% simulated
spikelet fertility factor (Fig. 6B), yields increased as Tmin decreased
(Fig. 6A) when COLDREP equaled 25 ◦C or lower. The adjustment
of −5 ◦C brought the average Tmin below temperatures known to
induce sterility (12–15 ◦C) in CA rice production systems (Board
and Peterson, 1982; UCCE 2015) for most of the critical period
between panicle initiation and 50% heading. Complete spikelet
sterility would be expected in this extreme case, yet ORYZA sim-
ulates 4 t ha−1 grain yield. This discrepancy is due to cold-induced
sterility being applied in the model later than the start of grain
accumulation (development stage 1.2 and 1.0, respectively). Thus
for the most cold-affected sites in our data, our calibration of ORYZA
still predicts a difference between observed yields and simulated
Yp of up to 5 t ha−1 (Fig. 4).

3.4. Physiological maturity

Simulated yields of M-206 at a high-yielding site increased by
roughly 230 kg ha−1 for each extra day increase in simulation for
maturity dates earlier in the season (25–35 d after 50% heading,
Fig. 7), though this relationship tapered off as maturity was pushed
later in the season. Our determination of physiological maturity
(based on a number of heat units following the observed date of R7)
resulted in simulations that met  our expectations, with observed
yields roughly 85% of simulated Yp in most cases.

4. Discussion

4.1. Relative growth rate of leaves

Rice has a well-documented plasticity in response to planting
density (UCCE, 2015; Connor et al., 2011; Yoshida, 1981). Rice
plants can aggressively produce tillers at low planting densities

Fig. 6. Sensitivity of ORYZA to changes of cold sterility threshold (i.e., COLDREP parameter) and daily minimum temperature in weather data. The threshold is the Tmean below
which  ORYZA accumulates cold sterility. A higher threshold signifies greater sensitivity to cold. The critical period is defined as the period from just after panicle initiation to
50%  heading (crop development stage 0.75–1.2). Simulations of yield and spikelet fertility factor were not different for thresholds between 21–25 ◦C (not displayed). Due to
the  fact that ORYZA applies a reduction in spikelet number at development stage 1.2, but yield formation begins at development stage 1.0, ORYZA simulates some yield gain
even  at complete spikelet sterility. Increasing yields despite increased spikelet sterility suggests that simulated yields are not sink limited and that decreased temperatures
are  predicted to benefit yield formation, likely due to decreases in respiration.
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Fig. 7. Simulated yield resulting from extending the date of physiological maturity
for  rice variety M-206. The yield increase per day extension of the grain filling period
is strongest early in the simulation. For M-206, 50% heading typically occurs at 85 d
after emergence.

to have equivalent yield components as higher density plantings.
Hence it is possible to observe similar grain yields and harvest index
values across a wide range of planting densities (Hill, 2013). In this
study we had both extremely low and high planting densities, yet
similar observed yields, suggesting differences in relative growth
rates. Changing the RGRLMX partially captured this plasticity of
rice plants. Our values suggest that the hybrid variety (planted at
low densities) has the capacity for much faster growth compared
to the non-hybrid (planted at high densities) which supports pre-
vious reports of increased rates of growth in hybrid compared to
non-hybrid rice varieties (Bueno and Lafarge, 2009). It has also been
observed that the same rice variety sown at higher densities has
lower relative growth rates compared to that same rice variety
sown at low densities (San-oh et al., 2004), further supporting the
results found here.

However, our solution has some notable disadvantages. First, we
did not possess the required data to validate the RGRLMX parame-
ter, therefore the values of RGRLMX for these two varieties should
be treated as an untested assumption until more work can properly
validate these values. Second, our implementation requires manual
adjustment of RGRLMX in response to changes in planting density.
A better implementation would make simulated LAI responsive to
planting density and thereby would reflect the real-world plasticity
of rice plants that is currently missing from the ORYZA model.

It is worth noting that in early calibration attempts, we  found it
possible to calibrate the model using the default values such that
simulated yields approximated the calibration sets, yet the model
performed poorly for the validation set in these cases (data not
presented). It is possible this issue with LAI would have gone unno-
ticed had the only output of concern been yield, or had we  not
had a multi-year, multi-site data set to validate against. Although
this specific issue was relatively easy to resolve via adjustment of
a single parameter, it highlights one of the pitfalls of applying a
crop model to new production systems. Researchers attempting to
use such a model in production systems outside its system of ori-
gin should be aware of these possibilities. Best practices such as
utilizing both a calibration and validation step and inspecting the
complete model output rather than just the output of interest are
critical.

4.2. Cold responsiveness

ORYZA’s subroutine for cold induced sterility during flowering is
empirically derived from the accumulation of cooling degree days

Fig. 8. Comparison of Tmin and Tmean for CA sites between June 25th and Aug. 28th
(the range of simulated panicle initiation to 50% heading in CA rice for all planting
dates) from 1999 to 2014. The vertical dashed line (12 ◦C) is widely regarded as the
threshold at which cold induced sterility is experienced by CA rice varieties.

(Bouman et al., 2001). Ultimately, we show here that this sub-
routine is not adequate, especially for environments such as CA
where there are large range of diurnal temperature variation. Cool-
ing degree days are calculated as a function of the number of days
with Tmean below a certain threshold (21 ◦C by default). This fails
to capture cold induced sterility in environments where the diur-
nal swing of temperatures is large. For example, a site with Tmax of
30 ◦C and Tmin of 20 ◦C will have the same cooling degree days as
one with Tmax of 40 ◦C and Tmin of 10 ◦C.

Research supports the importance of Tmin rather than Tmean dur-
ing the sensitive period between panicle initiation and 50% heading
for the determination of cold-induced sterility (Farrell et al., 2006).
For CA rice varieties (widely regarded as cold-tolerant) Tmin of
12–15 ◦C during this critical period is generally acknowledged as
the threshold for cold-induced sterility (Board et al., 1980; Board
and Peterson, 1982). In our comparison of Tmin against Tmean for
CA sites, it is clear that if rice experiences spikelet sterility below
12 ◦C Tmin, this corresponds to a 10 ◦C range of observed Tmean

values (Fig. 8). To fully capture every occurrence of cool temper-
atures at or below 12 ◦C, a Tmean-based threshold would need to be
increased to roughly 25 ◦C. However, at this high threshold many
occurrences of Tmin above 12 ◦C would also be considered as cool
enough to induce sterility, creating over-sensitivity in the model.
Thus it is clear that for environments with a large range of diur-
nal temperature fluctuations, ORYZA cannot hope to capture cold
sterility appropriately using the existing Tmean-based model struc-
ture.

Unfortunately, there are several other sources of error that can
also lead to gross inaccuracies in the modeling of cold induced yield
reductions. First, since ORYZA’s crop model is phenology driven,
and since cold induced sterility impacts the crop during a relatively
narrow window between panicle initiation and flowering, the accu-
racy of ORYZA’s cold sterility routine is directly tied to the accuracy
of the phenology sub-model. Second, sterility is highly dependent
on the micro-climate directly surrounding the panicle (Julia and
Dingkuhn, 2013) which might not be accurately reflected in the
weather data. Third, the model assumes that cold induced sterility
can be modeled as an accumulation of cold-stress over the period
from panicle initiation, yet the pattern of flowering is non-linear
(Yoshida, 1981) and cool nights during certain points of flower-
ing may  have greater impact than others. Lastly, ORYZA reduces
spikelet number all at once at a relatively late stage (development
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stage 1.2), but simulates yield beginning at development stage 1.0.
Due to this, ORYZA simulates some yield gain even at complete
spikelet sterility (Fig. 6).

Hence there are broadly four scenarios where model simulations
of cold induced sterility will be inaccurate: 1) The site experiences
a large range of diurnal temperature fluctuation and any thresh-
old based on Tmean cannot accurately capture cool temperatures
experienced by the crop, 2) phenology is not accurately modeled,
so the simulated crop experiences a different set of temperatures
than the observed crop, 3) phenology is accurately modeled, but
climate data does not reflect the micro-climate experienced by
the developing spikelets, and 4) a short period of cool tempera-
tures coincides with peak spikelet sensitivity, which will have little
impact on the total accumulated cooling degree days in the model
but a large impact on observed sterility. The structure of ORYZA’s
sub-routine for cold-induced sterility is poorly equipped to counter
these sources of error. Taken together, these issues suggest that
the sub-routine ORYZA uses to simulate cold effects on sterility
requires substantive revision.

4.3. Physiological maturity

We  show that simulated yields are highly influenced by adjust-
ing the date of physiological maturity. Yields increased by roughly
the theoretical maximum carbohydrate accumulation for a C3
crop under non-limited situations (200–300 kg ha−1; Connor et al.,
2011). Although this behavior is not unexpected, it is important to
highlight how critical the determination of physiological maturity
is for accurate modeling of crop yield performance. As mentioned
previously, there are many definitions of physiological maturity
currently in use which all imply different dates of physiological
maturity. As shown here, in non-limiting environments relatively
small differences in physiological maturity can result in large dif-
ferences in simulated Yp. Users of crop models need to be explicit
about how physiological maturity was determined and the sen-
sitivity of their conclusions to this measure. Unfortunately, this is
rarely the case (e.g., Zhang and Tao, 2013; Amiri et al., 2014; Artacho
et al., 2011). This is especially important in cases where matu-
rity is estimated from inaccurate proxies such as average harvest
date, approximate days since planting, etc. It should be noted that
there are many determinants of harvest maturity (i.e., when the
crop is deemed ready to harvest) that are distinct from the deter-
minants of physiological maturity. Determining harvest maturity
often involves factors other than the point at which carbohydrate
accumulation ceases (e.g., grain quality, drying, and avoidance of
losses during harvest), and therefore indicators of harvest tim-
ing often are not suitable for determining physiological maturity.
In cases where these inaccurate measures are necessitated, we
recommend a sensitivity analysis to help readers understand the
implications of error in the estimate of physiological maturity.

4.4. Final calibration and validation

To our knowledge, this is the first large-scale effort to calibrate
and validate ORYZA for US rice production systems. Furthermore,
it is unique for modeling studies to have a validation data set of
the quality and temporal and spatial scope such as ours here. We
found that for the Southern US, the model performed well after
calibration of only the four development rate parameters and cal-
ibration of RGRLMX (Table 1). This is possibly due to similarities
between the Southern US and the environment that ORYZA was
originally developed under. It is noteworthy that the ORYZA model
can perform well outside its original domain with such a simple
calibration.

This stands in contrast to the calibration of ORYZA for CA. Addi-
tional calibration of cold-sterility thresholds was needed before

Table 1
Calibrated ORYZA parameter values for two  varieties representative of US  rice
varieties.

Variety DVRJ DVRI DVRP DVRR RGRLMX COLDREP

Default 0.00077 0.00076 0.00078 0.00178 0.0085 21.0
CXL745 0.00088 0.00076 0.00080 0.00151 0.0110 21.0
M-206 0.00159 0.00076 0.00088 0.00235 0.0060 23.3

Table 2
ORYZA parameter abbreviations and definitions.

Abb. Description

DVRI Development rate for early juvenile phase
DVRJ Development rate for photo-period sensitive phase
DVRP Development rate for flowering phase
DVRR Development rate for grain filling phase
RGRLMX Maximum relative growth rate for leaves
TBD Base temperature for phenological development
TOD Optimum temperature for phenological development
TMD  Maximum temperature for phenological development
COLDREP Threshold for cold induced sterility

the model could capture yield trends as well as in the Southern
US (Table 1). Persistent poor simulation of Yp for the most cold-
affected site (Fig. 4) suggests model inaccuracies in simulation of
cold-induced sterility need to be better addressed for better fit.
While it is possible that the use of a modified version of ORYZA with
a different cold-sterility routine (e.g.—ORYZA2000v2n13sXX; van
Oort et al., 2015) may  have been able to simulate CA rice produc-
tion more accurately, we sought to calibrate and validate the most
widely used branch of ORYZA (v. 3). In general, this fragmentation
of the model is problematic; ideally improvements to the model
structure would be integrated into the main branch when possible.
That said, current rice production in the most cold-affected region
(the Delta region) of CA is limited to less than 3000 ha (less than
10% of CA rice production area; Fig. 1). Hence this deficiency in the
model may  have little impact on region-wide estimates of current
Yp. However, given that all CA sites have some potential to expe-
rience sterility inducing night-time temperatures, the impact may
extend beyond just the Delta region in certain years. The develop-
ment of a more accurate cold-sterility routine would improve our
understanding of mechanism leading to cold-induced sterility, and,
while beyond the scope of this effort, is needed for more accurate
simulation of this system and systems like it.

Since ORYZA relies on phenology to trigger various events
throughout the simulation, it is also possible that the persistent
phenology error we  encountered (Fig. 5) has contributed to the
inaccuracy of the model simulations. Contrary to van Oort et al.
(2011), calibration of cardinal temperatures did not improve model
performance (Supplemental Fig. 1) and therefore default cardinal
temperatures were used in our final calibration for both varieties.
Similar results are reported and more thoroughly analyzed by Shar-
ifi et al. in CA rice production systems. A potential cause of this
discrepancy with van Oort et al. (2011) is the bias-variance tradeoff
in predictive models (James et al., 2015). By removing temperature
bias for the calibration data set, the model was  potentially over-fit
which would account for increased variance for the validation data
set. Unfortunately, van Oort et al. (2011) did not utilize separate cal-
ibration and validation steps, so we  are unable to assess whether
they would have seen similar results with out-of-sample predic-
tions. Likewise, we lack the required data for the Southern US to
investigate if this error is unique to CA or present throughout US rice
simulations. Lastly, it is difficult to assess the specific cause of this
error in the face of other differences from the system that ORYZA
was developed for (e.g., arid to semi-arid climate with large range
of diurnal variation, direct-seeded rice at extremely high seeding
rates via water-seeding, varieties developed with quality as a pri-



M.B. Espe et al. / Field Crops Research 193 (2016) 123–132 131

ority, little disease or pest pressure, etc.). Further investigation is
needed to determine the cause and scope of this persistent error
and the mechanism behind this discrepancy from van Oort et al.
(2011).

Estimates of Yp in this study differ substantially from previous
estimates. For example, all estimates in this study (Figs. 3 and 4)
were much less than those of Sheehy and Mitchell (2015) for sub-
tropical semi-dwarf rice Yp (20.1 t ha−1). However, their estimate
assumes a longer growing season (168 d) than is feasible in tem-
perate regions. Therefore, our estimates are likely more applicable
to US rice production systems. On the other hand, estimates of Yp
from our study are generally higher than estimates of rice Yp based
on the maximum average regional yields in similar climates (e.g.,
Mueller et al., 2012; Foley et al., 2011). Our results suggest, contrary
to these previous studies, there may  be an exploitable yield gap
in these highly intensified rice production systems. Further work
is needed to quantify the yield gap for these systems using these
revised estimates.

Lastly, while we were able to achieve an acceptable calibration
of ORYZA for US rice production, a full calibration of the model using
more extensive data on carbohydrate partitioning throughout the
season could further improve model performance and provide val-
idation for our values for relative growth rates. However, more
extensive calibration would not address the fundamental issues
with the CA calibration (phenology error and poor simulation of
cold-sterility). Modification of the model structure is required to
address these issues.

5. Conclusions

ORYZA can adequately simulate Yp for Southern US envi-
ronments with straightforward calibration of variety-specific
phenological parameters. Simulation of Yp for CA required more
extensive calibration with attention to representation of cold tol-
erance and physiological maturity. More extensive calibration,
however, will not address structural deficiencies, such as the mod-
eling of plasticity in tillering or cold-induced sterility. Accurately
capturing these complex phenomena will likely require updating
several structural components of the model. Despite these issues,
we show that ORYZA can be acceptably calibrated and validated
for the majority of US rice production environments, both in the
Southern US and CA.
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Supplemental Information 

Supplemental Table 1: Weather stations used to simulate yields in US rice 

production systems 

State Station Name Latitude Longitude Elevation (m)  

LA Sweet potato a 32.100 -91.700 21 

LA Rice center (Crowley) a 30.220 -92.370 6 

MS Stoneville b 33.430 -90.910 38 

MS Lyon b 34.220 -90.540 53 

AR Stuttgart c 34.480 -91.420 64 

AR ASU d 35.850 -90.690 79 

AR Corning d 36.420 -90.586 88 

CA Durham e 39.610 -121.820 130 

CA Colusa e 39.230 -122.020 55 

CA Lodi West e 38.130 -121.390 25 

CA Verona e 38.800 -121.610 24 

TX Beaumont f 30.070 -94.302 5 

TX Eagle Lake f 29.600 -96.345 53 
 

Sources: a http://weather.lsuagcenter.com/; b www.deltaweather.msstate.edu; c 

http://www.ars.usda.gov/Main/Docs.htm?docid=23623; d http://www.ncdc.noaa.gov/data-access/land-based-station-

data; e http://www.cimis.water.ca.gov/; f https://beaumont.tamu.edu/climaticdata/  

 

  



Supplemental Table 2. Values of calibrated cardinal temperatures. Calibration followed the steps 

outlined in van Oort et al. (2011) to calibrate the base (TBD), optimum (TOD), and maximum 

(TMD) temperatures for phenological development using the ‘pheno_opt_rice3’ program and the 

“bilinear1” routine. Two search routines were used: (1) large step with TMD up to 999°C, and 

then (2) small step to narrow in on optimal values. The values displayed are those that resulted in 

the lowest correlation between temperatures and phenology prediction error from emergence to 

flowering. Calibration reduced the correlation between temperature and phenology prediction 

error, but at the cost of increased error in phenology predictions (Supplemental Fig. 1). 

  

 Base temperature 

(TBD) 

Optimum temperature 

(TOD) 

Maximum temperature 

(TMD) 

Calibrated value 4.0 26.0 40.0 

  



 

Supplemental Figure 1: Observed date of 50% heading verses the predicted date of 50% 

heading for model simulations in which the cardinal temperatures used to calculate heat units 

have been calibrated according to van Oort et al. (2011). Calibration of cardinal temperatures 

decreased the correlation between phenology error and temperature in the calibration data set, 

but resulted in poorer predictive performance in the validation data set compared to using 

default temperatures (RMSE of 7.6 verses 5). 



 

Supplemental Figure 2: Sensitivity of simulated harvest index values in the ORYZA crop 

model to changes in the maximum relative growth rate of leaves (RGRLMX) for two values of 

RGRLMX and plant density values ranging from 50 to 500 plants m-2. The target harvest index 

was between 50 and 55%, typical of modern high-yielding rice varieties. In order to achieve 

these harvest index values, RGRLMX was assumed to be 0.0060 for variety M-206 (planted at 

350 plants m-2) and 0.0110 for variety CXL745 (planted at 50 plants m-2). 
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