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 Dry-milling ethanol plants produce distillers grains (DG) and condensed distillers 

solubles (CDS).  Before thin stillage is evaporated to CDS, corn oil is removed via 

centrifugation, producing de-oiled CDS.  Depending on plant availability, CDS can be 

marketed or combined with DG to produce de-oiled distillers grains plus solubles (DGS).  

Currently, there are no data available on animal performance when corn oil is removed 

via centrifugation of the solubles stream.  Therefore, two finishing experiments, a 

metabolism experiment, and a growing experiment were conducted to evaluate the effects 

of corn oil removal on cattle performance, carcass characteristics, and the effects on 

nutrient digestibility.  Oil concentration had no effect on DMI, ADG, G:F, and carcass 

characteristics in finishing cattle fed de-oiled or normal DGS or CDS.  Regardless of oil 

concentration, steers fed DGS or CDS had greater ADG and were more efficient than the 

corn-based control.  Diets containing normal CDS had greater fat digestibility compared 

to de-oiled CDS, while there was no difference for DGS.  The growing experiment 

suggested that there were no differences in ending BW, DMI, or ADG for the main 

effects of oil concentration.  At lower concentration of dietary CDS, G:F improved 13.6% 

for normal CDS compared to de-oiled CDS. However, when CDS increased to 40% 

inclusion, G:F differed by only 1% which could be a result of hindered fiber digestion for 



normal CDS.  In finishing diets, oil removal via centrifugation had no effect on animal 

performance or carcass characteristics.  However, in growing trials, normal CDS fed at 

low inclusions resulted in improved G:F compared to de-oiled CDS with no difference 

observed at greater inclusions.   

     

Key Words: Centrifugation, Condensed distillers solubles, Corn oil, Distillers grains plus 

solubles, Extraction              
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Chapter 1 

Introduction 

 

 The concept of fermentation of cereal grains to produce ethanol has been in 

existence since the 1800’s with the first use for an internal combustion engine in 1826 

(ICM, 2012).  In 1920, Henry Ford believed that the success of his automobiles rested in 

renewable resources which resulted in an ethanol biorefinery built in the Midwest to 

supply fuel (ICM, 2012). In 1970, the Arab oil embargo resulted in the increased use of 

“gasohol”, a fuel extender, which is comprised of one part corn ethanol with nine parts 

gasoline (E-10; ICM, 2012).  Since gasohol is made with ethanol, it is a way for the 

United States to reduce dependency on foreign oil.  Today, ethanol represents 

approximately 10% of the nation’s gasoline supply at 14 billion gallons produced 

(Renewable Fuels Association, 2013a). 

 The increase in ethanol production has resulted in an increase in by-product feeds 

(distillers grains, distillers solubles, corn gluten feed, and corn gluten meal) produced for 

livestock feeds.  For every bushel of corn used for ethanol production, 2.8 gallons of 

ethanol and 17-18 pounds, on an as-fed basis, of by-product feed are produced (RFA, 

2012a). This resulted in more than 39 million metric tons of feed for the livestock 

industry in 2011 with 35.7 million metric tons coming from distillers grains (RFA, 

2012a).    

There are two primary processes associated with producing ethanol: wet milling 

and dry milling.  The wet milling industry accounts for 11% of current operating capacity 

(RFA, 2012b) and contributes to several by-products such as corn germ meal, corn oil, 
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corn bran and steep liquor which are typically mixed together to produce wet corn gluten 

feed (WCGF).  The nutrient composition of WCGF depends on the ratio of steep liquor to 

corn bran and can be variable between ethanol plants.  Wet corn gluten feed with 

increased levels of steep liquor results in greater crude protein content, decreased NDF, 

and ultimately improved feed efficiencies because steep liquor contains more energy than 

corn bran (Stock et al, 2000).  Corn gluten feed can be marketed as being wet (40 to 60% 

DM) and sold to surrounding dairies and feedlots or dried, pelleted, and shipped overseas 

(Stock et al, 2000).        

The dry milling industry represents 89% of current operating capacity (RFA, 

2012b) and results in two by-products for livestock feed: distillers grains (DG) and 

condensed distillers solubles (CDS).  Dry milling has the flexibility in the grain type that 

can be utilized in the fermentation process.  Corn, wheat, barley, grain sorghum, or a 

mixture of grains can be used, but corn is the grain source predominately utilized because 

of the abundant supply (Stock et al., 2000).  The nutrient composition of DG are 

concentrated three-fold compared to the grain used in the fermentation process making 

DG an excellent energy and protein feed source for growing and finishing cattle 

(Klopfenstein et al., 2008).      
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Chapter II 

Review of Literature 

Dry Milling 

 

 Process.  The first step in the dry milling process is to remove any debris from the 

corn grain (i.e. corn stalk) using a process of screens (ICM, 2012).  The entire grain 

kernel (fermentable and non-fermentable components) is sent through a hammer mill to 

be ground into course flour.  Once the grain is ground, the corn is mixed with processed 

water to produce a slurry mixture.  The alpha-amylase enzyme is added to convert starch 

to dextrose, the pH is adjusted to 5.8 with sulfuric acid, and controlled by the use of 

ammonia (ICM, 2012; RFA, 2012b).  The mixture is then heated to 82-88°C to control 

bacteria and maintained for 30-45 minutes.   

 Once the slurry has been heated, it is sent through a pressurized jet cooker at 

105°C for 5 minutes and then transferred to liquefaction tanks where it is held for 1-2 

hours at 82-88°C (ICM, 2012).  During this process the alpha-amylase is given time to 

break down starch to produce short chain dextrin’s.  Once this has occurred, the 

temperature and the pH are adjusted and a second enzyme, glucoamylase, is added to 

convert the short chain dextrin’s to simple sugars (ICM, 2012).   

 The slurry is now referred to as mash and is allowed to ferment for 50-60 hours.  

Yeast is added to convert the simple sugars to ethanol and carbon dioxide.  The carbon 

dioxide can be captured and marketed for carbonating soft drinks and manufacturing dry 

ice or released into the atmosphere (ICM, 2012; RFA, 2012b).  Once the fermentation 
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process is complete, the mash contains approximately 15% ethanol, yeast, and solids 

from the grains.   

 After fermentation, the alcohol needs to be removed.  This is referred to as the 

distillation step.  The mash is transferred into the distillation columns where the ethanol 

is removed producing whole stillage.  The whole stillage contains yeast cells that were 

used during fermentation and increased amounts of sulfur from sulfuric acid used to 

manage pH and sterilization of parts of the ethanol plant.  The whole stillage is 

transported to a centrifuge where it is separated into thin stillage (5-10% DM) and wet 

distillers grains.  The thin stillage goes through an evaporation system to produce a 

syrup-like by-product known as condensed distillers solubles which contains 20-35% DM 

(Stock et al, 2000).  The wet distillers grains can be sold as wet distillers grains (WDG) 

or dried to produced dried distillers grains (DDG).  Condensed distillers solubles can be 

added back to the distillers grains to produce wet distillers grains plus solubles (WDGS), 

dried with distillers grains to approximately 90% DM to produce dried distillers grains 

plus solubles (DDGS), partially dried to approximately 42-48% DM to produce modified 

distillers grains plus solubles (MDGS), or marketed as a separate feed ingredient (Stock 

et al, 2000; Bremer et al., 2011).   

Nutrient Composition.  Approximately two-thirds of the corn grain is comprised 

of starch.  Once the starch is removed, all other nutrients (protein, fat, phosphorus, and 

fiber) can be recovered in the stillage and are increased three-fold compared to the 

original grain (Stock et al, 2000).  The protein content increases from 10 to 30%, fat from 

4 to 12%, P from 0.3 to 0.9%, and NDF from 12 to 36% of DM (Klopfenstein et al., 

2008).   
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There are three types of distillers grains that are marketed: WDGS, MDGS, and 

DDGS.  The three types are based on the plants ability of drying the product.  Holt et al. 

in 2004 conducted a study to evaluate the nutrient composition of by-products from dry 

milling ethanol plants.  Nutrient composition was determined for WDGS, MDGS, and 

DDGS.  Four regional plants were utilized and samples were collected four times per day 

over four consecutive days during March, April, and May 2002.  The by-products were 

sampled from the truck to simulate the product being received by the producer.  They 

determined that WDGS ranged from 29.5-36.5% DM, 34.4-36.6% CP, 11.0-13.1% fat, 

36.1-48.1% NDF, 9.8-16.9% ADF, and 2.8-4.2% ash.  Dried distillers grains plus 

solubles ranged from 89.4-90.9% DM, 30.7-36.7% CP, 10.4-14.2% fat, 37.3-48.9% NDF, 

10.9-16.0% ADF, 0.66-0.83% P, and 3.9-4.2% ash.  Modified distillers grains plus 

solubles was determined to average 58.9% DM, 29.7% CP, 16.7% fat, 34.9% NDF, 

10.9% ADF, and 5.3% ash.  A later study conducted by Buckner et al. (2011) found 

similar results to the nutrient composition of dry milling by-products.  By-product was 

sampled from 6 ethanol plants with 10 samples taken across a day for 5 consecutive days.  

This process was repeated over four months throughout the year.  It was determined that 

DG averaged 31.0% CP and 11.9% fat which are in the ranges given by Holt et al. 

(2004). 

The nutrient composition of CDS can vary within and across plants similar to DG.  

Lardy (2007) reported that CDS ranged from 23-45% DM, 20-30% CP, 9-15% fat, 1.30-

1.45% P, and 0.37-0.95% S.  The fat content of CDS has been reported to be greater than 

Lardy et al., (2007) averages at 18.6% (Pesta, 2013) or even higher at 34.4% (Cao et al., 

2009).  The increased fat content in CDS as reported by Pesta, 2013 and Cao et al., 2009 
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can be a concern if the dietary fat is greater than 8% DM which can result in decreased 

cattle intakes (Vander Pol et al., 2009).  Along with increased fat, CDS also contains 

increased phosphorus and sulfur which can lead to health issues if improperly managed.  

Increased levels of phosphorus can cause an imbalance in the ratio of calcium to 

phosphorus resulting in urinary calculi (Lindley et al, 1953).  Increased amounts of sulfur 

in the diet (above 0.4%; NRC, 1996) can lead to increased incidence of 

polioencephalomalacia (PEM or polio).  The excess sulfur is a result of sulfuric acid 

added during the distillation step for managing pH and sanitation of plant parts which 

remains in the by-product feed.   

Distillers grains are relatively high in crude protein making them an excellent 

protein source for beef cattle (Lardy, 2007).  Crude protein in DG is relatively high in 

undegradable intake protein (UIP). Undegradable intake protein is not fermented by the 

microbes in the rumen allowing the protein to escape the rumen to the small intestine 

where it can be digested and utilized by the animal.  Lardy (2007) estimated the UIP% of 

distillers grains plus solubles to be 47 to 57% of CP while the UIP% of CDS was lower at 

20% of CP.  Condensed distillers solubles may be lower in UIP but it is relatively high in 

degradable intake protein (DIP) with a DIP value of 80% of CP while DG are in the 

range of 43-53% DIP of CP.   

Method of Reducing Fat in CDS 

 

Pre-Fractionation Process.  Fractionation is the process that separates the three 

main components of the corn kernel: the endosperm, germ, and the bran.  Pre-

fractionation processing occurs at the initiation of ethanol production process by using 
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coarse grinders to extract the starch component.  The corn kernel is approximately 82% 

endosperm which contains 98% of the starch, 12% germ, and 6% bran (Cereal Process 

Technologies, 2012).  For the most efficient production of ethanol, the endosperm needs 

to yield 82 to 83% starch, which can increase the ethanol yield per batch by 18% (Cereal 

Process Technologies, 2012; Applied Milling Systems, 2006).  With the bran and germ 

removed, the starch becomes more accessible to enzymes during the fermentation process 

resulting in a quicker conversion of starch to ethanol and reduces the amount of enzymes 

used in the process.  With the attempt of increased endosperm yield above 83%, oil and 

fiber levels start to increase.  This results in the germ and bran entering into the starch 

stream which decreases fermentation efficiency (Cereal Process Technologies, 2012).  

With the components of the corn kernel separated, the non-fermentable components (i.e. 

corn germ and bran) are not introduced into the fermentation process and corn oil can 

readily be extracted.  

Feeding Pre-Fractionated DGS.    Limited research has been conducted to 

determine the effect of feeding a de-oiled DGS by-product from pre-fractionation.  In a 

finishing trial, Depenbusch et al. (2008a) compared a traditional-grind DGS (12% crude 

fat, TRAD) to a pre-fractionated DGS (4% crude fat, FRAC) at 13% inclusion in a steam 

flaked corn (SFC) diet on growth performance and carcass characteristics in yearling 

heifers.  There was an effect on DMI with heifers receiving TRAD consuming 4.5% more 

feed then heifers fed FRAC.  This could be contributed to a degradable intake protein 

deficiency in heifers fed FRAC because degradable intake protein was limited.  

Regardless of treatment, cattle performance (average daily gain and feed efficiency) and 

carcass characteristics (hot carcass weight, dressing percentage, LM area, KPH fat, and 



8 
 

12
th

 rib fat) were not different.  This suggests that cattle fed 13% DGS produced from a 

traditional dry-grind or pre fractionation process results in similar performance in diets 

with SFC. 

Godsey et al., (2010) fed E-Corn, a type of pre-fractionated DGS, at 0, 20, 40, and 

60% inclusion in diets containing 35% WDGS.  The treatments that contained E-Corn 

replaced DRC.  No response in ADG (P > 0.21) was observed as E-Corn was increased 

up to 60% inclusion.  A cubic response (P = 0.02) was reported for G:F.  Cattle fed 20 

and 60% had the greatest G:F, controls were intermediate, and cattle fed 40% had the 

lowest G:F.  E-Corn concentration had no effect (P > 0.23) on HCW, however, a linear 

decrease (P < 0.01) was observed for marbling score, 12
th

 rib fat, and calculated YG.  The 

authors reported that the optimum performance of E-Corn was at 20% inclusion when fed 

in combination with 35% WDGS.   

Gigax et al. (2011) evaluated feeding pre-fractionated DGS in finishing cattle 

diets.  Treatments consisted of low-fat (6.7% fat) and normal-fat (12.9% fat) WDGS at 

35% inclusion in a 1:1 blend of dry-rolled and high-moisture corn diets.  Normal fat 

WDGS resulted in heavier carcass adjusted final BW, HCW, and greater ADG (P < 0.05) 

compared to low-fat WDGS and controls. Ironically, low-fat and controls had identical 

final BW, ADG, and HCW.  No difference (P = 0.12) was observed for G:F between low 

and normal-fat WDGS, however steers fed normal-fat WDGS had numerically greater 

G:F compared to low-fat WDGS. This experiment suggests that low-fat WDGS have a 

lower energy value than normal-fat WDGS and would result in similar cattle performance 

to a corn-based diet. 
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In two finishing experiments, Veracini et al. (2013) analyzed feeding pre-

fractionated DGS (6.92 ± 1.84% ether extract) in whole shelled corn diets at 25, 40, and 

70% inclusion in the diet DM on growth performance and carcass characteristics.  In Exp. 

1, over the entire feeding period, no differences (P > 0.26) were observed for final BW, 

DMI, ADG, and G:F. This is similar to observations reported by Atkinson et al. (2012), 

who did not detect a difference in animal performance in steers fed reduced fat DGS at 40 

and 70% inclusion in the diet DM.  Veracini et al. (2013) observed no differences (P > 

0.37) in carcass characteristics when reduced fat DGS were fed at increased inclusions.  

In Exp 2, the authors included a control diet (DGS not included) to the treatment group.  

Over the entire feeding period, DMI increased (P < 0.01) as the inclusion of reduced-fat 

DGS increased in the diet.  A meta-analysis conducted by Bremer (2011) reported that 

DMI increased when DGS increased up to 30% in the diet DM. Steers fed 70% DGS had 

lower (P < 0.01) ADG and a trend for lower final BW (P = 0.09) compared to other 

treatments.  Neville et al. (2012) observed a quadratic decrease in ADG as DGS increased 

in the diet up to 60% inclusion.  Unlike Exp. 1, Veracini et al. (2013) observed a 

difference (P < 0.01) for G:F in Exp. 2.  As the inclusion of DGS increased in the diet, 

G:F decreased with steers fed control diet being the most efficient.  However, Atkinson et 

al. (2012) in two experiments observed no difference (P > 0.22) for G:F as DGS 

increased up to 70% in the diet DM.  In whole corn diets, reduced fat DGS from the pre-

fractionation process had no effect on G:F (Veracini et al. 2013; Atkinson et al.,, 2012) or 

reduces G:F (Veracini et al. 2013).  

Post-Fractionation Process.   The removal of corn oil, via centrifugation, occurs 

during the post-fermentation process before thin stillage is evaporated to produce CDS 
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(U.S. Grains Council, 2012).  It is only in this phase that the corn oil that is not 

encapsulated with fiber particles can be removed.  The corn oil is routed to storage tanks 

where it can be marketed to the biodiesel industry.  Once CDS is added back to distillers 

grains, it produces a de-oiled by-product of approximately 8% ether extract instead of 

12%.  Currently, there are no data available on the effects of feeding DGS with corn oil 

removed using this process.  

Fats and Lipids 

 

 Introduction.  The three main sources of lipids that are often supplied in feedlot 

cattle diets are in the form of triglycerides, phospholipids, and galactolipids (Jenkins et 

al., 2008).  A triglyceride contains a 3-carbon glycerol backbone attached with an ester 

bond to three fatty acid molecules.  Phospholipids and galactolipids are made up of a 3-

carbon glycerol backbone that is bound to two fatty acid molecules and a phosphate 

group or a galactose molecule, respectively.  Once in the rumen, lipids undergo lipolysis 

where microbial lipases (bacterial or protozoal) rapidly hydrolyze the ester linkages 

releasing fatty acids from glycerol (Jenkins et al., 2008).  The glycerol can then be broken 

down into volatile fatty acids, mainly propionate and butyrate, which are absorbed and 

used as energy (Doreau and Ferlay, 1994).  Once the fatty acids are cleaved from the 

glycerol, microbes act on any unsaturated fatty acids to immediately undergo 

biohydrogenation.   

The rate of lipolysis and biohydrogenation are dependent on factors such as type 

and amount of dietary fat and ruminal pH.  For lipids that are not protected against 

biohydrogenation, the extent of lipolysis is very high ranging from 85 to 95% (Bauchart 
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et al., 1990).  Beam et al., (2000) analyzed the effect of differing amounts of dietary fat 

on in vitro rate of lipolysis at 0, 3, 6, 9, 12, 24, and 48 h of incubation.  Different 

inclusions of soybean oil were added at 0, 2, 4, 6, 8, and 10%, wt/wt of the ground grass 

hay substrate.  As the concentration of soybean oil increased, the rate of lipolysis 

decreased with 10% soybean oil having the lowest rate of 22.6%/h and 2% having the 

greatest rate at 41.4%/h.  Similar to lipolysis, the hydrogenation rate of 18:2 decreased as 

the concentration of soybean oil increased. The authors concluded that dietary 

concentration was the primary factor that affected the rate of lipolysis and 

biohydrogenation of soybean oil.  Van Nevel and Demeyer (1996) evaluated pH effect on 

lipolysis and biohydrogenation with soybean oil as the sole substrate.  The authors 

observed that lipolytic activity was inhibited at a pH ≤ 6.0 with the intensity of inhibition 

being increased with larger amounts of soybean oil.  In the rumen, lipolytic activity 

appeared to be more sensitive to changes in pH than biohydrogenation meaning that 

reduced biohydrogenation only results from inhibited lipolysis.  When high concentrate 

diets are fed to finishing cattle, a reduction in ruminal pH is typically observed.  If a 

reduction in pH results in a decrease in lipolysis and biohydrogenation, then feeding high 

concentrate rations could be a way of protecting unsaturated lipids from 

biohydrogenation due to less lipolysis.  Unsaturated fatty acids can then reach the small 

intestine, be absorbed, and utilized by the body.   

Biohydrogenation.  Biohydrogenation reduces double bonds within an 

unsaturated fatty acid resulting in a saturated fatty acid, of the same carbon length, by the 

addition of hydrogen ions.  Biohydrogenation is an important mechanism where microbes 

can dispose of hydrogen which potentially could have been utilized for methane 
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production (Zinn, 1989).  While most unsaturated fatty acids undergo biohydrogenation, 

normally saturation is incomplete (Beam, et al., 2000).  Incomplete biohydrogenation 

results in unsaturated fatty acids reaching the duodenum which can be attributed to 

factors such as changes in pH, particulate matter present, and inhabitant microbial 

populations present (Church and Pond, 1988).    

A review by Lock et al. (2005) shows the significance of biohydrogenation.  The 

authors indicated that in most dairy diets, linoleic acid (18:2) is the most common 

unsaturated fatty acid present.  However, very little of the linoleic acid consumed (mean 

272 g/d) reaches the duodenum and is available for absorption (mean duodenal flow 56 

g/d).  Doreau and Ferlay (1994) reported that the percentage of biohydrogenation for 

linoleic acid ranges from 70 to 95%, with an average of 80%.  Doreau and Ferlay (1994) 

reported that the extent of hydrogenation of linolenic acid (18:3) is virtually complete 

with percentages between 85 to 100% (average of 92%).  With this said, very little stearic 

acid (18:0) is consumed from the diet (mean 52 g/d) but there is a dramatic increase in 

stearic acid that reaches the duodenum (mean 397 g/d; Lock et al., 2005).  This can be 

expected since stearic acid is the end product of biohydrogenation of all 18-carbon 

polyunsaturated fatty acids.   

Research by Vander Pol et al. (2009) suggested that fatty acids from WDGS are 

not biohydrogenated to the same extent as fatty acids from corn oil.  A duodenal fatty 

acid profile was analyzed from steers fed 40% WDGS, a composite of corn bran and corn 

gluten meal, the composite diet plus corn oil, a dry rolled corn (DRC) based control, and 

the control plus corn oil.  Results concluded that steers fed diets that were supplemented 

with corn oil had greater proportions of 18:0 fatty acids reaching the duodenum 
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compared to cattle fed WDGS, which had the least amount.  However, cattle fed WDGS 

had the greatest proportion of 18:1 trans, 18:1, and 18:2 reaching the duodenum relative 

to all other diets. Cattle supplemented with corn oil had the least unsaturated fatty acids 

reaching the duodenum.  This is similar to Bremer (2010) who reported that cattle fed 

WDGS had greater proportions of 18:1 and 18:2 reaching the omasum compared to diets 

containing tallow, corn oil, or CDS as a fat source.  Even though WDGS and CDS 

originate from corn, there is a difference in the extent of biohydrogenation.  The 

unsaturated:saturated ratio was 0.83 and 0.52 for WDGS and CDS, respectively. 

 Intestinal Digestion of Fatty Acids.  Once biohydrogenation occurs, the lipid 

material that exits the rumen is comprised of free fatty acids that are highly saturated with 

approximately 80-90% of the free fatty acids attached to feed particles (Doreau and 

Chilliard, 1997).  The saturated fatty acids consist of approximately ⅓ palmitic acid 

(16:0) and ⅔ stearic acid (18:0; Lock et al., 2005).  Before absorption can occur, bile and 

pancreatic secretions, bile salts and lysolecithin, need to desorb the fatty acids from 

bacteria and feed particles allowing the formation of a micelle (Lock et al., 2005).  Once 

the formation of micelles have occurred, micelles facilitate the transfer of water-insoluble 

lipids across the water layer of intestinal epithelial cells of the jejunum, where the fatty 

acids are absorbed (Lock et al., 2005).  Fatty acid absorption is dependent on the 

formation of micelles.  It is the interactions between bile salts and lysolecithin, an 

amphiphile or swelling agent, which increase micelle surface area resulting in increased 

fat digestibility (Zinn et al., 2000).  Moore and Christie (1984) reported in sheep that 

when the bile salt/lysolecithin complex was blocked in the duodenum, absorption of fatty 

acids was virtually eliminated.   
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 In terms of fatty acid digestibility, Lock et al. (2005) reported that absorption was 

relatively constant and gradually increased when fatty acid duodenal flow increased.  

Total fatty acid digestibility averaged 74% with a 95% confidence interval of 58-86%.  

This is in agreeance with Doreau and Ferlay (1994) who reported digestibility values 

ranging from 55-92%.  Individual fatty acid digestibilities varied slightly with 

unsaturated fatty acids having greater digestibilities (80, 78, and 77% for 18:1, 18:2 and 

18:3) compared to saturated fatty acids (75 and 72% for 16:0 and 18:0).  This is in 

agreement with Doreau and Ferlay (1994) who reported mean digestibilities of 77, 85, 83, 

and 77% for 18:0, 18:1, 18:2 and 18:3, respectively.  Lock et al. (2005) concluded that 

the difference in digestibilities among individual fatty acids reflects differences among 

individual experiments which relates to different experimental approaches and analytical 

techniques.  In addition, variation that was observed can reflect differences in specific 

feed ingredients and overall diets.   

 Fat Sources.  Rendered animal products are used in various industries and 

products throughout the world. More than 6.8 million tonnes of animal fat is produced 

worldwide with more than half being produced in North America (National Renderers 

Association, 2003).  There are five major sectors that utilize animal fat.  Livestock and 

aquaculture production, the most important sector, utilizes animal fat to produce higher 

energy rations.  The second sector for rendered animal products is for industrial usage.  

More than 3,000 industrial products utilize lipids for products included in the chemical, 

rubber, and metal industries.  Next, manufacturing soaps utilizes tallow as the main 

ingredient in producing hand and laundry soaps.  The fourth sector is the food industry 

which uses edible tallow and other edible animal by-products.  Lastly, the biodiesel 
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industry utilizes animal fat for the production of biodiesel (National Renderers 

Association, 2003).     

Historically, fat has mainly been fed in swine or poultry diets but has become 

increasingly popular over the years in cattle diets.  Supplemental fats are an excellent 

source of energy containing 2.5 to 3 times the NEg compared to carbohydrates making it 

a valuable feed resource (Zinn, 1989; NRC, 1996).  Dietary fat not only increases the 

energy density of the diet but it acts as a binding agent to hold the total mixed ration 

together. 

 Fat supplements for cattle diets can consist of animal fat (tallow or choice white 

grease), feed grade vegetable oil, blends of animal and vegetable fats, yellow grease, and 

oilseeds. Tallow or choice white grease is produced through a process called rendering 

which converts beef or pork fat tissue into a usable feed product.  The process of dry 

rendering, which is utilized today, uses steam to heat fat tissue to approximately 115 to 

145°C in jacketed containers.  Mechanical agitation and increased pressure is applied to 

evaporate remaining moisture producing tallow or choice white grease (National 

Renderers Association, 2003).  Rendering companies obtain material from packinghouse 

by-products which include offal and organ fat, meat market trimmings such as adipose 

and inter-muscular fats, as well as dead animals.  Feed grade vegetable oil is obtained 

from extracting oil from seeds that are processed for edible use. The predominate 

vegetable oils utilized in cattle diets are soybean or corn oil.  Yellow grease consists of 

used cooking grease from restaurant deep fat fryers.  Lastly, oilseeds such as whole 

canola or cotton seeds which contain approximately 20 to 45% lipid can provide 

additional fat for cattle diets (Doreau and Ferlay, 1994).   
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 Fat Supplementation in Finishing Diets.  The addition of supplemental fat in 

finishing diets containing sorghum or barley have shown to improve ADG and G:F 

(Brandt and Anderson, 1990; Brandt et al., 1992; Zinn, 1989).  However, when 

supplemental fat was added in corn based diets, G:F increased (Gramlich et al., 1990; 

Krehbiel et al., 1995b; Zinn, 1992), decreased (Krehbiel et al., 1995a; Zinn, 1994), or 

remained unchanged (Hatch et al., 1972; Huffman et al., 1990;).  Historically, total 

dietary fat in finishing diets should be limited to 5% or less to maximize production and 

prevent negative effects that fat can have on rumen function (Zinn, 1989a; Zinn, 1989b).  

These negative effects can be physically coating fiber particles preventing digestion or 

causing toxic effects on fiber digesting protozoa and cellulolytic bacteria in the rumen 

(Zinn, 1989b).  Zinn (1994) reported that the maximum lipid intake provided by the diet 

should not exceed 1.6 g/kg of BW in order to maximize production, which for a 500-kg 

animal equates to a maximum dietary lipid consumption of 8% of the diet DM at 2.0% of 

BW.  Dietary fat above 1.6 g/kg of BW decreases rumen digestion function and the small 

intestines ability to digest lipids resulting in detrimental effects on growth performance 

(Zinn, 1994).   

With the addition of various fat sources in finishing diets, consulting nutritionists 

recommend a total maximum dietary fat of 7.6% (Vasconcelos and Galyean, 2007).  

Vander Pol et al. (2009) replaced corn with 20% WDGS or 2.5% corn oil which created 

diets that contained 6.37% total dietary fat.  Using average initial and final BW and 

6.37% total dietary fat, this equated to 1.35 and 1.34 g/kg of BW of lipid consumed for 

20% WDGS and 2.5% corn oil, respectively which is below the maximum lipid intake of 

1.6 g/kg of BW report by Zinn (1994).  When comparing animal performance, both the 
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20% WDGS and 2.5% corn oil diets resulted in similar cattle performance relative to 

controls.  Within the same trial, the total dietary fat was increased to 8.76% total dietary 

fat with the addition of 40% WDGS or 5% corn oil.  Dietary lipid consumption values 

were 1.83 and 1.74 g/kg of BW for 40% WDGS and 5% corn oil, respectively.  These 

values both exceed the maximum lipid intake reported by Zinn (1994).  The 5% corn oil 

treatment resulted in depressed ADG and G:F relative to controls. However, the 40% 

WDGS treatment had improved ADG and G:F compared to controls, suggesting that at 

greater concentrations of fat provided from WDGS or corn oil do not result in similar 

cattle performance.   

Vander Pol et al. (2009) analyzed DDGS or tallow as a fat source in finishing 

diets.  Corn was replaced by tallow at 1.3 or 2.6% and DDGS at 20 or 40% in diets that 

contained 20% wet corn gluten feed (WCGF) to control subacute acidosis.  Diets that 

contained 1.3% tallow or 20% DDGS and 2.6% tallow or 40% DDGS were formulated to 

provided similar dietary fat, respectively.  The authors reported that there were no 

statistical differences in ADG or G:F across all treatments.  The maximum dietary fat was 

5.98 and 5.00% for tallow and DDGS, respectively.  The levels of dietary fat are below 

the threshold of 8.0% reported by Zinn (1994), which could possibly explain why there 

were no differences observed.  Krehbiel et al. (1995) evaluated feeding tallow in 

finishing diets that replaced dry rolled corn (DRC) at 0, 2 or 4% inclusion on a DM basis.  

The authors reported that G:F increased linearly which resulted in a 6.5 and 10.8% 

improvement in efficiency when 2 and 4% tallow were included in the diet, respectively.  

Similarly, Gramlich et al. (1990) observed improved G:F with the addition of 4% tallow 
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in DRC-based diets.  However, Huffman et al. (1990) reported that as tallow increased up 

to 6% inclusion in an all concentrate finishing diet, G:F decreased linearly.     

Along with tallow, yellow grease and vegetable oils are commonly utilized in 

finishing diets as sources of supplemental fat.  Zinn (1989) evaluated the effect of level of 

fat supplementation of yellow grease (YG) and blended animal-vegetable fat (BVF) on 

finishing performance.  Yellow grease and BVF replaced SFC in a combination steam-

flaked barley and SFC-based diets at 0, 4, or 8% inclusion.  Regardless of fat source, 

empty BW gains and G:F increased linearly. Brandt and Anderson (1990) fed soybean 

oil, tallow, or yellow grease at 3.5% inclusion in flaked milo diets.  The authors observed 

that cattle fed a supplemental fat treatment had improved G:F compared to controls.  In a 

separate experiment, Brandt et al. (1992) fed 0 or 4% yellow grease in steam-flaked grain 

sorghum and SFC based diets.  Including supplemental fat in the diets improved G:F by 

4.9 and 7.1% in steam-flaked grain sorghum and SFC diets, respectively.    

Cranston et al. (2006) analyzed feeding whole cottonseed (WC) in SFC based 

diets.  In Exp. 1, WC replaced tallow, cottonseed meal, and corn.  Total dietary fat was 

9.93 and 10.79% for the SFC control and WC treatments, respectively.  Cattle fed WC 

resulted in numerically lower gains and decreased G:F compared to controls.  The authors 

attributed this difference to the control diet having greater energy content than the WC 

diet (3.14 vs. 3.10 Mcal/kg of ME, respectively).  Using animal performance, dietary 

energy content was calculated and the difference was even greater (3.50 Mcal/kg for the 

control vs. 3.17 Mcal/kg for the WC treatment).  In Exp. 2, 15% WC or FuzZpellet 

(Buckeye Technologies, Memphis, TN) cottonseed replaced tallow, cottonseed meal, and 

SFC.  All diets were formulated to be isonitrogenous and contain similar percentages of 
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fat and NDF from roughages.  Across all treatments, ADG was not different.  Although 

not significant, cattle fed either cottonseed treatment had greater G:F than controls.  The 

authors reported greater ME concentrations for both cottonseed diets than the controls 

(3.29 vs. 3.15 Mcal/kg, respectively).   

Overall, the addition of supplemental fat in finishing diets increases G:F 

compared to diets without supplemental fat regardless of fat source.  Dietary fat above 

1.6 g/kg of BW or 8% inclusion on a DM basis, results in a decrease in cattle 

performance.        

Dry Milling By-Products in Finishing Diets  

 

 Feeding Distillers Grains Plus Solubles.  The primary energy source that is 

utilized in finishing cattle diets is corn (Vasconcelos and Galyean, 2007).  With the 

increase in ethanol production, the demand for corn by the ethanol industry has increased.  

One option to displace corn for cattle producers is the use of DGS to replace corn in 

finishing rations.  The corn kernel is comprised of two thirds starch.  Once the starch is 

removed during the dry milling process, the remaining nutrients are increased three-fold 

making DGS an excellent protein and energy source (Klopfenstein et al., 2008).  

Distillers grains plus solubles are utilized as a protein source in finishing diets when 

included in diets at 15-20% of diet DM or less, but at concentrations above 15-20%, DGS 

serve as a protein and energy source for the animal (Corrigan et al., 2006).  The 

remainder of this review will focus on feeding DGS as an energy source in finishing 

diets.    
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 Wet Distillers Grains Plus Solubles.  An increase in ethanol production results 

in an increase in by-products available to producers.  After the CDS are added back to the 

distillers grains, the WDGS product, approximately 30-35% DM, can be delivered to 

feedlots or dairies in close proximity to the ethanol plant.  With distillers grains usage 

increasing throughout the United States, it is important to evaluate the value of distillers 

grains in diets that are specific to various regions of the country.  The method of corn 

processing differs throughout the country with dry-rolled and high moisture corn 

predominantly fed in finishing rations in the Midwest and Northern Plains while steam 

flaked corn is predominantly fed in the Southern Plains region.  Cattle fed WDGS 

perform differently when fed with different processing method of corn.   

 Larson et al. (1993) reported two finishing studies evaluating the effects of WDG 

replacing protein and DRC in calf-fed and yearling steers.  Wet distillers grains was fed 

in the diet at 5.2%, 12.6% and 40.0% DM.  As WDG increased in the diet, DMI 

decreased and ADG increased resulting in a 19.4% and 25.7% improvement in G:F for 

calf-feds and yearlings, respectively.  Similar findings for G:F were reported by Ham et 

al. (1994), Godsey et al. (2009a), and Corrigan et al. (2009) of 18.8, 16.5, and 13.5% 

improvement compared to controls (respectively) when 40% WDGS were fed and 

replaced DRC.  When replacing cracked corn with 40% WDGS, similar results were 

observed for G:F with an improvement of 11% (Trenkle, 1996).  Ham et al. (1994) 

conducted two metabolism experiments evaluating the effects of WDG on nutrient 

digestibility, ruminal pH, and VFA parameters.  Cattle fed WDG had similar OM intakes 

and digestibilities compared to cattle fed DRC.  However, as expected, WDG resulted in 

greater NDF intakes and digestibilities compared to DRC.  Ruminal pH and the acetate to 



21 
 

propionate ratio were similar for cattle fed WDG and DRC.  Vander Pol et al. (2009) 

replaced 40% DRC with WDGS in a metabolism experiment.  The authors reported that 

cattle fed WDGS had similar DM, OM, and NDF digestibilities compared to cattle fed 

DRC.  Similarly to Ham et al. (1994) ruminal pH was similar between WDGS and DRC 

treatments.  However, cattle fed WDGS had reduced acetate and increased propionate 

resulting in an improved acetate:propionate ratio for WDGS compared to DRC.      

 Corrigan et al. (2009) evaluated the effects of WDGS replacing high moisture 

corn (HMC).  Wet distillers grains plus solubles was included in the diet at 0, 15, 27.5, 

and 40% on a DM basis.  In response to increasing concentration of WDGS in the diet, 

final BW, DMI, and ADG increased quadratically while G:F increased linearly.  Cattle 

fed 27.5% WDGS with HMC had a 7.8 and 7.7% improvement in ADG and G:F, 

respectively compared to cattle fed the control diet.  At 40% inclusion of WDGS, 

improvements in ADG and G:F were 4.8 and 6.0%, respectively.  Differences in 

improvement between DRC and HMC when feeding WDGS can be attributed to the 

difference in ruminal starch fermentation associated with corn processing.  Processing 

methods that reduce particle size and/or causes gelatinization increases the availability of 

the starch granules resulting in an increase in the rate of ruminal starch fermentation 

(Stock and Erickson, 2006).  Corn harvested at increased moisture (greater than 24%), 

ground and stored in a bunker has faster rates of ruminal starch digestion than dry rolled 

corn which increases the possibility of acidosis (Stock and Erickson, 2006).  Acidosis can 

affect the efficiency of utilization of the corn fed.  An option to overcome this issue is by 

feeding a combination of processed grains, one with a slower rate of starch fermentation 

with a second with a rapid rate of starch fermentation (Stock and Erickson, 2006). 
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 Replacing WDGS with a 1:1 blend of HMC and DRC (BLEND) has been 

reported.  Godsey et al. (2009b) replaced BLEND with 20 or 40% WDGS and observed a 

5.1 and 5.7% improvement in ADG, respectively.  Feed efficiency was improved by 5.5 

and 8.1% when 20 or 40% WDGS, respectively, replaced BLEND.  Similar to Godsey et 

al. (2009b), Vander Pol et al. (2009) observed a 5.8% improvement in G:F when WDGS 

replaced 40% of BLEND in the diet.  Meyer et al. (2013) reported a 6.5 and 6.9% 

improvement in ADG and G:F when 25% WDGS replaced BLEND.  Loza et al. (2010) 

fed 30% WDGS in a BLEND diet and observed a 15% increase in ADG and 8.7% 

increase in G:F compared BLEND control diet.  Vander Pol et al. (2006) replaced 

BLEND with 10, 20, 30, 40, and 50% WDGS.  As inclusion level of WDGS increased, 

ADG increased quadratically with cattle fed 30% WDGS having the greatest ADG.  

Similarly, G:F increased quadratically with optimum efficiency observed when 40%  

WDGS replaced BLEND.    

 The process of producing steam flaked corn (SFC) involves the use of moist heat 

(steam) to gelatinize the starch granules followed by a reduction in particle size which 

increases the energy availability and starch digestion of the corn grain (Zinn et al., 2002).   

A review by Owens et al. (1997) reported that steam flaking resulted in corn containing 

14.2 and 17.3% more NEm and NEg than DRC.  This increase in energy from flaking 

improved G:F by 12% compared to feeding DRC in a corn based diet (Owens et al., 

1997).  When WDGS replaces SFC in finishing rations, the performance response does 

not appear to be as great when WDGS replaces DRC, HMC, and BLEND.  An 

explanation could be that the WDGS contains less energy than the SFC that it replaces 

resulting in a decrease in performance.    
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 Daubert et al. (2005) replaced SFC in increments of 8 percentage units with a 

maximum concentration of sorghum WDGS of 40%.  The authors reported a quadratic 

effect for ADG and G:F.  Maximum daily gain was achieved when 8% WDGS replaced 

SFC and G:F was optimized at 16% WDGS, followed by reductions in both as inclusion 

of WDGS increased.  The authors indicated that WDGS should not be included beyond 

15% to obtain optimal efficiency.  However, Depenbusch et al. (2009) replaced SFC with 

12.8% WDGS and did not observe a response for ADG or G:F compared to the SFC 

control diet.  In a previous trial, Depenbusch et al. (2008b) fed 25% WDGS in a SFC diet 

and observed a 9.1 and 7.1% reduction in ADG and G:F, respectively.  Similar to 

findings by Depenbusch et al. (2008b), May et al. (2010) observed an 8.3% decrease in 

ADG and 3.9% decrease in G:F when SFC was replaced by 30% WDGS.  Luebbe et al. 

(2012) conducted a study analyzing the effects of titrating WDGS in SFC rations.  Wet 

distillers grains plus solubles replaced 15, 30, 45, or 60% of the SFC.  The authors 

reported that ADG, G:F, and the feeding value of WDGS decreased linearly as the 

concentration of WDGS increased.  Overall, cattle performance tends to decrease when 

WDGS is included in SFC rations at inclusions greater than 25%.   

 Wet distillers grains plus solubles is an excellent source of energy in cattle diets.  

When WDGS are fed in combination with a grain that is slower in ruminal starch 

digestion (DRC), significant improvements in animal performance have been reported 

(Larson et al., 2007; Ham et al., 1994; Godsey et al., 2009; Corrigan et al., 2009).  Diets 

that contain WDGS and a grain that is more rapidly fermented does not produce 

improvements in animal performance as great as DRC (Corrigan et al., 2009; Daubert et 

al., 2005; Depenbusch et al. 2008b; Depenbusch et al., 2009; May et al., 2010; Luebbe et 
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al., 2012).  This issue brings about the concept of feeding a combination of processed 

grains trying to reduce the potential of acidosis which will hinder animal performance.  

Wet distillers grains plus solubles fed with different corn processing methods will result 

in different optimum inclusions.  Overall, optimum ADG and G:F resulted for 40% in 

DRC based diets, 27.5% in HMC based diets, 30-40% in BLEND diets, and 15% in SFC 

based diets (Erickson et al. 2010). From a producer standpoint, if the price of corn far 

exceeds the price of WDGS then economic advantages of replacing a portion of corn with 

WDGS may overcome any loss in animal performance. 

Modified Distillers Grains Plus Solubles.  Modified distillers grains plus 

solubles (MDGS) are distillers grains that have been partially dried to approximately 45% 

to 50% DM.  Bremer et al. (2011) conducted a meta-analysis comparing 4 finishing trials 

with 85 pens that represented 680 steers (Adams et al., 2010; Huls et al., 2008; Luebbe et 

al., 2012; Nuttelman et al., 2011).  All studies were conducted at the same research 

feedlot under similar conditions with MDGS replacing DRC or BLEND.  The authors 

observed a quadratic response for DMI, ADG, and G:F as the concentration of MDGS 

increased.  Maximum DMI was reported for 20 to 30% MDGS inclusion, ADG was 

maximized at 30% MDGS inclusion, and the maximum G:F was observed for 40% 

MDGS inclusion.  Huls et al. (2008) compared feeding 0 to 50% MDGS, in increments of 

10% units, in finishing diets that replaced BLEND.  Intakes increased quadratically with 

20% MDGS having the greatest intakes.  A quadratic response was observed for ADG 

with 20% and 30% having the greatest gains.  A linear response was observed for G:F as 

the inclusion of MDGS increased.  Nuttelman (2013) fed 0, 20, 30, and 40% MDGS that 

replaced BLEND and observed a quadratic response for DMI.  A quadratic effect was 



25 
 

observed for ADG with steers fed 20 and 40% MDGS having the greatest gains, 30% was 

intermediate, and controls had the lowest gains.  A linear response was observed for G:F.  

It was reported that there was a 6-10% improvement in G:F when cattle were fed MDGS 

compared to corn based controls.  Trenkle, (2008) fed 0, 20, 40, and 60% of MDGS in 

finishing diets. The author observed no difference for DMI when steers were fed 20% or 

40% MDGS, however, steers fed 20% had numerically greater intakes than steers fed 

40% MDGS which agrees with previous research (Bremer et al., 2011; Huls et al., 2008).  

There was no difference for ADG and G:F when cattle were fed 20 or 40% MDGS, but 

cattle fed 60% MDGS produced the lowest gains and were less efficient. 

Dried Distillers Grains Plus Solubles.  Dry distillers grains plus solubles 

(DDGS) are distillers grains that have been dried to approximately 90% DM.  This allows 

producers that are a greater distance away from ethanol plants to incorporate DGS into 

finishing rations by decreasing shipping and storage costs due to the decreased moisture 

content of the DGS.   

Bremer et al. (2011) conducted a meta-analysis which evaluated replacing corn 

with increasing concentrations of DDGS.  Dried distillers grains plus solubles were fed 

from 0 to 40% in increments of 10 percentage units.  Four finishing trials were evaluated, 

containing 66 pens which represented 581 steers.  The author observed a quadratic 

response for DMI with 30 and 40% inclusions having the greatest DMI.  There was a 

linear increase for ADG and G:F resulting in 40% DDGS having the greatest ADG and 

G:F.  Nuttelman (2013) replaced BLEND with 0, 20, 30, and 40% DDGS and observed a 

linear increase in DMI as the concentration of DDGS increased.  There was a linear 

response for ADG and G:F similar to Bremer et al. (2011).  Neville et al. (2012) fed 20, 
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40 and 60% DDGS to finishing steers and observed a quadratic decrease for DMI and 

ADG, whereas G:F decreased linearly as the concentration of DDGS increased.   

Buckner et al. (2008) evaluated the effects of replacing DRC with increasing 

concentrations of DDGS from 0 to 50% in increments of 10 percentage units.  Due to 

issues associated with polioencephalomalacia, cattle on the 50% treatment were removed 

from the study resulting in treatments of 0 to 40% DDGS being reported.  There were no 

differences observed for DMI between treatments.  The authors observed a quadratic 

response for ADG.  Using the quadratic prediction equation, ADG was maximized at 

23.5% inclusion of DDGS but any concentration of DDGS produced greater gains than 

the DRC control.  Feed efficiency, although not significant, approached a significant 

quadratic trend for increasing concentrations of DDGS.  Using the quadratic prediction 

equation, G:F was maximized at 24.7% inclusion.  Cattle fed the control diet had the 

poorest G:F while steers fed 30 and 40% were intermediate to 10 and 20%. 

Condensed Distillers Solubles.  Compared to DGS, there is limited data on the 

use of condensed distillers solubles (CDS) fed in finishing diets as the sole by-product.  

Ethanol plants will add a portion of CDS back onto distillers grains to produce distillers 

grains plus solubles.  However, many times not all CDS can be added back to WDGS 

requiring ethanol plants to market CDS as a separate by-product to producers.   

Rust et al. (1990) fed CDS that was soaked onto the feed and free choice, with 

and without access to water to steers in a metabolism trial.  It was observed that when 

CDS was allowed free choice without water, steers consumed 22% of their daily DMI 

from CDS as opposed to 6.7% when CDS was soaked onto the feed.  Daily gains did not 

differ among treatments.  Cattle fed free choice CDS had a 35.5% improvement in G:F 
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compared to controls.  Trenkle et al. (1997, 2002, and 2004) conducted three trials which 

analyzed replacing dry-rolled corn with CDS.  In Exp. 1, CDS was fed at 6.5% inclusion 

with 10% soybean meal.  Compared to the soybean meal control, ADG and G:F were 

improved by 5.3 and 4.1%, respectively.  In Exp. 2, CDS was included in a finishing diet 

at 0, 4, or 8%.  Although not significant, feeding 4% CDS improved ADG and G:F by 3.2 

and 5.2% compared to controls, whereas 8% CDS decreased ADG by 6.4% and improved 

G:F by 1.5%.  In Exp. 3, CDS was fed at 0, 4, 8, or 12% inclusion and replaced dry rolled 

corn and urea.  Animal performance (ADG and G:F) was not affected by the addition of 

CDS up to 12% inclusion in the diet.   

Resent research at the University of Nebraska has evaluated feeding CDS in 

finishing diets.  Pesta et al. (2013) fed 0, 9, 18, 27, and 36% CDS which replaced 

BLEND and urea.  As CDS increased in the diet, DMI decreased linearly and ADG 

increased quadratically which resulted in a quadratic increase in G:F.  Using the quadratic 

prediction equation, ADG was maximized at 20.8% inclusion of CDS while G:F was 

maximized at 32.5% CDS.  It was observed that 27% inclusion of CDS was near optimal 

as it maximized both ADG and G:F.  In a metabolism trial conducted by Pesta et al. 

(2012) evaluated the effect of feeding 27% CDS in place of BLEN on nutrient 

digestibility, ruminal pH, and VFA parameters.  The authors reported that the addition of 

CDS had no effect (P ≥ 0.46) on DM, OM, NDF, and fat total tract digestibility.  Average 

ruminal pH was statistically similar between the corn based diet and CDS.  Cattle that 

were fed 27% CDS produced statistically less (P = 0.09) acetate compared to cattle fed 

the corn based control.   
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Titlow et al. (2013) evaluated replacing 15 or 30% CDS in dry rolled corn and 

steam flaked corn diets.  In dry rolled corn diets, a quadratic response was observed for 

ADG and G:F.  When 15% CDS was fed with DRC, a 14.6% improvement in G:F was 

observed compared to controls.  However, when CDS increased from 15 to 30%, a small 

improvement of 4.3% in G:F was observed.  In steam-flaked corn diets, ADG increased 

linearly as the inclusion of CDS increased.  A quadratic response was observed for G:F.  

As CDS inclusion increased from 0-15%, a 5% increase in G:F was reported.  An 

additional 12% improvement in G:F was observed when CDS increased from 15-30%.  

The authors concluded that corn processing does interact with CDS concentration in 

finishing diets.  Increasing the inclusion of CDS did not hinder ADG and G:F in SFC 

diets, which is quite different than the response to feeding WDGS in SFC diets.   

Calculated Feeding Value of Distillers Grains Plus Solubles.  Typically when 

DGS are included in a finishing diet, corn is the ingredient that is replaced.  The feeding 

response depends on the type of corn that is replaced and the type and inclusion of DGS 

included in the diet.  To calculate the feeding value of DGS, G:F for both DGS and corn 

diets need to be compared.  This is accomplished by finding the difference in G:F 

between DGS and corn diets, within the same study, divided by the inclusion of DGS to 

determine the feeding value of DGS relative to corn (Klopfenstein et al., 2008).   

 Godsey et al. (2009) replaced DRC with 20 or 40% WDGS and calculated a 

feeding value of WDGS to be 185 and 141%, respectively.  Similarly, Ham et al. (1994) 

replaced DRC with 40% WDGS and observed a feeding value of 147% for WDGS to that 

of DRC.  Corrigan et al. (2009) fed WDGS at 15, 27.5 and 40% inclusion and observed 

feeding values of 129, 140, and 134%, respectively.   
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 Corrigan et al. (2009) evaluated replacing HMC with WDGS at 15, 27.5, and 40% 

inclusion.  The authors reported feeding values of WDGS to be 122, 128, and 115%, 

respectively, compared to HMC.  When WDGS replaced HMC, the feeding value of 

WDGS was less than the feeding value of WDGS when it replaced DRC in the same 

study. 

 The feeding value of WDGS when replacing a blend of HMC and DRC (BLEND) 

has been reported.  Vander Pol et al. (2006) replaced BLEND with 10, 20, 30, 40, and 

50% WDGS with the feeding values of WDGS being 178, 138, 144, 137, and 121%, 

respectively.  Godsey et al. (2009b) replaced BLEND with either 20 or 40% WDGS and 

observed a feeding value of 127 or 120%, respectively.  Meyer et al. (2013) observed a 

feeding value for WDGS of 128% when 25% WDGS was fed.  Similarly, Loza et al. 

(2010) fed 30% WDGS and reported a feeding value of 129% to that of BLEND.    

 Research has suggested that the feeding value of WDGS when fed in SFC-based 

diets is equal to or less than that of the corn; however it has also been shown to be greater 

than SFC.  Luebbe et al. (2012) evaluated feeding 15, 30, 45, and 60% WDGS which 

replaced SFC.  The authors observed a linear decrease in the feeding value of WDGS as 

the concentration of WDGS increased in the diet.  Depenbusch et al. (2008b, 2009) 

conducted two separate trials replacing SFC with 12.8 and 25% WDGS.  It was reported 

that feeding 12.8 and 25% WDGS with SFC resulted in a feeding value for WDGS to be 

100% and 73% that of SFC, respectively.  Similarly, May et al. (2010) reported a feeding 

value of 100% and 88% for WDGS when WDGS was fed at 15 and 30% inclusion in a 

SFC diet.  However, Godsey et al. (2009) replaced 20 and 40% SFC with WDGS and 

observed the feeding value to be 135% and 111%, respectively, that of SFC.  Corrigan et 
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al. (2009) fed 15, 27.5, and 40% inclusion of WDGS and observed the feeding value to 

be 115, 100, and 101%, respectively.  The difference in feeding value when WDGS are 

fed with SFC compared to DRC or HMC can be attributed to different corn processing 

methods.  It has been suggested that replacing SFC with WDGS reduces the energy 

concentration of the diet resulting in reduced cattle performance (Zinn et al., 1995; 

Depenbusch et al., 2008b). 

 The feeding value of distillers grains decreases as the moisture content decreases 

(Bremer et al., 2011).  Modified distillers grains plus solubles contains approximately 

50% DM which is drier than WDGS at approximately 30-35% DM.  From the previous 

statement made by Bremer et al. (2011), MDGS should have a decreased feeding value 

compared to WDGS.  The studies that have analyzed MDGS have utilized DRC and/or 

HMC as the corn source.  Huls et al. (2008) replaced BLEND with MDGS at inclusions 

of 0 to 50% in increments of 10 percentage units.  The feeding value of MDGS ranged 

from 128 to 112% as MDGS increased in the diet.  A meta-analysis conducted by Bremer 

et al. (2011) analyzed the feeding value of MDGS.  At MDGS concentrations of 10, 20, 

30, and 40% the feeding value for MDGS was reported to be 128, 124, 120, and 117%, 

respectively, that of the corn it replaced. However, Trenkle (2008) reported decreased 

feeding values for MDGS as MDGS replaced DRC at 20, 40, and 60% inclusions.   

 With the three methods for DGS, DDGS, having a DM percentage of 

approximately 90%, should have the lowest feeding value because it contains the lowest 

moisture content.  Energy within DGS is lost as the drying time is increased to produce 

MDGS and DDGS compared to WDGS.  Buckner et al. (2008) fed DDGS from 0 to 40% 

in increments of 10 percentage units while replacing DRC.  The authors reported the 
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feeding value of DDGS to be 127, 128, 106, and 105% that of DRC when fed at 10, 20, 

30, and 40% inclusion, respectively.  Bremer et al. (2011) conducted a meta-analysis of 

finishing performance when fed DDGS at inclusions of 10, 20, 30, and 40% in the diet.  

The authors observed the feeding value of DDGS to be 112% that of corn for all 

concentrations of DDGS.  Similarly, Nuttelman (2013) replaced BLEND with 20, 30, and 

40% DDGS and reported the feeding value for DDGS to be 110, 107 and 110%, 

respectively.   

 Data regarding the feeding value of CDS are limited. A trial conducted by Pesta et 

al. (2013) replaced BLEND with 9, 18, 27, or 36% inclusion of CDS and observed 

feeding values of CDS relative to BLEND of 211, 166, 142, or 139%, respectively.  

Titlow et al. (2013) replaced DRC with either 15 or 30% CDS, and observed a feeding 

value for CDS to be 197 or 165% that of DRC, respectively.  In the same trial, Titlow et 

al. (2013) replaced SFC with either 15 or 30% CDS, and observed a feeding value for 

CDS to be 133 or 159% that of SFC, respectively.  The increase in feeding value of CDS 

can be partially attributed to the fat content of CDS.   

Objectives            

 

 Research has shown that dry milling byproducts are a viable option to 

replacing corn as an energy and protein source in finishing diets.  Along with providing 

energy and protein, distillers grains plus solubles contain three times the concentration of 

fat relative to the corn grain it originated from.  The dry milling industry is investing in 

the technology of separating corn oil from the thin stillage, which becomes CDS.  

According to Renewable Fuels Association (2012b), approximately 50% of the nation’s 
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ethanol biorefineries are removing corn oil with an estimated 1.5 billion pounds of corn 

oil captured in 2011.  Approximately two thirds of the fat that is located in thin stillage is 

not bound to grain particles making removal through centrifugation possible.  If CDS are 

added back to the grains to produce wet distillers grain plus solubles (WDGS), the 

centrifugation process reduces the fat content from approximately 12 to 8%.  Based on 

the greater caloric density of fat versus starch and protein, it is believed that the removal 

of fat will hinder the feeding value of these by-products and ultimately affect the gains 

and efficiencies of growing and finishing cattle.  Therefore, four experiments were 

conducted to address several objectives: 

1. Examine the effects of feeding de-oiled CDS and MDGS on performance and carcass 

characteristics in finishing steers 

2. Examine the effects of de-oiled CDS and MDGS on digestion and metabolism in 

finishing steers.    

3. Examine the effects of feeding increasing levels of de-oiled WDGS on performance 

and carcass characteristics in finishing steers 

4. Examine the effects of de-oiled CDS at differing levels and feeding de-oiled CDS 

with different forages on the performance of growing steers 

  



33 
 

Literature Cited 

 

Adams, D.R., T.J. Klopfenstein, G.E. Erickson, M.K. Luebbe, M.A. Greenquist. 2010. The  

 effects of sorting steers by weight into calf-fed, summer yearling and fall yearling feeding 

 systems. Prof. Anim. Sci. 26:587-594. 

 

Applied Milling Systems. 2006. Advanced Biofuels: Fractionation for Ethanol/Biobutanol. 

 http://www.appliedmillingsystems.com/fractionation.html. Accessed: March 1, 2013. 

 

Atkinson, R.L., P.M. Walker, S.W. Reader, J.M. Camack, K.M. Ajuwon, S.L. Lake, B.R.  

 Wiegand, L.A. Forster. 2012. Effect of low-fat corn distillers grains fed at 40 and 70% 

 Inclusion on growth and performance and meat quality of steers. Prof. Anim. Sci.  

 28:41-55. 

 

Bauchart, D., F. Legay-Carmier, M. Doreau. 1990. Ruminal hydrolysis of dietary triglycerides in 

 dairy cows fed lipid-supplemented diets. Reprod. Nutr. Dev., 30 (Suppl. 2): 187s. 

 

Beam, T.M., T.C. Jenkins, P.J. Moate, R.A. Kohn, D.L. Palmquist. 2000. Effects of amount and  

 source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal  

 contents. J. Dairy Sci. 83:2564-2573.  

 

Brandt, R.T., Jr., and S.J. Anderson. 1990. Supplemental fat source affects feedlot performance  

and carcass traits of finishing yearling steers and estimated diet net energy value. J. 

Animal Sci. 68:2208-2216. 

 

Brandt, R.T, Jr., G.L. Kuhl, R.E. Campbell, C.L. Kastner, S.L. Stroda. 1992. Effects of steam- 

 flaked sorghum grain or corn and supplemental fat on feedlot performance, carcass  

 traits, longissimus composition, and sensory properties of steers. J. Anim. Sci.  

 70:343-348. 

 

Bremer, V.R. 2010. Distillers grains with solubles for feedlot cattle-finishing performance, lipid  

 metabolism, and, ethanol greenhouse gas balance. Ph.D. Diss. University of Nebraska. 

 

Bremer, V.R., A.K. Watson, A.J. Liska, G.E. Erickson, K.G. Cassman, K.J. Hanford, T.J.  

 Klopfenstein. 2011. Effect of distillers grains moisture and inclusion level on livestock  

 diets on greenhouse gas emissions in the corn-ethanol-livestock life cycle. Prof. Anim.  

 Sci. 27:449-455. 

 

Buckner, C.D., T.L. Mader, G.E. Erickson, S.L. Colgan, D.R. Mark, V.R. Bremer, K.K. Karges, 

 M.L. Gibson. 2008. Evaluation of dry distillers grains plus solubles inclusion on  

 performance and economics of finishing beef steers. Prof. Anim. Sci. 24:404-410. 

 

Buckner, C.D., M.F. Wilken, J.R. Benton, S.J. Vanness, V.R. Bremer, T.J. Klopfenstein, P.J.  

 Kononoff, G.E. Erickson. 2011. Nutrient variability for distillers grains plus solubles and 

 dry matter determination of ethanol by-products. Prof. Anim. Sci. 27:57-64. 

 

Cao, Z.J., J. L. Anderson, K.F. Kalscheur. 2009. Ruminal degradation and intestinal digestibility  

 of dried or wet distillers grains with increasing concentrations of condensed distillers  

 solubles.  J. Anim. Sci. 87:3013-3019. 

http://www.appliedmillingsystems.com/fractionation.html


34 
 

Cereal Process Technologies, LLC. 2012. Fractionation: The value proposition adding value to  

 your feedstock purchase. http://www.cerealprocess.com/html/fractionation.html 

 Accessed: March 1, 2013. 

 

Church, D.C. and W.G. Pond. 1988. The Ruminant Animal Digestive Physiology and Nutrition.  

 Simon & Schuster Englewood Cliffs, New Jersey.  

 

Corrigan, M.E., G.E. Erickson, V.R. Bremer, T.J. Klopfenstein. 2006. Effect of corn processing  

in finishing diets containing grain milling byproducts. Oklahoma State University Ext. 

Cattle Grain Processing Symposium. pp. 173-182. 

 

Corrigan, M.E., G.E. Erickson, T.J. Klopfenstein, M.K. Luebbe, K.J. Vander Pol, N.F. 

Meyer, C.D. Buckner, S.J. Vanness and K.J. Hanford. 2009. Effect of corn processing 

method and corn wet distillers grains plus solubles inclusion level in finishing steers. J. 

Anim. Sci. 87:3351-3362. 

 

Cranston, J.J., J.D. Rivera, M.L. Galyean, M.M. Brashears, J.C. Brooks, C.E. Markham, L.J.  

 McBeth, C.R. Krehbiel. 2006. Effects of feeding whole cottonseed and cottonseed  

 products on performance and carcass characteristics of finishing beef cattle. J. Anim.  

 Sci. 84:2186-2199. 

 

Daubert, R.W., J.S. Drouillard, E.R. Loe, J.J. Sindt, B.E. Depenbusch, J.T. Fox, M.A. 

Greenquist, M. E. Corrigan. 2005. Optimizing use of wet sorghum distiller’s  

grains with solubles in flaked-corn finishing diets. Kansas State University Agric. Exp. 

Sta. Report in Progress 943:15-21. 

 

Depenbusch, B.E., , E.R. Loe, , M.J. Quinn, M.E. Corrigan, M.L. Gibson, K.K. Karges, J.S. 

 Drouillard. 2008a. Corn distillers grains with solubles derived from a traditional or partial  

 fractionation process: Growth performance and carcass characteristics of finishing  

 feedlot heifers. J. Anim. Sci. 86:2338-2343.    

 

Depenbusch, B.E., J.S. Drouillard, E.R. Loe, J.J. Higgins, M.E. Corrigan, M.J. Quinn.  

 2008b. Efficacy of monensin and tylosin in finishing diets based on steam-flaked  

corn with and without corn wet distillers grains with solubles. J. Anim. Sci. 86:2270-

2276.   

 

Depenbusch, B.E., E.R. Loe, J.J. Sindt, N.A. Cole, J.J. Higgins, J.S. Drouillard. 2009.  

Optimizing use of distillers grains in finishing diets containing steam flaked corn.  

J. Anim. Sci. 87:2644-2652. 

 

Doreau, M. and Y. Chilliard. 1997. Digestion and utilization of fatty-acids by ruminants. Anim.  

 Feed Sci. Technol. 45:379-396. 

 

Doreau, M. and A. Ferlay. 1994. Digestion and utilization of fatty acids by ruminants. Anim.  

 Feed Sci. Tech. 45:379-396. 

 

Erickson, G.E., C.D. Buckner,  T.J. Klopfenstein. 2010. Feeding corn milling co-products to 

 feedlot cattle. 3
rd

 Edition. UNL Extension Publication and Nebraska Corn Board.  

 

 

 

http://www.cerealprocess.com/html/fractionation.html


35 
 

Gigax, J.A., B.L. Nuttelman, W.A. Griffin, G.E. Erickson, T.J. Klopfenstein. 2011. Performance  

 and carcass characteristics of finishing steers fed low-fat and normal-fat wet distillers 

 grains. Nebr. Beef Cattle Rep. MP-94:44-45. 

 

Godsey, C.M., W.A. Griffin, M.K. Luebbe, J. R. Benton, G. E. Erickson T.J. Klopfenstein.,  

2009a. Cattle performance and economic analysis of diets containing wet distillers grains 

and dry-rolled or steam-flaked corn. Nebr. Beef Cattle Rep. MP-92:66-69. 

 

Godsey, C.M., M.K. Luebbe, J. R. Benton, G. E. Erickson, T.J. Klopfenstein. 2009b. Effect of  

 the grains to solubles ration in diets containing wet distillers grains ± solubles fed to 

 finishing steers.  Nebr. Beef Cattle Rep. MP-92:59-61. 

 

Godsey, C.M., M.K. Luebbe, J. R. Benton, G. E. Erickson, T.J. Klopfenstein, C. Ibanez,  

P. Guiroy, M. Greenquist, J. Kazin. 2010. Evaluation of feedlot and carcass performance 

of steers fed different levels of E-Corn, a potential new feed product from ethanol plants. 

Nebr. Beef Cattle Rep. MP   

 

Gramlich, S.M., R.T. Brandt, Jr., R.V. Pope. 1990. Dose response to supplemental fat by  

 finishing steers. Kansas State University Agric. Exp. Sta. Report in Progress. 592:4-6. 

  

Ham, G.A., R.A. Stock, T.J. Klopfenstein, E.M. Larson, D.H. Shain, R.P. Huffman. 1994. Wet 

 corn distillers byproducts compared with dried corn distillers grains with solubles as a  

 source of protein and energy for ruminants. J. Anim. Sci. 72:3246-3257. 

 

Hatch, C.F., T.W. Perry, M.T. Mohler, W.M. Beeson. 1972. Effect of added fat with graded  

 Levels of calcium to urea-containing rations for beef cattle. J. Anim. Sci. 34:483-487. 

 

Holt, S.M. and R.H. Pritchard. 2004. Composition and nutritive value of corn co-products from  

 dry milling ethanol plants. South Dakota State Univ. Beef Research Report 2004:1-7. 

 

Huffman, R.P., R.A. Stock, M.H. Sindt, D.H. Shain. 1992. Effect of fat type and forage level on  

 performance of finishing cattle. J. Anim. Sci. 70:3889-3898.  

 

Huls, T.J., M.K. Luebbe, G. E. Erickson, T.J. Klopfenstein. 2008. Effect of inclusion level of  

modified distillers grains plus solubles in finishing steers. Nebr. Beef Cattle Rep. MP-

91:66-69. 

 

ICM Incorporated. 2012. Available: www.icminc.com/drymill.zspx. Accessed: March 1, 2013.  

 

Jenkins, T.C, R.J. Wallace, P.J. Moate, E.E. Mosley. Board-Invited Review: Recent advances 

 in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. 

 J. Anim. Sci. 86:397-412. 

 

Klopfenstein, T.J., G.E. Erickson, V.R. Bremer. 2008. BOARD-INVITED REVIEW: Use of  

 distillers by-products in the beef cattle feeding industry. J. Anim. Sci. 86:1223-1231. 
 

Krehbiel, C.R., R.A. Stock, D.H. Shain, C.J. Richards, G.A. Ham, R.A. McCoy, T.J.  

 Klopfenstein, R.A. Britton, R.P. Huffman. 1995a. Effect of level and type of fat on  

 subacute acidosis in cattle fed dry-rolled corn finishing diets. J. Anim. Sci. 73:2438-2446. 

 

 

http://www.icminc.com/drymill.zspx


36 
 

Krehbiel, C.R., R.A. McCoy, R.A. Stock, T.J. Klopfenstein, D.H. Shain, R.P. Huffman. 1995b. 

Influence of grain type, tallow level, and tallow feeding system on feedlot cattle 

performance. J. Anim. Sci. 73:2916-2921. 

 

Lardy, G.P.  2007. Feeding coproducts of the ethanol industry to beef cattle. North Dakota  

 State Univ. Ext. Service. AS-1242. 

Larson, E.M., R.A. Stock, T.J. Klopfenstein, M.H. Sindt, R.P. Huffman. 1993. Feeding value of 

 wet distillers byproducts for finishing ruminants. J. Anim. Sci. 71:2228-2236. 

 

Lindley, C.E., E.D. Taysom, W.E. Ham, and B.H. Schneider. 1953. Urinary calculi in sheep.  

 J. Anim. Sci. 12:704-714. 

 

Lock, A.L., K.J. Harvatine, I. Ipharraguerre, M. Van Amburgh, J.K. Drackley, D.E. Bauman.  

 2005. The dynamics of fat digestion in lactating dairy cows: what does the literature tell  

 us? Proc. Cornell Nutr. Conf. pp. 83-94. 

 

Loza, P.L., C. D. Buckner, K.J. Vander Pol, G.E. Erickson, T.J Klopfenstein, R.A. Stock. 2010.  

 Effect of feeding combinations of wet distillers grains and wet corn gluten feed to feedlot 

 cattle. J. Anim. Sci. 88:1061-1072. 

 

Luebbe, M.K., G.E. Erickson, T.J. Klopfenstein, M.A. Greenquist, J.R. Benton. 2011. Effect of  

 Dietary cation-anion difference on feedlot performance, N mass balance, and manure  

 pH. J. Anim. Sci. 89:489-500. 

 

Luebbe, M.K., J.M. Patterson, K. H. Jenkins, E.K. Buttery, T.C. Davis, B.E. Clark, F.T.  

 McCollum III, N.A. Cole, J.C. MacDonold. 2012. Wet distillers grains plus solubles  

 concentration in steam-flaked corn based diets: Effects on feedlot cattle performance,  

 carcass characteristics, nutrient digestibility, and ruminal fermentation characteristics. J.  

 Anim. Sci. 90:1589-1602. 

 

May, M.L. J.C. DeClerck, M.J. Quinn, N. DiLorenzo, J. Leibovich, D.R. Smith, K.E. Hales, M.L.  

 Galyean. 2010. Corn or sorghum wet distillers grains with solubles in combination with  

 steam-flaked corn: Feedlot cattle performance, carcass characteristics, and apparent  

 total tract digestibility. J. Anim. Sci. 88:2433-2443. 

 

Meyer, N.F., G.E. Erickson, T.J Klopfenstein, J. R. Benton, M.K. Luebbe, S.B. Laudert. 2013.  

 Effects of monensin and tylosin in finishing diets containing corn wet distillers grains

 with solubles with differing corn processing methods. J. Anim. Sci. 91:2219-2228. 

 

Moore, J.H. and W.W. Christie. 1984. Digestion, absorption, and transport of fats in ruminant  

 animals. Fats in Anim. Nutr. pp. 123-149. 

 

National Renderers Association. 2003. Pocket information manual a buyer’s guide to rendered  

 products.  

 

National Research Council. 1996. Nutrient Requirements of Beef Cattle. Seventh Edition. 

 National Academy Press, Washington, D.C. 

 

Neville, B.W., G.P. Lardy, K.K. Karges, S.R. Eckerman, P.T. Berg, C.S. Schauer. 2012.  

 Interaction of corn processing and distillers dried grains with solubles on health and  

 performance of steers. J. Anim. Sci. 90:560-567. 



37 
 

Nuttelman, B.L., W.A. Griffin, J.R. Benton, G.E. Erickson, T.J. Klopfenstein. 2011. Comparing 

dry, wet, or modified distillers grains plus solubles on feedlot cattle performance. Nebr. 

Beef Cattle Rep. MP-94:50-52. 

 

Nuttelman, B. L. 2013. Effects of drying distillers grains plus solubles on feedlot cattle  

 performance and nutrient digestibility. Ph.D. Diss. University of Nebraska. 

 

Owens, F.N., D.S. Secrist, W.J. Hill, D.R. Gill. 1997. The effect of grain source and grain  

 processing on performance of feedlot cattle: a review. J. Anim. Sci. 75:868-879. 

 

Pesta, A.C., A.L. Shreck, T.J. Klopfenstein, G.E. Erickson. 2012. Metabolism of finishing diets 

containing condensed distillers solubles and WDGS. Nebr. Beef Cattle Rep.  

MP-95:68-69. 

 

Pesta, A.C, B.L. Nuttelman, A.L. Shreck, W.A. Griffin, T.J. Klopfenstein, G.E. Erickson.  

2013. Finishing performance of feedlot cattle fed condensed distillers solubles. J. Anim. 

Sci. Submitted. 

 

Renewable Fuels Association. 2013a. Ethanol Facts. http://www.ethanolrfa.org/pages/ethanol- 

 facts. Accessed: March 1, 2013. 

 

Renewable Fuels Association. 2013b. How Ethanol is Made.   

 http://www.ethanolrfa.org/pages/how-ethanol-is-made. Accessed: March 1, 2013.\ 

 

Rust, S.R., J.R. Newbold, K.W Metz. 1990. Evaluation of condensed distillers solubles as an 

 energy source for finishing cattle. J. Anim. Sci. 68:186-192. 

 

Stock, R.A., J.M. Lewis, T.J. Klopfenstein, C.T. Milton. 2000. Review of new information on the  

 use of wet and dry milling feed by-products in feedlot diets. J. Anim. Sci. 77:1-12. 

 

Stock, R.A. and G.E. Erickson. 2006. Associative effects and management – Combinations of  

 processed grains. Oklahoma State Univ. Ext. Cattle Grain Processing Symposium. 

 pp. 167-173. 

 

Titlow, A.H., A.L. Shreck, S.A. Furman, K.H. Jenkins, M.K. Luebbe, G.E. Erickson. 2013. 

 Replacing steam-flaked corn and dry rolled corn with condensed distillers solubles in  

 finishing diets. Nebr. Beef Cattle Rep. MP-98:51-52. 

    

Trenkle, A.H. 1996. Evaluation of wet distillers grain for finishing cattle. Iowa State Univ. Beef  

 Cattle Res. Rep. A.S. Leaflet R1342. 

 

Trenkle, A.H. 1997. Substituting wet distillers grains or condensed distillers solubles for corn  

grain in finishing diets for yearling heifers. Iowa State Univ. Beef Cattle Res. Rep.  

A.S. Leaflet R1451. 

 

Trenkle, A.H. 2002. Relative feeding value of wet corn distillers solubles as a feed for finishing  

cattle. Iowa State Univ. Beef Cattle Res. Rep. A.S. Leaflet R1772. 

 

Trenkle, A. H. 2004 Effects of replacing corn grain and urea with condensed distillers solubles  

on performance and carcass value of finishing steers. Iowa State Univ. Beef Cattle Res. 

Rep. A.S. Leaflet R1884. 

http://www.ethanolrfa.org/pages/ethanol-
http://www.ethanolrfa.org/pages/how-ethanol-is-made


38 
 

Trenkle, A.H. 2008. Performance of finishing steers fed low, moderate and high levels of wet  

 distillers grains. Iowa State Univ. Beef Cattle Res. Rep. A.S. Leaflet R2286. 

 

Van Nevel, C.J. and D.I. Demeyer. 1996. Influence of pH on lipolysis and biohydrogenation of  

 Soybean oil by rumen contents in vitro. Reprod. Nutr. Dev. 36:53-63. 

 

Vander Pol, K.J, G.E. Erickson, T.J Klopfenstein, M.A. Greenquist, T. Robb. 2006. Effect of  

 dietary inclusion of wet distillers grains on feedlot performance of finishing cattle and  

 energy value relative to corn. Nebr. Beef Cattle Rep. MP 88:51-53. 

 

Vander Pol, K.J., M.K. Luebbe, G.I. Crawford, G.E. Erickson, T.J Klopfenstein. 2009.  

Performance and digestibility characteristics of finishing diets containing distillers grains, 

composites, of corn processing coproducts, or supplemental corn oil. J. Anim. Sci. 

87:639-652. 

 

Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber,  

neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. 

Dairy Sci. 74:3583. 

 

Vasconcelos, J.T., and M.L. Galyean. 2007. Nutritional recommendations of feedlot consulting  

 nutritionists: The 2007 Texas Tech University survey. J. Anim. Sci. 85:2772-2781.   

 

Veracini, J.L., P.M. Walker, B.R. Wiegand, R.L. Atkinson, M.J. Faulkner, L.A. Forster. 

 2013. Effects of reduced-fat modified wet distillers grains with solubles on beef  

 Steer performance and carcass composition. Prof. Anim. Sci. 29:518-528. 

 

Zinn, R.A. 1989a. Influence of level and source of dietary fat on its comparative feeding value in  

 finishing diets for steers: Feedlot cattle growth and performance. J. Anim. Sci. 67:  

 1029-1037. 

 

Zinn, R.A. 1989b. Influence of level and source of dietary fat on its comparative feeding value in  

 finishing diets for feedlot steers: Metabolism. J. Anim. Sci. 67:1038-1049. 

 

Zinn, R.A. 1992. Comparative feeding value of supplemental fat in steam-flaked corn and steam 

 Flaked wheat based finishing diets for feedlot steers. J. Anim. Sci. 70:2959-2969.  

 

Zinn, R.A. 1994. Effects of excessive supplemental fat on feedlot cattle growth performance and  

 digestive function. Prof. Anim. Sci. 10:66-72.   

 

Zinn, R.A., C.F. Adam, M.S. Tamayo. 1995. Interaction of feed intake level on comparative 

ruminal and total tract digestion of dry-rolled and steam-flaked corn. J. Anim. Sci. 

73:1239-1245. 

 

Zinn, R.A., S.K. Gulati, A. Plascencia, J. Salinas. 2000. Influence of ruminal biohydrogenation  

on the feeding value of fat in finishing diets for feedlot cattle. J. Anim. Sci. 78:1738-

1746. 

 

Zinn, R.A., F.N. Owens, R.A. Ware. 2002. Flaking corn: Processing mechanics, quality 

 standards, and impacts on energy availability and performance of feedlot cattle. J. Anim.  

 Sci. 80:1145-1156.  

      



39 
 

  

Chapter II 

 

 

Finishing performance and metabolism characteristics of feedlot steers receiving 

dry milling by-products with and without oil extraction 

 

 

 

M. L. Jolly, B. L. Nuttelman, C. J. Schneider, D. B. Burken, J. L. Harding, A. L. Shreck,  

G. E. Erickson, and T. J. Klopfenstein 

 

 

 

Department of Animal Science, University of Nebraska, Lincoln, NE 68583-0908 

 

 

 

 

 

 

 

 

 

 



40 
 

ABSTRACT 

 Three experiments evaluated the effects of corn oil removal, using centrifugation, 

in dry milling by-products on animal performance and digestion characteristics of 

finishing cattle.  In Exp. 1, 225 crossbred steers (300 ± 9.1 kg) were utilized in a 

randomized block design with a 2 x 2 + 1 factorial arrangement of treatments.  Factors 

consisted of oil concentration [de-oiled (DO) or normal (NORM)] and by-product type 

[27% condensed distillers solubles (CDS) or 40% modified distillers grains plus solubles 

(MDGS)] with a plus one control (CON).  Ingredient fat concentration was 6.0% for DO 

CDS, 21.1% for NORM CDS, 9.2% for DO MDGS and 11.8% for NORM MDGS.  

There were no oil concentration by by-product type interactions (P > 0.34). There were 

no differences in DMI, ADG, or G:F between DO and NORM CDS (P ≥ 0.29) and 

MDGS (P ≥ 0.58).  No differences (P > 0.20) due to oil concentration were observed for 

carcass characteristics.  Experiment 2 was a 5 x 5 Latin Square design digestion trial that 

mimicked the treatments in Exp. 1.  Fat concentration was 8.7% for DO CDS, 15.4% for 

NORM CDS, 9.2% for DO MDGS and 12.3% for NORM MDGS.  Percentage of fat and 

NDF digestibilities were greater (P < 0.05) for NORM CDS compared to DO CDS.  

Average ruminal pH for cattle fed NORM MDGS was greater than DO MDGS (P = 

0.06).  There was no difference for average ruminal pH between DO and NORM CDS (P 

= 0.74).  In Exp. 3, 336 yearling, crossbred steers (352 ± 19 kg) were utilized in a 

randomized block design with a 2x3+1 factorial arrangement of treatments.  Factors 

included oil concentration (DO or NORM) and inclusion level [35, 50, and 65% wet 

distillers grains plus solubles (WDGS)] along with a corn based control (CON).  The fat 

concentrations of DO and NORM WDGS were 7.9 and 12.4%, respectively.  A linear 

interaction (P < 0.01) was observed for DMI which produced different slopes for DO and 
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NORM WDGS.  No linear or quadratic interactions were observed for final BW, ADG, 

or G:F (P ≥ 0.31).  For the main effect of oil concentration, there were no statistical 

differences (P ≥ 0.19) for final BW, ADG, or G:F.  No statistical differences were 

observed for all carcass traits (P ≥ 0.34).  Corn oil removal via centrifugation had 

minimal impact on finishing performance suggesting that cattle fed DO by-products will 

have similar performance to cattle fed NORM oil by-products. 

Key Words: by-products, distillers grains plus solubles, solubles corn oil, extraction 

INTRODUCTION 

 

Distillers grains plus solubles (DGS) is an excellent feedstuff for the cattle 

industry as DGS are a good source of energy and protein (Klopfenstein et al., 2008; 

Buckner et al., 2011).  The ethanol industry has developed techniques to extract the oil, 

which can be marketed to the biodiesel industry or other feed markets.  There are two 

processes utilized for oil extraction: front-end fractionation and back-end oil extraction.  

Front-end fractionation involves separating the germ, endosperm, and bran fractions 

before fermentation while back-end extraction removes oil from thin stillage via 

centrifugation after fermentation has occurred (U.S. Grains Council, 2012).  Back-end oil 

extraction is widely utilized today with more than 80% of all U.S. ethanol plants utilizing 

this process (U.S. Grains Council, 2012).  

The ethanol production process consists of converting starch from corn grain into 

ethanol, which is removed by distillation, producing whole stillage (Stock et al., 2000).  

The whole stillage is centrifuged to yield wet distillers grains and thin stillage.  The thin 

stillage phase, which contains approximately 30% of the oil, is the only location that can 
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undergo centrifugation to remove corn oil, producing de-oiled solubles following 

evaporation (U.S. Grains Council, 2012).  If de-oiled CDS are added back onto distillers 

grains, the fat concentration of the DGS will be reduced from approximately 12 to 8% fat 

(U.S. Grains Council, 2012).  Our hypothesis was that a 4% unit decrease in energy 

would result in a decrease in animal performance.  However, there are no data available 

on animal performance when this centrifugation process is used to remove corn oil from 

CDS.  Therefore, 3 experiments were conducted to evaluate animal performance, carcass 

characteristics, and rumen digestion in steers fed finishing diets containing DGS or CDS 

produced from either a traditional dry-grind (normal) or have undergone oil extraction via 

centrifugation (de-oiled). 

MATERIALS AND METHODS 

 

All animal care and management procedures were approved by the University of 

Nebraska Lincoln Institution of Animal Care and Use Committee. 

Experiment 1 

 A 179-d finishing experiment was conducted using 225 crossbred, calf fed steers 

(initial BW = 300 ± 9.1 kg) in a randomized block design, with a 2 x 2 + 1 factorial 

arrangement of treatments.  Steers were received at the University of Nebraska’s 

Agricultural Research and Development Center (research feedlot near Ithaca, NE) in the 

fall of 2011.   

Initial processing included vaccination with a modified live viral vaccine (Bovi-

Shield Gold 5, Zoetis Animal Health, Madison, NJ), Haemophilus somnus bacterin 

(Somubac, Zoetis Animal Health), and administered an injectable dewormer (Dectomax 
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Injectable, Zoetis Animal Health).  Approximately 27 d later, cattle were revaccinated 

with a modified live viral vaccine (Bovi-Shield Gold 5, Zoetis Animal Health), 

Haemophilus somnus bacterin (Somubac, Zoetis Animal Health), and pinkeye vaccine 

(Piliguard Pinkeye + 7, Merck Animal Health, Desoto, KS). Steers were implanted with 

Revalor-IS (80mg of trenbolone acetate and 16mg estradiol; Merck Animal Health) on d 

1 and reimplanted with Revalor-S (120mg of trenbolone acetate and 24mg of estradiol; 

Merck Animal Health) on d 83.   

Steers were limit fed a 1:1 blend (DM basis) of alfalfa hay and wet corn gluten 

feed (Sweet Bran®, Cargill, Blair, NE) for 5 days at 2% of BW prior to the initiation of 

the trial and weighed on two consecutive days (0 and 1) to determine initial BW (Watson 

et al, 2013; Stock et al., 1983). Steers were blocked by initial BW into a light or heavy 

block with 2 and 3 replication of each treatment, respectively. Steers were stratified by 

BW within each block, and assigned randomly to pen using d 0 BW.  Pens were assigned 

randomly to one of five treatments with nine steers per pen and five pens per treatment.  

 Dietary treatments (Table 1) were arranged in a 2 x 2 + 1 factorial treatment 

design with factors including by-product type [CDS or modified distillers grains plus 

solubles (MDGS)] and oil concentration (de-oiled or normal); and a corn based control 

diet.  Basal ingredients consisted of a 1:1 blend of dry rolled and high moisture corn, 

7.5% sorghum silage, and 5% dry supplement (DM basis).  Modified DGS were procured 

at the initiation of the experiment from Green Plains LLC (Central City, NE) on two 

different weeks when the process was running to remove oil or not.  Condensed distillers 

solubles were sourced from the same plant and received approximately every 3 weeks 

throughout the experiment on alternating weeks, with or without the oil process operating 
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in the plants. The de-oiled CDS utilized in this experiment contained 6.0% fat, 29.6% CP, 

and 1.26% S, DM basis; normal oil CDS contained 21.1% fat, 27.0% CP, and 0.78% S, 

DM basis; de-oiled MDGS contained 9.2% fat, 33.7% CP, 0.65% S, and 29.4% NDF, 

DM basis; normal oil MDGS contained 11.8% fat, 33.0% CP, 0.56% S, and 31.9% NDF, 

DM basis.  Dietary fat consisted of 4.7, 8.8, 6.1, 7.2, and 4.4% for de-oiled CDS, normal 

CDS, de-oiled MDGS, normal MDGS, and CON, respectively.  Soypass (Borregaard 

LignoTech, Sarpsborg, Norway) was included in the control and CDS diets for 38 and 60 

days, respectively, to meet or exceed MP requirements (NRC, 1996).  Urea was included 

in the control treatment at 1.52% of the diet on a DM basis. All diets contained 5% 

supplement which was formulated for 30 g/ton of DM of monensin (Elanco Animal 

Health) and to provide 90 mg per steer daily of tylosin (Elanco Animal Health).  

Cattle were fed once daily at approximately 0800.  Feed bunks were managed to 

contain crumbs of feed remaining at feeding time.  When needed, refused feed was 

removed from feed bunks, weighed, and dried in a forced-air oven for 48 h at 60°C to 

determine DM for accurate DMI.   

Samples of each feed ingredient were collected weekly to form a monthly 

composite which were analyzed for DM (Association of Analytical Chemist [AOAC], 

1999 method 4.1.03), CP (AOAC, 1999 method 990.03) using a combustion-type N 

analyzer (Leco FP 528 Nitrogen Autoanalyzer, St. Joseph, MI), sulfur (TruSpec Sulfur 

Add-On Module, Leco Corporation, St. Joseph, MI), ether extract, and NDF (Van Soest 

et al., 1991) incorporating heat stable α-amylase (Ankom Technology, Macedon, NY) at 

1 ml per 100 ml of NDF solution (Midland Scientific, Omaha, NE) along with the 

addition of 0.5 g of Na2SO3 to the NDF solution.  The NDF procedure was conducted 
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after ether extract had been extracted from the byproduct samples.  Ether extract was 

determined by performing a biphasic lipid extraction procedure described by Bremer 

(2010).  Ingredient samples are heated for 9 hours with a 1:1 mixture of hexane and 

diethyl ether.  After 9 hours, diluted HCl is added and the sample is centrifuged to 

separate out the lipid layer which is pipetted into a separate tube.  The procedure is 

repeated to ensure all lipid is extracted. Heat is then used to evaporate remaining solvent 

resulting in the fat for the ingredient.   

 Before shipping to slaughter, final live BW was measured by weighing steers by 

pen and applying a 4.0% pencil shrink.  All animals were harvested on d 180 at a 

commercial abattoir (Greater Omaha Packing, Omaha, Neb.) with HCW and liver 

abscesses recorded at that time.  Following a 48-h chill, carcass 12
th

 rib fat, LM area, and 

USDA marbling score were captured by cameras within the plant and recorded at time of 

grading.  Yield grade was calculated using the USDA YG equation: YG = 2.5 + 6.35 (Fat 

thickness, cm) – 2.06 (LM area, cm
2
) + 0.2 (KPH fat, %) + 0.0017 (HCW, kg).  

Calculated final BW, ADG, and G:F were calculated using HCW adjusted to a common 

dressing percentage of 63%.   

 Data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, 

NC) as a randomized block design with pen as the experimental unit.  The model 

included block as a fixed effect and treatment.  Pair-wise comparisons for treatments, 

including the control, were determined by Fishers’s LSD method when the F-Test 

statistic was significant.  Two pre-planned contrasts were used to evaluate the effect of 

oil removal when 27% CDS or 40% MDGS were fed.   
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Experiment 2 

 A 111-d metabolism experiment utilized six ruminally fistulated crossbred steers 

(BW = 591 ± 20 kg) in a 5 x 5 Latin Square design with five periods and five treatments.  

A 2 x 2 + 1 factorial arrangement of treatments were used which are similar to those fed 

in Exp. 1.  All diets contained a 1:1 blend of dry rolled and high moisture corn which was 

replaced by either CDS or MDGS, 12% corn silage, and a 5% supplement (Table 2). The 

by- products utilized in the trial were procured from Green Plains LLC (Central City, 

NE).  The de-oiled CDS utilized in this experiment contained 8.7% fat, 29.9% CP, and 

1.26% S; normal oil CDS contained 15.4% fat, 25.5% CP, and 0.78% S; de-oiled MDGS 

contained 9.2% fat, 33.9% CP, 0.65% S, and 29.7% NDF; normal oil MDGS contained 

12.3% fat, 32.4% CP, 0.56% S, and 36.4% NDF. Dietary fat consisted of 5.2, 7.0, 5.9, 

7.2, and 4.0 for de-oiled CDS, normal CDS, de-oiled MDGS, normal MDGS, and CON, 

respectively.  Nutrients analyzed the same as Exp. 1.  Steers were adapted to a high grain 

diet by utilizing RAMP (a complete-feed starter ration consisting of Sweet Bran and a 

small portion of alfalfa hay; Cargill Corn Milling, Blair, NE).   

Steers were housed in 2.4 x 1.5 m
2
 individual concrete slatted pens, in a 

temperature controlled room (25°C) with ad libitum access to feed and water.  Cattle 

were fed once daily at 0800 and refused feed was removed from bunks prior to feeding.  

Ingredient samples were taken during the collection period at time of mixing, composited 

by period and frozen at -20°C.  Refused feed was collected daily before time of feeding 

during the collection period, composited by period, and stored frozen at -20°C.  A 

subsample of each d feed refusals (10%) were collected and dried for 48 h in a 60°C
 

forced air over to determine DM and adjust for DMI. At the completion of each period, 
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ingredients and refused feed composites were freeze dried and ground through a 1-mm 

screen of a Willey Mill (Thomas Scientific, Swedesboro, NJ). 

 Period duration was 21-d, which consisted of a 16-d adaptation phase and 5-d  

collection period.  During the 5-d collection (d 17 through 21) fecal samples and pH data 

were collected.  Beginning on d 10 of each period, the titanium dioxide was administered 

to provide an estimate of fecal output (Meyer et al., 2004).  Titanium dioxide, an 

indigestible marker, was dosed intraruminally 2x daily at 0800 and 1600 h to provide a 

total of 20 g/d.  On d 17 to 21, fecal grab samples were collected 3 times/d at 0800, 1200, 

1600, composited (wet basis), and immediately frozen at -20°C.  At the end of each 

period, fecal samples were freeze dried, ground through a 1-mm screen of a Wiley Mill 

(Thomas Scientific), and composited by period.       

Ruminal pH was measured continuously from d 17 to 21 with submersible 

wireless pH probes (Dascor, Inc., Escondido, CA).  Ruminal pH measurements were 

recorded every minute (1,440 measurements/d) and downloaded after total rumen 

evacuations on d 21 of each collection period.  Measurements for pH include average 

ruminal pH, minimum and maximum pH, and magnitude. Ruminal pH variance and time 

and area below 5.6 were calculated as described by Cooper et al. (1999).   

Feed ingredients and fecal sample analysis consisted of DM, OM (AOCC, 1999; 

method 4.1.03) CP, NDF, and fat as described for Exp. 1.  Fecal samples were analyzed 

for titanium dioxide using the procedure described by Myers et al (2004), plated, and 

analyzed using a SpectraMAX 250 (Harlow Scientific, Arlington, MA). 

Digestibility and intakes were analyzed using the MIXED procedure of SAS 

(SAS Inst. Inc.).  Included in the model were the fixed effects of treatment and period 
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while steer was treated as a random effect for all analyses. Ruminal pH data were 

analyzed using the GLIMMIX procedure of SAS (SAS Inst. Inc.) as a crossover design.  

An autoregressive (AR-1) covariance structure was utilized for pH data with day as a 

repeated measure.  A Kenward-Rogers denominator degrees of freedom adjustment was 

used with steer treated as a random effect.  Treatment differences were considered 

significant at P < 0.10.   

Experiment 3 

A 147-d finishing experiment was conducted using 336 crossbred, yearling steers 

(initial BW = 352 ± 19 kg) in a randomized block design, with a 2 x 3 + 1 factorial 

arrangement of treatments.  Steers were received at the University of Nebraska’s 

Agricultural Research and Development Center (Ithaca, NE) in the fall of 2011 and 

backgrounded on corn stalks for the winter.  Initial processing and re-vaccination was 

similar to Exp. 1.  Steers were implanted on d 1 with Revalor-XS (4 mg of estradiol and 

20 mg of trenbolone acetate; Merck Animal Health).  

Limit feeding and initial weigh procedures were the same as Exp. 1.  Steers were 

blocked by BW into a light, medium, or heavy weight block with 2, 3, and 1 replication 

per treatment, respectively.  Steers were stratified by BW within each block and assigned 

randomly to pen based on d 0 BW.  Pens were then assigned randomly to one of seven 

treatments with six pens per treatment and eight steers per pen.  

 A 2 x 3 + 1 factorial arrangement of treatments was used, with factors being oil 

concentration (de-oiled or normal) by concentration of WDGS in the diet (35%, 50%, 

65%) plus a corn based control (Table 3).  Wet distillers grains plus solubles was sourced 

from KAAPA Ethanol, LLC (Minden, NE) and received approximately every 3 weeks 
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throughout the experiment. Feed ingredients were analyzed for DM, CP, NDF, S, and fat 

according to the procedures outlined in Exp. 1.  The de-oiled WDGS contained 7.9% fat, 

30.5% CP, 48.0% NDF, and 0.76% S and normal oil WDGS contained 12.4% fat, 29.3% 

CP, 51.5% NDF, and 0.73% S.  Dietary fat concentrations are included in Table 3. Urea 

was included in the control treatment at 1.58% of the diet on a DM basis.  All diets 

contained a 1:1 blend of dry rolled and high moisture corn, 12% corn silage, and 5% 

supplement which was formulated to contain 30 g/ton of monensin (DM basis, Elanco 

Animal Health) and provide 90 mg per steer daily of tylosin (Elanco Animal Health).   

All animals were harvested on d 148 at a commercial abattoir (Greater Omaha 

Packing, Omaha, Neb.).  Carcass data collection procedures were the same as Exp. 1.   

 Data were analyzed using the GLIMMIX procedure of SAS as a randomized 

block design.  Pen was the experimental unit and BW was treated as a fixed effect.  The 

2x3 factorial treatment design was analyzed for a fat (de-oiled, normal) by inclusion level 

(0, 35, 50, 65%) interaction.  PROC IML was used to determine appropriate coefficients 

due to unequal spacing of WDGS inclusion level.  Using the control as the common 

intercept, orthogonal contrasts were developed.   

RESULTS AND DISCUSSION 

 

Experiment 1 

 Cattle fed CDS, regardless of oil concentration, had significantly (P = 0.01) lower 

DMI than cattle fed MDGS or CON.  Dietary fat for de-oiled and normal CDS was 

4.72% and 8.80%, respectively.  Even though dietary fat for normal CDS was double that 

of de-oiled CDS, DMI was 8.8 kg/d for both treatments.  Pesta (2013) reported a dietary 
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fat of 7.96% in a 27% CDS finishing diet.  No difference was observed for DMI between 

de-oiled and normal MDGS (P > 0.58) when dietary fat was 6.12 and 7.19%, 

respectively.  A reduction in DMI is typically the most consistent negative effect that is 

observed with increased fat supplementation (Hatch et al., 1972) which was not observed 

in the current experiment.  When supplemental fat was supplied by tallow or yellow 

grease, DMI either decreased (Huffman et al., 1992; Zinn, 1994; Zinn and Shen, 1996) or 

remained unchanged (Brandt and Anderson, 1990; Vander Pol et al. 2009; Zinn 1988; 

Zinn 1989a).  When fat was supplied by CDS, DMI decreased (Pesta, 2013; Trenkle, 

2002; Rust, 1990; Titlow et al., 2013) or was not changed (Trenkle, 2004).  However, a 

meta-analysis performed by Bremer (2011) observed that DMI increased when distillers 

grains plus solubles increased in the diet up to 30%.  The increase in DMI can be 

attributed to the high NDF and low starch concentration of distillers grains which may 

have alleviated the risk of subacute acidosis. 

There were no differences (P ≥ 0.29) due to oil concentration of CDS and MDGS 

for ADG and G:F.  Cattle fed CDS or MDGS had greater ADG (P < 0.01) and improved 

G:F (P = 0.02) compared to corn based controls.  This agrees with previous research that 

cattle fed CDS (Pesta, 2013; Titlow et al., 2013) and DGS (Klopfenstein et al., 2008; 

Corrigan et al., 2009; Bremer et al., 2011) produce greater ADG and G:F compared to 

corn based diets without dry milling byproducts.  Feeding values in the current study, 

calculated as described by Bremer et al. (2011), were 159 and 147% of corn for de-oiled 

and normal CDS, respectively.  Pesta et al. (2013) reported a feeding value of 142% for 

CDS relative to corn when fed at 27% of the diet DM.  The feeding values for MDGS 

were 130% of corn for both de-oiled and normal MDGS at 40% inclusion.  Bremer et al. 
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(2011) conducted a meta-analysis and reported the feeding value of MDGS to be 117% 

when fed at 40% inclusion in a corn based finishing diet.  

 Regardless of oil concentration, cattle fed CDS or MDGS had greater (P > 0.01) 

HCW compared to CON.  Hot carcass weight between de-oiled and normal CDS varied 

by only 4 kg while de-oiled and normal MDGS differed by only 2 kg.  No other 

differences (P ≥ 0.13) were observed for LM area, 12
th

 rib fat thickness, calculated YG, 

or marbling score across all treatments.     

Exp. 2 

  No treatment differences were observed for DMI or total tract DM digestibility 

(P ≥ 0.17; Table 5).  This is similar to the results of Pesta (2013) and Bremer (2010), 

where steers fed diets with 7.6 and 8.6% fat, respectively, had similar DMI and total tract 

DM digestibility compared to 4.2 and 3.6% dietary fat corn based control, respectively.  

However, steers fed WDGS have been reported to have a lower DMI and DM 

digestibility than corn based control diets (Bremer, 2010; Corrigan et al., 2009; Vander 

Pol et al., 2009).    

 There were no differences observed for OMI or OM digestibility when 

contrasting de-oiled and normal oil concentration for CDS and MDGS (P > 0.30).  No 

effect of treatment (P = 0.75) was observed for OMI; however, a difference was observed 

for total tract OM digestibility (P = 0.08).  Treatments that contained CDS had the 

greatest OM digestibility followed by de-oiled MDGS, CON, and normal MDGS.  

Similarly, Ham et al., (1994) reported thin stillage having greater OM digestibility 

compared to DRC, however, Pesta (2012) reported no difference in OM digestibility.  
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Similar to data reported by Ham et al. (1994), Vander Pol et al., (2009) reported WDGS 

to have comparable OM digestibility to a corn based diet.   

A treatment effect was observed for NDFI (P < 0.01).  Intake of NDF was greater 

for MDGS than CDS or CON because of the high NDF content of MDGS.  No treatment 

difference was observed for total tract NDF digestibility (P = 0.11).  However, the 

contrast between oil concentrations was significant for CDS (P = 0.03) with normal CDS 

having greater NDF digestibility than de-oiled CDS.  This would suggest that the 

centrifugation process to remove corn oil also removes a portion of highly digestible 

NDF out of the thin stillage since normal CDS had both greater NDFI and digestibility 

compared to de-oiled CDS.  Ham et al. (1994) reported thin stillage to be significantly 

greater in NDF digestibility than a DRC based diet.  There was no difference between oil 

concentrations for MDGS (P = 0.90) on NDF digestibility.  However, both MDGS 

treatments had numerically greater NDF digestibilities compared to CON which has been 

previously reported (Ham et al., 1994; Corrigan et al., 2009; Bremer, 2010).   More 

typical sources of supplemental fat, yellow grease or blended animal-vegetable fats, will 

decrease NDF and ADF digestibility by physically coating fiber particles or inhibiting 

cellulolytic activity (Zinn, 1989b; Zinn et al., 2000). It appears that lipids from dry 

milling byproducts do not decrease fiber digestion like typical fat sources.   

A treatment effect was observed for fat intake (P < 0.01).  Fat intake was the 

greatest for normal MDGS (0.74 kg/d), intermediate for normal CDS (0.66 kg/d) and de-

oiled MDGS (0.66 kg/d), and the least for de-oiled CDS (0.46 kg/d) and CON (0.41 

kg/d).  A treatment effect was observed for total tract fat digestibility (P = 0.01).  Total 
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tract fat digestibility was greater for normal CDS, intermediate for de-oiled and normal 

MDGS, and the least for de-oiled CDS.   

 Average ruminal pH was greatest for cattle fed normal MDGS and lowest for 

CON and de-oiled CDS (P < 0.01).  This is consistent with the findings of Pesta (2012) 

who observed an increase in average ruminal pH when steers were fed WDGS relative to 

CDS or CON diets.  However, previous research would suggest that there is not a 

difference in average ruminal pH between WDGS and corn based control (Bremer, 2010; 

Ham et al, 1994; Corrigan et al, 2009).  There was no statistical difference between de-

oiled and normal CDS for average pH (P = 0.74).  However, average pH for normal 

MDGS was greater than de-oiled MDGS (P = 0.06).   No treatment differences were 

observed for minimum or maximum pH or pH magnitude or variance (P > 0.19).  Steers 

fed CDS or CON spent more time and area with a pH below 5.6 than steers fed WDGS 

(P < 0.02).  Likewise, steers fed CDS or CON spent more time and area with a pH below 

5.3 than steers fed WDGS (P < 0.10).  

Exp. 3 

 No linear or quadratic interactions were observed for ADG or G:F (P > 0.31; 

Table 7).  There was a linear interaction (P < 0.01) for DMI producing different slopes 

for de-oiled and normal WDGS.  As de-oiled WDGS increased in the diet from 0 to 50, 

DMI remained relatively constant from 11.4 to 11.6 kg/d, and as dietary inclusion 

increased from 50 to 65%, DMI decreased from 11.6 to 10.9 kg/d.  However, as normal 

WDGS increased from 0 to 50% inclusion in the diet DM, DMI decreased from 11.4 to 

10.9 kg/d, and as the dietary inclusion of WDGS increased from 50 to 65%, DMI 
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decreased further from 10.9 to 10.4 kg/d.  This agrees with previous research that at high 

inclusions of WDGS (> 30% of DM), cattle tend to have decreased DMI relative to lower 

inclusions (Vander Pol et al., 2006; Larson et al., 1993; Klopfenstein et al., 2008).   

 For the main effect of oil concentration (Table 8), there were no differences (P ≥ 

0.19) for final BW, ADG, or G:F.  Cattle fed de-oiled WDGS had numerically greater 

final BW and ADG.  However, cattle fed normal WDGS had lower DMI (P < 0.01) 

which resulted in a 2.5%, non-significant (P = 0.19) improvement in G:F compared to 

cattle fed de-oiled WDGS.   

There was no effect on final BW or ADG (P > 0.17) as WDGS increased in the 

diet (Table 9).  Vander Pol et al., (2006) observed a quadratic response (P < 0.01) for 

final BW and ADG as WDGS increased up to 50% in the diet.  In their study, feeding 

50% WDGS increased ADG and final BW compared to 0% WDGS.  Similarly, Corrigan 

et al. (2009) and Bremer et al. (2011) observed a quadratic response for ADG as the 

inclusion of WDGS was fed up to 40% inclusion in the diet.  In the current study, cattle 

fed 65% inclusion had similar ADG and final BW compared to CON (P > 0.17).  A linear 

increase was observed for G:F as the inclusion of WDGS increased up to 65% in the diet 

DM.  Firkins et al., (1985) observed a similar linear response for G:F as WDGS increased 

from 0 to 50% in the diet DM.  However, several studies have reported a quadratic 

response for G:F with 40% inclusion of WDGS having the most improved G:F (Bremer 

et al., 2011; Corrigan et al., 2009; Vander Pol et al., 2006).   

 No effect of oil concentration or WDGS concentration (P > 0.08) were observed 

for HCW, LM area, 12
th

 rib fat thickness, calculated yield grade, or marbling score.   
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 Based on this research, reducing the oil concentration, via centrifugation, in DGS 

or CDS does not hinder ADG or G:F in finishing steers.  However, replacing corn with 

distillers grains plus solubles or condensed distillers solubles in finishing diets increased 

ADG and G:F.  Feeding de-oiled CDS does appear to reduce NDF and fat digestibility; 

however, this did not appear to impact gain or efficiency.           
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Table 1: Diet Composition on a DM basis fed to finishing steers (Exp. 1) 

  Control 27% CDS 40% MDGS 

 

 De-Oiled
1
 Normal

1
 De-Oiled

1
 Normal

1
 

Ingredient, % of DM
2
  

    
   DRC 43.75 30.25 30.25 23.75 23.75 

   HMC 43.75 30.25 30.25 23.75 23.75 

   MDGS: De-Oiled - - - 40 - 

   MDGS: Normal Fat - - - - 40 

   CDS: De-Oiled - 27 - - - 

   CDS: Normal Fat - - 27 - - 

   Sorghum Silage 7.5 7.5 7.5 7.5 7.5 

   Supplement
 3
      

      Fine ground corn 1.03 2.59 2.59 2.59 2.59 

      Limestone 1.47 1.89 1.89 1.89 1.89 

      Urea 1.52 - - - - 

      Potassium chloride 0.48 - - - - 

      Salt 0.30 0.30 0.30 0.30 0.30 

      Tallow 0.13 0.13 0.13 0.13 0.13 

      Beef trace mineral
4
 0.05 0.05 0.05 0.05 0.05 

      Vitamin A-D-E
5
 0.02 0.02 0.02 0.02 0.02 

      Rumensin-90
6
 0.02 0.02 0.02 0.02 0.02 

      Tylan-40
7
 0.01 0.01 0.01 0.01 0.01 

Analyzed Composition, %
8
 

     
      CP 12.4 13.9 13.2 18.3 18.0 

      Fat 4.43 4.72 8.80 6.12 7.19 

      S 0.14 0.44 0.31 0.34 0.30 
1
De-Oiled CDS = 6.0% fat; Normal CDS = 21.1% fat; De-Oiled MDGS = 9.2% fat; Normal  

       CDS = 11.8% fat 
2
DRC = Dry rolled corn; HMC = High moisture corn; MDGS = Modified distillers grains plus 

      solubles; CDS = condensed distillers solubles 
3
Supplement formulated to be fed at 5.0% of diet DM. 

4
Premix contained 6.0% Zn, 5.0% Fe, 4.0% Mn, 2.0% Cu, 0.28% Mg, 0.2% I, 0.05% Co. 

5
Premix contained 30,000 IU of Vitamin A, 6,000 IU of Vitamin D, 7.5 IU of Vitamin E per gram

 

6
Formulated to contain 200 g/kg of monesin. 

7
Premix contained 88g/kg tylosin. 

8
Composition based on analyzed nutrients for each ingredient
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Table 2: Diet Composition on a DM basis fed to finishing steers (Exp. 2) 

  Control 27% CDS 40% MDGS 

 

 De-Oiled
1
 Normal

1
 De-Oiled

1
 Normal

1
 

Ingredient, % of DM
2
  

    
   DRC 41.5 28 28 21.5 21.5 

   HMC 41.5 28 28 21.5 21.5 

   MDGS: De-Oiled - - - 40 - 

   MDGS: Normal Fat - - - - 40 

   CDS: De-Oiled - 27 - - - 

   CDS: Normal Fat - - 27 - - 

   Corn Silage 12 12 12 12 12 

   Supplement
 3
      

      Fine ground corn 1.03 2.59 2.59 2.59 2.59 

      Limestone 1.47 1.89 1.89 1.89 1.89 

      Salt 0.30 0.30 0.30 0.30 0.30 

      Tallow 0.13 0.13 0.13 0.13 0.13 

      Beef trace mineral
4
 0.05 0.05 0.05 0.05 0.05 

     Vitamin A-D-E
5
 0.02 0.02 0.02 0.02 0.02 

     Potassium chloride 0.48 - - - - 

     Urea 1.52 - - - - 

     Rumensin-90
6
 0.02 0.02 0.02 0.02 0.02 

     Tylan-40
7
 0.01 0.01 0.01 0.01 0.01 

Analyzed Composition, %
8
 

        CP 12.4 14.8 13.8 19.0 18.5 

   NDF 13.2 10.2 11.9 19.9 22.6 

   Fat 4.01 5.17 6.99 5.93 7.16 

   S 0.14 0.30 0.25 0.28 0.27 
1
De-Oiled CDS = 8.7% fat; Normal CDS = 15.4% fat; De-Oiled MDGS = 9.2% fat; Normal  

       CDS = 12.3% fat 
2
DRC = Dry rolled corn; HMC = High moisture corn; MDGS = Modified distillers grains plus 

      solubles; CDS = condensed distillers solubles 
3
Supplement formulated to be fed at 5.0% of diet DM. 

4
Premix contained 6.0% Zn, 5.0% Fe, 4.0% Mn, 2.0% Cu, 0.28% Mg, 0.2% I, 0.05% Co. 

5
Premix contained 30,000 IU of Vitamin A, 6,000 IU of Vitamin D, 7.5 IU of Vitamin E per gram

 

6
Formulated to contain 200 g/kg of monesin. 

7
Premix contained 88g/kg tylosin. 

8
Composition based on analyzed nutrients for each ingredient

 

 

 

 



61 
 

 

Table 3: Diet Composition on a DM basis fed to finishing steers (Exp. 3) 

  Control 35% WDGS 50% WDGS 65% WDGS 

 

 De-Oiled Normal  De-Oiled Normal  De-Oiled Normal  

Ingredient, % of DM
1
  

    
  

   DRC 41.5 24 24 16.5 16.5 9 9 

   HMC 41.5 24 24 16.5 16.5 9 9 

   WDGS: De-Oiled - 35 - 50 - 65 - 

   WDGS: Normal Fat - - 35 - 50 - 65 

   Corn Silage 12 12 12 12 12 12 12 

   Supplement
 2
 5 5 5 5 5 5 5 

      Fine ground corn 1.46 2.54 2.54 2.54 2.54 2.54 2.54 

      Limestone 1.45 1.95 1.95 1.95 1.95 1.95 1.95 

      Salt 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

      Tallow 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

     Urea 1.58 - - - - - - 

      Beef trace mineral
3
 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

     Vitamin A-D-E
4
 0.02 0.2 0.2 0.2 0.2 0.2 0.2 

     Rumensin-90
5
 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

     Tylan-40
6
 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Analyzed Composition, %
7
       

   CP 12.8 16.2 15.8 19.4 18.8 22.6 21.9 

   NDF 13.5 26.6 27.8 32.3 34.0 38.0 40.2 

   Fat 4.47 5.49 7.06 5.98 8.22 6.39 9.31 

   Sulfur 0.09 0.32 0.31 0.42 0.41 0.52 0.51 
1
DRC = Dry rolled corn; HMC = High moisture corn; WDGS = Wet distillers grains plus solubles 

2
Supplement formulated to be fed at 5.0% of diet DM. 

3
Premix contained 6.0% Zn, 5.0% Fe, 4.0% Mn, 2.0% Cu, 0.28% Mg, 0.2% I, 0.05% Co. 

4
Premix contained 30,000 IU of Vitamin A, 6,000 IU of Vitamin D, 7.5 IU of Vitamin E per gram

 

5
Formulated to contain 200 g/kg of monesin. 

6
Premix contained 88g/kg tylosin. 

7
Composition based on analyzed nutrients for each ingredient 

  



 
 

 

Table 4: Effect of feeding de-oiled and normal fat CDS and MDGS on finishing performance (Exp. 1) 

  27% CDS  40% MDGS  P-Value 

 Control De-oiled Normal  De-oiled Normal SEM
1
 F-Test CDS

2
 MDGS

3
 

Performance           

  Initial BW, kg 300 300 301  300 300 1 0.39 0.07 0.68 

  Final BW
4
, kg 567

a
 588

b,c
 580

a,b
  595

b,c
 599

c
 14 0.01 0.43 0.61 

  DMI, kg/d 9.5
a
 8.8

b
 8.8

b
  9.3

a
 9.5

a
 0.4 0.01 0.97 0.58 

  ADG
5
, kg 1.49

a
 1.60

b,c
 1.56

a,b
  1.64

b,c
 1.67

c
 0.08 0.02 0.36 0.60 

  G:F 0.157
a
 0.182

b
 0.177

b
  0.176

b
 0.175

b
 0.004 <0.01 0.29 0.80 

Carcass Characteristics 

  HCW, kg 357
a
 370

b,c
 366

a,b
  375

b,c
 377

c
 9 0.01 0.43 0.61 

  LM area, cm
2
 81.0 85.1 82.7  82.6 81.6 0.23 0.38 0.25 0.66 

  12
th

 rib fat, cm 1.27 1.27 1.19  1.35 1.42 0.03 0.28 0.47 0.47 

  Calculated YG 3.21 3.11 3.15  3.37 3.49 0.11 0.13 0.81 0.44 

  Marbling score
6
 570 579 575  594 599 14 0.50 0.85 0.77 

a,b,c
Means with different superscripts differ (P < 0.05) 

1
SEM = Standard error of the mean

 

2
CDS = Pairwise, contrast of de-oiled vs. normal CDS 

3
MDGS = Pairwise, contrast of de-oiled vs. normal MDGS 

4
Calculated from hot carcass weight, adjusted to a common dressing percentage of 63.0%. 

5
Calculated using carcass adjusted final BW. 

6
Marbling score: 500 = Small00 

6
2

 



 

 

 

Table 5: Effects of dietary treatment on intake and total tract digestibility of DM, organic matter, fat, and NDF. (Exp. 2) 

   27 CDS
1
  40 MDGS

1
  P-Value 

Item CON  De-Oiled Normal  De-Oiled Normal SEM F-Test
2
 CDS

3
 MDGS

4
 

DM            

   Intake, kg/d 9.25  9.30 9.48  9.21 10.25 1.5 0.79 0.84 0.29 

   Total tract digestibility, % 81.6  81.4 83.6  82.1 80.0 1.9 0.27 0.17 0.26 

OM            

   Intake, kg/d 8.90  8.88 8.84  8.89 9.98 2.2 0.75 0.97 0.37 

   Total tract digestibility, % 82.9
a,b

  84.6
b,c

 86.0
c
  83.6

a,b,c
 81.9

a
 1.8 0.08 0.30 0.30 

NDF            

   Intake, kg/d 1.32
a
  0.91

b
 1.13

c
  2.13

d
 2.31

e
 0.24 <0.01 0.02 0.08 

   Total tract digestibility, % 58.2  56.0 68.4  66.2 66.9 5.2 0.11 0.03 0.90 

Fat            

   Intake, kg/d 0.41
c
  0.46

c
 0.66

a
  0.66

a
 0.74

b
 0.08 <0.01 <0.01 0.05 

   Total tract digestibility, % 87.3
b
  89.6

a,b
 93.1

c
  91.2

a,c
 90.6

a
 1.3 0.01 0.02 0.68 

a,b,c,d,e
Means with different superscripts differ (P < 0.10) 

1
CDS = Condensed distillers solubles; MDGS = Modified distillers grains plus solubles 

2
F-Test = Overall F-test representing variation due to treatment 

3
CDS = Contrast of de-oiled vs. normal CDS 

4
MDGS = Contrast of de-oiled vs. normal MDGS 
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Table 6: Effects of dietary treatment on ruminal pH with steers fed 27% CDS  and 40% MDGS with (de-oiled) or without (normal) a portion 

of oil removed (Exp. 2) 

  27 CDS 40MDGS   P-Value 

Item CON De-Oiled Normal De-Oiled Normal  SEM F-Test
1
 CDS

1
 MDGS

3
 

Average pH 5.36
a
 5.38

a
 5.41

ab
 5.54

b
 5.72

c
  0.08 <0.01 0.74 0.06 

Maximum pH 6.03 6.17 6.04 6.25 6.31  0.11 0.28 0.41 0.70 

Minimum pH 4.87 4.92 5.01 5.07 5.07  0.08 0.19 0.35 0.98 

pH magnitude 1.08 1.23 1.09 1.14 1.32  0.15 0.76 0.50 0.42 

pH variance
4
 0.079 0.092 0.081 0.080 0.111  0.021 0.78 0.72 0.30 

Time < 5.6, min/d
5
 958

a
 923

a
 902

a
 652

b
 494

b
  100 <0.01 0.87 0.22 

Area < 5.6, min/d
6
 365

a,c
 356

a,c
 403

a
 238

b,c
 141

b
  71 0.02 0.58 0.23 

Time < 5.3, min/d
7
 679

a
 575

a,c
 709

a
 368

b,c
 252

b
  127 0.03 0.40 0.46 

Area < 5.3, min/d
8
 136

a,c
 129

a,c
 162

a
 86

b,c
 41

b
  41 0.10 0.48 0.33 

a,b,c
Means with different superscripts differ (P < 0.10) 

1
F-Test = Overall F-test representing variation due to treatment 

2
CDS = Contrast of de-oiled vs. normal CDS 

3
MDGS = Contrast of de-oiled vs. normal MDGS 

4
Variance of daily ruminal pH. 

5
Time < 5.6 = minutes that ruminal pH was below 5.6 

6
Area < 5.6 = ruminal pH units below 5.6 by minute 

7
Time < 5.3 = minutes that ruminal pH was below 5.3 

8
Area < 5.3= ruminal pH units below 5.3 by minute 
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Table 7: Linear and quadratic interactions for increasing concentration of de-oiled (DO) and normal (N) WDGS on finishing 

performance (Exp. 3) 

  35% 50% 65%   P-Value 

 CON DO N DO N DO N  SEM Lin Int
1
 Quad Int

2
 

Performance            

  DMI, kg/d 11.4 11.5 11.5 11.6 10.9 10.9 10.4  0.8 < 0.01 0.48 

  ADG, kg 1.76 1.81 1.88 1.88 1.78 1.87 1.84  0.12 0.31 0.64 

  G:F 0.155 0.158 0.164 0.163 0.164 0.172 0.178  0.007 0.38 0.89 
1
Lin Int = Linear interaction for byproduct type and oil concentration 

2
Quad Int = Quadratic interaction for byproduct type and oil concentration 

 

 

6
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Table 8: Main effect of oil concentration on performance and carcass characteristics (Exp. 3) 

 De-Oiled Normal SEM P-Value 

Performance     

  Final BW
1
, kg 627 623 9 0.52 

  DMI, kg/d 11.4 10.9 0.2 < 0.01 

  ADG, kg 1.85 1.83 0.07 0.58 

  G:F 0.163 0.167 0.002 0.19 

Carcass Characteristics      

  HCW, kg 394 393 6 0.68 

  LM area, cm
2
 84.6 85.1 0.12 0.58 

  12
th

 rib fat, cm 1.42 1.42 0.01 0.93 

  Calculated YG 3.46 3.47 0.06 0.91 

  Marbling score
2
 565 576 8 0.34 

1
Calculated from hot carcass weight, adjusted to a common dressing percentage of 63.0% 

2
Marbling score: 500 = Small00 

 

 

 



 
 

 

 

 

 

 

 

 
  

 

Table 9: Main effect of inclusion of WDGS on performance and carcass characteristics (Exp. 3) 

 Control 35% 50% 65% SEM Linear
1
 Quadratic

2
 

Performance 

   Final BW
3
, kg 614 626 624 626 36 0.23 0.46 

   DMI, kg/d 11.4 11.5 11.2 10.7 0.8 <0.01 <0.01 

   ADG, kg 1.76 1.84 1.83 1.85 0.12 0.17 0.60 

   G:F 0.155 0.161 0.163 0.175 0.006 <0.01 0.13 

Carcass Characteristics 

  HCW, kg 385 395 393 393 22 0.25 0.27 

  LM area, cm
2
 86.4 85.1 85.9 85.1 0.20 0.53 0.97 

  12
th

 rib fat, cm 1.32 1.45 1.37 1.42 0.03 0.17 0.37 

  Calculated YG 3.24 3.49 3.38 3.49 0.12 0.08 0.42 

  Marbling score
4
 547 573 555 575 19 0.25 0.79 

1
Linear = Linear effect of treatment P – value with main effects of inclusion level of WDGS  

2
Quadratic =  Quadratic effect of treatment P – value with main effects of inclusion level of WDGS 

3Calculated from hot carcass weight, adjusted to a common dressing percentage of 63%
 

4
Marbling score: 500 = Small00 

6
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ABSTRACT 

 

An 84-d growing study utilized 60 individually fed steers (initial BW 241 ± 14.1 kg) to 

evaluate the effects of feeding condensed distillers solubles (CDS) with and without oil 

extraction at varying inclusions in two different forage quality diets. Based on initial BW, steers 

were stratified and assigned randomly to one of seven treatments. Of the seven treatments, five 

were designed as a 2 x 2 + 1 factorial consisting of 20 or 40% de-oiled or normal CDS and a 

control (CON) without CDS. Diets contained an 80:20 blend of brome hay and sorghum silage 

(GRASS). The last two treatments were designed as a 2 x 2 factorial comparing CDS fat 

concentration (de-oiled or normal) and forage type [GRASS (previous diets) or wheat straw 

(WS)] at 40% inclusion of CDS (DM basis). Dietary fat was 2.4% for 20% de-oiled CDS, 3.2% 

for 20% normal CDS, 5.2% for 40% de-oiled CDS, 8.8% for 40% normal CDS, 2.9% for 40% 

de-oiled WS, 8.4% for 40% normal WS, and 1.5% for CON. Ending BW, DMI, and ADG 

increased linearly with increasing concentration of CDS (P < 0.01), but oil content of CDS had 

no effect (P > 0.21). There was a tendency for an interaction for G:F (P = 0.14). At 20% 

inclusion, G:F improved 13.4% for normal CDS compared to de-oiled, but at 40% inclusion, G:F 

differed only 1%. This suggests oil may have reduced fiber digestion at 40% CDS inclusion. An 

interaction was observed between diets varying in forage quality and CDS oil content for DMI 

(P = 0.06) and a tendency for ADG (P = 0.13). Intakes were greatest for GRASS treatments, de-

oiled CDS with wheat straw intermediate, and normal CDS with wheat straw had the lowest 

DMI.   Gains and G:F were greater for GRASS diets compared to WS (P < 0.01), regardless of 

fat content (P > 0.40).  At low concentrations of CDS, normal oil improved feed efficiency while 

with higher inclusions of CDS, removing oil resulted in little effect on performance.  This may 
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suggest that high inclusions of normal CDS will result in a negative effect on fiber digestion in 

forage based growing diets. 
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INTRODUCTION 

 

 The increase in dry-milling ethanol production has produced an increase in by-product 

feeds (distillers grains and condensed distillers solubles) available to cattle producers.  

Depending on an ethanol plant’s storage capacity for liquid feeds, condensed distillers solubles 

(CDS) can be added back to distillers grains to produce distillers grains plus solubles or 

marketed as a sole by-product.   The increased fat and rumen degradable protein in CDS 

complement the nutrients available in low-quality forage diets which make CDS an appealing 

ingredient for forage based growing diets (Stalker et al., 2010).   

Three reports have been conducted to evaluate CDS in forage-based growing diets.  

Wilken et al. (2009) fed CDS that were mixed with corn stalks at 15, 20, 25, and 30% of the diet 

DM.  Steers fed 30% CDS had numerically greater intakes than all other treatments.  Gains 

increased linearly (P < 0.01) as concentration of CDS increased in the diet, while G:F responded 

cubically (P = 0.03) with cattle consuming 25% CDS being the most efficient.  Similarly, 

Warner et al. (2013) observed a linear increase in DMI, ADG, and G:F when 0, 15 or 30% CDS 

are fed with ground hay in a forage-based growing diet.  Peterson et al. (2009) mixed CDS with 

wheat straw at 25, 35, and 45% inclusion of the diet, DM basis.  Intakes, ADG, and G:F were 

numerically greatest for steers fed CDS at 45% of the diet DM.  These experiments suggest that 

CDS can be fed with low quality forages in growing diets and increase ADG and G:F.   
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During the ethanol production process, whole stillage is produced when ethanol is 

removed by distillation.  The whole stillage undergoes centrifugation to separate wet distillers 

grains and thin stillage which contains approximately 5-10% DM, protein, corn oil, and yeast 

cells (ICM, 2012).  Once the thin stillage is separated from whole stillage, it passes through a 

centrifuge to remove corn oil, producing a de-oiled product.  There are no data available feeding 

de-oiled CDS in forage based growing diets when this centrifugation process is utilized to 

remove corn oil.  Therefore, the objective of this study was to determine the effects of feeding 

de-oiled and normal oil CDS at increasing levels and with different forage types on growing 

cattle performance.    

MATERIALS AND METHODS 

 

All animal care and management procedures were approved by the University of 

Nebraska Lincoln Institution of Animal Care and Use Committee. 

 An 84-d growing trial utilized 60 crossbred steer calves (initial BW = 240 ± 14 kg) that 

were individually fed using the Calan electronic gate system (American Calan Inc., Northwood, 

NH).  Upon arrival at the feedlot, steers were vaccinated with a modified modified live viral 

vaccine (Bovi-Shield Gold 5, Zoetis Animal Health, Madison, NJ), Haemophilus somnus 

bacterin (Somubac, Zoetis Animal Health), and administered an injectable dewormer (Dectomax 

Injectable, Zoetis Animal Health).  Steers were revaccinated with with modified live viral 

vaccine (Bovi-Shield Gold 5, Zoetis Animal Health), Haemophilus somnus bacterin (Somubac, 

Zoetis Animal Health), and pinkeye vaccine (Piliguard Pinkeye +7, Merck Animal Health) 

approximately 16 d following initial processing.   
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Prior to initiation of the trial, steers were limit fed 47.5% wet corn gluten feed, 47.5% 

grass hay, and 5% supplement at 2% of BW for five d to minimize gut fill, and weighed on three 

consecutive d to determine initial BW (Watson et al, 2013; Stock et al., 1983).  Based on initial 

BW, steers were stratified by BW and assigned randomly to one of seven treatments within 

strata.  Of the seven treatments (Table 1),  five of the treatments were designed as a 2 x 2 + 1 

factorial consisting of 20% or 40% de-oiled or normal CDS and a control diet (CON) with no 

CDS (+1).  The six treatments containing CDS consisted of 8 steers per treatment with the 

control diet utilizing 12 steers.  These diets contained an 80:20 blend of brome hay and sorghum 

silage (HAY; DM basis) replaced by CDS.  The last two treatments were designed as a separate 

2 x 2 factorial comparing de-oiled and normal fat CDS with different forage bases of either 

wheat straw or the HAY diet in the previous treatments  with 40% de-oiled or normal CDS.  All 

diets were formulated to meet or exceed MP requirements using the 1996 NRC model. 

Feed refusals were sampled weekly, weighed, and then dried in a 60°C forced air oven 

for 48 hours to calculate DMI.  Feed bunks were evaluated and feed offered was adjusted daily to 

maintain ad libitum intake.  After 84-d, steers were limit fed for five days receiving the 47.5% 

wet corn gluten feed, 47.5% grass hay, and 5% supplement diet.  Steers were weighed on three 

consecutive d and averaged to determine ending BW.  All diets were formulated to provide 200 

mg/steer daily of monensin (Rumensin, Elanco Animal Health, Indianapolis, IN). 

Feed ingredients were analyzed to determine DM (Association of Analytical Chemist 

[AOAC], 1999 method 4.1.03), CP (AOAC, 1999 method 990.03) using a combustion-type N 

analyzer (Leco FP 528 Nitrogen Autoanalyzer, St. Joseph, MI), sulfur (TruSpec Sulfur Add-On 

Module, Leco Corporation, St. Joseph, MI), NDF (Van Soest et al., 1991) incorporating heat 

stable α-amylase (Ankom Technology, Macedon, NY) at 1 ml per 100 ml of NDF solution 
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(Midland Scientific, Omaha, NE) along with the addition of 0.5 g of Na2SO3 to the NDF 

solution, and ether extract.  Ether extract was determined by utilizing a biphasic lipid extraction 

procedure described by Bremer (2010).  Four mL of a 1:1 mixture of hexane and diethyl ether 

was added to a test tube with a 0.5 g byproduct sample and heated for 9 hours.  After 9 hours, 3 

ml of diluted HCl (1 drop HCl/40 ml ddH20) was added and the sample was centrifuged to 

separate out the lipid layer, which was subsequently pipetted into a separate tube.  The procedure 

was repeated with 2 ml of the hexane diethyl ether mixture to ensure all lipid was extracted.  

Tubes were heated to evaporate remaining solvent resulting in the fat for the ingredient.  The de-

oiled CDS (Table 2) utilized in this experiment contained 6.3% fat, 28.0% CP, and 0.99% S; 

normal oil CDS contained 20.1% fat, 26.4% CP, and 0.83% S, DM basis.  In the GRASS diets, 

dietary fat was 2.4% for de-oiled 20%, 3.2% for normal 20%, 5.2% for de-oiled 40%, and 8.8% 

for normal 40% CDS compared to 1.5% for CON.  In the wheat straw diets, dietary fat was 2.9% 

for de-oiled CDS at 40% and 8.4% for normal CDS at 40%.  .   

 Data were analyzed using MIXED procedures of SAS (SAS Inc., Cary, NC) as a 

completely randomized design with animal serving as the experimental unit (n = 60).  The 2 x 2 

+ 1 factorial design was analyzed for an oil concentration (de-oiled, normal) by CDS level (20, 

40) interaction. Using the control, orthogonal contrasts were used to evaluate level of either de-

oiled or normal CDS. The other 2x2 factorial design was analyzed for a fat (de-oiled, normal) by 

forage type (GRASS or wheat straw) interaction.   

RESULTS AND DISCUSSION 

 

 No oil concentration by CDS level interaction was observed for ending BW, DMI, or 

ADG.  However, there was a trend (P = 0.14) for an interaction for G:F (Table 2).  When CDS 

was fed at 20% in a GRASS diet, G:F improved 13.6% for normal CDS compared to de-oiled 
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CDS.  When CDS increased in the diet to 40% inclusion, G:F differed by only 1% between 

normal and de-oiled CDS.  When analyzed including the control, the concentration response for 

de-oiled CDS showed a linear (P < 0.01) increase in G:F while normal CDS tended to be 

quadratic (P = 0.10). Warner et al. (2013) fed CDS at 15 or 30% with ground hay and observed a 

linear increase (P < 0.01) in G:F.  Wilken et al. (2009) evaluated growing performance in calves 

fed increasing levels (15, 20, 25, 30% inclusion) of CDS in a corn stalk diet.  The author reported 

that G:F responded in a cubic (P = 0.03) manner with cattle consuming 25% CDS being the most 

efficient compared to all other treatments.  A decrease in efficiency was observed when cattle 

were fed 30% CDS in a corn stalk diet.   

For the main effect of oil concentration, there were no statistical differences for ending 

BW, DMI, and ADG (P ≥ 0.21).  For ending BW, de-oiled and normal CDS increased linearly (P 

< 0.01) with increasing concentration of CDS in the diet.  Intakes for de-oiled CDS increased 

linearly (P < 0.01) and tended to increase quadratically (P = 0.14), however, normal CDS 

increased linearly (P < 0.01).  The greatest dietary fat was calculated at 40% inclusion of normal 

CDS which was 8.8% dietary fat.  This concentration of fat in the diet was not enough to 

negatively impact DMI which is the most predictable detrimental effect associated with fat 

supplementation (Zinn, 1989).  Warner et al. (2013) observed similar results with a linear (P < 

0.01) increase in DMI as concentration of CDS increased up to 30% in the diet.  This significant 

linear response is in contrast to data observed from Wilken et al. (2009) who reported a small 

numerical increase in DMI.  Gilbery et al. (2006) observed that supplementation of CDS with 

low quality hay diets tended to increase total DMI (P = 0.11).   Feeding both de-oiled and normal 

CDS increased ADG linearly (P < 0.01) with increasing level of CDS.  Wilken et al. (2009) and 
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Warner et al. (2013) observed similar results with ADG increasing linearly as the inclusion of 

CDS increased to 30%.   

 A forage type by oil concentration interaction was observed (P = 0.06) for DMI and a 

tendency (P = 0.13) for ADG (Table 3).  All treatments analyzed contained 40% CDS in the diet.  

Intakes were greatest for GRASS treatments regardless of oil concentration, de-oiled CDS with 

wheat straw was intermediate, and normal CDS with wheat straw had the lowest DMI.  The main 

effect of oil concentration was not different (P > 0.40) for ending BW, ADG, and G:F.  

However, steers fed normal CDS in HAY based diet, had numerically greater ending BW, ADG, 

and G:F compared to de-oiled CDS.  Steers fed de-oiled CDS in wheat straw diets had 

numerically greater ending BW and ADG compared to normal CDS.  However, de-oiled CDS 

had greater DMI (P = 0.06) than normal CDS which resulted in de-oiled CDS having 

numerically lower G:F compared to normal CDS.  The main effect of forage was significant (P < 

0.01) for ending BW, ADG, and G:F with steers consuming GRASS having greater ending BW, 

ADG, and G:F compared to wheat straw diets.  Peterson et al. (2009) fed 25, 35, and 45% CDS 

in wheat straw diets and observed numerically greater DMI, ADG, and G:F for steers consuming 

45% CDS.  The authors reported dietary fat to be 5.17, 6.92. and 8.69% for 25, 35, and 45% 

CDS diets, respectively.  This is similar to the dietary fat for normal CDS in the current 

experiment of 8.83 and 8.42 in GRASS and wheat straw diets, respectively.  However, when 

steers were fed wheat straw diets, DMI was reduced in normal CDS diets suggesting that oil 

concentration potentially could have hindered fiber digestion by either physically coating fiber 

particles or having toxic effects on rumen microorganisms (Zinn et al., 2000).   In spite of this, 

oil concentration had no effect (P > 0.40) on ADG and G:F. 
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 Our data indicate that CDS can be fed in forage based growing diets while improving 

ADG and G:F.  The oil concentration of CDS impacted G:F when steers were fed 20% CDS, 

with steers fed normal CDS being 13.6% more efficient than steers fed de-oiled CDS.  However, 

at 40% inclusion of CDS, there was no difference between de-oiled and normal CDS.  This 

response in G:F due to CDS inclusion could be related to the increased oil concentration 

hindering fiber digestion in forage based diets.    
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Table 1: Diet Composition on a DM basis fed to growing steers 

    Control De-oiled CDS
1 

Normal CDS
1 

De-oiled WS
1
 Normal WS

1
 

Ingredient, % of DM 0 20 40 20 40 40 40 

    Brome Hay 

 

77.1 59.6 42.2 59.6 42.2 - - 

    Sorghum Silage 

 

19.3 14.9 10.5 14.9 10.5 - - 

    Wheat Straw 

 

- - - - - 55.2 55.2 

    CDS: De-Oiled 

 

0 20 40 - - 40 - 

    CDS: Normal Fat 

 

0 - - 20 40 - 40 

    Supplement   3.7 5.5 7.3 5.5 7.3 4.8 4.8 

       Corn gluten meal
2
  2.043 3.695 4.796 3.695 4.796 2.474 2.474 

       Limestone  0.803 1.682 2.000 1.682 2.000 1.792 1.792 

       Urea  0.300 0.120 - 0.120 - 0.030 0.030 

       Salt  0.300 0.300 0.300 0.300 0.300 0.300 0.300 

      Tallow  0.125 0.125 0.125 0.125 0.125 0.125 0.125 

      Beef trace mineral
3
  0.050 0.050 0.050 0.050 0.050 0.050 0.050 

      Vitamin A-D-E
4
  0.015 0.015 0.015 0.015 0.015 0.015 0.015 

      Rumensin-90
5
  0.0138 0.0138 0.138 0.0138 0.138 0.0138 0.0138 

Analyzed Composition, %
6
 

             Fat 

 

1.47 2.39 3.32 5.15 8.83 2.91 8.42 

     CP  13.5 13.8 18.5 13.2 17.5 15.3 14.2 

 1CDS = Condensed Distillers Solubles; WS = Wheat Straw 
2
Corn gluten meal was added to balance MP requirements 

3
 Premix contained 6.0% Zn, 5.0% Fe, 4.0% Mn, 2.0% Cu, 0.28% Mg, 0.2% I, 0.05% Co. 

4
Premix contained 30,000 IU vitamin A, 6,000 IU vitamin D, 7.5 IU vitamin E per gram. 

5
Premix contained 200 g/kg monensin (Elanco Animal Health, Greenfield, IN). 

6
Composition based on analyzed nutrients for each ingredient. 
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Table 2: Effects of de-oiled and normal fat CDS fed at 20 or 40% in HAY diets 

     De-Oiled Normal       De-Oiled  Normal  

  0 20 40 20 40 SEM
1
 Int

2
 Fat

3
 Lin

4
 Quad

5
 Lin

4
 Quad

5
 

Initial BW, kg 241 242 240 241 240 11 0.94 0.99 0.98 0.76 0.78 0.94 

Ending BW, kg 290 319 350 324 356 15 0.93 0.54 <0.01 0.99 <0.01 0.99 

DMI, kg/d 5.7 7.0 7.5 6.5 7.8 0.6 0.16 0.85 <0.01 0.14 <0.01 0.36 

ADG, kg 0.58 0.92 1.31 0.98 1.38 0.10 0.94 0.21 <0.01 0.66 <0.01 0.93 

G:F 0.102 0.132 0.175 0.150 0.177 0.005 0.14 0.07 <0.01 0.56 <0.01 0.10 
1
SEM = Standard error of the mean 

2
Int = Effect of CDS level and oil concentration interaction 

3
Fat = Main effect of oil concentration 

4
Lin. = Contrast for the linear effect of treatment P-value  with main effects of CDS inclusion 

5
Quad =Contrast of the quadratic effect of treatment P-value with main effects of CDS inclusion 

 

 

 

  



 

 

 
Table 3: Effect of forage and 40% distillers solubles (CDS) with or without oil on growing performance 

 

40 HAY  40 Wheat Straw    P-values 

 

De-Oiled Normal 
 

De-Oiled Normal 
 

SEM
1
 

 
Int

2
 Fat

3
 Forage

4
 

Initial BW, kg 240 240  240 240  11  0.94 0.89 0.97 

Ending BW, kg 350 356  312 306  15  0.43 0.97 <0.01 

DMI, kg/d 7.5
a
 7.8

a
  6.1

b
 5.3

c
  0.6  0.06 0.41 <0.01 

ADG, kg 1.31 1.38  0.86 0.78  0.10  0.13 0.92 <0.01 

G:F 0.175 0.177  0.141 0.147  0.005  0.84 0.40 <0.01 
a,b,c

 Within a row, means without a common superscript differ 
1
SEM = Standard error of the mean 

2
Int = Effect of oil concentration and forage type interaction 

3
Main effect of oil concentration 

4
Main effect of forage type 

8
1
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