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Sequential Transformation for Multiple Traits for Estimation of 
(Co)variance Components with a Derivative-Free Algorithm 

for Restricted Maximum Likelihood1i2 

L. D. Van Vleck and K. G. Boldman3 

Roman L. Hruska U.S. Meat Animal Research Center, ARS, USDA, Clay Center, NE 68933-0166 
and Department of Animal Science, University of Nebraska, Lincoln 68583-0908 

ABSTRACT Transformation of multiple-trait 
records that undergo sequential selection can be used 
with derivative-free algorithms to  maximize the res- 
tricted likelihood in estimation of covariance matrices 
as with derivative methods. Data transformation with 
appropriate parts of the Choleski decomposition of the 
current estimate of the residual covariance matrix 
results in mixed-model equations that are easily 
modified from round to round for calculation of the 
logarithm of the likelihood. The residual sum of 
squares is the same for transformed and untrans- 
formed analyses. Most importantly, the logarithm of 
the determinant of the untransformed coefficient 
matrix is an easily determined function of the 

Choleski decomposition of the residual covariance 
matrix and the determinant of the transformed 
coefficient matrix. Thus, the logarithm of the likeli- 
hood for any combination of covariance matrices can 
be determined from the transformed equations. Ad- 
vantages of transformation are 1 ) the multiple-trait 
mixed-model equations are easy to set up, 2 )  the least 
squares part of the equations does not change from 
round to round, 3) right-hand sides change from 
round to round by constant multipliers, and 4 )  less 
memory is required. An example showed only a slight 
advantage of the transformation compared with no 
transformation in terms of solution time for each 
round (1 to 5 % ) .  

Key Words: Multiple Trait Analysis, Covariance Estimation, Transformation, 
Restricted Maximum Likelihood 

Introduction 

Derivative methods of estimating variance compo- 
nents to  maximize the restricted likelihood (REML; 
Patterson and Thompson, 197 1) require elements 
from the inverse of the coefficient matrix of the mixed- 
model equations (Dempster et al., 1977). Time for 
inversion provides a limit to the number of equations 
for derivative methods. Smith and Graser ( 19 8 6) and 
Graser et al. ( 19 8 7) introduced a derivative-free 
( DFREML) procedure that maximizes the likelihood 
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by using a search procedure whereby the logarithm of 
the likelihood is calculated for combinations of esti- 
mates of parameters until the combination that 
maximizes the likelihood is found. Inversion of the 
coefficient matrix is not required. The algorithm they 
described required Gaussian elimination with sparse- 
matrix methods that is much more efficient than 
inversion. Meyer (1988, 1989, 1991) extended the 
procedure to complex models with direct and maternal 
genetic effects with covariance and an independent 
random effect (e.g., litter or permanent environment), 
in addition to a random residual effect. 

The DFREML algorithm of Meyer (1989) 
minimized storage requirements with linked-list tech- 
niques to increase the efficiency of Gaussian elimina- 
tion and expanded dramatically the number of equa- 
tions that could be considered in estimating second- 
order parameters with REML. Boldman and Van 
Vleck (1991) developed a different algorithm for 
calculating the residual sum of squares and logarithm 
of the determinant of the coefficient matrix of mixed- 
model equations that are needed to calculate the 
logarithm of the likelihood. Their method was based 
on the use of a sparse-matrix package (e.g., SPAR- 
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SEQUENTIAL TRANSFORMATION WITH DFREML 837 

SPAK, George et al., 19801, to reorder the coefficient 
matrix once for each design pattern followed in each 
round by a sparse Choleski decomposition that yields 
rather directly the log determinant of the coefficient 
matrix and solutions from which the residual sum of 
squares can be calculated. All other steps are as 
described by Meyer (1989). The algorithm with the 
SPARSPAK routines resulted in two levels of magni- 
tude decrease in time needed to reach convergence 
(100 to 600 times less computer time) compared with 
the original version of DFREML (Meyer, 1988). 
Sparse-matrix techniques increase the feasibility of 
derivative-free procedures for estimation of variances 
and covariances for multiple-trait models for cases 
when not all traits are measured on all animals. The 
canonical transformation (e.g., Thompson, 1977; Ar- 
nason, 1982; Lawlor, 1984; Quaas, 1984; Meyer, 1985) 
reduces the multiple-trait problem to a series of 
single-trait analyses if all traits are measured on all 
animals, the design matrices are the same for all 
traits, and the model contains only one random factor 
other than a residual effect. Pollak and Quaas (1982) 
proposed a transformation of the residual covariance 
matrix for setting up the mixed-model equations when 
all traits are not measured for the case where the 
measured traits follow a sequential pattern. This idea 
was expanded to  estimation of variance components 
for a multiple-trait model by Walter et al. (1986) and 
Garrick (1988) for use with derivative methods of 
obtaining REML estimates of variances and covari- 
ances of multiple traits. 

The purpose of this paper is to describe a deriva- 
tive-free procedure to obtain REML estimates for 
traits available sequentially (i.e., an animal with a 
measured third trait also has measurements for the 
first and second traits and an animal with a measured 
second trait also has a measured first trait). Many 
multiple-trait data sets follow this pattern whereby 
selection on an early trait determines whether the 
animal will have a later trait measured. Thus, the 
traits on which selection are based will be included in 
the analysis so that the apparent property of REML to 
account for such selection will be used (Sorensen and 
Kennedy, 1983, 1984, 1986). The other requirement is 
that the model be the same for all traits measured on 
an animal. This requirement is not always restrictive; 
dummy fixed effects could sometimes be assigned to 
obtain equal design matrices in cases in which the 
sequential fixed factors are different for the traits at 
the expense of increases in sampling variances. 

Methods 

Harville (1977) and Searle (1979) presented the 
identities used by Smith and Graser (19861, Graser et 
al. (1987), and Meyer (1989) to calculate the 
logarithm of the normal likelihood. The expression 
applies to multivariate multiple as well as single-trait 
normal models. The general model for single or 
multiple traits is as follows: 

y = X p  + Z u  + e 

with 

y = vector of observations, 
6 = vector of fmed effects associated with y 

by matrix X, 
u = vector of random effects associated 

with y by matrix Z, and 
e = vector of residual effects with 

E[y] = Xp, and E[u] = 0 and E[el = 0 

R O R  

Note V(y) = V = ZGZ’ + R where, for example, G 
and R for t traits are the genetic and environmental 
covariance matrices. 

The untransformed mixed-model equations ( MME) 
for single or multiple-trait models are as follows: 

X’R-lX 
Z’R-lX Z’R-lZ + G-l 

X’F-lZ ] [I”]=[ XR-’ ZR-ly] [MMEl] 

The logarithm of the multivariate normal likelihood 
given a sample, y, is (e.g., Harville, 1977; Searle, 
1979): 

A = -.5[constant + logIRI + logIGI + logIC I + y’Py1. 

The costly terms to compute are logICJ,  the 
logarithm of the determinant of coefficient matrix for 
the MME, and fPy = fR-ly - /b”X’-ly - UZR-ly, 
the generalized residual sum of squares, where P = 
V-1- V-lX(XV-lX )-1XV-1 and V-l=  ( ZGZ + R) -1 = 
R-l - R-lZ(ZR-lZ + G-I)-lZ’R-’ are used in showing 
the identity (e.g., Henderson, 1984). The other two 
terms do not depend on the mixed-model equations 
and are relatively easy to compute (e.g., Meyer, 1989, 
1991). 

The transformation on traits measured sequentially 
results in a transformed vector of observations, y*, 
such that the variance of e* is R1: = I. For yi the vector 
of observations on t traits for animal i, the trans- 
formed vector is yi = L?’yi where L, is the inverse of 
the Choleski decomposition of Ri, the residual vari- 
ance-covariance matrix of ei. The key to this transfor- 
mation (Pollak and Quaas, 1982) is that for Lo, the 
Choleski decomposition of R,, the residual covariance 
matrix when all traits are measured, the elements of 
Li’for fewer sequential traits than the maximum are 

functions of the elements of L;’; for example, for one, 

two, and three traits, respectively, the Lil are as 
follows :   
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838 VAN VLECK AND BOLDMAN 

With R* = I, the transformed MME are as follows: 

J L  L 

where G* is a function of G and Lo. For example, if G 
= A@G,, with 8 the direct product operator, Go the 
genetic covariance matrix, and A the numerator 
relationship matrix, then G* = A@G*, with G., = 

The transformed equations are simple to form 
because R* = I and can be easily reformed for different 
values of R, and Go because the only part of the 
coefficient matrix that changes is Gil. The updated 
right-hand sides are a simple function of Xy and Zy 
(Pollak and Quaas, 1982; Walter et al., 1986). Can 
the transformed equations be used to calculate the 
likelihood that is to  be maximized (Le., that as- 
sociated with the untransformed equations)? The 
answer is yes, but with some conditions. Obviously 
log I R I and log I G I can be computed in any case. But 
can y'Py and log1 C I be computed from C* and y*? 

L-,'G~L;~. 

It can be shown that 

Y'Py = y*y* - t%X'y* - il(.Z'y*. 

Note, for example, that fR-ly = Cyi'Q-lyi, where yi 

is the vector of records on animal i and that y:y+ = 
i 

The example will show that log1 C I = log1 C* I + 
function of elements of log I Lil 1 . Thus, at every round 
of iteration, the same likelihood calculation can be 
obtained for sequentially transformed and untrans- 
formed equations. The function of logIL,ll is a 

weighted function of log(LilI ,  . . . , log(Lil(  and 
numbers of different kinds of equations as will be 
illustrated in the example for animals measured on 
Trait 1 or on Traits 1 and 2. 

Example With Two Traits and 
One Random Factor 

One complication is that levels of fixed factors 
associated with records of animals measured on only 
Trait 1 may be different from the levels of fixed factors 
for Trait 1 associated with records of animals meas- 
ured on both Traits 1 and 2. With more than two traits 

(e.g., three traits), the preceding situation extends to 
levels of fixed factors for Traits 1 and 2 that are 
different from levels of fixed factors for Traits 1 and 2 
associated with animals measured on Traits 1, 2, and 
3. These unique equations determine the function of 
elements of log1 Lill needed in calculation of log1 C 1 .  

The model for the two-trait case is as follows: 

x , o  [ Y22 iia ] = [ p i; i2] [ 21 + 

zo 0 0 [ ; 0 0  7 i2 i 2 ]  [",n] u22 + [ iii] e22 

where 

ylo = vector of first records for animals with 
only records on first trait and with 
different levels of fixed effects from 
records on first trait with matching 
records on second trait, 

y11 = vector of records on first trait for 
animals with only records on first trait 
and with levels of fixed effects in com- 
mon with records on first trait with 
matching records on second trait, 

yl2 = vector of records on first trait for 
animals with records on both first and 
second traits, 

y22 = vector of records on second trait cor- 
responding to records in y12, 

bo = vector of fixed effects for Trait 1 
unique to records in ylo with associa- 
tion matrix &, 

bl = vector of fixed effects for Trait 1 as- 
sociated with records in y11 and y12 by 
matrices X1 and X2, 

b2 = vector of fixed effects for Trait 2 as- 
sociated with records in 3722 by X2 with 
same number of factors and levels as 
bl, 

ulj = vector of additive genetic values for 
Trait 1 for animals in ylo(j = 01, yll(j 
= l),  and y12(j = 2 )  associated with 
records in ylj by matrix Zj, 

u22 = vector of additive genetic values for 
Trait 2 for animals associated with 
records in y22 (those with both first 
and second traits measured) by matrix 
z2, 

1.120, 1.121 = vectors of additive genetic values for 
Trait 2 for animals without measures 
on Trait 2, 
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sociated with records in y ~ .  
E b l  = Xb, 

eii = vector of environmental effects as- 

is the numerator relationship matrix among animals 
with records in ylo, y11, and y12. 

The coefficient matrix, C, for the untransformed mixed-model equations for equations in order (bo bl b2 u10 

Symmetric 

In direct product (8) notation, these reduce to: 

0 

0 

0 

0 0 0 

0 Rbl@Z& G O ~ B A ~ O  

0 

0 0 0 

0 R;'@&Z, 

0 
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Sequential Transformation 

With sequential transformation, records in ylo and y11 are multiplied by 111 and pairs of records from y12 and 
y22 are multiplied by L;jl, that is: 

] = [ :::: ] [ Li1*12 ] [;;;I [ l l l Y l 2  

121Y12 + 122Y22 

The coefficient matrix, C*, for the transformed mixed-model equations is as follows: 

where 

Note that 

[ ::: 1:2 ] [ l: 2 ] = [ and from LoLT = R,, that I ;  111 r12 

r12 r22 

111111 + 121121 121122 

121122 122222 ] = [ 1:; r:; ] ; and 
from LiTL;jl = Ril that  
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Let T = 

- 
lllIpo 0 0 0 

0 P I p 2  P I p 2  0 

0 0 P I p 2  0 

0 0 0 Z11Iq0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 
- 

where 

po = number of effects in bo, 
p2 = number of effects in bl and also in b2, 
q, = number of animals included in u10, 
ql = number of animals included in u11, 
q2 = number of animals included in 1.112 and also 

in 1.122, and 
9 = qo + ql  + q2. 

The previous identities can be used to  show that 
TC*T = C. Therefore, if C is full rank, l og (T(  + 
log I T I + log I Ct I = log I C I . Also note because of the 
triangular form of T that logITI = l o g I T ) .  By 
examination of the example: 

where 

log 1 L-T I = log(Z1l) + log(122) for Ro of order two. 

Thus 

log I c I = log I c* I + 2[ P,lOg(l") + (Pz + 9)log I LiT I ]  

Note that in this case: 

po is the number of levels of fixed factors 

pz is the number of levels of fixed factors 

q = q, + ql + qz is the number of animals 

unique to ylo, 

unique to ylz or y22, and 

in u1 and u2. 

In general, q will be the number of equations in u 
associated with any trait as log I LiT 1 will account for 
the number of traits. 

If MME equations are augmented (Henderson, 
1977) for base animals needed for relationships and 

0 0 0 0 

0 0 0 0 

0 0 0 0 

PIclo 0 0 0 

P I q o  0 0 0 

0 P I q 1  P I q 1  0 

0 0 P I q ,  0 

0 0 0 P I q z  

0 0 0 0 

- 
0 

0 

0 

0 

0 

0 

0 

P I q z  

Z"Iq2 

for animals without records (Le., with equations for 
Ulb and U2b), then, 

T will include an upper triangular block, LiT@I 

and 
C and C* will have added equations U l b  and U2b 

tied to other ulj and u2j equations by Gi1€3Ai1 

and G;@Ayl, where (Henderson, 1976) 

qb' 

Note that q will now include the number of such 
animals without records as well as animals with at  
least one trait measured. 

Constraints 

Constraints may need to be imposed before decom- 
position of C*. For example, the Choleski decomposi- 
tion in the solve routine of SPARSPAK-A (Chu et al., 
1984) requires that the equations be of full rank. 

The easiest procedure is to  eliminate rows and 
columns of XiXo and XiZ, to achieve a full rank set, 

p:, for the bo equations and to eliminate pairs (for the 

two trait analysis) of rows and columns of X;X, + e, XiZ,, XiZ,, ZiX1, ZlX2, XiX, to obtain a full 

rank set, pi, for each trait for the bl and b2 equations; 
that is, the constraints are imposed on the same levels 
of bl and b2. With C* and C constrained equivalently 
to full rank by zeroing rows and columns, the TC*T = 
C relationship holds but with fewer equations and 
fewer rows of T. Then with q different elements of u 
for each trait: 

log(C 1 = log( c* 1 + 2 [ p:log(l'l) + (Pi + q)loglL,Tl]  
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842 VAN VLECK AND BOLDMAN 

A Computing Strategy with SPARSPAK f )  Calculate log1 R I = nllog(Z11) + n2[log(Zll) + 

1. a )  

b) 

C )  

d )  

2. 
a )  

b)  

C )  

d )  

3. a )  

b)  

C )  

d )  
e )  

for Example of Two Traits 

Compute and save sums of squares and 
products: 

Y;03710~ Y;IYll’ Y;2Y123 y;2y229 Y2LY22 

Compute and save the non-zero least squares 
coefficients of C* after constraints are imposed: 
x;x,, xdz,, x;x, + e, x;z,, 
x;z2, &, x;z,, ZdZ,’ z;z,, z;z, 

x;y,,, x;y,,, %Y12, %Y22 and also ZdY,,, 

z;Y 11 7 GY12,  Z6Y22 

Compute and save after constraints are im- 
posed: 

Compute AS1 and if desired, log IA+I, an un- 
needed constant as 4 C log(vi) with the vi used 
in calculation of AS1 as described by Quaas 
(1976). 
Enter initial values of R,, Go 
Find Lo such that L,LT = R, and also elements 

-1 111 121 122 OfL, > , 9 * 

Compute LTG,lL, and add (LOG, T -1 Lo)@All to 

least squares form of C*. 
Compute transformed right-hand sides 

If equations have not been reordered (i.e., first 
round with that data structure), reorder equa- 
tions with SPARSPAK and save reordering. 
Calculate log I CL I from sparse Choleski decom- 
position of reordered C* as twice the sum of 
logarithms of diagonal elements. 
Solve for a*, u* from Choleski decomposition 
and transformed RHS with SPARSPAK and 
compute REDN = &‘X‘y* + u*’Z’y* 
Calculate y*‘y* as 

Calculate y’Py = y*‘y* - REDN 
Calculate logIGJ = ng log)A+I + q loglG,) 
where ng = 2 is number of traits (order of Go) 
and q is number of animals represented in u. 
For Go of order greater than two or with mater- 
nal variances and covariances included, an easy 
way to calculate log I Go I would be to find the 
Choleski factor, L,, of Go, then calculate 
log I Go I as twice the sum of logarithms of di- 
agonal elements of L,. 

log(122) 1 
where n l  is number of animals with Trait 1 only 
and n2 is number with both Traits 1 and 2. 

g) Calculate logICI = logIC*I + 

where p: is rank of XiX,, pi is number of equa- 
tions after constraints for bl or b2, and q = q, + 
ql + q2 + qb is number of animals represented in 
U. 

h )  Calculate A = -.5[logICI + f l y  + logIRI + 

4. a )  Use A with R,, Go and previous A’s with as- 
sociated R, and Go in search strategy (e.g., 
Simplex) to update R, and Go, 

2[ p: log(lll) + { p; + q } { log(lll) + log(z22) }] 

logIGI1 

b)  Check for convergence and, if not satisfied, 
c) Find updated Lo (as in 2a), 
d) Update and replace Gil = (LOGo T -1 Lo)@AS1 in C* 

(as in 2b), 

2c), 

and 

vergence. 

e )  Update RHS with updated, Z1l, Z21, 122 (as in 

f )  Enter updated equations and right-hand sides, 

g)  Go to 3a)  and repeat until satisfied with con- 

Comparison of Efficiency of Calculation of 
LoglCl for Transformed and 

Untransformed Equations 

Compared to the untransformed equations in 
[MMEl], programming to form the transformed equa- 
tions in [MME2] in each round of iteration is easier 
because XX, X Z  (and ZX) and Z‘Z do not change for 
different values of R, and Go. In addition, X X  and XZ 
will have fewer non-zero elements than X’R-lX and 
X’R-lZ of the untransformed equations and it would 
seem likely that SPARSPAK would perform a different 
reordering, possibly resulting in faster Choleski fac- 
torization and solutions in each round. 

Data and Models 

A sample set of data for comparison of memory and 
time requirements for reordering and solutim of the 
untransformed and transformed equations were from 
the Germ Plasm Utilization Project at the USDA Meat 
Animal Research Center (Gregory et al., 1988). 
Measures of three traits (birth weight, 200-d weight, 
and ADG) were available for 1,064 Brown Swiss 
calves born from 1978 to  1989. The first multiple-trait 
animal model included fixed birth year and dam age 
(2, 3, 4, or 2 5 yr)  by animal sex (male or female) 
effects, and random animal (additive genetic) and 
dam (maternal permanent environmental) effects. 
The relationship matrix was augmented to order 1,586  
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Table 1. Memory requirements and central processing unit times for reordering 
and solution by SPARSPAK and SPARSPAK-A of untransformed and transformed 

mixed-model equations for a model with and a model without 
a permanent environmental effecta 

843 

Model with permanent 
environmental effectb environmental effect' 

Untransformed Transformed Untransformed Transformed 

Model without permanent 

Item equations equations equations equations 

Memory, kbytes 1,690 1,670 1,241 1,270 
{1,688} (1,6551 (1,2521 (1,272) 

Reordering time, s 432.37 316.48 271.44 230.57 

Solution time, s 15.05 14.94 11.81 11.81 
{43.06} {61.57} (30.05) (63.28) 

{15.27} { 15.05) (12.69) {12.031 

aNumbers within brackets are for SPARSPAK-A. 
b6,225 equations. 
'4,815 equations. 

by including 522 parents without records (base 
animals). The data set included 470 dams with 
maternal permanent environmental effects for each 
trait (all traits measured on animals with records), 
resulting in a full rank, mixed-model coefficient 
matrix with order 6,225, and 186,669 and 123,063 
nonzero elements in the untransformed, C, and 
transformed, C*, coefficient matrices, respectively. In 
a second model, permanent environmental effects 
were omitted, resulting in a full rank mixed-model 
coefficient matrix of order 4,815 and 128,691 and 
103,737 non-zero elements in the untransformed and 
transformed coefficient matrices. 

For each model, the untransformed equations and 
the transformed equations were reordered and solved 
via SPARSPAK. Two versions of SPARSPAK were 
used the original version of SPARSPAK (George et 
al., 1980) in which reordering was by a symmetric 
implementation of the minimum degree algorithm and 
SPARSPAK-A (Chu et al., 19841, in which the 
original minimum degree algorithm has been modified 
to incorporate the ideas of multiple elimination and 
minimum external degrees (Liu, 1983). 

According to George and Ng (19841, the modified 
algorithm is faster than the previous one and also the 
amount of fill-in is usually smaller. Computations for 
each of the eight analyses (untransformed and 
transformed equations, model with and model without 
maternal permanent environmental effects, and 
SPARSPAK and SPARSPAK-A) were run on a 
486-33 personal computer with a Weitek 4167 
coprocessor using a Microway NDP 386 F O R T W  
compiler. 

Results 

Compared with the untransformed equations, the 
transformed equations contained 34 and 19% fewer 
non-zero elements for the model with and for the 

model without permanent environmental effects, 
respectively. 

Computational requirements for reordering and 
solution of the untransformed and transformed multi- 
ple-trait coefficient matrices by original SPARSPAK 
and SPARSPAK-A for the two models are shown in 
Table 1. For original SPARSPAK, the time required 
for reordering in each model was reduced after 
transformation with a greater reduction for the full 
model than for the reduced model (27 and 15%); the 
relative decrease in reordering time was similar to  the 
relative decrease in the number of non-zero elements 
(34 and 19%). In contrast, for both models memory 
requirements for factoring and solution time were 
similar for the transformed and untransformed equa- 
tions. 

With SPARSPAK-A, similar results were also 
obtained for both models (i.e., little change in memory 
requirements but with reduction in solution time of 
1.4 and 5% for transformed equations). Reordering 
times unexpectedly increased (42 and 110%) for the 
transformed equations. The reason for this difference 
with SPARSPAK-A is the result of the different 
implementation of the minimum degree algorithm 
used in original SPARSPAK and SPARSPAK-A. The 
reordering algorithm used in SPARSPAK-A was 4 to  
10 times more effkient, however, so this version of 
SPARSPAK may be preferable, depending on how 
many rounds of solutions are required. In conclusion, 
for the example data set and models used, transforma- 
tion of the coefficient matrix resulted in a small 
improvement in reordering time with original SPAR- 
SPAK but resulted in a large increase in reordering 
time with SPARSPAK-A. The SPARSPAK-A version of 
SPARSPAK was much more efficient than the original 
version for reordering for both untransformed and 
transformed equations but was slightly slower in 
solution time than the original version. Other data 
sets and models may have different reordering and 
solution characteristics. 
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Implications 

The sequential transformation makes programming 
of multiple-trait mixed-model equations somewhat 
easier by forcing the residual variance-covariance 
matrix to be the identity matrix. Covariance compo- 
nents can be estimated for multiple traits by deriva- 
tive-free restricted maximum likelihood from the 
transformed equations because the logarithm of the 
determinant of the coefficient matrix is an easily 
determined function of the logarithms of the deter- 
minant of the coefficient matrix after transformation 
and the transformation matrix. Some computations do 
not need to be repeated in each round of iteration with 
the transformed equations and memory requirements 
for storing the non-zero elements are less. 

Literature Cited 

Amason, T. 1982. Prediction of breeding values for multiple traits in 
small non-random mating (horse) populations. Acta Agric. 
Scand. 32:171. 

Boldman, K. G., and L. D. Van Vleck. 1991. Derivative-free res- 
tricted maximum likelihood estimation in animal models with a 
sparse matrix solver. J. Dairy Sci. 74:4337. 

Chu, E., A. George, J. Liu, and E. Ng. 1984. SPARSPAK: Waterloo 
sparse matrix package user’s guide for SPARSPAK-A. CS- 
84-36, Dept. of Computer Sci., Univ. of Waterloo, ON, Canada. 

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum 
likelihood from incomplete data via the EM algorithm. J. R. 
Statist. SOC. Series B 39:l. 

Garrick, D. J. 1988. Restricted maximum likelihood estimation of 
variance components for multiple traits with missing observa- 
tions and an application to beef cattle. Ph.D. Thesis. Cornell 
Univ., Ithaca, NY. 

George, A,, J. Liu, and E. Ng. 1980. User guide for SPARSPAK: 
Waterloo sparse linear equations package. CS-78-30, Dept. of 
Computer Sci., Univ. of Waterloo, ON, Canada. 

George, A,, and E. Ng. 1984. A new release of SPARSPAK: The 
Waterloo sparse matrix package. Dept. of Computer Sci., Univ. 
of Waterloo, Waterloo, ON, Canada (Mimeo). 

Graser, H.-U., S. P. Smith, and B. Tier. 1987. A derivative-free 
approach for estimating variance components in animal models 
by restricted maximum likelihood. J. Anim. Sci. 64:1362. 

Gregory, K. E., L. V. Cundiff, and R. M. Koch. 1988. Germ plasm 
utilization in beef cattle. Beef Res. Progr. Rep. 3, ARS-71. 
USDA Meat Anim. Res. Ctr., Clay Center, NE. 

Handle ,  D. A. 1977. Maximum likelihood approaches to  variance 
component estimation and to related problems. J. Am. Stat. 
Assoc. 72:320. 

Henderson, C. R. 1976. A simple method for computing the inverse 
of a numerator relationship matrix used in prediction of breed- 
ing values. Biometrics 32:69. 

Henderson, C. R. 1977. Best linear unbiased prediction of breeding 
values not in the model for records. J. Dairy Sci. 60:783. 

Henderson, C. R. 1984. Applications of linear models in animal 
breeding. University of Guelph Press, Guelph, ON, Canada. 

Lawlor, T. J. 1984. Estimation of genetic and phenotypic parameters 
of milk, fat and protein yields of Holstein cattle under selection. 
Ph.D. Thesis. Cornell Univ., Ithaca, NY. 

Liu, J. 1983. On multiple elimination in the minimum degree al- 
gorithm. Tech. Rep. 83-03. Dept. of Computer Sci., York Univ., 
Toronto, ON, Canada. 

Meyer, K. 1985. Maximum likelihood estimation of variance compo- 
nents for a multivariate mixed model with equal design ma- 
trices. Biometrics 41:153. 

Meyer, K. 1986. Restricted maximum likelihood to estimate genetic 
parameters-in practice. Proc. 3rd World Cong. Genet. Appl. 
Livest. Prod. 12:454. Lincoln, NE. 

Meyer, K. 1988. DFREML-A set of programs to estimate variance 
components under an individual animal model. J. Dairy Sci. 
71(Suppl. 2):33. 

Meyer, K. 1989. Restricted maximum likelihood to estimate variance 
components for animal models with several random effects 
using a derivative-free algorithm. Genet. Sel. Evol. 21:317. 

Meyer, K. 1991. Estimating variances and covariances for multivari- 
ate animal models by restricted maximum likelihood. Genet. 
Sel. Evol. 23:67. 

Patterson, H. D., and R. Thompson. 1971. Recovery of inter-block 
information when block sizes are unequal. Biometrika 58:545. 

Pollak, E. J., and R. L. Quaas. 1982. Alternative strategy for build- 
ing multiple trait mixed model equations. J. Dairy Sci. 
68(Suppl. 1):102. 

Quaas, R. L. 1976. Computing the diagonal elements and inverse of 
a large numerator relationship matrix. Biometrics 32:949. 

Quaas, R. L. 1984. Linear prediction. In: BLUP School Handbook- 
Use of Mixed Models for Prediction and for Estimation of 
(Co)Variance Components. p 158. Feb. 5-7, Animal Genetics 
and Breeding Unit, Univ. of New England, New South Wales, 
Australia. 

Searle, S. R. 1979. Notes on variance component estimation: A 
detailed account of maximum likelihood and kindred methodol- 
ogy. Paper BU-673-M. Biometrics Unit, Cornell Univ., Ithaca, 
NY. 

Smith, S. P., and H.-U. Graser. 1986. Estimating variance compo- 
nents in a class of mixed models by restricted maximum likeli- 
hood. J. Dairy Sci. 69:1165. 

Sorensen, D. A., and B. W. Kennedy. 1983. The use of the relation- 
ship matrix to  account for genetic drift in the analysis of 
genetic experiments. Theor. Appl. Genet. 66:217. 

Sorensen, D. A,, and B. W. Kennedy. 1984. Estimation of genetic 
variances from unselected and selected populations. J. Anim. 
Sci. 59:1213. 

Sorensen, D. A., and B. W. Kennedy. 1986. Analysis of selection 
experiments using mixed model methodology. J. h i m .  Sci. 63: 
245. 

Thompson, R. 1977. Estimation of quantitative genetic parameters. 
In: Proc. Int. Quant. Genetic Conf. pp 639-657. Ames, IA. 

Walter, J. P., I. L. Mao, and B. D. Banks. 1986. An iterative 
algorithm for estimation of variance and covariance compo- 
nents in a multiple trait model using triangular decomposition 
of residual variance-covariance matrix and absorption of fured 
effects. J. Dairy Sci. 69(Suppl. 2):207. 

  

http://jas.fass.org

	Sequential Transformation for Multiple Traits for Estimation of (Co)variance Components with a Derivative-Free Algorithm for Restricted Maximum Likelihood
	

	Sequential Transformation for Multiple Traits for Estimation of (Co)variance Components with a Derivative-Free Algorithm for Restricted Maximum Likelihood

