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Wheat streak mosaic virus (WSMV) and Triticum mosaic virus
(TriMV) are economically important viral pathogens of wheat.
Wheat cvs.Mace, carrying theWsm1 gene, is resistant toWSMV
and TriMV, and Snowmass, with Wsm2, is resistant to WSMV.
Viral resistance in both cultivars is temperature sensitive and is
effective at 18�C or below but not at higher temperatures. The
underlying mechanisms of viral resistance of Wsm1 and Wsm2,
nonallelic single dominant genes, are not known. In this study,
we found that fluorescent protein–tagged WSMV and TriMV
elicited foci that were approximately similar in number and size
at 18 and 24�C, on inoculated leaves of resistant and susceptible
wheat cultivars. These data suggest that resistant wheat cultivars
at 18�C facilitated efficient cell-to-cell movement. Additionally,
WSMV and TriMV efficiently replicated in inoculated leaves of
resistant wheat cultivars at 18�C but failed to establish systemic
infection, suggesting thatWsm1- andWsm2-mediated resistance
debilitated viral long-distance transport. Furthermore, we found
that neither virus was able to enter the leaf sheaths of inoculated
leaves or crowns of resistant wheat cultivars at 18�C but both
were able to do so at 24�C. Thus, wheat cvs.Mace and Snowmass
provide resistance at the long-distance movement stage by spe-
cifically blocking virus entry into the vasculature. Taken together,
these data suggest that both Wsm1 and Wsm2 genes similarly
confer virus resistance by temperature-dependent impairment of
viral long-distance movement.

Viruses contain a relatively small genetic coding capacity and,
hence, must successfully interact with plant machinery for rep-
lication, movement, and spread. In the process of these interac-
tions, sometimes viruses induce disease in plants. In turn, plants
have developed diverse mechanisms to combat pathogens, in-
cluding viruses (Mandadi and Scholthof 2013). One of several

mechanisms employed by plants to defend against viral infections
is dominant resistance (R) genes encoding nucleotide binding site
leucine-rich repeat proteins (NB-LRR) (de Ronde et al. 2014;
Fraser 1990). The R gene–mediated resistance operates on the
basis of the gene-for-gene model, in which a host R gene–
encoded protein will recognize a pathogen-derived avirulence
factor (Jones and Dangl 2006). The R gene response in the ma-
jority of pathosystems results in expression of a hypersensitive
response (HR) or extreme resistance (ER) (Bendahmane et al.
1999; Hajimorad et al. 2005, 2006; Moffett 2009). In both HR
and ER responses, pathogens are restricted to the site of entry,
thus preventing systemic spread. Additionally, several unusual
R genes differ from the classical NB-LRR class R gene–mediated
HR or ER mode of action. The nonconventional R genes include
RTM1, RTM2, and RTM3 genes in Arabidopsis against Tobacco
etch virus (TEV) (Chisholm et al. 2001; Cosson et al. 2010;
Whitham et al. 2000), Scmv2 in maize against Sugarcane mosaic
virus (Ingvardsen et al. 2010), Rsv4 in soybean against Soybean
mosaic virus (SMV) (Saghai Maroof et al. 2010), and Tm-1 in
tomato against Tomato mosaic virus (ToMV) (Ishibashi et al.
2007). The above R genes provide resistance by restricting viral
replication or cell-to-cell and long-distance movement or a
combination thereof (Chisholm et al. 2001; Kang et al. 2005a;
Khatabi et al. 2012; Mahajan et al. 1998).
Candidate gene approaches have identified a large number

of natural recessive R genes against several plant viruses
(Revers and Nicaise 2014; Truniger and Aranda 2009; Wang and
Krishnaswamy 2012). Most of these recessive genes encode the
eukaryotic translation initiation factor 4E (eIF4E) or its isomers,
with mutation of a few amino acids that prevent physical in-
teraction with the virus-encoded proteins without being lethal to
plants. Though recessive resistance appears to be more frequent
for potyviruses, it has also been observed for other viruses such
as bymo-, cucumo-, ipomo-, sobemo-, carmo-, and waikiviruses
(Wang and Krishnaswamy 2012). In potyviruses, interactions
between host translation initiation factors and virus-encoded VPg
are crucial for infection of plants (Kang et al. 2005b; Wittmann
et al. 1997; Yeam et al. 2007). A few amino acid mutations
within eIF4E and eIF(iso)4E provided resistance to potyvirus
infection in a range of plants, primarily due to debilitating
interactions between translation initiation factors and VPg
(Revers and Nicaise 2014; Wang and Krishnaswamy 2012;
Wittmann et al. 1997).
Successful infection of a plant by a virus requires a series of

interactions between host and viral factors for replication,
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suppression of host defense, and movement (Harries and Ding
2011; Heinlein 2015; Nelson and Citovsky 2005; Voinnet et al.
1999). Systemic spread of viruses throughout plants occurs
mainly through successive cycles of cell-to-cell and long-distance
movement. Virus movement in plants is an active process me-
diated by virus-encoded movement proteins through interactions
with host factors (Benitez-Alfonso et al. 2010; Harries and Ding
2011; Waigmann et al. 2004; Wang et al. 1998; Xoconostle-
Cázares et al. 2000). Interrupting these interactions by silencing
or mutation of host factors has been postulated for recessively
inherited ‘passive resistance’ in plants (Fraser 1990).
Wheat streak mosaic virus (WSMV) and Triticummosaic virus

(TriMV) are the type species of genera Tritimovirus (Stenger
et al. 1998) and Poacevirus (Fellers et al. 2009; Tatineni et al.
2009), respectively, in the family Potyviridae. Both viruses are
transmitted mechanically by rub-inoculation at approximately
100% and are efficiently transmitted by the wheat curl mite
Aceria tosichella Keifer (McMechan et al. 2014; Seifers et al.
2009; Slykhuis 1955). WSMV is an economically important
wheat virus in the Great Plains region of the United States, with
estimated annual yield losses of 2 to 5% with 100% losses in
localized infections (Brakke 1987; French and Stenger 2004).
TriMV, a recently discovered virus, is widespread in the Great
Plains region (Burrows et al. 2009; Byamukama et al. 2013;
Seifers et al. 2008). The impact of TriMV on yield loss is not
known; however, WSMV and TriMV interact synergistically in
coinfected wheat, causing increased disease severity and yield
losses (Byamukama et al. 2012, 2014; Tatineni et al. 2010).
WSMVand TriMV virions contain single 9.4- and 10.3-kilobase
(kb) genomic RNA, respectively, encoding a single open reading
frame (ORF) of about 350-kDa polyproteins. The polyproteins of
bothWSMVand TriMVare likely processed into mature proteins
by three virus-encoded proteinases, P1, HC-Pro, and NIa-Pro.
The P1 proteins of WSMV and TriMV have been identified as
suppressors of RNA silencing and enhancers of pathogenicity
(Tatineni et al. 2012; Young et al. 2012). HC-Pro of WSMV is
dispensable for systemic infection of wheat but is required for
mite transmission (Stenger et al. 2005a and b, 2006). Inde-
pendent of its function for virion production, WSMV coat
protein (CP) is identified as a multifunctional protein required
for cell-to-cell movement and is a long-distance transport de-
terminant for extension of virus host range (Tatineni and French
2014; Tatineni et al. 2011b, 2014). Additionally, P3N-PIPO is
also implicated in cell-to-cell movement of WSMV (Choi et al.
2005).
In wheat, genetic resistance has been used for management

of viral diseases by deployment of nonallelic Wsm1 or Wsm2
genes (Graybosch et al. 2009; Lu et al. 2011). Wsm1, a single
dominant R gene present in wheat cultivar Mace, was originally
transferred from intermediate wheatgrass [Thinopyrum inter-
medium (Host) Barkworth & D. R. Dewey] (Graybosch et al.
2009).Wsm2, a single dominant R gene of unknown origin, was
originally identified in wheat germplasm line CO960293-2
(Haley et al. 2002) and has been incorporated into wheat cvs.
Snowmass (Haley et al. 2011) and RonL (Seifers et al. 2007).
Wheat cv. Mace is genetically near homogeneous for virus re-
sistance, while ‘Snowmass’ is heterogeneous in its reaction to
WSMV, as approximately 20% of the plants remain susceptible
to WSMV at 18�C (Haley et al. 2011). Both Wsm1 and Wsm2
are temperature-sensitive genes conferring high-levels of re-
sistance to WSMVand TriMV (Wsm1) and WSMV (Wsm2), at
or below 18�C but are ineffective at higher temperatures
(Graybosch et al. 2009; Haley et a. 2011; Seifers et al. 1995,
2007; Tatineni et al. 2010). Although the molecular basis for
dominant genetic resistance is understood for a few virus-host
systems, none include cereals (de Ronde et al. 2014; Kang et al.
2005a). Themechanisms of temperature-dependent virus resistance

of theWsm1 andWsm2 genes in wheat cvs. Mace and Snowmass,
respectively, are not known.
Additionally, resistance to WSMV is also reported in maize

inbred line Pa405 (McMullen et al. 1994). WSMV resistance in
maize is controlled by Wsm1, Wsm2, and Wsm3 dominant genes
located on chromosome 6, 3, and 10, respectively (Jones et al.
2011;McMullen et al. 1994).WSMV-resistant genes in wheat and
maize were named as per the convention of naming host genes
based on phenotype. However, there is no evidence to suggest that
WSMV-resistant genes in wheat and maize are related.
Previously, fluorescent protein–tagged WSMV and TriMV

were used to monitor virus movement in wheat and to identify
viral determinants involved in cell-to-cell and long-distance
movement (Tatineni et al. 2011a and b, 2014, 2015; Tatineni
and French 2014). In this study, red fluorescent protein (RFP)-
tagged WSMV and green fluorescent protein (GFP)-tagged
TriMV were used to explore the resistance mechanisms ofWsm1
and Wsm2 genes in wheat cvs. Mace and Snowmass, resp-
ectively. At 18�C, both WSMVand TriMVefficiently replicated
and moved cell-to-cell in inoculated leaves of resistant wheat
cultivars but the long-distance transport was debilitated. Addi-
tionally, the failure of long-distance movement of WSMV and
TriMV in resistant wheat cultivars was found to be due to in-
ability of these viruses to enter the vasculature. Taken together,
these data suggest thatWsm1 andWsm2 gene–based resistance in
wheat cultivars is due to temperature-dependent impairment of
viral long-distance movement with no significant effect on virus
replication and cell-to-cell movement.

RESULTS

Development of RFP-tagged WSMV.
Availability of fluorescent protein–tagged viruses facilitates

examination of viral resistance mechanisms of wheat cvs. Mace
and Snowmass. Recently, a GFP-tagged TriMV was developed
with stable and efficient expression of cycle 3 GFP (Fukuda
et al. 2000) in local and systemically infected wheat leaves
(Fig. 1) (Tatineni et al. 2015). Previously, the cycle 3 GFP ORF
fused to a heptapeptide NIa-Pro cleavage site located between
the 6K1/CI cistrons in WSMV was efficiently expressed as
aggregate-like fluorescent structures, which facilitated efficient
tracking of the virus in wheat (Tatineni and French 2014; Tatineni
et al. 2011a, 2014). In the present study, an RFP-tagged WSMV
was developed by fusing an RFP ORF (Campbell et al. 2002) to a
heptapeptide cleavage site located between the 6K1/CI cistrons
to obtain WSMV-RFP-6K1/CI(7aa) (Fig. 1A). The RFP is re-
leased by a cleavage of P1 in cis at the C-terminus of P1 between
tyrosine and glycine residues and a cleavage at the C-terminus of
RFP in the 6K1/CI heptapeptide cleavage site by NIa-Pro in trans
between glutamine and serine residues (Fig. 1A).
In vitro transcripts of WSMV-RFP-6K1/CI(7aa) (here after

named as WSMV-RFP) and TriMV-GFP-NIb/CP(9aa) (renamed
as TriMV-GFP) elicited infection foci on inoculated leaves of
susceptible wheat cv. Tomahawk, followed by efficient systemic
infection in upper noninoculated leaves at 9 to 14 days post-
inoculation (dpi) (Fig. 1B). These results demonstrate that fluo-
rescent protein–tagged WSMV and TriMV can be used to track
the viruses in resistant wheat cvs. Mace and Snowmass and as-
certain mechanisms of virus resistance in these cultivars.

Wheat cvs. Mace and Snowmass screening for resistance
against WSMV and TriMV.
The reaction of ‘Mace’ and ‘Snowmass’ to wild-type WSMV

or TriMV at 18�C (in a growth chamber) and 24�C (in a green-
house, at 20�C minimum and 26�C maximum, with a mean
temperature of 24�C) was examined by inoculating wheat seed-
lings at the two-leaf stage, with a 1:20 dilution of crude sap

Vol. 29, No. 9, 2016 / 725



extracted from WSMV- or TriMV-infected wheat leaves. Sus-
ceptible wheat cv. Tomahawk was included as a positive con-
trol. The upper noninoculated leaves were examined for
symptom development at 14 and 21 dpi. Wheat cvs. Tomahawk
and Snowmass inoculated with WSMV or TriMV elicited
symptoms by 14 dpi in 100% of plants at 24�C (Table 1). Both
WSMVand TriMV caused stunting of plants and elicited severe
mosaic and mottling symptoms on ‘Tomahawk’ and ‘Snow-
mass’ plants at 24�C by 21 dpi (Fig. 2A). Additionally, WSMV
induced large chlorotic stripes and yellowing of lower non-
inoculated leaves but TriMV did not. At 24�C, WSMV and
TriMV elicited systemic infection in 92 to 95% and 100% of
wheat cv. Mace by 14 and 21 dpi, respectively (Table 1). Both
WSMV and TriMV induced slight stunting of plants with
chlorotic streaks and mosaic and mottling symptoms on wheat
cv. Mace by 21 dpi. Also, WSMV but not TriMV induced large

chlorotic stripes and yellowing of a few lower leaves by 21 dpi
(Fig. 2A). These results confirmed that wheat cvs. Mace and
Snowmass are not resistant to WSMV and TriMV at the 24�C
mean temperature present in the greenhouse.
At 18�C, wheat cv. Mace inoculated with WSMVor TriMV

elicited systemic symptoms only in 0 to 2% of plants by 14 dpi
and in 2 to 3% of plants by 21 dpi (Table 1; Fig. 2A), con-
firming that ‘Mace’ is resistant to both WSMV and TriMV at
18�C. TriMVefficiently infected wheat cv. Snowmass in 100%
of inoculated plants at 14 dpi, with moderate mosaic and mot-
tling symptoms in upper noninoculated leaves and stunting of
plants by 21 dpi (Table 1; Fig. 2A). In contrast, at 18�C,WSMV
infected only 34 and 37% of inoculated ‘Snowmass’ plants by
14 and 21 dpi, respectively (Table 1; Fig. 2A). Though Haley
et al. (2011) reported 20% of ‘Snowmass’ plants were susceptible
to WSMVat 18�C, we found a slightly higher percentage (34 to

Fig. 1. Visualization of infection elicited by fluorescent protein–taggedWheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV). A, Schematic
diagrams of genome organization of red fluorescent protein–tagged (RFP, indicated by a red rectangle) WSMV (WSMV-RFP-6K1/CI[7aa]) and green
fluorescent protein–tagged(GFP, indicated by a green rectangle) Triticum mosaic virus (TriMV) (TriMV-GFP-NIb/CP[9aa]). The expanded view below the
genome organization map of WSMV-RFP-6K1/CI(7aa) shows the C-terminus of the P1 cistron, followed by the RFP open reading frame fused to the NIa-Pro
heptapeptide cleavage site located between 6K1/CI cistrons and the N-terminus of HC-Pro. The first and last amino acids of RFP are indicated. The locations of
P1 cleavage in cis and NIa-Pro cleavage in trans at the engineered NIb/CP heptapeptide cleavage sites are indicated with an arrow and arrowhead, respectively.
Construction and characteristic features of TriMV-GFP-NIb/CP(9aa) were described previously by Tatineni et al. (2015). For simplicity, WSMV-RFP-6K1/CI
(7aa) and TriMV-GFP-NIb/CP(9aa) are renamed as WSMV-RFP and TriMV-GFP, respectively. B,Visualization of local infection foci on inoculated leaves at 5
days postinoculation (dpi) and systemic infection in upper noninoculated leaves at 14 dpi elicited by in vitro transcripts of WSMV-RFP and TriMV-GFP on
wheat cv. Tomahawk. Inoculated leaves were observed under a Stereo Discovery V12 fluorescence microscope using a RFP or GFP filter. The brightness of
wild-type WSMV- and TriMV-infected leaf images were adjusted to see the leaf background under RFP and GFP filters, respectively. Bars represent 500 µM.
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37%) of ‘Snowmass’ was susceptible to WSMV (Table 1). It is
unknown if susceptible plants lack the Wsm2 gene or if this
variable response is due to differential gene expression among
plants of this cultivar.
To exclude the possibility of either symptomless infection, low

levels of accumulation of viruses in wheat cultivars, or both, total
RNA extracted from upper noninoculated leaves of wheat plants
at 21 dpi was used as the template for reverse transcription po-
lymerase chain reaction (RT-PCR) amplification with CP-
specific primers of WSMVor TriMV. Both WSMV and TriMV
infected all wheat cultivars at 24�C, as RT-PCR products were
readily obtained (Fig. 2, lanes 4 to 6). No RT-PCR product was
amplified from 18�C incubated ‘Mace’ plants inoculated with
WSMV or TriMV (Fig. 2, lane 1). At 18�C, RT-PCR amplifi-
cation was obtained from ‘Snowmass’ plants inoculated with
TriMV but not from WSMV-inoculated asymptomatic plants
(Fig. 2, lane 2). In ‘Tomahawk’, RT-PCR products were obtained
fromWSMVor TriMV-inoculated plants at 18�C (Fig. 2, lane 3).
These data revealed that, at 18�C, the Wsm1 gene in ‘Mace’
confers resistance to WSMV and TriMV and Wsm2 of ‘Snow-
mass’ provides resistance to WSMV but not to TriMV.

Wheat cvs. Mace and Snowmass exhibit
similar levels of resistance
to fluorescent protein–tagged WSMV and TriMV.
The fluorescent protein–tagged viruses facilitate examina-

tion of the involvement of viral replication, cell-to-cell move-
ment, long-distance transport, or a combination thereof in
wheat cultivar resistance to WSMV and TriMV. It is important
to know whether wheat cultivars elicit similar levels of resistance
to fluorescent protein–taggedWSMVand TriMV compared with
wild-type viruses. Wheat cvs. Mace, Snowmass, and Tomahawk
were inoculated at the two-leaf stage with crude sap of WSMV-
RFP, TriMV-GFP, or both at a 1:20 dilution. The upper non-
inoculated leaves of wheat cultivars were examined for the
presence of fluorescent foci in wheat plants inoculated with
WSMV-RFP, TriMV-GFP, or both. Awheat plant was considered
positive for virus infection if a single fluorescent focus was
observed in upper noninoculated leaves.
At 24�C, WSMV-RFP and TriMV-GFP efficiently infected

‘Mace’ and ‘Snowmass’ at 81 to 100% by 14 dpi and 100% by
21 dpi, similar to infections on ‘Tomahawk’, a susceptible
wheat cultivar (Table 2). At 18�C, WSMV-RFP and TriMV-
GFP infected Mace at 0 to 6% by 14 dpi and 6 to 13% by 21 dpi
compared with 100% infection of ‘Tomahawk’ (Table 2). As
expected, TriMV-GFP infected 100% of ‘Snowmass’ plants by
14 dpi and WSMV-RFP infected 22 and 28% of plants by 14
and 21 dpi, respectively (Table 2). These data suggested that
‘Mace’ and ‘Snowmass’ are similarly resistant to wild-type

(Table 1) and fluorescent protein–tagged (Table 2) viruses. Slightly
increased infection rate of ‘Mace’ by WSMV-RFP or TriMV-GFP
could be due to more stringent assay with fluorescent protein–
tagged viruses, as a single infection focus in upper noninoculated
leaves was considered positive for virus infection.

Coinoculation of wheat cvs. Mace and Snowmass
with WSMV and TriMV failed
to overcome temperature-dependent resistance.
WSMV and TriMV interact synergistically in coinfected

wheat, with increased disease severity and virus concentration
(Tatineni et al. 2010). Coinoculation of ‘Mace’ and ‘Snow-
mass’ with WSMV-RFP and TriMV-GFP was evaluated to
determine whether coinfection can overcome temperature-
dependent resistance of these wheat cultivars. At 18�C, in
coinoculated ‘Mace’, WSMV-RFP and TriMV-GFP systemi-
cally infected 0 and 4.5% of the plants by 14 dpi and 9.0% of
plants, each, by 21 dpi, respectively, similar to infection by the
individual viruses (Table 2). Similarly, no significant increase
in ‘Snowmass’ infection by WSMV-RFP was observed in plants
coinoculated with TriMV-GFP (Table 2). These data revealed
that coinoculation of ‘Mace’ and ‘Snowmass’ with WSMV and
TriMV did not alter wheat cultivar resistance.

Wheat cultivar resistance to WSMV and TriMV
is not at virus cell-to-cell movement.
The above data demonstrates that expression of fluorescent

proteins by WSMV or TriMV had no discernible effect on
ability to infect wheat cvs. Tomahawk, Mace, or Snowmass.
Hence, fluorescent protein–tagged viruses were used to explore
whether resistance of ‘Mace’ and ‘Snowmass’ affects cell-to-
cell or long-distance movement. Cell-to-cell movement of
WSMV and TriMV in wheat cvs. Mace, Snowmass, and Tom-
ahawk was examined, using fluorescent protein–tagged viruses
by measuring the extent (size of fluorescent focus) and number
of foci on virus-inoculated leaves. Cell-to-cell movement of
WSMV and TriMV in ‘Tomahawk’, a susceptible cultivar, by
5 dpi at the nonpermissible temperature (18�C) was similar to
that 3 dpi at permissible (24�C) temperatures (Figs. 3, 4, and 5).
This result is probably because replication of WSMV and
TriMV are reduced at 18�C. Nevertheless, WSMV-RFP and
TriMV-GFP similarly elicited foci on inoculated leaves of
‘Mace’, ‘Snowmass’, and ‘Tomahawk’ by 5 dpi at 18�C and by
3 dpi at 24�C (Fig. 3A to F). Additionally, coinoculation of
wheat cultivars with WSMV-RFP and TriMV-GFP elicited foci
similar to infection by individual viruses, except that several
foci were doubly-infected with WSMVand TriMV (Fig. 3E and
F). Cell-to-cell movement of WSMV and TriMV in wheat
cultivars was compared within a cultivar between 18 and 24�C

Table 1. Number of wheat plants systemically infected with wild-type Wheat streak mosaic virus (WSMV) or Triticum mosaic virus (TriMV) in a growth
chamber and greenhouse

Wheat cultivary Virus

Growth chamber (18�C)z Greenhouse (24�C)z

14 dpi 21 dpi 14 dpi 21 dpi

‘Mace’ WSMV 0/38 (0.0%) 1/38 (2.6%) 36/39 (92%) 39/39 (100%)
TriMV 1/43 (2.3%) 1/43 (2.3%) 36/38 (95%) 38/38 (100%)
Buffer 0/17 (0.0%) 0/17 (0.0%) 0/16 (0.0%) 0/16 (0.0%)

‘Snowmass’ WSMV 12/35 (34%) 13/35 (37%) 40/40 (100%) 40/40 (100%)
TriMV 36/36 (100%) 36/36 (100%) 38/38 (100%) 38/38 (100%)
Buffer 0/19 (0.0%) 0/19 (0.0%) 0/18 (0.0%) 0/18 (0.0%)

‘Tomahawk’ WSMV 34/34 (100%) 34/34 (100%) 34/34 (100%) 34/34 (100%)
TriMV 35/35 (100%) 35/35 (100%) 17/17 (100%) 17/17 (100%)
Buffer 0/17 (0.0%) 0/17 (0.0%) 0/16 (0.0%) 0/16 (0.0%)

y Wheat seedlings at the two-leaf stage were mechanically inoculated with WSMVor TriMVat 1:20 dilution in 20 mM sodium phosphate buffer, pH 7.0. The
top noninoculated leaves were visually observed for symptom development at 14 and 21 days postinoculation (dpi).

z Number of plants systemically infected/number of plants mechanically inoculated, followed by % infection in parentheses.
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but not between cultivars, as the wheat cultivars evaluated are
differentially susceptible to these viruses.
Number of fluorescent foci on inoculated leaves. The number

of foci elicited by WSMV-RFP and TriMV-GFP on inoculated
leaves of wheat cultivars was counted in 15 to 20 plants per virus
per cultivar. In ‘Tomahawk’, WSMV and TriMV produced, re-
spectively, 7.9 and 5.9 foci per square centimeter at 18�C,
compared with 8.3 and 4.3 foci per square centimeter at 24�C
(Fig. 4). In coinoculated ‘Tomahawk’ plants, WSMVand TriMV
elicited foci similarly to single-virus inoculations with 7.4 and
5.5 foci per square centimeter at 18�C, compared with 7.5 and

4.8 foci per square centimeter at 24�C (Fig. 4). In ‘Mace’,
WSMV-RFP and TriMV-GFP elicited 3.9 and 2.6 foci per square
centimeter leaf at 18�C, compared with 2.9 and 1.4 foci per
square centimeter leaf at 24�C (Fig. 4). In coinoculated ‘Mace’,
WSMVand TriMVelicited 5.9 and 3.4 foci per square centimeter
at 18�C, compared with 3.5 and 1.9 foci per square centimeter at
24�C (Fig. 4). These data suggest thatWSMVand TriMVelicited
similar or slightly more foci on inoculated leaves of ‘Mace’ at
18�C, compared with those at 24�C. In ‘Snowmass’, WSMVand
TriMVelicited 6.4 and 5.9 foci per square centimeter leaf at 18�C
and 6.6 and 5.2 foci per square centimeter at 24�C, respectively

Fig. 2. Wheat cultivar screening for resistance against Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) at 18 and 24�C. A, Systemic
infection of wheat cvs. Mace, Snowmass, and Tomahawk by WSMV or TriMV at 21 days postinoculation (dpi) at 18 and 24�C. B, Reverse transcription-
polymerase chain reaction (RT-PCR) analysis of total RNA isolated from ‘Mace’, ‘Snowmass’, and ‘Tomahawk’ inoculated with WSMVand TriMVat 21 dpi
at 18 and 24�C. Agarose gel electrophoresis of WSMV- and TriMV-specific RT-PCR products from wheat cultivars mechanically inoculated with wild-type
WSMVor TriMV. Virus-inoculated wheat plants were maintained in a growth chamber at 18�C (lanes 1 to 3) and in the greenhouse at 24�C (lanes 4 to 6). RT-
PCR products from ‘Mace’ (lanes 1 and 4), ‘Snowmass’ (lanes 2 and 5), and ‘Tomahawk’ (lanes 3 and 6) were mechanically inoculated at the two-leaf stage
with WSMV (top panel, lanes 1 to 6) or TriMV (bottom panel, lanes 1 to 6). Total RNA isolated from healthy ‘Mace’ (lane 7), ‘Snowmass’ (lane 8), and
‘Tomahawk’ (lane 9) was included as negative control. pSP6-WSMVand pTriMV-R were included as positive controls for PCR assays in lane 10 of top and
bottom panels, respectively. Lane M: 1.0-kbp DNA ladder.
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(Fig. 4), suggesting that both virulent (WSMV) and avirulent
(TriMV) viruses elicited foci similarly on inoculated leaves. In
coinoculated ‘Snowmass’ plants, WSMV and TriMV elicited,
respectively, 8.9 and 6.9 foci per square centimeter at 18�C,
compared with 6.7 and 4.8 foci per square centimeter at 24�C
(Fig. 4A and B). Collectively, these data suggested that WSMV
and TriMVelicited foci on inoculated leaves of resistant ‘Mace’
and ‘Snowmass’ similarly at 18 and 24�C. The differences in the
number of foci elicited on ‘Mace’, ‘Snowmass’, and ‘Tomahawk’
at 18 and 24�C by WSMV (‘Mace’, P = 0.292; ‘Snowmass’, P =
0.855; ‘Tomahawk’, P = 0.684) and TriMV (‘Mace’, P = 0.191;
‘Snowmass’, P = 0.721; ‘Tomahawk’, P = 0.227) were not statis-
tically significant.
Size of fluorescent foci on inoculated leaves. Though WSMV

and TriMVelicited foci on inoculated leaves of resistant wheat
cultivars similarly at permissible and nonpermissible temper-
atures, it is possible that resistance to virus infection might have
affected foci size. The size of foci elicited by WSMV-RFP and
TriMV-GFP on inoculated leaves of wheat cultivars was mea-
sured from 20 foci per virus per cultivar. In ‘Tomahawk’,
WSMV and TriMV elicited 0.94- and 0.60-mm2 foci at 18�C,
compared with 0.86- and 0.75-mm2 foci at 24�C (Fig. 5). In
coinoculated ‘Tomahawk’, WSMV and TriMV produced 0.91-
and 0.56-mm2 foci at 18�C, compared with 0.80- and 0.66-mm2

foci at 24�C, suggesting that, by 5 dpi, foci sizes at non-
permissible temperature are comparable to those at permissible
temperatures by 3 dpi. In ‘Mace’, WSMV and TriMV elicited
0.89- and 0.57-mm2 foci at 18�C, compared with 0.73- and
0.58-mm2 foci at 24�C (Fig. 5). In coinoculated ‘Mace’,
WSMVand TriMV produced, respectively, 0.74- and 0.53-mm2

foci at 18�C, compared with 0.73- and 0.56-mm2 foci at 24�C
(Fig. 5). In ‘Snowmass’, WSMV and TriMV elicited 1.35- and
0.86-mm2 foci at 18�C, compared with 0.90- and 0.75-mm2

foci at 24�C (Fig. 5). In coinoculated ‘Snowmass’, WSMVand
TriMV produced foci similar to those in single-virus inocula-
tions. These data indicated that, in resistant wheat cultivars,
WSMV and TriMV formed foci with approximately similar
sizes at 18 and 24�C. The differences in foci sizes at 18 and
24�C elicited by WSMV (’Mace’, P = 0.518; ‘Snowmass’, P =
0.613; ‘Tomahawk’, P = 0.527) and TriMV (‘Mace’, P = 0.705;
‘Snowmass’, P = 0.494; ‘Tomahawk’, P = 0.380) in resistant
and susceptible wheat cultivars were not statistically significant.

Taken together, the number and size of foci elicited by WSMV
and TriMVon inoculated leaves of wheat cvs. Mace, Snowmass,
and Tomahawk at 18�C are comparable to those at 24�C, sug-
gesting that ‘Mace’ and ‘Snowmass’ resistance at 18�C does not
affect local virus cell-to-cell movement.

WSMV and TriMV efficiently replicated
in inoculated leaves of resistant wheat cultivars.
We next examined whether cell-to-cell movement of WSMV

and TriMV in resistant cultivars resulted from efficient virus
replication. Total RNA, extracted at 5 and 3 dpi from virus-
inoculated leaves of wheat plants incubated at 18 and 24�C,
respectively, was used for absolute quantification of WSMVand
TriMV genomic RNAs as described (Tatineni et al. 2010). The
number of genomic RNA copies of WSMVand TriMV in single-
or double-virus inoculated leaves of ‘Mace’, ‘Snowmass’, and
‘Tomahawk’ at 18 and 24�C is presented in Table 3. In all wheat
cultivars inoculated with individual viruses at 18�C, genomic
RNA of TriMV accumulated at enhanced levels while WSMV
accumulated at reduced levels, compared with those at 24�C
(Table 3). The lower accumulation of WSMV genomic RNA in
resistant as well as susceptible wheat cultivars at 18�C, suggests
that WSMV might replicate at reduced levels at 18�C. In coin-
oculated (WSMV+TriMV) wheat leaves, both WSMV and
TriMV genomic RNAs accumulated at higher levels at 18�C,
compared with those at 24�C in all cultivars (Table 3). The in-
creased levels of WSMV accumulation in coinoculated plants
compared with single-virus inoculations could be due to syner-
gistic interaction between WSMV and TriMV (Tatineni et al.
2010). Collectively, these data suggest that WSMV and TriMV
replicated efficiently in inoculated leaves of resistant and sus-
ceptible wheat. Differences in accumulation of genomic RNAs of
WSMV (‘Mace’, P = 0.066; ‘Tomahawk’, P = 0.952) and TriMV
(‘Snowmass’, P = 0.090; ‘Tomahawk’, P = 0.150) in resistant
and susceptible wheat cultivars at 18 and 24�C were not statis-
tically significant but were significantly different in ‘Snowmass’
for WSMV (0.0007) and in ‘Mace’ for TriMV (P = 0.006).

WSMV and TriMV exhibit cultivar-specific
and temperature-dependent long-distance movement.
Wheat cvs. Mace, Snowmass, and Tomahawk were inocu-

lated with crude sap of WSMV-RFP or TriMV-GFP at the

Table 2. Number of wheat plants systemically infected with red fluorescent protein–tagged Wheat streak mosaic virus (WSMV-RFP) and green fluorescent
protein–tagged Triticum mosaic virus (TriMV-GFP) at 18 and 24�C

Cultivary Virus

Growth chamber (18�C)z Greenhouse (24�C)z

14 dpi 21 dpi 14 dpi 21 dpi

‘Mace’ WSMV-RFP 0/17 (0.0%) 1/17 (5.9%) 17/21 (81%) 21/21 (100%)
TriMV-GFP 1/16 (6.0%) 2/16 (13%) 22/22 (100%) 22/22 (100%)
DI: WSMV-RFP 0/22 (0.0%) 2/22 (9.0%) 17/18 (94%) 18/18 (100%)
DI: TriMV-GFP 1/22 (4.5%) 2/22 (9.0%) 16/17 (94%) 17/17 (100%)
Buffer 0/14 (0.0%) 0/14 (0.0%) 0/16 (0.0%) 0/16 (0.0%)

‘Snowmass’ WSMV-RFP 4/18 (22%) 5/18 (28%) 17/17 (100%) 17/17 (100%)
TriMV-GFP 17/17 (100%) 17/17 (100%) 17/17 (100%) 17/17 (100%)
DI: WSMV-RFP 4/19 (21%) 6/19 (32%) 18/18 (100%) 18/18 (100%)
DI: TriMV-GFP 16/17 (94%) 16/17 (94%) 18/18 (100%) 18/18 (100%)
Buffer 0/17 (0.0%) 0/17 (0.0%) 0/16 (0.0%) 0/16 (0.0%)

‘Tomahawk’ WSMV-RFP 16/16 (100%) 16/16 (100%) 17/17 (100%) 17/17 (100%)
TriMV-GFP 20/20 (100%) 20/20 (100%) 19/19 (100%) 19/19 (100%)
DI: WSMV-RFP 19/19 (100%) 19/19 (100%) 14/14 (100%) 14/14 (100%)
DI: TriMV-GFP 19/19 (100%) 19/19 (100%) 14/14 (100%) 14/14 (100%)
Buffer 0/15 (0.0%) 0/15 (0.0%) 0/17 (0.0%) 0/17 (0.0%)

y Wheat seedlings at the two-leaf stage were mechanically inoculated with WSMV-RFP, TriMV-GFP, or WSMV-RFP+TriMV-GFP at 1:20 dilution in 10 mM
sodium phosphate buffer, pH 7.0. Two upper noninoculated leaves per plant were observed for fluorescent protein under a Stereo Discovery V12 fluorescence
microscope. The presence of at least a single fluorescent focus was considered as positive for infection.

z Number of plants systemically infected/number of plants mechanically inoculated, followed by % infection in parentheses. DI: double inoculation with
WSMV-RFP+TriMV-GFP; dpi: days postinoculation.
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two-leaf stage to track viral long-distance movement by ob-
serving fluorescent protein in upper noninoculated leaves. By
21 dpi, both WSMV and TriMV moved long distance at 24�C
in all wheat cultivars, as fluorescent proteins were readily ob-
served in 100% of inoculated plants (Fig. 6C and D). However,
fluorescent proteins were not observed in upper noninoculated
leaves of WSMV-RFP- or TriMV-GFP-inoculated ‘Mace’ at
18�C (Fig. 6A and B) but developed local (fluorescent) foci on
100% of inoculated leaves (Fig. 3A and B), suggesting that
WSMV and TriMV failed to move long distance in ‘Mace’ at
18�C. TriMV-GFP moved long distance in ‘Snowmass’ at 18�C,
as fluorescent protein was observed in upper noninoculated leaves
while RFP was observed in only 28% of upper noninoculated
leaves of plants inoculated with WSMV-RFP, which is in agree-
ment with approximately 20% susceptibility of ‘Snowmass’ to
WSMV (Fig. 6A and B; Table 2) (Haley et al. 2011). Coinocu-
lation (WSMV-RFP+TriMV-GFP) of ‘Tomahawk’, ‘Snowmass’,
and ‘Mace’ plants resulted in efficient systemic coinfection by
both viruses at 24�C and, in ‘Tomahawk’, at 18�C by 21 dpi (Fig.
6E and F). As expected, neither virus infected wheat cv. Mace

systemically in coinoculated plants at 18�C (Fig. 6F). However,
coinoculation of ‘Snowmass’ at 18�C resulted in systemic in-
fection by TriMV-GFP, but only approximately 30% of plants
were doubly-infected with WSMV-GFP and TriMV-GFP (Fig.
6F; Table 2).
Development of local foci by WSMV-RFP in all inoculated

‘Snowmass’ leaves at 18�C together with failure to infect ap-
proximately 70% of plants systemically suggest that WSMV
failed to move long distance in most ‘Snowmass’ plants. These
data revealed that both viruses moved long distance in all wheat
cultivars at 24�C and only cell-to-cell but not long distance at
18�C in resistant cultivars, suggesting that WSMV and TriMV
exhibit cultivar-specific and temperature-dependent long-distance
movement.

WSMV and TriMV failed to enter the vasculature
of resistant wheat cultivars at 18�C.
Plant viruses fail to move long distance, possibly due to in-

ability to one or both enter or exit the vasculature at a distal
place for the subsequent spread by cell-to-cell movement.

Fig. 3.Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) facilitated efficient cell-to-cell movement in resistant wheat cultivars at 18�C.A
and C, Local foci elicited by WSMV-RFP (red fluorescent protein), B and D, TriMV-GFP (green fluorescent protein), and E and F,WSMV-RFP+TriMV-GFP
at 18�C (A, B, and F) and 24�C (C, D, and E) in inoculated wheat leaves. Note that WSMV-RFP and TriMV-GFP facilitated efficient cell-to-cell movement in
inoculated leaves of ‘Mace’ and ‘Snowmass’ at 18�C (A and B). As a control, susceptible wheat cv. Tomahawk’ was included as a positive control for cell-to-
cell movement of WSMV-RFP and TriMV-GFP.G, Buffer-inoculated wheat leaves were observed under RFP orH,GFP filters as negative controls. Inoculated
wheat leaves were observed under a Stereo Discovery V12 fluorescence microscope using RFP or GFP filters. Merged images of RFP and GFP from mixed
inoculation were presented in E and F. Note that colocalization of RFP and GFP foci resulted in a yellow color in mixed inoculations. The brightness of buffer-
inoculated images in G and H were adjusted to see the background of objects under RFP and GFP narrow-band filters, respectively. Bars represent 500 µM.
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Reasons for lack of long-distance movement of WSMV and
TriMV in resistant wheat cultivars at 18�C were examined by
inoculating resistant cultivars Mace and Snowmass and sus-
ceptible cultivar Tomahawk with WSMV-RFP or TriMV-GFP.
The inoculated leaves and leaf sheaths and crowns from plants
incubated at 18�C were observed at 21 dpi, for the presence of
fluorescent proteins (Fig. 7A). Local foci spread from initial
infection sites throughout most of the inoculated leaves, further
confirming efficient cell-to-cell movement of WSMV and
TriMV in resistant and susceptible wheat cultivars alike (Fig.
7B). In ‘Tomahawk’, fluorescent proteins were readily detected
in WSMV-RFP- or TriMV-GFP-inoculated leaf sheaths (Fig.
7C). In contrast, no fluorescent proteins were detected in leaf
sheaths of WSMV-RFP- or TriMV-GFP-inoculated leaves of
‘Mace’ (Fig. 7C). Since approximately 20% of ‘Snowmass’
plants were susceptible to WSMV systemic infection (Haley
et al. 2011), leaf sheaths of ‘Snowmass’ plants that WSMV-
RFP failed to systemically infect (but had local foci) were
examined for the presence of RFP in leaf sheaths. No RFP was
detected in leaf sheaths of WSMV-RFP–inoculated leaves of
‘Snowmass’ that contained local foci (Fig. 7C). In contrast,
fluorescent protein was readily detected in leaf sheaths of
TriMV-GFP–inoculated ‘Snowmass’ plants (Fig. 7C). These
data revealed that WSMVand TriMV efficiently moved cell to

cell from initial infection foci in resistant wheat cultivars at
18�C but failed to enter the vasculature of leaf sheaths to es-
tablish a successful systemic infection. At 24�C, fluorescent
proteins were readily detected at 21 dpi in the leaf sheaths of
‘Mace’, ‘Snowmass’, and ‘Tomahawk’ plants inoculated with
WSMV-RFP or TriMV-GFP (data not shown).
The crowns of wheat plants inoculated with WSMV-RFP or

TriMV-GFP were examined for the presence of fluorescent
proteins as both WSMV and TriMV must infect the crown
before moving systemically. The crowns of ‘Mace’ inoculated
with WSMV-RFP or TriMV-GFP were free from fluorescent
proteins (Fig. 7D), suggesting that WSMVand TriMV failed to
move into crowns at detectable levels. Similarly, the crowns of
‘Snowmass’ that WSMV-RFP failed to infect systemically but
elicited local foci were also free from detectable levels of RFP
(Fig. 7D). In contrast, fluorescent proteins were readily de-
tected in the crowns of ‘Tomahawk’ inoculated with WSMV-
RFP or TriMV-GFP, which is consistent with ‘Tomahawk’s
susceptibility to WSMV and TriMV. These data suggest that
WSMV and TriMV are unable to reach the crowns of resistant
wheat cultivars at 18�C.
To exclude the possibility that WSMV or TriMV might be

present in the crowns at levels undetectable by fluorescence
assays, total RNA extracted from three crowns per sample was

Fig. 4. A, The average number of virus infection foci per square centimeter of leaf area (mean ± standard error) in inoculated leaves of wheat cvs. Mace,
Snowmass, and Tomahawk at 18�C at 5 days postinoculation (dpi) and B, at 24�C at 3 dpi. Vertical bars represent standard error. Wheat seedlings were
inoculated with crude sap of either red fluorescent protein–taggedWheat streak mosaic virus (WSMV-RFP), green fluorescent protein–tagged Triticum mosaic
virus (TriMV-GFP), or both, at a 1:20 dilution in 20 mM sodium phosphate buffer, pH 7.0, and plants were maintained at 18 or 24�C. Double: coinoculation
with WSMV-RFP and TriMV-GFP. The differences in the number of foci elicited on ‘Mace’, ‘Snowmass’, and ‘Tomahawk’ at 18 and 24�C by WSMV (P =
0.292, P = 0.855, and P = 0.684, respectively) and TriMV (P = 0.191, P = 0.721, and P = 0.227, respectively) were not statistically significant.
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used as a template for RT-PCR using CP-specific primers of
WSMV (Fig. 7F, top panel) and TriMV (Fig. 7F, bottom panel).
No RT-PCR product was obtained from ‘Mace’ crowns in-
oculated with one or bothWSMVor TriMV (Fig. 7F, lanes 1 to 3).
In ‘Snowmass’, as expected, RT-PCR amplification was obtained

from TriMV-GFP-inoculated plants but not from WSMV-RFP-
inoculated plants (Fig. 7F, lanes 4 to 6). In ‘Tomahawk’, RT-PCR
product was obtained from plants inoculated with one or both
WSMV or TriMV (Fig. 7F, lanes 7 to 9). Taken together, these
data demonstrate that WSMV and TriMV failed to move long

Fig. 5. A, The average size of virus infection foci in square millimeters (mean ± standard error) in inoculated leaves of ‘Mace’, ‘Snowmass’, and ‘Tomahawk’ at
18�C at 5 days postinoculation (dpi) and B, at 24�C at 3 dpi. Vertical bars represent standard error. Wheat seedlings were inoculated with crude sap of either red
fluorescent protein–tagged Wheat streak mosaic virus (WSMV-RFP), green fluorescent protein–tagged Triticum mosaic virus (TriMV-GFP), or both, at 1:20
dilution in sodium phosphate buffer, pH 7.0, and were incubated at 18 or 24�C. Double: coinoculation with WSMV-RFP and TriMV-GFP. The differences in
foci sizes at 18 and 24�C elicited elicited on ‘Mace’, ‘Snowmass’, and ‘Tomahawk’ by WSMV (P = 0.518, P = 0.613, and P = 0.527, respectively) and TriMV
(P = 0.705, P = 0.494, and P = 0.380, respectively) in resistant and susceptible wheat cultivars were not statistically significant.

Table 3.Absolute quantification ofWheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) genomic RNAs in inoculated leaves of three wheat
cultivars held at 18 and 24�C

Virusy Degrees

Number of genomic RNA copies in wheat cultivarsz

‘Mace’ ‘Snowmass’ ‘Tomahawk’

WSMV-RFP 18�C 1.43 × 104 ± 4.91 × 103 a 3.64 × 104 ± 5.21 × 102 b 3.25 × 104 ± 4.90 × 103 a
24�C 4.35 × 104 ± 1.19 × 104 a 1.50 × 105 ± 2.30 × 104 a 5.50 × 104 ± 1.17 × 104 a

TriMV-GFP 18�C 1.53 × 104 ± 2.36 × 103 a 5.35 × 104 ± 7.97 × 103 a 6.38 × 104 ± 3.74 × 103 a
24�C 3.40 × 103 ± 9.10 × 102 b 2.48 × 104 ± 9.67 × 103 a 1.60 × 104 ± 7.97 × 103 a

DI: WSMV-RFP 18�C 5.20 × 104 ± 1.75 × 103 a 1.35 × 105 ± 2.14 × 104 a 7.74 × 104 ± 1.85 × 104 a
24�C 2.58 × 104 ± 8.50 × 103 a 9.10 × 104 ± 3.13 × 104 a 4.68 × 104 ± 9.96 × 103 a

DI: TriMV-GFP 18�C 1.39 × 104 ± 5.16 × 103 a 4.38 × 104 ± 5.34 × 103 a 2.08 × 104 ± 2.78 × 103 a
24�C 8.54 × 103 ± 2.69 × 103 a 2.59 × 104 ± 6.91 × 103 a 1.26 × 104 ± 2.13 × 103 a

y Wheat seedlings at the two-leaf stage were mechanically inoculated with crude sap of wheat leaves systemically infected with WSMV-RFP, TriMV-GFP, and
WSMV-RFP+TriMV-GFP (DI) at 1:20 dilution in 20 mM sodium phosphate buffer, pH 7.0. DI: double virus inoculation.

z Number of genomic RNA copies (mean ± standard error) was detected in inoculated leaves at 5 and 3 days postinoculation from plants incubated at 18�C
(growth chamber) and 24�C (greenhouse), respectively, by the real-time reverse transcription polymerase chain reaction as described by Tatineni et al. (2010).
Mean genomic RNA copies with the same letter within columns for each virus are not significantly different (Tukey-Kramer test P = 0.05). WSMVor TriMV
genomic RNA copies were not detected from buffer-inoculated wheat cultivars at 18 and 24�C.
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distance in resistant wheat cultivars, as these viruses failed to
enter the vasculature of resistant wheat at 18�C.

DISCUSSION

In this study, we found that temperature-dependent impair-
ment of viral long-distance transport explains resistance in
wheat cv. Mace against WSMV and TriMV and cv. Snowmass
against WSMV at 18�C. WSMV and TriMV replicated and
moved cell to cell efficiently in inoculated leaves but failed to
establish systemic infection, as both viruses did not enter the
vasculature of resistant wheat cultivars at 18�C. Thus, wheat
cvs. Mace and Snowmass provide resistance by blocking viruses
from entering the vasculature, thereby precluding long-distance
movement without significant effects on virus replication and
local cell-to-cell movement.
The molecular basis for genetic resistance to viruses in

cereal hosts is poorly understood (Kang et al. 2005a). The fluo-
rescent protein–tagged WSMV and TriMV facilitated examina-
tion of the mechanisms ofWsm1- andWsm2-conferred resistance
in wheat cvs. Mace and Snowmass, respectively. Both WSMV
and TriMV replicated and moved cell to cell in inoculated leaves
of resistant and susceptible wheat cultivars similarly at permissible

and nonpermissible temperatures. The difference in replication
and cell-to-cell movement of WSMVand TriMV between 5 dpi at
18�C and 3 dpi at 24�C was similar in both susceptible and re-
sistant wheat cultivars. These data suggest thatWSMVand TriMV
replicate and facilitate cell-to-cell movement similarly in resistant
and susceptible cultivars at 18�C. However, at 18�C, both WSMV
and TriMV failed to move long distance in wheat cv. Mace; also
TriMV moved long distance in ‘Snowmass’ but WSMV did not.
The debilitated long-distance movement of WSMVand TriMV in
resistant wheat cultivars at 18�C is due to blocked virus entry into
the vasculature. These data revealed that resistance in ‘Mace’ and
‘Snowmass’ is not at viral replication and local cell-to-cell move-
ment steps of the virus life cycle but is due to temperature-
dependent impairment of viral long-distance transport.
Many host R genes against members of family Potyviridae

are recessive alleles of genes encoding translation initiation fac-
tors such as eIF4E and its isoforms (Kang et al. 2005a; Mazier
et al. 2011; Ruffel et al. 2002; Wang and Krishnaswamy 2012;
Yeam et al. 2007). Recessive resistance, in most cases, results in
an undetectable level of virus multiplication in inoculated leaves,
as shown for pvr2 in pepper against TEVand Pepper vein mottle
virus (Kang et al. 2005b; Ruffel et al. 2006), mo1 in lettuce
against Lettuce mosaic virus (Nicaise et al. 2003), pot-1 in tomato

Fig. 6. Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) facilitated cultivar-specific temperature-dependent long-distance transport in
resistant wheat cultivars. A and C, Systemic infection of wheat cultivars Mace, Snowmass, and Tomahawk by red fluorescent protein tagged WSMV (WSMV-
RFP), B and D, green fluorescent protein–tagged Triticum mosaic virus (TriMV-GFP), and E and F,WSMV-RFP+TriMV-GFP (mixed inoculation), at 21 days
postinoculation (dpi) at 18�C (A, B, and F) and 24�C (C, D, and E).G, Buffer-inoculated leaves of ‘Mace’, ‘Snowmass’, and ‘Tomahawk’ were observed under
RFP orH,GFP filters as negative controls. The upper noninoculated wheat leaves were observed under a Stereo Discovery V12 fluorescence microscope using
RFP or GFP narrow-band filters. Merged images of RFP and GFP from mixed inoculation are presented in E and F. Note that colocalization of RFP and GFP
resulted in a yellow color. The brightness of buffer-inoculated images in G and H were adjusted to see the background of objects under RFP and GFP filters,
respectively. Note that WSMV-RFP does not infect ‘Mace’ and ‘Snowmass’ systemically (A) and TriMV-GFP does not infect ‘Mace’ but efficiently infected
‘Snowmass’ at 18�C (B).
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against Potato virus Y and TEV (Ruffel et al. 2005), rym4 and
rym5 in barley against Barley yellow mosaic virus (Kanyuka et al.
2005; Stein et al. 2005), sbm1, wlv, and cyv in pea against Pea
seed-borne mosaic virus, Bean yellow mosaic virus, and Clover
yellow vein virus, respectively (Bruun-Rasmussen et al. 2007;
Gao et al. 2004), and bc-3 in beans against Bean common mosaic
virus (Naderpour et al. 2010). Recently, Yang and associates
(2014) demonstrated that loss-of-function HvPDIL5-1 alleles at
the recessive rym11 resistance locus conferred broad-spectrum
resistance to several strains of bymoviruses. However, recessive

virus R genes are unlikely to be found in hexaploid wheat.
Dominant virus R genes are characterized by induction of a hy-
persensitive or extreme response when plants are inoculated with
viruses containing the corresponding avirulence factor (Fraser
1990; Moffett 2009). However,Wsm1 andWsm2 do not induce a
hypersensitive or extreme response on inoculated wheat leaves at
18�C, suggesting that these genes are nonconventional R genes.
The other nonconventional R genes also provide viral re-

sistance by debilitating one or more steps that led to systemic
infection of plants. For example, the RTM genes of Arabidopsis

Fig. 7.Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) failed to enter the vasculature of resistant wheat cultivars at 18�C.A, Schematic
diagram of a wheat plant showing the point of inoculation (dark circles), leaf sheath, and crown. B, Local foci elicited by red fluorescent protein–tagged
WSMV (WSMV-RFP) or green fluorescent protein–tagged TriMV (TriMV-GFP) in inoculated leaves of resistant (‘Mace’ and ‘Snowmass’) and susceptible
(‘Tomahawk’) wheat at 21 days postinoculation (dpi).C and D, Detection of fluorescent protein–tagged viruses in the leaf sheaths of inoculated leaves (C) and
in crowns (D). Note that fluorescent protein was not observed at detectable levels in the leaf sheaths and crowns of resistant wheat cultivars but abundant levels
were observed in susceptible wheat cultivars. E, Buffer-inoculated healthy leaf, leaf sheath, and crown observed under GFP or RFP narrow-band filters are
shown as negative controls. The brightness of buffer-inoculated images were adjusted to see the background of objects under RFP and GFP filters. Bars
represent 500 µM. F, Reverse transcription-polymerase chain reaction (RT-PCR) assay of total RNA isolated from wheat crowns at 21 dpi. Agarose gel
electrophoresis image showing RT-PCR products of WSMV and TriMV from the crown samples of ‘Mace’ (lanes 1 to 3), ‘Snowmass’ (lanes 4 to 6), and
‘Tomahawk’ (lanes 7 to 9) inoculated with TriMV-GFP (lanes 1, 4, and 7), WSMV-RFP (lanes 2, 5, and 8), and coinoculated with TriMV-GFP andWSMV-RFP
(lanes 3, 6, and 9). Note that WSMVand TriMV did not accumulate at detectable levels in the crowns of ‘Mace’ and ‘Snowmass’, or ‘Mace’, respectively. Total
RNA from healthy crowns of ‘Mace’ (lane 10), ‘Snowmass’ (lane 11), and ‘Tomahawk’ (lane 12) was used as negative control. Total RNA from ‘Tomahawk’
leaves infected with WSMV (top panel, lane 13) and TriMV (bottom panel, lane 13) was used as a positive control for RT-PCR. Lane M: 1.0-kbp DNA ladder.
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prevent systemic infection but not cell-to-cell movement of
TEV (Chisholm et al. 2001; Decroocq et al. 2009; Mahajan
et al. 1998; Whitham et al. 2000). The Rsv4 gene of soybean
restricts SMVmovement and accumulation in inoculated leaves
and also prevents systemic infection (Khatabi et al. 2012). The
Tm-1 gene of tomato prevents the formation of viral replication
complex on membrane surfaces, thus inhibiting ToMV repli-
cation (Ishibashi and Ishikawa 2013; Ishibashi et al. 2007). The
above-mentioned nonconventional R genes, including Wsm1
and Wsm2, do not elicit HR-mediated resistance but provide
resistance by affecting, singly or in combination, viral repli-
cation, cell-to-cell, or long-distance movement. However, it
remains to be seen whether these nonconventional dominant
R genes can be considered as a new class of R genes.
Differential long-distance movement of viruses in a host at

two temperatures with no appreciable effects on virus replica-
tion and cell-to-cell movement is unusual. It is possible that
interaction ofWsm1 andWsm2 gene products with viral proteins
is temperature-dependent, and such interactions might be re-
quired for long-distance transport in resistant wheat cultivars.
Potyviral P1, P3, 6K2, NIa-VPg, NIa-Pro, and CP have been
reported to be involved in differential infection of certain hosts
(Carbonell et al. 2013; Chen et al. 2008; Decroocq et al. 2009;
Rajamäki and Valkonen 1999; Salvador et al. 2008; Schaad
et al. 1997; Tatineni and French 2014; Tatineni et al. 2011b).
In the above-mentioned examples, viral gene products are
required for infection of certain specific hosts. However, the
situation with WSMV and TriMV is different, as wild-type
viruses exhibited temperature-dependent long-distance move-
ment in resistant wheat cultivars. The members of family
Potyviridae do not encode dedicated long-distance movement
proteins (Revers and Garcı́a 2015). Instead, several potyviral
proteins are involved in long-distance movement in addition to
other unrelated functions. Recently, the WSMV CP was de-
termined to be a long-distance transport factor for systemic
infection of maize by specifically allowing the virus to enter the
vascular system (Tatineni and French 2014; Tatineni et al.
2011b). These data suggest that the N- and C-terminal regions
of CP may be involved in interactions with the host proteins for
a successful invasion of hosts byWSMV. Viral determinants for
long-distance movement of TriMV are not known. However,
availability of TriMV infectious cDNA clone (Tatineni et al.
2015) will facilitate determination of viral determinants for long-
distance movement.
Viruses establish successful systemic infection in a host plant

by performing repeated cycles of cell-to-cell movement through
plasmodesmata and long-distance transport by entry and exit
through the vasculature. Since viruses encode only a limited
number of proteins, viruses must interact with several host fac-
tors to survive in plant hosts. Incompatible interactions between
viral and host factors at any of these steps could prevent viruses
from infecting plants systemically. In this study, bothWSMVand
TriMV efficiently replicated and moved cell to cell in resistant
wheat cultivars but failed to move long distance at 18�C, in-
dicating that incompatible interactions between viral and host
factors for long-distance transport as the most likely explanation
for resistance. It is interesting that nonallelic Wsm1 and Wsm2
genes elicit resistance in wheat cultivars with a similar mecha-
nism of specifically blocking viral long-distance transport at
18�C but not at higher temperatures.
Though several host factors restricting viral long-distance

movement process were genetically identified (Mandadi and
Scholthof 2013; Revers and Nicaise 2014), only the RTM genes
from Arabidopsis were cloned and characterized (Cosson et al.
2010; Mahajan et al. 1998; Whitham et al. 2000). Although
both Arabidopsis RTM genes and wheatWsm1 andWsm2 genes
provide resistance by blocking virus long-distance movement,

the Wsm-based resistance differs from that of RTM as Wsm-
based resistance is strictly temperature sensitive. The Wsm-
based resistance blocking viral long-distance transport at 18�C
might be due to the following reasons: i) sequestration of one or
both virus particles or ribonucleoprotein complex while loading
into the vasculature, ii) the Wsm-gene products limit accessi-
bility of host factors for virus long-distance transport, or iii) ex-
pression of host proteins required for viral long-distance transport
were silenced or expressed at suboptimal levels at 18�C. The fact
that both WSMV and TriMV efficiently infected resistant wheat
cultivars at higher temperatures suggests that incompatible in-
teractions between viral and host factors at 18�C, temperature-
dependent expression of Wsm1 andWsm2 genes in wheat, or the
silencing or low-level expression of Wsm genes encoded host
factors for viral long-distance transport result in Wsm-based re-
sistance in wheat cultivars.

MATERIALS AND METHODS

Wheat cultivars.
Wheat cvs. Mace (PI 651043) (Graybosch et al. 2009) and

Snowmass (PI 658597) (Haley et al. 2011), containing the
Wsm1 and Wsm2 genes, respectively, and cv. Tomahawk (PI
552814), a susceptible cultivar, were used in this investigation.
PI numbers indicate accession designations of these cultivars in
the United States Department of Agriculture (USDA)-Agricultural
Research Service National Small Grains Collection, Aberdeen, ID,
U.S.A.

Construction of RFP-tagged WSMV.
The RFP ORF was fused to the heptapeptide cleavage site

located between the 6K1/CI cistrons by overlap extension PCR
(Ho et al. 1989). The RFP ORF with a cleavage peptide se-
quence at its 39 end was precisely inserted between the P1 and
HC-Pro cistrons by overlap extension PCR, using three indi-
vidual PCR fragments with 18- to 21-bp overlapping sequences
as described (Tatineni et al. 2011a). Briefly, PCR fragment 1
contained the SP6 RNA polymerase promoter sequence, fol-
lowed by WSMV sequence through the end of P1 cistron plus
the first six codons of RFP. PCR fragment 2 contained the last
six codons of P1, followed by RFP ORF with a cleavage site
plus the first seven codons of HC-Pro. PCR fragment 3 com-
prised the last seven codons of RFP, followed by a cleavage site
plus the HC-Pro cistron and part of the P3 cistron sequence
until nucleotide 3,960. Overlap extension PCR was performed
with gel-eluted PCR fragments 1, 2, and 3 as templates. Am-
plification of PCR fragments 1 to 3 and overlap extension PCR
were performed with Herculase II Fusion DNA polymerase
(Agilent Technologies, Santa Clara, CA, U.S.A.). The overlap
extension PCR fragments were digested with NgoMIV (engi-
neered upstream of an SP6 RNA polymerase promoter se-
quence in the plus-sense primer) and AflII (nucleotide 3,905)
and were ligated into similarly digested pSP6-WSMV (Choi
et al. 1999).

Viruses.
Wild-type WSMV isolate Sidney 81 and TriMV isolate

Nebraska were obtained from in vitro transcripts of pSP6-
WSMV (Choi et al. 1999) and pTriMV-R (Tatineni et al. 2015),
respectively. Cycle 3 GFP-tagged TriMV (pTriMV-GFP-NIb/CP
[9aa]) was described previously (Tatineni et al. 2015). In vitro
transcripts of pSP6-WSMV-RFP-6K1/CI(7aa) and pTriMV-GFP-
NIb/CP(9aa) were inoculated towheat seedlings to obtainWSMV-
RFP and TriMV-GFP, respectively.
In vitro transcription reaction of each construct was carried

out in a 40-µl reaction volume consisting of 1.0 µg of linearized
plasmid DNA, 40 mM Tris-HCl, pH 7.9, 20 mM dithiothreitol,
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8.5 mM MgCl2, 2 mM spermidine, 1.2-mM concentrations
each of ATP, CTP, UTP, and Cap analog (m7G[59]ppp[59]G;
Cellscript, Madison, WI, U.S.A.), 0.048 mM GTP, 20 U of
rRNasin ribonuclease inhibitor (Promega) and 50 U of SP6
RNA polymerase (CellscriptTM). The reaction was incubated
for 15 min at 37�C. The concentration of GTP was increased to
0.5 mM with additional 2-h incubation at 37�C. The integrity
and quality of transcripts was examined by analyzing 1 µl of in
vitro transcripts on 1.0% native agarose gel in 1× Tris-acetate-
EDTA (TAE) buffer. Freshly prepared in vitro transcripts were
inoculated to wheat seedlings at the single leaf stage as de-
scribed (Tatineni et al. 2011b). Infected wheat leaves collected
at 14 dpi were stored at _20�C for inoculation of wheat seedlings.

Screening wheat cultivars for virus resistance.
Frozen wheat leaves infected with WSMVor TriMVat 14 dpi

were ground in 20 mM sodium phosphate buffer, pH 7.0, at 1:
20 dilution (1 g per 19 ml) with a mortar and pestle. Wheat
plants were raised in a pasteurized soil mix that consisted of
33% each of clay loam soil and peat moss and 16.5% each of
sand and vermiculite. Wheat cvs. Mace, Snowmass, and Toma-
hawk at the two-leaf stage were mechanically inoculated with
WSMV or TriMV (approximately 20 seedlings per 15-cm
earthen pot). Two inoculated pots per cultivar per virus were
incubated in the greenhouse at a mean temperature of 24�C
(20�C minimum and 26�C maximum temperatures) with 14 h of
daylight or supplemental light. Another set of inoculated wheat
seedlings (two pots per cultivar per virus) was incubated in a
growth chamber at 18�C with 14 h of light. Wheat plants were
observed for symptom development at 14 and 21 dpi.

Examination of virus movement.
Two sets of wheat seedlings were mechanically inoculated at

the two-leaf stage with crude sap of WSMV-RFP, TriMV-GFP,
or both at a 1:20 dilution in 20 mM sodium phosphate buffer,
pH 7.0. One set of inoculated plants were incubated at 18�C in a
growth chamber and another set in a greenhouse at a mean
temperature of 24�C with 14 h of light. Cell-to-cell movement
of WSMV-RFP and TriMV-GFP was monitored by examining
the formation of fluorescent foci on inoculated wheat leaves
under a Zeiss Stereo Discovery V12 fluorescence microscope,
using narrow band filter sets of RFP or GFP, as described
(Tatineni et al. 2011a). The fluorescent images were taken with
an AxioCam MRc5 camera attached to the V12 fluorescence
microscope using an RFP filter set 43 (533 to 558 nm excitation
and 571 to 641 nm emission) or GFP filter set 38 (400 to
450 nm excitation and 450 to 490 nm emission) (Carl Zeiss
MicroImaging, Inc., New York), as described (Tatineni et al.
2011a, 2015). The fluorescent foci sizes were measured using a
program provided with the AxioCam MRc5 camera. Long-
distance movement of WSMV-RFP and TriMV-GFP in wheat
cultivars was examined in upper noninoculated leaves by ob-
serving for the presence of RFP or GFP fluorescence.

Quantification of genomic RNAs of WSMV and TriMV.
Total RNAwas extracted from inoculated wheat leaves using

Tripure reagent, as described (Tatineni et al. 2010). One mi-
crogram of total RNA was used to synthesize the first-strand
cDNA, using random primers. One microliter of 1:10-diluted
first-strand cDNA reaction was used for real-time PCR, using
primers and probe as described by Tatineni et al. (2010).

RT-PCR assay.
Total RNA was extracted from upper fully expanded wheat

leaves and crowns, as described (McNeil et al. 1996). The first-
strand cDNA was synthesized in a 10-µl reaction volume with
random primers, as described previously (Tatineni et al. 2010).

One microliter of first-strand cDNA was used for PCR, in a
25-µl reaction volume with plus- and minus-sense CP-specific
primers of WSMV (Tatineni et al. 2014) or TriMV (Bartels
et al. 2016), with the following PCR program: 95�C for 2 min,
followed by 30 cycles at 95�C for 30 s, 52�C for 30 s, and 72�C
for 90 s and one cycle at 72�C for 10 min. The RT-PCR
products were analyzed on 1.0% agarose gels in TAE buffer.

Data analyses.
Data analyses were performed using SAS software version

9.4 (SAS Institute Inc. Cary, NC, U.S.A.). Number of foci and
foci size was tested for differences using PROC GLIMMIX
with Poisson and normal distribution, respectively. Genomic
RNA molecule data were log transformed and were tested for
differences by using PROC GLIMMIX, but nontransformed
data were reported. The LSMEANS statement was used to
obtain least squares means and the Tukey-Kramer test at P =
0.05 was used for pairwise comparison of treatment means.
Means and standard errors for numbers of foci, foci size, and
genomic RNAmolecules were obtained using the PROCMEANS.
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