University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Agronomy & Horticulture -- Faculty Publications

Agronomy and Horticulture Department

2001

Seed Physiology, Production & Technology: Germination, Emergence, and Yield of 20 Plant-Color, Seed-Color Near-Isogenic Lines of Grain Sorghum

Jeffrey F. Pedersen University of Nebraska-Lincoln, jpedersen1@unl.edu

J. J. Toy University of Nebraska-Lincoln, John.Toy@ars.usda.gov

Follow this and additional works at: https://digitalcommons.unl.edu/agronomyfacpub

Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Botany Commons, Horticulture Commons, Other Plant Sciences Commons, and the Plant Biology Commons

Pedersen, Jeffrey F. and Toy, J. J., "Seed Physiology, Production & Technology: Germination, Emergence, and Yield of 20 Plant-Color, Seed-Color Near-Isogenic Lines of Grain Sorghum" (2001). *Agronomy & Horticulture -- Faculty Publications*. 933. https://digitalcommons.unl.edu/agronomyfacpub/933

This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Agronomy & Horticulture -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

SEED PHYSIOLOGY, PRODUCTION & TECHNOLOGY

Germination, Emergence, and Yield of 20 Plant–Color, Seed–Color Near-Isogenic Lines of Grain Sorghum

J. F. Pedersen* and J. J. Toy

ABSTRACT

Although there is growing demand for sorghum [Sorghum bicolor (L.) Moench] with white seed and tan plant color, there is limited information on the overall agronomic fitness of sorghum with these characters. A set of experiments was conducted to evaluate the combined effects of plant color and seed color on sorghum germination, emergence, and agronomic performance. Twenty near-isogenic lines with red seed/tan plant (RT), red seed/purple plant (RP), white seed/ tan plant (WT), white seed/purple plant (WP) phenotypes were tested under field and laboratory conditions. Plant color imes seed color interactions were not significant. Purple plant color phenotypes had higher cold germination, higher germination after accelerated aging, and greater seedling elongation at 10 d than tan plant color phenotypes. Plant color did not influence standard warm germination. No differences in standard warm germination or seed vigor test results were attributable to seed color. Seedling emergence under field conditions was higher for the red seed than the white seed phenotype. Grain yield was higher for the white seed than the red seed phenotype, and higher for the purple plant color than the tan plant color phenotype. Grain test weights from purple plant color lines were higher than those from tan plant color lines. All four phenotypes included relatively high yielding lines. There was considerable overlap between WT, WP, RT, RP lines in yield and other indicators of agronomic performance leading to the conclusion that white seed and tan plant color lines with comparable performance to red seed and purple plant color lines can be selected from segregating breeding populations.

GRAIN SORGHUM MARKETS, such as the poultry and pigment stains. The sorghum seed industry responded to that need by developing white-seeded (clear pericarp) genotypes with tan plant color (tan plants lack purple coloration of necrotic leaf or stem tissues); however, there is no agreement on the overall agronomic fitness of WT genotypes compared to RP genotypes.

The role of pigments found in sorghum seed tissues has been researched in several labs. Resistance to various diseases and pests are associated with pigmented testa, but are not the subject of this paper. Red pericarp has been associated with grain mold (caused by various fungi) resistance (Bandyopadhyay et al., 1988; Esele et al., 1993; Jambunathan and Kherdekar, 1990). Melake-Berhan et al. (1996) reported higher concentrations of several phenolic compounds in grain mold resistant genotypes than in susceptible genotypes. Flavan-4-ols are one of the key components of mold resistance in red-

Published in Crop Sci. 41:107-110 (2001).

This document is a U.S. government work and is not subject to copyright in the United States. seeded genotypes (Jambunathan and Kherdekar, 1990; Melake-Berhan et al., 1996; Mukuru, 1992; Waniska and Rooney, 1992).

Nicholson et al. (1987) suggested that pathogen resistance is associated with phytoalexin accumulation in sorghum plant tissues in response to pathogen infection. Snyder et al. (1991) indicated that phytoalexins in sorghum are pigments, accumulate in the cell undergoing attack, and accumulate in substantially higher amounts than needed for expression of fungitoxicity. Tenkouano et al. (1993) proposed screening mesocotyl tissue in seedlings for phytoalexins as a potential tool for identifying resistance to anthracnose [caused by Colletotrichum graminicola (Ces.) G.W. Wils.]; however, Bupe et al. (1993) were unable to detect any difference in susceptibility to anthracnose in the field between lines isogenic for tan and red plant color, even though the two phenotypes differed in composition of phenolic compounds.

A recent report on the effects of plant color on agronomic traits of sorghum showed lower grain yields from a group of tan hybrids compared to pigmented hybrids (Williams-Alanis et al., 1995). We observed that WT lines appeared to exhibit poor germination and emergence in our winter greenhouse and hypothesized that the combined effects of plant color and seed color may impact sorghum germination and agronomic performance. Controlled germination experiments and a subsequent field experiment were therefore conducted to determine the effects of seed and plant color on sorghum germination and yield.

MATERIALS AND METHODS

Development of the RT, RP, WT, and WP near-isogenic lines utilized in these studies was described in the official release notice of the USDA-ARS and University of Nebraska (1999). Briefly, five S8 lines from each of the four phenotypes - WT (N321, N322, N323, N324, N325), RT (N326, N327, N328, N329, N330), WP (N331, N332, N333, N334, N335), RP (N336, N337, N338, N339, N340)-were selected from segregates of a single S3 family from the BC1 generation of the cross (BTx398 ms3 \times BTx630) \times BT \times 630. Given this pedigree, these lines should be $\approx 97\%$ genetically identical. The genetic stocks resemble BTx630, but have normal endosperm. Seed for laboratory and field experiments were produced at the University of Nebraska Field Laboratory, Ithaca, NE, in 1996. All seed lots were hand harvested after reaching physiological maturity, dried at $35 \pm 1^{\circ}$ C for 3 d, and stored under controlled conditions $(3 \pm 1^{\circ}C, 63 \pm 1^{\circ}K)$ relative humidity) until used.

J.F. Pedersen and J.J. Toy, USDA-ARS-NPA, Wheat, Sorghum, and Forage Research, Dep. of Agronomy, Univ. of Nebraska-Lincoln, Lincoln, NE 68583-0937. Joint contribution of the USDA-ARS and the Nebraska Agric. Exp. Stn. Published as a paper, no. 12 928, journal series, Nebraska Agric. Exp Stn. Received 20 Mar. 2000. *Corresponding author (jfp@unlserve.unl.edu).

Abbreviations: RP, red seed/purple plant; RT, red seed/tan plant; WP, white seed/purple plant; WT, white seed/tan plant.

Laboratory Germination and Seed Vigor

Standard warm germination was determined by counting normal seedlings after incubation on a moist blotter at 25 \pm 1°C for 5 and 10 d (Association of Official Seed Analysts, 1998). Seed vigor tests included cold germination, accelerated aging germination, and seedling elongation (Association of Official Seed Analysts, 1983). Cold germination was determined by incubating seed on a moist blotter for 7 d at 10 \pm 1°C followed by 5 d at 25 \pm 1°C before counting normal seedlings. Accelerated aging was accomplished by incubating seed at $48 \pm 1^{\circ}$ C for 48 h at 100% relative humidity followed by the protocol for standard warm germination. Seedling elongation was determined by aligning seeds on a fold in a blotter (a thin bead of rubber cement was used to hold seeds in place), rolling the blotter keeping the fold at the bottom, and incubating at $25 \pm 1^{\circ}$ C with the moistened blotter in an upright position. Coleoptile length of each seedling was measured after 10 d.

Each of the above germination and vigor tests was conducted as a separate experiment. The experimental design was a 2×2 factorial (2 plant colors, 2 seed colors) with lines nested within the four phenotypes, and replicated four times. For all experiments, the experimental unit was 100 seeds. Data was analyzed by the general linear model procedure of SAS (1990). Least significant differences were used for comparisons among all 20 lines, and orthogonal contrasts were made for tan vs. purple plant color and red vs. white pericarp color.

Field Performance

Field trials with the 20 lines were conducted at the University of Nebraska Field Laboratory, Ithaca, NE (Sharpsburg silty clay loam; fine smectitic, mesic Typic Agriudoll). Individual plots consisted of two 7.6-m rows spaced 76 cm apart, and each was seeded with a precision vacuum planter calibrated to deliver 240 seed per plot. The seed was not treated with fungicides or insecticides. Planting dates were 22 May 1997 and 18 May 1998. Plots were fertilized with 112 kg ha⁻¹ N prior to planting. Propachlor (2-chloro-*N*-osopropylacetanilide) and Atrazine (6-chloro- N^2 -ethyl- N^4 -isopropyl-1,3,5,-triazine-2,4-diamine) were applied at 3.36 and 1.12 kg ha⁻¹, respectively, immediately after planting for weed control. No supplemental irrigation was applied.

Field emergence was determined by counting seedlings in each plot 4 wk after planting, and converting to percentage of total seed planted. Notes were taken for anthesis date at least every 3 d during anthesis and days to 50% anthesis was calculated for each plot. Height was measured at maturity. Plots were harvested with a small-plot combine on 21 October 1997 and 14 October 1998, and yield, moisture content, and test weight of the grain were recorded.

The experimental design was a 2×2 factorial (2 plant colors, 2 seed colors) with lines nested within the four phenotypes, and replicated five times in each year. Due to large differences in weather and initial field emergence in the two years, data from each year was analyzed separately. Statistical analyses were as described above.

RESULTS

Laboratory Germination and Seed Vigor

Although accelerated aging was conducted at 48° C and 100% relative humidity for 48 h with the intention of severely stressing the seeds, reduction in germination was not as great as previously reported by Ibrahim et al. (1993), when sorghum seed was aged at 45° C for 72 h.

Plant color by seed color interactions were not significant for any of the traits measured. Plant color effects were significant for several seed vigor characters (Table 1), with purple plant color giving slightly higher cold

Table 1. Laboratory seed vigor and germination of plant color/seed color near-isolines.

Phenotype		Warm ge	rmination	Cold germination	Accelerated aging		
	Line	5 d	10 d		5 d	10 d	Elongation
				%			cm
WT†	N321	97	98	87	94	94	1.9
	N322	95	95	91	90	93	2.3
	N323	84	85	80	93	91	2.2
	N324	96	97	91	87	89	2.5
	N325	97	98	94	90	91	2.6
RT	N326	97	98	95	95	96	2.4
	N327	96	96	85	93	95	2.1
	N328	91	93	84	92	93	2.0
	N329	94	96	89	88	90	2.4
	N330	97	98	95	91	92	2.8
WP	N331	93	94	86	91	90	2.3
	N332	93	95	93	94	95	2.1
	N333	96	97	92	93	95	3.3
	N334	97	98	89	96	96	2.6
	N335	95	97	93	96	97	3.6
RP	N336	99	99	95	93	93	2.7
	N337	96	97	93	96	97	2.6
	N338	92	93	89	96	96	2.4
	N339	94	95	95	96	96	3.2
	N340	92	94	91	93	92	2.6
LSD (0.05) within phenotype	1.010	3	3	4	NS‡	NS	0.5
Orthogonal Compa	risons						
White seed		94	95	90	92	93	2.5
Red seed		95	96	91	93	94	2.5
Prob F		0.42	0.42	0.18	0.16	0.46	0.88
Tan plant		94	95	89	91	92	2.3
Purple plant		95	96	91	94	95	2.7
Prob F		0.48	0.16	0.05	0.01	0.04	0.03

 \dagger WT = white seed tan plant color, RT = red seed tan plant color, WP = white seed purple plant color, RP = red seed purple plant color. \ddagger NS = no significant differences at P = 0.05.

Phenotype	Line	Emergence	Days to anthesis	Height	Yield	Moisture	Test weight
		%	d	cm	kg h ⁻¹	$\mathbf{g} \ \mathbf{k} \mathbf{g}^{-1}$	kg m ⁻³
WT†	N321	38	79	146	7763	243	703
	N322	32	78	142	6110	214	723
	N323	37	75	148	6083	249	696
	N324	38	76	159	4712	227	843
	N325	45	78	143	5084	265	697
RT	N326	47	79	149	5747	333	684
	N327	37	76	134	4876	219	709
	N328	38	74	142	5902	184	718
	N329	44	75	142	7318	152	733
	N330	54	77	137	4894	342	692
WP	N331	36	79	151	7327	299	705
	N332	45	73	134	6873	176	736
	N333	41	73	140	6583	208	747
	N334	39	79	143	6991	196	725
	N335	38	75	138	7591	184	738
RP	N336	49	78	155	6719	302	732
	N337	51	74	154	6864	275	760
	N338	40	79	138	6274	166	724
	N339	46	76	151	6483	232	760
	N340	44	77	136	6664	257	737
LSD (0.05) within phenotype		7	1	6	791	110	23
Orthogonal Compa	risons						
White seed		39	77	144	6512	226	720
Red seed		45	76	144	6174	246	725
Prob F		0.01	0.04	0.65	0.06	0.22	0.50
Tan plant		41	77	144	5849	243	709
Purple plant		43	77	144	6837	230	737
Prob F		0.18	0.17	0.88	0.01	0.41	0.01

Table 2. Field emergence and agronomic performance of plant color/seed color near-isolines at Ithaca, NE in 1997.

† WT = white seed tan plant color, RT = red seed tan plant color, WP = white seed purple plant color, RP = red seed purple plant color.

germination (91 vs. 89%), slightly higher germination after accelerated aging at 5 d (94 vs. 91%) and 10 d (95 vs. 92%), and greater seedling elongation at 10 d (2.7 vs. 2.3 cm). No differences in standard warm germination were attributable to plant color (P > 0.05). No

differences in standard warm germination or seed vigor indicators were attributable to seed color.

Differences among lines within phenotypes were detected for standard warm germination, cold germination, and seedling elongation (P = 0.05). One WT line,

Table 3. Field	emergence and	agronomic	performance of	of plant	color/seed	color nea	r-isolines a	t Ithaca,	NE in 1998.

Phenotype	Line	Emergence	Days to anthesis	Height	Yield	Moisture	Test weight
		%	d	cm	kg h^{-1}	g kg ⁻¹	kg m ⁻³
WT†	N321	47	83	151	7520	142	684
	N322	42	82	153	6320	138	687
	N323	44	80	162	7280	136	700
	N324	49	81	171	5960	156	725
	N325	58	82	153	6580	132	665
RT	N326	57	82	153	7020	147	645
	N327	46	79	134	5060	137	675
	N328	44	78	150	6280	137	679
	N329	53	79	144	6300	132	653
	N330	59	81	151	5160	155	652
WP	N331	43	83	163	7580	156	691
	N332	52	77	149	7000	141	739
	N333	49	82	151	6700	146	730
	N334	51	82	154	7120	137	702
	N335	49	79	144	7360	137	706
RP	N336	60	82	164	6900	152	706
	N337	58	80	166	7540	154	725
	N338	51	82	134	6080	135	667
	N339	53	80	165	7000	161	720
	N340	49	81	145	6240	138	693
LSD (0.05)		6	1	5	655	14	23
within phenotype							
Orthogonal Comp	arisons						
White seed		48	81	155	6942	142	703
Red seed		53	81	151	6358	145	682
Prob F		0.01	0.03	0.01	0.01	0.33	0.08
Tan plant		50	81	152	6348	141	676
Purple plant		51	81	154	6952	146	707
Prob F		0.30	0.88	0.15	0.01	0.14	0.01

† WT = white seed tan plant color, RT = red seed tan plant color, WP = white seed purple plant color, RP = red seed purple plant color.

N323, was the only line to exhibit <90% standard warm germination, and also exhibited the lowest (80%) cold germination. Considerable overlap in warm and cold germination was observed among the four phenotypes. Each of the four phenotypes had lines exhibiting warm germination (10 d) percentages >97% and cold germination percentages >92%. No differences were detected among lines within phenotypes for germination following accelerated aging.

Field Performance

Seedling emergence under field conditions was higher for phenotypes with red seed than for phenotypes with white seed in 1997 (45 vs. 39%; P = 0.01) and 1998 (53 vs. 48%; P = 0.01) (Tables 2 and 3); however, grain yield was higher for phenotypes with white seed than red seed in 1997 (6512 vs. 6174 kg ha⁻¹; P = 0.06), and 1998 (6942 vs. 6358 kg ha⁻¹; P = 0.01). No differences in seedling emergence under field conditions were attributable to plant color. Purple plant color phenotypes were higher yielding than tan plant color phenotypes in 1997 (6837 vs. 5849 kg ha⁻¹; $\hat{P} = 0.01$), and 1998 (6952 vs. 6348 kg ha⁻¹; P = 0.01), and had higher test weights in both years (737 vs. 709 kg m⁻³ and 707 vs. 676 kg m^{-3} , respectively; P = 0.01). Although days to anthesis was statistically longer for white seed phenotypes in both years, the mean difference was ≈ 0.5 d and probably has no biological significance. Similarly, white seed phenotypes were slightly taller than red seed phenotypes in 1998 (155 vs. 151 cm; P = 0.01), but this small difference in average height probably has no practical significance.

Differences were detected among lines within phenotypes for all traits measured in the field (P = 0.05). Considerable overlap in the range of values was observed among the four phenotypes. Each of the four phenotypes had lines with emergence approaching 50% in both years, and with one exception (RP in 1997) had yields over 7000 kg ha⁻¹ in both years.

DISCUSSION

Since red pericarp has been shown to be associated with grain mold resistance (Bandyopadhyay et al., 1988; Esele et al., 1993; Jambunathan and Kherdekar, 1990), it is not surprising that field emergence was higher for untreated red seed phenotypes than for white seed phenotypes. Soil would be expected to be biologically active and contain numerous molds and other pathogens that could affect seed germination and emergence. The lack of seed color effects on laboratory measurements of seed vigor, the lack of plant color effects on standard warm germination in the lab, and the significant effects of plant color on controlled laboratory measurements of seed vigor were more difficult to interpret. It would appear that purple plant color enhanced seed and seedling vigor under controlled laboratory conditions, but the mechanism of this effect is not apparent from these studies. Plant color effects were not biologically significant enough to cause detectable differences in field emergence under our environmental conditions.

Our observation of higher average grain yield associated with purple (vs. tan) plant color phenotypes is consistent with the observations of Williams-Alanis et al. (1995) in a very different environment; however, our observation of higher average grain yield being associated with white (vs. red) seed color was unexpected. It is important to note that by developing near-isogenic lines to test the effects of pericarp and plant color, we effectively narrowed the experimental population of inference to that set of near-isolines. Within this set of near-isolines, all four phenotypes included relatively high yielding lines. Considerable overlap between WT, WP, RT, RP lines in yield and other indicators of agronomic performance were observed leading to the conclusion that white seed and tan plant color lines with comparable performance to red seed and purple plant color lines can be selected from such segregating breeding populations.

REFERENCES

- Association of Official Seed Analysts. 1983. Seed vigor testing handbook. Seed Vigor Test Committee, Association of Official Seed Analysts.
- Association of Official Seed Analysts. 1998. Rules for testing seeds. Rules Committee, Association of Official Seed Analysts.
- Bandyopadhyay, R., L.K.D. Mughogho, and Rao K.E. Prasada. 1988. Sources of resistance to sorghum grain molds. Plant Dis. 72:504.
- Bupe, Siame, A., G. Ejeta, and L.G. Butler. 1993. Role of pigments and tannins in the reaction of tan and red near-isogenic sorghum lines to leaf diseases. African Crop Sci. J. 1:123–130.
- Esele, J.P., R.A. Frederiksen, F.R. Miller. 1993. The association of genes controlling caryopsis traits with grain mold resistance in sorghum. Phytopathology. 83:490–495.
- Ibrahim, A.E., D.M. Tekrony, and D.B. Egli. 1993. Accelerated aging techniques for evaluating sorghum seed vigor. J. Seed Tech. 17:29–37.
- Jambunathan, R.L., and M.S. Kherdekar. 1990. Flavan-4-ol concentration in mold-susceptible and mold-resistant sorghum at different stages of grain development. J. Agric. Food Chem. 38:545.
- Melake-Berhan, Admasu, Larry G. Butler, Gebisa Ejeta, and Abebe Menkir. 1996. Grain mold resistance and polyphenol accumulation in sorghum. J. Agric Food Chem. 44:2428–2434.
- Mukuru, S.Z. 1992. Breeding for grain mold resistance. p. 273–285. *In* de Milliano, S.A.J., R.A. Frederiksen, and G.D. Bengston (ed.) Sorghum and millets diseases: A second world review. ICRISAT, Patancheru, AP, India.
- Nicholson, R.L., S.S. Kollipara, J.R. Vincent, P.C. Lyons, and G. Cadena-Gomez. 1987. Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc. Natl. Acad. Sci. (USA) 84:5520–5524.
- SAS Institute, Inc. 1990. User's guide. 6th ed. SAS Inst., Inc., Cary, NC.
- Snyder, B.A., B. Leite, J. Hipskind, L.G. Butler, and R.L. Nicholsons. 1991. Accumulation of sorghum phytoalexins induced by *Colletotrichum graminicola* at the infection site. Physiol. Mol. Plant Pathol. 39:463–470.
- Tenkouano, A.F.R. Miller, G.E. Hart, R.A. Frederiksen, and R.L. Nicholsons. 1993. Phytoalexin assay in juvenile sorghum: An aid to breeding for anthracnose. Crop Sci. 33:243–248.
- USDA-ARS and University of Nebraska. 1999. Release of 20 nearisogenic grain sorghum genetic stocks differing in pericarp color and necrotic plant color. USDA-ARS, and the Agric. Res. Div., Inst. Agric. Nat. Resour., Univ. of NE.
- Waniska, R.A., and L.W. Rooney. 1992. Cereal chemistry and grain mold resistance. p. 265–272. *In* de Milliano, S.A.J., R.A. Frederiksen, and G.D. Bengston (ed.) Sorghum and millets diseases: A second world review. ICRISAT, Patancheru, India.
- Williams-Alanis, H., R. Rodriguez-Herrera, and H. Torres-Montalvo. 1995. Effect of plant color on agronomic traits of dryland grain sorghum. Int. Sorghum and Millets Newsl. 36:71–72.