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A B S T R A C T

Food processing can have many beneficial effects. However, processing may also alter the allergenic prop-
erties of food proteins. A wide variety of processing methods is available and their use depends largely
on the food to be processed.

In this review the impact of processing (heat and non-heat treatment) on the allergenic potential of
proteins, and on the antigenic (IgG-binding) and allergenic (IgE-binding) properties of proteins has been
considered. A variety of allergenic foods (peanuts, tree nuts, cows’ milk, hens’ eggs, soy, wheat and mustard)
have been reviewed.

The overall conclusion drawn is that processing does not completely abolish the allergenic potential
of allergens. Currently, only fermentation and hydrolysis may have potential to reduce allergenicity to
such an extent that symptoms will not be elicited, while other methods might be promising but need
more data. Literature on the effect of processing on allergenic potential and the ability to induce sensi-
tisation is scarce. This is an important issue since processing may impact on the ability of proteins to
cause the acquisition of allergic sensitisation, and the subject should be a focus of future research. Also,
there remains a need to develop robust and integrated methods for the risk assessment of food allergenicity.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Food allergy describes the adverse health effects in which im-
munological mechanisms are involved (allergic reactions) that can
be induced in sensitised subjects following dietary exposure to rel-
evant allergens in food. Food allergy is an important health problem
(Sampson, 2004), and estimates of its prevalence in Europe are

commonly in the region of 0.1–3.2% for adults and 0.1–5.7% for chil-
dren. However, the extent to which the prevalence of food allergy
has increased in line with other forms of atopic disease is not clear
(Nwaru et al., 2014).

Most cases of food allergy are associated with a limited range
of products. Previously the most commonly allergenic foods were
considered to be cows’ milk, hens’ eggs, peanuts, tree nuts, soy,
wheat, shellfish and fish (the ‘big 8’) (Hefle et al., 1996; Young
et al., 1994). More recently, in Europe, that list has been expanded
in number to 14: cereals containing gluten, crustaceans, molluscs,
eggs, fish, peanuts, tree nuts, soybeans, milk, celery, mustard, sesame,
lupin and sulphur dioxide (Commission-Directive 2006/142/EC).
It is apparent, however, that the extent to which allergy is associ-
ated with particular foods varies with time and geography, with
changing dietary habits and preferences, the introduction of new
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foods, the way in which food is prepared, and the age at which
foodstuffs are first introduced into the diet (Hourihane, 1998;
Lucas et al., 2004).

In common with other forms of allergic disease, food allergy de-
velops in two phases. In the first phase susceptible subjects are
immunologically primed to specific food proteins resulting in al-
lergic sensitisation. Such sensitisation may be acquired following
dietary exposure to food proteins, or possibly via other routes of
exposure (including inhalation and skin contact). If sensitised sub-
jects subsequently encounter sufficient levels of the inducing
allergen(s) in the diet then an allergic reaction may be elicited. The
symptoms of such reactions vary considerably and can range from
mild, local and transient effects to systemic anaphylaxis that is po-
tentially fatal (Perry and Pesek, 2013; Sicherer and Sampson, 2014;
Sicherer and Wood, 2013).

By definition, allergy results from the elicitation of a specific
immune response. The most common immunological mechanism
implicated in the acquisition of sensitisation to food proteins is the
elaboration of IgE antibodies. However, non-IgE-mediated cellular
immune responses are also important in some forms of food allergy
(Johnston et al., 2014; Kimber and Dearman, 2002; Sicherer and
Sampson, 2014). The primary focus of this article is on IgE-mediated
food allergy.

Although many uncertainties remain, there have been impor-
tant advances in characterisation of some of the factors that influence
the acquisition of sensitisation to food proteins and the develop-
ment of food allergy. Among the important variables are the inherent
allergenic potential of food proteins, the timing, duration, extent
and route of exposure to food allergens, and heritable and ac-
quired susceptibility factors (Kimber and Dearman, 2002; Sicherer
and Sampson, 2014). Some intriguing questions that remain un-
answered are the factors that maintain operational tolerance to
foods and food proteins, and the events and immunological pro-
cesses through which tolerance is broken and sensitisation is
acquired.

There remains a need to understand in greater detail differ-
ences between proteins with respect to their inherent allergenic
potential, and the properties that confer on proteins the ability to
induce sensitisation. It is known, for instance, that protein func-
tion (including enzymatic activity), stability (including resistance
to proteolytic digestion) and glycosylation patterns can affect both
immunogenic and allergenic potential (Huby et al., 2000). However,
in the case of food allergy there is an additional dimension that must
be considered; the impact of food processing, and of the food matrix,
on allergenic potential (Jiménez-Saiz et al., 2014; Lepski and
Brockmeyer, 2013; Mills et al., 2009; Nowak-Wegrzyn and Fiocchi,
2009). The types of processing that have been implicated in influ-
encing allergenic properties are: heating (thermal processing),
fermentation including endogenous enzymatic hydrolysis, enzy-
matic and acid hydrolysis, physical treatments (such as high pressure
processing or extrusion), the use of preservatives, changes in pH,
or combinations of any two or more of these (EFSA, 2014, Mills and
Mackie, 2008, Thomas et al., 2007).

In the context of this report it is important to appreciate that
food processing can potentially impact on different aspects of food
allergy, and it is necessary to distinguish clearly between these. A
draft scientific opinion on the evaluation of allergenic foods and food
ingredients for labelling purposes published recently by EFSA made
the point as follows: ‘Most studies available report on the IgE-
binding capacity of processed foods rather than on their allergenicity,
whereas systematic investigations on the effects of food processing on
allergenicity are scarce’ (EFSA, 2014).

While it is clear that consideration of the influence of process-
ing on not only the antigenic integrity/IgE-binding capacity of
allergenic proteins, but also the ability to induce sensitisation is im-
portant, it must be acknowledged that addressing the latter is not

without difficulty. Currently what is required is the use of well con-
ducted and controlled animal studies in which the inherent allergenic
potential of processed and unprocessed foods can be compared
(Kroghsbo et al., 2014b).

In this report the impact of processing on antigenic and aller-
genic integrity of proteins (IgG and IgE antibody binding,
respectively), and the ability of foods to elicit allergic reactions will
be considered, together with potential effects on sensitisation where
relevant data for the latter are available. For the purposes of this
article we have chosen not to base our review solely on a consid-
eration of what are normally considered to be the most common
allergenic foods, although most are included. The foods evaluated
were selected on the basis of the availability of relevant literature
and the various forms of processing to which they are normally sub-
jected. Those reviewed are: peanuts, tree nuts, cows’ milk, hens’ eggs,
soy, wheat and mustard.

2. Influence of processing on the antigenic integrity and
allergenicity of food proteins

For the purposes of this article it is necessary to clarify defini-
tions and terminology. This is because food processing can poten-
tially affect two aspects of the allergenic properties of proteins, as
follows:

(a) In most investigations it is the impact of processing on the
integrity of epitopes recognised by IgG antibodies or IgE an-
tibodies that has been reported. Such changes are of potential
importance because they will influence the ability of anti-
bodies to bind to the modified protein, and in the case of IgE
antibody binding this may result in an altered capacity to elicit
an allergic reaction.

(b) Much less commonly the impact of processing on the ability
of food proteins to induce allergic sensitisation has been in-
vestigated. Here, in the case of IgE-mediated food allergy, the
question addressed is whether processing has impacted on
the capacity of a protein to stimulate the production of IgE
antibody.

To distinguish effectively between these two types of effects it
is important to adopt for this article clear definitions that will avoid
confusion. The definitions summarised below are not necessarily
intended to be universally applicable, or to take the place of defi-
nitions that are commonly employed elsewhere. Rather, the intention
is to adopt working definitions that will provide clarity in consid-
ering the influence of processing on the allergenic properties of food
proteins. These are as follows:

2.1. General definitions

Food allergy: an adverse reaction to food that is mediated through
immunological mechanisms. Such reactions can be provoked in sensitised
subjects following dietary exposure to relevant allergens in food.

Allergic sensitisation: the process of specific immunological priming
through which heightened sensitivity (sensitisation) to food proteins
is acquired.

Allergenicity or allergenic potential: the potential of a material
to cause sensitisation and allergic reactions, frequently associated with
IgE antibody.

IgG or IgE antibody binding capacity: an altered ability of IgG
antibody (also antigenic integrity) or IgE antibody (also allergenic in-
tegrity) to bind to epitopes, respectively.

Immunogenicity: the ability of a material to elicit an immune
response.
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3. Milk and milk allergens

3.1. Introduction to milk and milk allergens

Milk is an excellent source of fat, proteins, minerals and vitamins.
On average, cow’s milk consists of 90% water, 5% carbohydrates
(48 g/L lactose, and minor to trace amounts of resp. glucose and
galactose), and 4–5% proteins (40–50 g/L). The main cow’s milk
allergens are caseins, β-lactoglobulin, and α-lactalbumin (Bu et al.,
2013). Less common antigens in cow’s milk are serum albumin (BSA)
and immunoglobulins. Most proteins in milk, including the allergens,
are glycoproteins (Besler et al., 2002; O’Riordan et al., 2014). Caseins
account for 80% and whey proteins for 20% of the total amount of
proteins present in cow’s milk. The group of caseins (MW
20–30 kDa) includes alpha-S1 (12–15 g/L), alpha-S2 (3–4 g/L), beta
(9–11 g/L), kappa (6–8 g/L) and gamma (3–4 g/L) caseins. Major
whey proteins comprise β-lactoglobulin (MW 18.3 kDa; 3–4 g/L),
α-lactalbumin (MW 14.2 kDa; 1–1.15 g/L), immunoglobulins (MW ca.
160 kDa; 0.6–1 g/L), bovine serum albumin (MW 67 kDa; 0.1–0.4 g/L)
and lactoferrin (MW 76–80 kDa; 0.09 g/L) (Besler et al., 2002).

In developed countries cow’s milk is extensively processed before
consumption, and rarely consumed in its raw form. Upon harvest-
ing, milk is cooled to 4 °C, stored and transported in stainless steel
tanks at 4 °C. Then the milk is centrifuged in order to separate the
milk fat from the skimmed milk residue. The next step is
standardising, which is the industrial addition of milk fat to the milk
in a specified ratio. This ratio determines the type of milk pro-
duced: skimmed milk (1% or less fat), semi-skimmed milk (2%) or
whole-milk (>3.25%) (Chandan and Kilara, 2011). Finally, the milk
is heated. Most commonly used heat treatment conditions are:
pasteurisation (heating milk to 70–80 °C for 15–20 seconds),
sterilisation (110–120 °C for 10–20 minutes) and ultra-high tem-
perature (UHT) processing (135–145 °C for 0.5–4 seconds) (Claeys
et al., 2013, EFSA, 2014). UHT processing method dominates in
Europe because during UHT processing both the pathogens and
spores are destroyed but no/little Maillard reaction occurs; this
minimises the impact on colour and taste of the milk (Tamime, 2009).
After heating, the milk is immediately cooled down to a tempera-
ture below 4 °C and packaged.

To produce cow’s milk-containing products, the milk is further
processed (condensation, spray drying, filtration, hydrolysis and/
or fermentation). Liquid concentrates such as coffee milk and
powders such as infant formulas, are two common delivery forms
of milk solids. To obtain liquid concentrates and milk powders, the
milk has to be condensed by vacuum evaporation. This process
ensures that most of the liquid evaporates and a four-fold concen-
trated liquid remains. To produce milk powders, the concentrate is
spray dried with a controlled flow of hot air (200 °C for 20–60
seconds to minutes) (Chandan and Kilara, 2011; Kasinos et al., 2014;
Schuck, 2013; Schuck et al., 2013).

3.2. Effect of processing on allergenicity

Human studies that analyse the effect of processing on milk and
its allergens are very scarce. The experimental design in almost all
studies involving humans is not targeted at analysing processing
effects, which would require, e.g. comparing a challenge with raw
milk vs. challenge with milk that has been treated in a strictly defined
way, but rather serves a clinical setting, to test, e.g. diagnostic pro-
cedures, establish eliciting doses, or to test a therapeutic approach.
Most data presented here refer to in vitro test results.

3.2.1. Effect of homogenisation
Homogenisation of milk is the process in which fat globules are

pressed at high pressure through small holes. During this process
the fat globules are broken down into smaller fat globules with a

greater surface area. This increase in surface area causes proteins
to adsorb to it, forming fat globules loaded with protein.

Little in vivo research is done on the effect of homogenisation
on the allergenicity of milk proteins. Poulsen et al. (1987) showed,
in a murine model, that homogenised milk and pasteurised milk
triggered anaphylactic reaction at a dose of 340 μg, whereas this
was not the case for raw milk. In addition, they found that the po-
tential of homogenised milk to trigger anaphylactic reactions
increased with increased fat content. On the other hand, Pelto et al.
(2000), performing a randomised, double-blind, cross-over study
on humans, found no significant differences in allergenicity between
the groups treated with and without homogenised milk. This finding
was supported by DBPCFC performed by Host and Samuelsson
(1988), stating that homogenisation had no effect on the allergenicity
of milk.

3.2.2. Effect of thermal processing
The degree of structural changes of proteins occurring during

heating depends on both the type of protein and the thermal load.
Whey proteins denature progressively upon heat treatment (Chandan
and Kilara, 2011). Caseins are heat stable because they do not have
secondary, tertiary and quaternary structures that can be dis-
rupted by heating, implicating that heating of milk can only partly
reduce its allergenicity (Bu et al., 2013; Michalski and Januel, 2006).
The effects of the different heating methods on the allergenicity of
the whey proteins are analysed in the following sub-sections.

Bu et al. (2009b) found that IgE-binding by α-lactalbumin and
β-lactoglobulin increased significantly after pasteurisation at tem-
peratures between 50 and 90 °C, compared to non-heated milk, by
means of indirect competitive enzyme-linked immunosorbent assays
(ELISA). These findings are backed up by epidemiological studies
showing a lower prevalence of milk allergy upon ingestion of raw
milk compared to consumption of commercially available milk prod-
ucts (Loss et al., 2011; Waser et al., 2007). However, there were no
published controlled human intervention studies examining the
allergenicity of pasteurised milk compared to non-heated (raw) milk
(Van Neerven et al., 2012).

Sterilisation causes denaturation of 75% of the whey proteins and
Maillard reaction to occur (Chandan and Kilara, 2011; Porter, 1978).
Ehn et al. (2004) and Taheri-Kafrani et al. (2009) showed, by means
of indirect competitive ELISA, that denaturation and aggregation of
β-lactoglobulin caused by heating of whole milk and β-lactoglobulin
solutions at 90–95 °C decreased the IgE-binding capacity of this whey
protein slightly but significantly. Their research indicated that heating
of milk was insufficient to eliminate/destroy all epitopes but that
the affinity of the remaining epitopes might be lower or that epitopes
may have been destroyed after heating. Bu et al. (2009b), using an
indirect ELISA with rabbit serum, found a decrease in IgG-binding
by both α-lactalbumin and β-lactoglobulin after sterilisation com-
pared to pasteurisation. IgG-binding by β-lactoglobulin that has been
heated at 120 °C was still higher than the IgG-binding by unheated
β-lactoglobulin. IgG-binding by α-lactalbumin heated to 120 °C is
lower than the IgG-binding by the pasteurised α-lactalbumin and
the non-heated α-lactalbumin samples. Heating may expose IgE-
binding epitopes that previously were hidden inside α-lactalbumin
(Maynard et al., 1999).

In addition, Bu et al. (2009a) investigated the effect of the Maillard
reaction on IgG-binding by α-lactalbumin. They found that conju-
gation of α-lactalbumin with reducing sugars decreased the IgG-
binding capacity of this whey protein. Complementary, Taheri-Kafrani
et al. (2009) found that conjugation of β-lactoglobulin with lactose
(reducing sugar) led to reduced IgE recognition.

There were no reports found on the effect of UHT processing on
the allergenicity of milk. All studies examined the effect of thermal
treatment on the allergenicity of milk up to 120 °C. This is prob-
lematic as UHT processing is the most common thermal processing
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method used within Europe (Tamime, 2009). No conclusion can be
drawn from the thermal effects of pasteurisation and sterilisation
on the allergenicity of UHT processed milk, because the thermal load
applied during UHT processing differs from pasteurisation and
sterilisation.

Also the effect of vacuum evaporation on the allergenicity of cow’s
milk is not reported in the literature. Vacuum evaporation com-
prises heating of the milk to its boiling point under vacuum (80 °C
for 15 minutes) (Schuck et al., 2013). Vacuum exerts no influence
on the structural properties of proteins. Therefore, temperature is
the parameter that is the most relevant for protein structure during
vacuum evaporation. The effect of temperature increases until 80 °C
and is discussed under the section pasteurisation. However, one
should keep in mind that pasteurisation takes only seconds whereas
vacuum evaporation takes 15 minutes and that, before vacuum evap-
oration, milk is pasteurised, sterilised or UHT processed. Therefore,
vacuum evaporation should be further examined as it may cause
some additional denaturation, which thereby may affect the
allergenicity of milk.

There is no literature that directly examines the effect of spray
drying on the allergenicity of cow’s milk. During spray drying, the
milk is placed in a dry air stream that causes both a temperature
and a water gradient, leading to evaporation of the water from the
milk to the air stream and heat transfer from the air stream to the
milk particles. Maillard reactions may occur during spray drying,
possibly affecting the allergenicity of milk (Schuck et al., 2013). It
should be kept in mind that prior to spray drying, milk is pasteurised,
sterilised or UHT processed and possibly subjected to vacuum
evaporation.

3.2.3. Effect of fermentation and hydrolysis
Fermentation of milk and milk allergens (such as α-lactalbumin,

β-lactoglobulin, α-casein and β-casein), either via simulated gastric
fluid or fermentation with Lactobacilli, seems to strongly reduce
allergenicity, as shown in IgG-binding or IgE-binding assays (Yao
et al., 2014). Currently the only available preparations that are
considered hypoallergenic are extensively hydrolysed milk formulas,
which are primarily prepared by enzymatic hydrolysis, and
elemental formulas, which are prepared from synthesised free amino
acids (see e.g. (Bahna, 2008; Baker et al., 2000; Niggemann et al.,
2008; Oldæus et al., 1991)).

For allergy to cheese, few and conflicting reports were found.
Alessandri et al. (2012) reported that 45 out of 66 cows’ milk-
allergic patients could tolerate 3 y old Parmigiano-Reggiano (PR)
cheese, although all PR-preparations still inhibited IgE-binding to
milk proteins. Stoger and Wulhrich (1993) described cheese-
allergic patients, but not the cheese, apart from that is was dried.
Williams et al. (2007) report contact urticaria in people who handle
Parmesan cheese. In this case, a reaction to enzymes used for cheese
production could not be excluded.

No reports on allergenicity of yogurt were found.

3.3. Concluding comments

• Pasteurisation increases allergenicity of milk as measured by IgE
binding studies, possibly due to aggregation, enhanced binding
to and activation of mast cells; however, no human studies have
been performed to confirm this.

• The decrease in IgE-, resp. IgG-binding capacity caused by
sterilisation can be explained by denaturation and Maillard re-
action of existing epitopes of both β-lactoglobulin and
α-lactalbumin.

• Denaturation and non-enzymatic glycation lead to destruction
of already existing epitopes or renders them inaccessible.

• No effects of UHT processing, vacuum condensing and spray
drying on allergenicity of milk were found in the literature.

4. Egg and egg allergens

4.1. Introduction to egg and egg allergens

Egg is one of the foods whose allergenicity is most altered by
cooking or processing. Egg white contains proteins with consider-
ably higher allergenic potential than the egg yolk. The four major
allergens in egg white are ovalbumin (OVA; Gal d 2, 54% of the total
protein content), ovotransferrin (OVT; conalbumin, Gal d 3, 12%),
ovomucoid (OVO; Gal d 1, 11%), and lysozyme (LYS; Gal d 4, 3.5%).
Two yolk proteins, α-livetin (chicken serum albumin, Gal d 5) and
lipoprotein YGP42 (Gal d 6), have been identified as egg allergens
(Martos et al., 2013; Mine and Rupa, 2004).

Ovalbumin possesses 4 sulphydryl groups with a single disulphide
bridge (Jacobsen et al., 2008) and is found to be sensitive to heat
denaturation. Ovomucoid consists of 3 sub-domains, each being in-
ternally linked by disulphide bonds, which makes ovomucoid
resistant to heat denaturation and proteolytic digestion (Julià et al.,
2007; Maeno et al., 2013). Domain 3 is very stable, has most dom-
inant IgE and IgG-binding epitopes, and is considered the major
determinant of the strong allergenicity of the protein (Jiménez-Saiz
et al., 2011b; Maeno et al., 2013). Gal d 5 is partially heat-labile and
can cause both respiratory and food allergy symptoms in patients
with bird-egg syndrome (Quirce et al., 2001), while Gal d 6 is a heat-
stable allergen (Amo et al., 2010).

Eggs are universally used as nutrient and food additive. Common
products in which egg is extensively heated are baked products and
starches containing egg such as cakes, waffles, muffins, pancakes,
egg noodles, egg pasta and bread. Examples of products in which
egg is less extensively heated are custard, French toast, fresh may-
onnaise, quiche and Caesar salad dressing. Furthermore, specific ways
to use egg are seen for example in China where tea-boiled and spiced
eggs are commonly consumed as Chinese savoury snacks (Liu et al.,
2013).

4.2. Effect of processing on allergenicity

4.2.1. Effect of thermal processing
Several human studies have been performed in which egg allergic

patients were challenged with heated and/or unheated eggs. In
general, 50–85% of children with egg allergy are able to tolerate
baked egg (Bartnikas and Phipatanakul, 2013; Cortot et al., 2012;
Lemon-Mulé et al., 2008; Turner et al., 2013). This percentage varies
depending on the characteristics of the allergic patients (age, severity
of the allergy, etc.), heating procedure, matrix used, etc. A major
drawback of these studies is that the individuals are often not
challenged to unheated egg to establish clinical reactivity to egg prior
to the oral food challenge (OFC) to the heated egg. This can result
in an overestimation of the percentage of allergic subjects tolerating
extensively heated egg products.

Urisu et al. performed a food challenge with 38 subjects with
high levels of IgE antibodies for egg white to compare the
allergenicity of heated egg white, freeze-dried egg white, and
heated egg white depleted of OVO. Twenty-one subjects (55%)
with a positive challenge to freeze-dried egg white had a negative
challenge to heated egg white. Sixteen out of 17 (94%) with a
positive response to heated egg white did not respond to the
heated and OVO-depleted egg white (Urisu et al., 1997). This might
indicate that OVO is the major determinant of causing egg induced
allergies and that heating partially reduces the allergenicity of
egg white. Another study compared the allergenicity of dehy-
drated egg white (DEW), a product that undergoes a double heat
treatment (heating to 59 °C for 6 minutes and spray drying with
hot air at 80 °C for 1 minute) with raw egg white (REW). Ten out
of 40 egg-allergic patients (25%) had a positive OFC to both DEW
and REW. The other 30 patients had a negative OFC to both forms.
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The allergenicity of commercially available DEW was therefore
shown to be equivalent to raw egg whites and the processing of
DEW did not affect the allergenicity of the egg proteins (Escudero
et al., 2013). Overall, from these studies, it can be concluded that
the majority (50–85%) of children with egg allergy could tolerate
extensively heated egg. However, milder forms of treatment (heating
<80 °C) might still retain, to a great extent, the allergenic proper-
ties of the egg proteins.

To look more into the protein allergenicity mechanisms, mouse
models were used to study unheated and heated purified egg
white allergens. Mice sensitised and challenged with heated OVA
(70 °C for 10 minutes) showed decreased clinical symptoms and a
shift towards a Th1 response compared to mice sensitised and
challenged with unheated OVA (Golias et al., 2012). In addition,
C3H/HeJ mice orally sensitised with native OVA and OVO were
challenged with native and heated (30 minutes in boiling water)
OVA or OVO. The native forms did induce symptoms of anaphy-
laxis; this in contrast to the unheated counterparts (Martos et al.,
2011). This decrease in allergenicity of heated OVA was shown to
be partially the result of an enhanced gastrointestinal digestibility
after heating (Jiménez-Saiz et al., 2011a; Martos et al., 2011) and
a reduced intestinal absorption of OVA and OVO molecules that
are capable of triggering basophils and T cells (Martos et al., 2011).

In vitro studies assessing IgE-binding capacity showed that heating
of OVA clearly decreased the IgE-binding capacity compared to the
unheated OVA (Ma et al., 2013; Shin et al., 2013). Heat treatment
of OVO (95 °C, 15 min) lowered the IgE-binding activity of OVO
(Jiménez-Saiz et al., 2011a; Mine and Zhang, 2002). However,
glycation by Maillard reaction increased the IgE-binding
(Jiménez-Saiz et al., 2011a). Ovotransferrin and lysozyme are less
well studied but generally regarded as heat-labile proteins. One study
showed a decrease in IgE-binding after heating for 15 minutes at
95 °C (Mine and Zhang, 2002).

4.2.2. Effect of non-thermal processing
Limited studies looked at combined processing methods.

One study reported on the influence of combining various heat
treatments with enzymatic hydrolyses on the structure and
allergenicity of pasteurised liquid whole egg. The remaining
IgE-binding capacity of the end product, which underwent three
heating and two enzymatic treatments, was more than 100-fold
reduced compared to untreated liquid whole egg (Hildebrandt et al.,
2008).

UV-C exposure (1.6 to 29.1 W m−2) of an egg white protein so-
lution reduced the IgG-binding capacity of egg white proteins (ELISA),
which was attributed to denaturation (Manzocco and Nicoli, 2012),
while no difference in IgE-binding capacity (ELISA) was observed
between egg white exposed to UV-C light (10.6 and 63.7 kJ m−2) and
untreated egg white (Manzocco et al., 2012).

Gamma and electron beam radiation decreased both IgE and IgG-
binding capacity of OVO (Lee et al., 2007b).

Intense pulsed light (from 1.75 to 31.5 J cm−2) increased IgG-
binding capacity of egg white proteins in one study (Manzocco et al.,
2013), while another study using diluted isolated egg proteins
showed the opposite effect (Anugu et al., 2010).

4.3. Concluding comments

• Extensive heating diminishes the allergenicity of egg white pro-
teins and the majority (50–85%) of egg allergic patients are
tolerant to heated egg products.

• Other treatment methods, such as irradiation, might modulate
the allergenic properties of eggs; however, more investigation
is needed.

5. Tree nuts and tree nut allergens

5.1. Introduction to tree nut allergens

Tree nuts are beneficial food sources. They are rich in unsatu-
rated fats and have comparatively high levels of phenolics,
phytosterols, tocopherols, minerals and fibre. This may explain why
the consumption of tree nuts is increasing, including the consump-
tion of both raw and processed nuts. A variety of dietary tree nuts
are associated with commonly severe food allergy, and some-
times fatal reactions are observed (Bock et al., 2007). Among those
that are well documented food allergens are: pistachio (Pis v), ha-
zelnut (Cor a), pecan (Car i), walnut (Jug r), Brazil nut (Ber e), cashew
nut (Ana o) and almond (Pru du).

In general terms tree nut allergy can adopt two forms: allergic
sensitisation to tree nut proteins or immunologic cross-reactivity
between the structurally-related Bet v 1 (a major birch pollen
allergen) and members of the pathogenesis-related protein 10
(PR-10) family expressed in tree nuts, e.g. Cor a 1 and Pru du 1
(Geroldinger-Simic et al., 2011). Other birch pollen-related allergens
in tree nuts are profilins (e.g. Cor a 2, Pru du 4 and Jug r 5); these
are expressed widely in fruits and pollens (Hirschwehr et al., 1992;
Masthoff et al., 2013). The symptoms associated with cross-reactive
allergy to tree nuts are generally relatively mild (Hirschwehr et al.,
1992). The tree nut allergens that are not associated with birch
pollen sensitisation (direct allergens) are lipid transfer proteins (Cor
a 8, Pru du 3 and Jug r 3) and seed storage proteins, such as vicilins
or 7S globulins (Cor a 11, Jug r 2, Ana 01, Pis v 3), 11S globulins (Cor
a 9, Ber e 2, Jug r 4, Pru du 6, Ana o 2, Car i 4,Pis v 2) and 2S albumins
(Jug r 1, Ber e 1, Pru du 2S, Ana o 3, Car i 1, Pis v 1) (Masthoff et al.,
2013). Here reactions are often more severe (Flinterman et al., 2008).

5.2. Effect of processing on allergenicity

Commercially available tree nuts are mostly heat processed (dry
and moist) or processed into butters. There are a variety of pub-
lished reports that have described the influence of heat processing
on the allergenic and antigenic integrity of tree nut extracts. However,
these reports are mainly focusing on in vitro assays.

5.2.1. Effect of thermal processing
Solely two studies reported on the influence of roasting on the

allergenicity of hazelnut in a DBPCFC. In both studies a decreased
allergenicity was observed after roasting. In the study of Hansen
et al. (2003), 17 patients with a proven birch pollen and hazelnut
allergy experienced oral symptoms and three of them reported ad-
ditional symptoms (e.g. asthma and rhinitis) after eating raw
hazelnut. However, when eating roasted hazelnut, only five pa-
tients (29%) experienced oral symptoms and one of them also
experienced rhinoconjunctivitis. Moreover, eliciting doses were el-
evated after roasting and >50% of the patients lost skin reactivity
in prick-to-prick skin prick test (SPT) and IgE-binding with roasted
hazelnut compared to raw hazelnut (Hansen et al., 2003). The
DBPCFC with 20 birch pollen and hazelnut allergic patients per-
formed by Worm et al. (2009) confirmed these results. Eliciting doses
were also elevated compared to raw hazelnut in the majority of pa-
tients and the reactivity in the SPT and basophil activation test (BAT)
was reduced (Worm et al., 2009). A thorough component resolved
evaluation of the patients against other hazelnut allergens was not
conducted. For other tree nuts, no DBPCFC with processed forms
were found in the open access databases.

The decrease in allergenicity of hazelnut is probably caused by
the decreased IgE-binding of the birch pollen related allergens, Cor
a 1 and Cor a 2. Some papers showed this effect after roasting at
temperatures >140 °C in EAST and/or BAT (Müller et al., 2000;
Pastorello et al., 2002; Schocker et al., 2000; Wigotzki et al., 2000)
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using sera from birch pollen and hazelnut allergic patients. At tem-
peratures below 100 °C, Cor a 1 was heat-resistant. Furthermore,
Wigotzki et al. reported that the IgE-binding of hazelnut in the EAST
inhibition assay and immunoblot was decreased for different com-
mercial products (e.g. hazelnut chocolates, nougat products, hazelnut
cake, hazelnut cookies and hazelnut croquants) compared to un-
processed (native) hazelnut extracts (Wigotzki et al., 2001). The effect
of heat processing on birch pollen related allergens (PR-10 and
profilin) in other tree nuts was not described in the literature except
for almond. Venkatachalam et al. (2002) and Bargman et al. (1992)
both showed, by using immunoblotting with sera from almond al-
lergic patients, that blanching and roasting reduces the IgE-
binding of a 15–17 kD band, which might be Pru du 1 (Bargman et al.,
1992; Venkatachalam et al., 2002). However, de Leon et al. (2003)
found no difference in IgE-binding (ELISA) between roasted (180 °C)
and unroasted almond using serum from one almond allergic patient
(de Leon et al., 2003). The difference might be due to the small
amount of sera tested in both studies.

Allergens belonging to the lipid transfer proteins and seed storage
protein family are more stable to heat treatment. This is demon-
strated in a few in vitro studies where serum from patients with a
hazelnut allergy without birch pollinosis was used. No significant
effect was seen in the EAST after roasting hazelnut for 40 min at
140 °C (Pastorello et al., 2002; Schocker et al., 2000). Other studies
demonstrated the heat stability of Cor a 8, Cor a 9, Cor a 11 and
Cor a 14, after heating hazelnut with temperatures above 140–
185 °C using ELISA, immunoblot or EAST (de Leon et al., 2003; Dooper
et al., 2008; Müller et al., 2000; Pastorello et al., 2002; Wigotzki et al.,
2000). Autoclaving (138 °C, 15–30 min) of hazelnut showed a de-
creased IgE-binding on Western blot but this was most likely due
to decreased solubility (Lopez et al., 2012).

Glycation between reducing sugars and free amino groups on
proteins, also called Maillard reaction (37, 60 and 145 °C), de-
creased IgG/IgE-binding of Cor a 11 on immuno blot and on ELISA,
while RBL activity was increased (Iwan et al., 2011). In addition, Cor
a 9 was unaffected and appeared stable, while Cor a 1 showed only
some decrease after glycation with glucose and heating for 48 hr
at 70 °C (Cucu et al., 2011). In a BAT using blood from six hazelnut
allergic patients, Cucu et al. (2012) showed that glycation of ha-
zelnut (same conditions as above) enhanced (2/6) or decreased (3/6)
the IgE functionality of hazelnut (Cucu et al., 2012). These results
showed that the effect of glycation on allergenicity is not unequivocal.

In almond the effect on the allergenicity of 11S globulin (Pru
du 6), which shows different protein bands between 37 and 66 kD
on a Western blot, was investigated. Blanching and roasting did not
have any effect on IgE-binding of 11S globulin bands, except for two
bands between 55 and 65 kD. Other in vitro studies confirmed the
heat stability of Pru du 6 (Bargman et al., 1992; de Leon et al., 2003;
Roux et al., 2001; Venkatachalam et al., 2002).

Roasting (180 °C for 15 min) of cashew nuts did not result in
loss of IgE-binding using sera from one allergic and one sensitised
patient (de Leon et al., 2003). Immunoreactivity studies showed a
minor effect on Ana o 1 and Ana o 3 after roasting and no effect on
Ana o 2 after roasting or frying (191 °C for 1 min). However, extreme
roasting conditions (160 °C for 30 min or 200 °C for 15 min) re-
sulted in a decrease in Ana o 2 IgG-binding capacity. Conflicting data
were found for microwaving and autoclaving. The minor effect of
blanching was subscribed to leaking of the proteins in the water
(Su et al., 2004; Venkatachalam et al., 2008).

For Brazil nut, only one paper showed that roasting at 180 °C
for 15 min did not have any effect on the IgE-binding of Brazil nut
with serum from two patients (one allergic and one sensitised) (de
Leon et al., 2003). Sharma et al. (2009) also showed that different
heating methods had minor effect on the IgG-binding capacity.
However, the results were not consistent with the different methods
(ELISA, dot blot and Western blot). No effect or only a slight decrease

was seen after blanching, roasting, autoclaving and frying, while for
microwaving, the IgG-binding capacity was elevated (Sharma et al.,
2009).

There are two papers on the effect of heat processing on IgE and
IgG binding capacity of walnut proteins. One paper reported that
heating (blanching, roasting, microwaving and frying at 191 °C) had
no effect on the IgG-binding capacity of Jug r 2 and Jug r 4. However,
autoclaving did reveal a decrease in recognition of 42–45 kD pro-
teins (Jug r 2) and 45–66 kD (Jug r 4) bands, which was not shown
after blanching and roasting (Su et al., 2004). Cabanillas et al. (2014)
recently showed on an immunoblot that after autoclaving at 138 °C
and 256 kPa, IgE binding capacity for walnut proteins and Jug r 4
recognition was diminished. Hardly any effect on IgE binding ca-
pacity was seen with high hydrostatic pressure treatment (300–
600 MPa, 15 min, 15 °C). The results were confirmed by rat basophil
leukaemia cell line and by skin prick testing.

The effect of heat processing on the allergenicity of pistachio
nut was assessed in only one study. A small reduced effect on IgE-
binding in an immunoblot and ELISA inhibition with two human
serum pools was seen for dry roasting. The IgE-binding of steam-
roasting was more reduced; however, this was most probably caused
by protein aggregation (Noorbakhsh et al., 2010).

Minor effects of heating (blanching, 10 min, roasting 148 °C for
30 min or 172 °C for 12 min or autoclaving for 5 min) of pecan nut
were detected by Western blot using pooled patient sera. Most
protein bands of Car i 1 and Car i 4 seemed very heat stable. However,
some subunits of Car i 4 almost disappeared; this was most likely
due to irreversible loss of protein solubility rather than protein
epitope destruction. These results were confirmed by immunore-
activity studies. However, a significant decrease of IgG-binding
capacity was seen after applying extreme conditions, i.e. roasting
at 160 °C, 20 and 30 min and autoclaving (Venkatachalam et al., 2006)
or microwaving for 15 min (Polenta et al., 2012). Again this de-
crease could be due to the loss of protein solubility.

5.2.2. Effect of non-thermal processing
Processing of raw almond into almond butter (no extreme heat

required) did not influence IgE-binding capacity. Bargman et al.
(1992) showed similar IgE-binding patterns of almond butter com-
pared to raw almond on an immunoblot with sera obtained from
eight almond allergic patients (Bargman et al., 1992).

5.3. Concluding comments

• Heat processing has mainly an effect on the allergenicity of al-
lergens related to Bet v 1 (PR-10 and profilins) by lowering the
IgE-binding.

• Hardly any effects on allergenicity of allergens from the seed
storage protein and lipid transfer protein family were observed.

• Solely two DPBCFC were performed with raw and roasted ha-
zelnut. In other studies in vitro techniques were used with a
limited amount of sera from allergic patients. In none of the
studies, the allergenicity was completely abolished.

6. Peanut and peanut allergens

6.1. Introduction of peanut allergy

Peanut is one of the common causes of food allergy in Western
countries. In North America and Europe, around 1% of the popula-
tion has diagnosed peanut allergy (Ben-Shoshan et al., 2010; Sicherer
et al., 2010). One birth cohort study found that approximately 12%
of children at age 8 in the United Kingdom were sensitised to peanut
(Nicolaou et al., 2010). The prevalence of peanut allergy is relative-
ly low in the Asian population born and raised in Asian countries
(0.47%) as compared with the Western-born Asian population (1.62%)
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of similar genetic decent (Shek et al., 2010). In Western countries,
peanuts are primarily consumed in a roasted form. In contrast,
peanuts are often consumed after boiling in Asia. This difference
in peanut processing in different regions may have an impact on
the differences in the prevalence of peanut allergy.

As of 2014, 13 peanut proteins (Ara h 1 to Ara h 13) have been
officially confirmed and characterised as allergenic molecules and
registered by the International Union of Immunological Societies
Allergen Nomenclature Sub-Committee (www.allergen.org). Despite
the identification and characterisation of various peanut aller-
gens, little is known about how food processing may affect allergic
sensitisation and subsequent elicitation of adverse reactions to
peanut proteins. To date, most studies have evaluated the influ-
ence of processing as a function of IgE reactivity. Only a limited
number of in vivo studies have been conducted to evaluate whether
food processing is associated with a reduced potential to induce sen-
sitisation and/or elicitation (Kroghsbo et al., 2014b). Two human
trials were reported; one was a randomised double blind cross-
over challenge with peanut oil, the other was an OFC with boiled
peanut (Hourihane et al., 1997; Turner et al., 2014).

6.2. Effect of processing on allergenicity

6.2.1. Effect of thermal processing
Several studies have demonstrated that boiling reduces the IgE-

binding capacity of peanut proteins in vitro. Beyer et al. (2001) boiled
peanuts for 20 minutes in water (100 °C) and IgE binding was evalu-
ated by immunoblotting with sera from 8 peanut allergic patients.
Boiling decreased the IgE-binding capacity of all tested allergens
(Ara h 1, 2 and 3) compared with roasted peanut. Mondoulet et al.
(2005) obtained whole peanut protein extracts and purified Ara h 1,
Ara h 2 from boiled peanut (100 °C, 30 min) and evaluated them
by enzyme allergosorbent test (EAST) with sera from 37 peanut al-
lergic patients. They concluded that IgE-binding capacity to boiled
peanut extracts was significantly lower than that of raw peanut ex-
tracts. They also reported that low-molecular-weight (LMW) proteins
were transferred from peanut seeds into cooking water. Similar
results were reported by Turner et al. (2014), who demonstrated
that oral food challenge with boiled peanut to four peanut allergy
patients was able to induce desensitisation of peanut allergy. They
found that boiling for 6 hours in a closed vessel resulted in loss of
proteins, particularly Ara h 2, Ara h 6 and Ara h 7 from peanut seeds
and these LMW proteins could be found in cooking water. A de-
crease of allergenicity by boiling was also demonstrated by mediator
release assays (MRA) (Blanc et al., 2011; Vissers et al., 2011a). The
boiling treatment (100 °C, 15 min) of purified Ara h 1 impaired the
IgE-binding capacity of Ara h 1 by MRA with utilising rat baso-
philic leukaemia cells and boiling (110 °C, 15 min) of purified Ara
h 2/6 from raw peanut induced denaturation and caused a signif-
icant decrease of mediator releasing functionality of these proteins.
Another study evaluated the influence on mediator release by SPT
with the whole peanut protein extract of these processed peanuts.
Although boiled peanut extract (100 °C, 60 min) had a similar protein
profile to raw peanut extract on SDS-PAGE, only one patient out of
seven elicited positive reactions (Cabanillas et al., 2012a).

Several studies reported that roasting of whole peanuts en-
hanced IgE-binding capacity of proteins (Beyer et al., 2001; Maleki
et al., 2000; Mondoulet et al., 2005). Maleki et al. (2000) reported
that roasting of purified Ara h 1 and Ara h 2 enhanced the IgE-
binding capacity up to 90-fold. The high temperature during the
roasting process increased advanced glycation end (AGE) adducts,
which could explain this enhanced binding (Chung and Champagne,
2001). They concluded that the level of AGE adducts correlated with
the level of IgE binding.

Recent studies have compared the results obtained by IgE
reactivity with the results obtained by cell-based assay, such as MRA

and the BAT (Maleki et al., 2014; Sabato et al., 2011; Vissers et al.,
2011b). These studies found that the results of IgE reactivity could
give only limited power of prediction to the allergenicity of
processed peanut proteins. Vissers et al. (2011b) demonstrated that
roasting of purified Ara h 1 and 2S albumin (Ara h 2/6) reduced the
degranulation capacity of Ara h 2/6, but significantly enhanced the
degranulation capacity of Ara h 1 with MRA. Maleki et al. (2014)
compared the ability of T-cell stimulation of Ara h 1 and Ara h 2
that was purified from roasted peanuts with those proteins purified
from raw peanuts. Interestingly Ara h 1 purified from roasted peanut
had a higher IgE reactivity than raw Ara h 1, but T-cell proliferation
tested with five patients sera was reduced. Conversely, Ara h 2 had
higher IgE reactivity and T-cell stimulation property than raw Ara
h 2. It indicates that Ara h 2 is more immunogenic than Ara h 1.
Sabato et al. (2011) pointed out the influence of air and oil roasting
on the IgE-binding capacity and functionality of peanut, tested in
immunoblotting and BAT with sera from ten individual peanut
allergic patients. Although different responses (increased, reduced,
abolished and unaltered) were observed in BAT towards air-roasted
peanut, these patients’ sera showed similar patterns, enhancing
IgE-binding at the Ara h 2 doublet, in immunoblotting. So far, two
studies have assessed sensitisation of roasted peanut extract animal
models. Kroghsbo et al. (2014b) observed that an extract from
roasted peanut increased the elicitation capacity of peanut allergens
compared to an extract from blanched peanuts, although roasted
peanut did not significantly impact on sensitisation potential in
Brown Norway rats. Moghaddam et al. (2014) observed that dry
roasting enhanced peanut-induced sensitisation across mucosal and
cutaneous routes in mice. They concluded this enhanced
sensitisation of dry roasted peanut is probably mediated by
oxidation-driven generation of AGE-related adducts under the
high-temperature of dry roasting.

Only one paper evaluated the influence of autoclaving on the
allergenicity of roasted peanut. Cabanillas et al. (2012a) reported
that intensive autoclaving on roasted peanut (2.56 atm, 30 min) de-
creased IgE-binding capacity and also reduced mediator release by
SPT. All seven patients tested failed to elicit reactions to auto-
claved roasted peanut extract, whereas extracts from peanuts that
had only been roasted caused SPT reactions in 6 out of 7 subjects.
It was also reported that autoclaving caused the unfolding of some
basic protein structures (α-helix and β-strand) and increased the
formation of random coils. These structural changes increased di-
gestibility of a number of peanut proteins. However, it has been
documented that the peanut allergens, Ara h 2 and Ara h 6, were
extremely resistant to proteolytic digestion, partially due to the con-
served pattern of 8 cysteine residues that form 4 disulphide bonds,
which aid in stabilising the structure of these allergens.

Only limited data were available on the effects of frying on the
allergenicity of peanut. Beyer et al. (2001) demonstrated that frying
reduced the IgE-binding capacity of Ara h 1, Ara h 2 and Ara h 3.
However, Cabanillas et al. (2012a) showed that the frying process
did not reduce IgE-binding capacity and mediator release by SPT.

6.2.2. Effect of hydrolysis
Several studies demonstrated that hydrolysis reduced IgE-

binding capacity of some peanut proteins. Two studies (Chung et al.,
2004; Yu et al., 2011) demonstrated that peroxidase or digestive
enzymes (α-chymotrypsin and trypsin) could hydrolyse and reduce
Ara h 1 and Ara h 2 in roasted peanut, but not in raw peanut. Yu
et al. (2011) also reported that blanching (5 min in boiling water)
before hydrolysis enhanced the effectiveness of enzyme treat-
ment in roasted peanut, but not in raw peanut. Cabanillas et al.
(2012b) demonstrated how the choice of enzymes affected the IgE-
binding capacity by comparing endoprotease and exoprotease. They
concluded that endoprotease more effectively decreased IgE-
binding capacity in the soluble fraction of roasted peanut compared
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to hydrolysis with exoprotease. Pre-treatment before hydrolysis and
the choice of proper enzyme(s) highly influences the degree of re-
duction in IgE-binding capacity. Interestingly, Shi et al. (2013)
reported that although enzymatic hydrolysis could significantly
reduce IgE-binding capacity in ELISA, IgE cross-linking capacity was
still retained in the BAT. This indicates that reduction of IgE-
binding capacity by hydrolysis does not give a clear prediction for
the reduction of allergenicity.

6.3. Concluding comments

• Boiling of peanuts could reduce allergenicity in two ways: de-
naturation of allergenic proteins and transferring LMW proteins
into cooking water. The decrease of allergenic potential might
vary depending on the intensity of boiling.

• Roasting of peanuts seems to aggravate the elicitation proper-
ty of peanut proteins by generation of AGEs. Limited data are
available on whether roasting also aggravates sensitisation
property.

7. Soybean and soybean allergens

7.1. Introduction to soybean

A recent EFSA supporting publication reviews the prevalence of
soy allergy according to clinical history and challenge data; the prev-
alence ranges between 0% and 2.7% (University of Portsmouth, 2013).

Soybean seeds contain approximately 37% of protein, of which
eight allergenic proteins (Gly m 1 to Gly m 8) have so far been reg-
istered by the International Union of Immunological Societies
Allergen Nomenclature Sub-Committee (www.allergen.org). The
major storage proteins β-conglycinin (Gly m 5) and glycinin (Gly
m 6) represent 70% of the whole soybean protein and have been
related to severe allergic reactions in European soy allergic sub-
jects (Holzhauser et al., 2009). Recently, Gly m 8, a 2S-albumin, was
reported with high diagnostic value in soy allergic children in Japan
(Ebisawa et al., 2013). The allergens Gly m 5 through Gly m 8 have
been associated with primary sensitisation to the allergenic food.
In addition, soybean allergy can result from association to birch pol-
linosis. Clinical cross-reactivity between the major birch pollen
allergen Bet v 1 and the homologous soybean allergen Gly m 4 has
been described and sometimes associated with anaphylaxis
(Kleine-Tebbe et al., 2002). The soybean hull allergens Gly m 1 and
Gly m 2 have been identified as aeroallergens in isolated asthma
outbreaks (Gonzalez et al., 1991) and are not considered as food al-
lergens (Ladics et al., 2014). Various additional IgE-binding soy
proteins, thus potential soy allergens, have been described. Of these,
especially Gly m Bd30k (also named P34), a thiol-protease, might
be a major allergen that could affect more than 50% of soy allergic
subjects (Ogawa et al., 2000). However, for some of these IgE-
binding proteins, the clinical relevance is unclear, since the
underlying studies were based merely on soy sensitised subjects
with unclear clinical reactivity.

Soybeans undergo various processing steps (see Fig. 1) to obtain
many different soy products such as soy flour, texturised soy protein
(TSP), soy protein concentrates (SPC), soy protein isolates (SPI),
protein hydrolysates, as well as fermented products in which the
soy proteins and their structures may undergo various modifica-
tions. Allergenicity assessment of soy products has been primarily
done by using antibody-based in vitro techniques and hardly by
means of the more predictive tests such as the DBPCFC (University
of Portsmouth, 2013).

Comprehensive allergenicity assessment was done with only a
few soy products, as for example soybean oil and lecithin. By means
of immunoblotting and EAST inhibition experiments, the level of
protein found in soy oil was low in comparison to that in soy lecithin.

Extracts from soy lecithin and non-refined oil still contained IgE-
binding proteins, while refined soybean oil did not (Paschke et al.,
2001). No allergic reactions were observed with commercially avail-
able soybean oils in a double blind crossover study with seven
subjects having a history of soy related systemic allergic reactions
(Bush et al., 1985). The panel on dietetic products, nutrition and al-
lergies (NDA) of the European Food Safety Authority (EFSA) considers
that it is not very likely that fully refined soybean oil and fat will
trigger a severe allergic reaction in susceptible individuals (EFSA,
2007). Using sandwich ELISA with plasma from soy allergic pa-
tients, soy protein isolate (SPI) and concentrate (SPC) showed less
IgE-binding capacity than soy flour. The IgE-binding capacity of tofu
was about 20-fold higher than that of soymilk using sandwich ELISA
(Song et al., 2008). In one case study of exercise-induced anaphy-
laxis to tofu, the soy allergic individual showed allergic reactions
only after the ingestion of tofu but not of soy milk (Adachi et al.,
2009).

7.2. Effect of processing on allergenicity

7.2.1. Effect of thermal processing
A few studies have investigated the effect of thermal process-

ing on the IgE and IgG-binding capacity of soy and soy protein
fractions. Burks et al. (1991) heated crude soy and its 7S and 11S
protein fractions (80 °C or 120 °C, 60 min). Using sera from chil-
dren with positive DBPCFC to soy, heating significantly reduced the
IgE-binding capacity in ELISA. Some other studies reported on a
varying IgG-binding capacity in ELISA or concentration of soy protein
in differently processed soy based foodstuffs or after increased baking
time in cookie matrix (Amigo-Benavent et al., 2008; Gomaa and Boye,
2013). Twin-screw extrusion of soybean meal with temperature
higher than 66 °C was effective to decrease the binding capacity of
specific IgG from calve, as assessed by ELISA analysis, to 0.1% of the
original activity (Ohishi et al., 1994). However, the effect was analysed
with animal antibodies and it may not be related to the process of
heating only.

7.2.2. Effect of fermentation and hydrolysis
Hydrolysis with trypsin, pepsin and chymotrypsin is frequently

used to prepare hypoallergenic formulas, but other enzymes of bac-
terial and fungal origin are also investigated. Artificial digestion of
soy protein by pepsin, trypsin, chymotrypsin and intestinal mucosal
peptidases was found to reduce the IgE-binding capacity by 10,000-
fold using an ELISA inhibition assay (Burks et al., 1991). Other studies
investigated the degradation of individual soy allergens depend-
ing on the selection of enzyme, temperature, and pH. For example,
Yamanishi et al. (1996) found the hydrolysis of Gly m Bd 30 K was
enzyme dependent and most successful for Proleather FG-F (pro-
tease from Bacillus subtilis) and Protease N. Tsumura et al. (1999)
confirmed elimination of Gly m Bd 30K with Pro leather FG-F using
immunoblot. In the same study it was demonstrated that the pres-
ence of β-conglycinin was almost reduced, but no such effect on
glycinin was seen, based on SDS-PAGE analysis. The enzymatic hy-
drolysis of glycinin and β-conglycinin with tryptic and peptic
enzymes was also investigated (Lee et al., 2007a; Tsumura, 2009;
Zhao et al., 2010). The hydrolysis of both proteins depended on tem-
perature and pH (Tsumura, 2009). At low pH, glycinin was denatured
and more susceptible for hydrolysis, while β-conglycinin was de-
natured at higher temperature and became more hydrolysed in
contrast to glycinin which was not affected. The IgG-binding ca-
pacity was never completely removed. Others combined enzymatic
hydrolysis with heat treatment or high pressure (Tsumura et al.,
1999; van Boxtel et al., 2008). For example, in a study from van Boxtel
et al. (2008), the combined effect of heating at 100 °C and pepsin
hydrolysis for 10 min reduced the IgE-binding capacity of glycinin
to non-detectable in immunoblot analysis. Fermentation of cracked
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soybean seeds and soybean flour by various mould strains and bac-
teria have been shown to reduce the IgE-binding capacity by 65 to
99%, as was investigated using indirect ELISA with human serum
(Frias et al., 2008).

7.2.3. Effect of non-thermal processing
The application of chemical treatments, such as Maillard-type

carbohydrate conjugation or transglutaminase treatment, showed
some evidence of reducing the IgE production in mice (Arita et al.,
2001) or IgG-binding to soy protein (Babiker et al., 1998).

L’Hocine et al. (2007) investigated the effect of ionic strength and
pH on the IgG-binding capacity of purified glycinin. Changes in IgG-
binding were related to changes in the secondary and tertiary packing
of this soy protein. High IgG-binding capacity was shown at low pH
(2.2) and at neutral pH (7.2). Between pH 3 and 6, low IgG-binding
capacity was related to low protein solubility.

For the purpose of preservation and structural modification, foods
can be treated with high hydrostatic pressure (HHP). During HHP
treatment, non-covalent bonds (hydrogen, ionic and hydrophobic
bonds) are broken. A slight reduction in IgG-binding was ob-
served after 15 min HPP treatment at 300 MPa (Li et al., 2012). Pulsed
ultraviolet light (PUV) that was applied to soy extracts from raw de-
hulled and de-fatted soybean led to a decrease in the level of glycinin

and β-conglycinin using SDS-PAGE analysis (Yang et al., 2010). The
IgE-binding was also reduced by 44% using ELISA. Another non-
thermal processing step is controlled pressure drop (DIC), in which
food is subjected to a short (1–3 min) drop in pressure (Cuadrado
et al., 2011; Takács et al., 2013). DIC treatment at 6 bar for 3 min
almost abolished the IgE-binding capacity of soybean proteins ac-
cording to immunoblot analysis (Cuadrado et al., 2011). However,
aqueous extracts were investigated but potentially low extractabil-
ity of soy proteins after DIC treatment was not controlled.

7.3. Concluding comments

• The prediction of allergenicity of soybean and products thereof
is limited because of a very limited number of high-quality studies
performed in soy allergic humans or done with sera from clin-
ically confirmed soy allergic donors.

• Some evidence exists that soy allergenicity may be reduced or
retained by food processing, but yet there has been no indica-
tion for increased allergenicity due to food processing.

• Apart from highly refined soybean oil and other soybean prod-
ucts in which the level of soybean proteins are reduced below
clinically relevant levels, one-step processing may not fully abolish
soy allergenicity.

Fig. 1. Processing scheme of soy products adapted from B.G. Hammond et al. (Hammond and Jez, 2011), http://www.nsrl.uiuc.edu/aboutsoy/soyprocessing.html and
http://www.agnet.org/library.
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8. Wheat and wheat allergens

8.1. Introduction to wheat

Wheat is a staple food for most of the world’s population. Wheat
contains 10–14% protein. Based on the solubility in various sol-
vents, wheat proteins are classified as albumins (water), globulins
(diluted salt), gliadins (aqueous alcohol) and glutenins (diluted acid).
Albumins and globulins are mainly structural and metabolic pro-
teins. They include, amongst others, α- and β-amylases and their
inhibitors, and lipid transfer proteins (LTPs). Gliadins and glutenins,
known also as prolamins or gluten proteins, are the storage pro-
teins of the wheat grain. They account for approximately 80% of the
total wheat protein. Gliadins are monomeric proteins that interact
by non-covalent forces (hydrogen bonds). They are classified into
three groups on the basis of their electrophoretic mobility in acid
PAGE: α/β-gliadins, γ-gliadins and ω-gliadins. Glutenins are poly-
meric proteins linked by intramolecular disulphide bonds. On
reduction and separation in SDS-PAGE glutenins are classified into
high molecular weight (HMW) and low molecular weight (LMW)
subunits. Gliadins and glutenins are rich in glutamine and proline
amino acid residues that are found in highly repetitive sequence
motifs, but they differ in the arrangement, size and sequence of the
repeated regions. α/β-gliadins, γ-gliadins and LMW glutenins are
sulphur-rich proteins, and are composed of an N-terminal domain
that contains glutamine- and proline-rich repeats and a C-terminal
more structured non-repetitive domain with intramolecular
disulphide bonds. ω-gliadins lack cysteine and repetitive motives
cover almost the entire sequence (Shewry and Halford, 2002; Tatham,
1995).

Allergens involved in wheat food allergy were identified among
the different wheat protein fractions. The IgE-binding profile cor-
relates to age and symptoms that manifest. Sera from patients with
atopic eczema/dermatitis syndrome show binding mainly with con-
formational epitopes. Patients with urticaria, anaphylaxis and wheat-
dependent exercise-induced anaphylaxis (WDEIA), mainly adults,
show strong IgE-binding to linear epitopes of the repetitive domains
of gliadins and LMW-glutenins. Different IgE-binding sequences have
been identified along these repetitive domains, with a.o.
immunodominant epitopes on ω5-gliadin related to WDEIA
(Bouchez-Mahiout et al., 2010; Denery-Papini et al., 2011; Inomata,
2009; Morita et al., 2007; Palosuo, 2003).

8.2. Effect of processing on allergenicity

8.2.1. Effect of thermal processing
In a DBPCFC study on wheat allergy in adults, Scibilia et al. (2006)

showed that the clinical reactivity after consumption of raw and
cooked (heated in water until boiling and immediately cooled) meals
did not differ significantly: nearly all patients with a positive raw
wheat challenge were also positive to the cooked wheat test meal
and manifested the same symptoms. Starting from the same raw
and cooked wheat samples Pastorello et al. (2007) confirmed that
several IgE-binding proteins in the different wheat protein frac-
tions maintained their IgE-binding capacity after cooking. Proteins
of the α-amylase/trypsin inhibitor family which were present in the
different fractions maintained their IgE-binding capacity after heating.
Wheat LTP which was found only in the albumin/globulin fraction
showed a lower structural stability upon heating and was not
recognised by IgE in the cooked samples.

Wheat is mainly used in baking and pasta. This is largely due
to the unique properties of the gluten proteins in wheat to form a
viscoelastic dough that can be processed into leavened products and
pasta.

Pasini et al. (2001) and Simonato et al. (2001) studied the effect
of bread baking on the in vitro digestion and allergenicity of wheat

proteins relative to the unheated bread dough. The binding of IgE
from pooled sera of wheat allergic patients to the digestion prod-
ucts of the bread dough was strongly modified by the heat treatment.
Differently from the unheated bread dough where a rapid break-
down of the IgE-binding components was detected, thermally
induced protein aggregates prevented a complete proteolytic deg-
radation of the allergenic proteins in baked wheat products,
potentially allowing the passage of large IgE-binding protein frag-
ments through the GI tract, where they could elicit an allergic
reaction.

Pasta is mainly produced with durum wheat. The proteins of
durum wheat are very similar to those of bread wheat in terms of
molecular characteristics and allergenic properties. Pasta produc-
tion involves extrusion and drying at temperatures up to 110 °C to
reach about 12.5% of moisture. Pasta products are also boiled before
consumption. Using in vitro digestion on model pasta samples dried
at temperatures up to 110 °C used in industrial drying, complete
degradation of IgE-binding components (SDS-PAGE with pooled sera
from wheat (including durum wheat) allergic patients) was ob-
served (De Zorzi et al., 2007). This was found also with a commercial
pasta sample by Simonato et al. (2004). A very different IgE-
binding pattern was evident in the pasta sample dried at 180 °C:
heat induced aggregates with allergenic potential were resistant to
the action of the digestive enzymes. However, for the pasta samples
dried at temperatures up to 110 °C, IgE-binding was still detected
with the unfractionated samples after digestion. It seems there-
fore that the digestion process, although sufficient to degrade the
wheat protein to peptides, does not completely abolish the pres-
ence of allergenic structures.

8.2.2. Effect of fermentation and hydrolysis
Acid hydrolysed wheat gluten can be used as emulsifier in foods

and cosmetics. In addition to partial hydrolysis of peptide bonds,
acid hydrolysis also results in partial de-amidation of glutamine and
asparagine residues, thus increasing negative charges in the protein.
Partial acid hydrolysis of wheat gluten (combining low pH and heat)
has been reported to cause allergic reactions in wheat tolerant people
both by skin and oral contact. Most reported cases of allergenicity
are related to the use of acid hydrolysed gluten in cosmetics (facial
soap, shampoo), but cases of food allergy to different type of pre-
pared foods were also reported. Sensitisation to acid hydrolysed
wheat gluten through skin contact can result in allergenicity to the
same product in food, and also to traditional wheat food products.
Symptoms observed are generally severe: angioedema with
generalised urticaria, anaphylaxis and WDEIA. (Chinuki and Morita,
2012; Denery-Papini et al., 2012; Pelkonen et al., 2011; Shinoda et al.,
2012). IgE from patients allergic to acid hydrolysed wheat gluten
preferentially binds to the native γ- and ω2-gliadin, have high IgE
levels specifically to de-amidated γ- and ω2-gliadin and show some
reactivity to other wheat proteins. Despite ω5-gliadin being known
as a major allergen in WDEIA, no IgE specific for ω5-gliadin could
be detected in patients allergic to acid hydrolysed wheat gluten
showing symptoms of exercise induced anaphylaxis (Battais et al.,
2008; Denery-Papini et al., 2012).

An in vivo study with non-gluten tolerant Brown Norway rats
compared the sensitising capacity of acid hydrolysed gluten to that
of native and enzyme hydrolysed gluten. ELISA inhibition tests were
identical for rats sensitised to native and enzyme hydrolysed gluten,
but IgE from rats sensitised to acid hydrolysed gluten bound re-
markably stronger to acid hydrolysed gluten than to the other gluten
products. The results indicated that sensitisation to acid hydro-
lysed gluten was possible in wheat tolerant subjects due to the
presence of new epitopes, while enzyme hydrolysed gluten had an
epitope pattern similar to native gluten (Kroghsbo et al., 2014a).

While processing could elicit an unintended effect with aller-
genic foods, it has also been used as a tool to reduce allergenicity
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in the production of allergenic foods suitable for wheat allergic
people. Watanabe et al. (2000) developed a two-step procedure for
the production of hypoallergenic flour, using a cellulase to decom-
pose glycoprotein allergens, and actinase as a proteolytic enzyme
able to hydrolyse peptide bonds near the essential proline resi-
dues of the repeated sequence Gln-X-Y-Pro-Pro in major wheat
allergens. ELISA testing with individual sera of wheat allergic pa-
tients showed no IgE-binding capacity in most cases. In a food
challenge with 15 children with a history of severe urticaria after
ingestion of wheat-based products, only 2 patients showed an im-
mediate reaction to the hypoallergenic cake (Tanabe, 2008).

The proteolytic system of lactic acid bacteria of sourdough origin
has been studied for its ability to hydrolyse toxic peptides. Lacto-
bacilli have a complex peptidase system. Rizzello et al. (2006) and
De Angelis et al. (2007) evaluated the potential of selected lactic
acid bacteria and of a mixture of probiotic lactic acid bacteria and
bifidobacteria in the production of sourdough bread to hydrolyse
wheat flour allergens. Based on immunoblotting with pooled sera
of wheat allergic patients, it was shown that compared to baker’s
yeast bread, selected lactic acid bacteria favoured the degradation
by digestive enzymes of the IgE-reactive epitopes which persisted
after baking wheat bread. The selected lactic acid bacteria possess
a complementary protease and peptidase activity against polypep-
tides extremely resistant to proteolysis by digestive enzymes.

8.3. Concluding comments

• Heating at high temperature in the presence of carbohydrates
may induce the formation of protein aggregates with allergen-
ic potential that are resistant to digestibility.

• Acid hydrolysed wheat gluten may induce allergenicity in wheat
tolerant people, including also allergenicity to traditional wheat
products.

• In order for enzymatic hydrolysis to reduce the allergenicity of
wheat, specific proteolytic properties are needed.

9. Mustard and mustard allergens

9.1. Introduction, including processed foods derived from oilseed
rape

Many Brassica species are used for producing mustard. This paper
will focus primarily on Brassica juncea and Sinapis alba, the most
important species used for producing mustard worldwide (Food and
Agriculture Organization of the United Nations, 2014). Both species
are used in many diverse processed and prepackaged foods, as sea-
soning or flavouring agents, emulsifiers, and water-binding agents
for texture control, for infants, children and adults (Lee et al., 2008).
Mustard allergy is probably the most common among allergy to
spices (Niinimaki et al., 1989, 1995; Rancé, 2003). Although the
overall prevalence is relatively low, it has been found in several
studies that the symptoms could be severe, e.g. anaphylactic reac-
tions (André et al., 1994; Rancé, 2003). Interestingly, Brassica napus
(also called rapeseed or canola) seeds are used for producing oil but
not mustard. Although canola oil has not been shown to be aller-
genic, it is relevant to include it in this review as canola seeds contain
cross-reactive allergens to those found in mustard seeds. However,
the different species follow different food processing pathways (i.e.
mustard vs. oil). In addition, very large productions of Brassica are
recorded, especially in Canada (2007), and exposure to this species-
derived product can be high (OECD, 2011). Canola oil is used for
salad dressing and baking, and is also acceptable in hydrogenated
products such as margarine and shortenings (OECD, 2011).

Several studies have investigated the potential for B. napus to
cause food allergy. In general, sensitisation in children was associ-
ated with multiple allergies to other foods and pollen (Health Canada,

2010, Monsalve et al., 2001, Poikonen et al., 2009). There were a small
number of DBPCFC with adults or children (Figueroa et al., 2005;
Morisset et al., 2003) and SBPCFC studies with children (Rancé, 2003),
due mainly to the difficulty of masking the mustard taste and the
unethical health risk to conduct clinical studies with highly sensi-
tive patients.

Because the protein was either at very low levels or absent in
canola oil, the significance of the results of these allergenicity studies
in determining the safety of consumption of canola oil by the general
population was considered to be low (Gylling, 2006). In addition,
the food allergy to canola oil in adults has not been reported in the
scientific literature.

In adults, the mean cumulative dose–response was circa 125 mg
of mustard seed (S. alba) (Figueroa et al., 2005), equivalent to circa
32 mg of proteins. The lowest dose of mustard seed eliciting a re-
sponse was 45 mg, equivalent to circa 11 mg of protein. In children,
the lowest dose of mustard seed (B. juncea) eliciting a response was
14 mg, equivalent to circa 1 mg of protein (Morisset et al., 2003).
Furthermore, most of the case reports describe that the food elic-
iting the reaction was mustard sauce or mustard hidden in other
sauces, or due to cross-contamination. Only one case report (Kanny
et al., 1995) estimated the concentration of mustard in the dip re-
sponsible for causing the reaction as 0.15 mg/100 mg. Other case
reports only indicated that the amount of mustard associated with
the allergic response was small or present in trace amounts.

Many allergens in the Brassica and Sinapis species were
sequenced and described in the AllergenOnline database
(www.allergenonline.org). A high degree of sequence similarity
exists between various Brassica species. Known allergens associated
with food allergic reactions are Bra j 1, Bra n 1, Sin a 1, Sin a 2, Sin
a 3, Sin a 4. The major food allergens of the mustard seeds (Bra j 1
in B. juncea and Bra n 1 in B. napus) are storage proteins of the 2S
albumin class, which are abundant seed proteins (Puumalainen et al.,
2006).

9.2. Effect of processing on allergenicity

9.2.1. Effects of thermal processing and hydrolysis
Interestingly, all previously mentioned allergens are described

as quite resistant to heat. The heat stability is variable for each protein
but all are above 80 °C. For example, Bra j 1 is denatured at 82 °C
(Jyothi et al., 2007). The proteins can also interact with other food
matrix constituents like the phenolic compounds forming again a
more stable structure, which hence would lead to increased tem-
perature required for the denaturation process (González De La Peña
et al., 1996; Monsalve et al., 1993; Palomares et al., 2005). The
disulphide bonds may explain this heat stability as they form a more
compact structure (D’Hond et al., 1993; Gehrig and Biemann, 1996;
Menendez-Arias et al., 1988; Schmidt et al., 2004).

Based on the Thomas et al. (2004) approach, the results also
showed that the proteins were resistant to gastric and intestinal deg-
radation throughout a 60 min digestibility period (pH 2 with pepsin
and pH 6.8 with pancreatin, respectively). The in vitro digestibility
study of Savoie et al. (1988) showed that digestibility of rapeseed
proteins by pepsin and pancreatin was 83%, which was a lower value
than for casein (97%). Again, this low digestibility was explained by
the compact nature of the proteins, as a result of the high number
of disulphide bounds. Overall, these characteristics suggested that
the allergenic proteins in mustard remained intact throughout food
processing (i.e. heating) and digestion and could elicit an allergic
reaction in susceptible individuals.

Although B. napus contains a 2S-albumin, which is known to be
strongly allergenic, the lack of reported allergenicity records is very
likely due to the harsh nature of the combined heat and mechan-
ical processing for producing oil. According to the OECD (2011),
canola seed is traditionally crushed and solvent extracted in order
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to separate the oil from the meal. The process usually includes seed
cleaning, seed pre-conditioning and flaking (i.e. preheating of the
seeds to approx. 35 °C), seed cooking/conditioning (including a
steam-heating with a temperature, which is rapidly increased and
which ranges between 80 and 105 °C, for 15–20 min), pressing the
flake to mechanically remove a portion of the oil, solvent extrac-
tion of the press-cake to remove the remainder of the oil, oil and
meal desolventising (with final stripping and drying at a temper-
ature of 103–107 °C), degumming and refining of the oil. The most
probable hypothesis is that the proteins are removed from the oil
by extrusion. All these steps extract the potential allergens from oil.

9.3. Concluding comments

• Thermal processing and enzyme digestion are not sufficient for
abolishing the allergenic potential of mustard seed allergens.

• A combination of physical- and thermal treatment (e.g. extru-
sion) can suppress allergenicity of mustard seed allergens by
extracting the potential allergens from oil. Edible oils that are
bleached and deodorised are devoid of allergenicity.

10. Influence of processing on sensitisation

It is generally appreciated that food allergy, in common with other
forms of allergic disease, develops in two phases: a sensitisation
phase and an elicitation phase, the latter resulting in clinical symp-
toms of allergic disease. Sensitisation is the phase during which
immunological priming to the inducing allergen occurs, associ-
ated with the evolution of a Th2 biased immune response and the
production of IgE antibody. If the sensitised subject is exposed sub-
sequently to a sufficient amount of the inducing food allergen, then
an allergic reaction may be elicited, resulting in a variety of clini-
cal symptoms ranging from minor oral irritation to anaphylaxis (Perry
and Pesek, 2013; Sicherer and Sampson, 2014; Sicherer and Wood,
2013).

Much of this review has focused on how food processing is able
to impact on the IgG- and IgE-binding properties of food proteins
and their ability to elicit allergic reactions, i.e. the effects of food
processing on the recognition of epitopes on food allergens by IgE
antibodies. This may impact on the capacity of the processed al-
lergens to cross-link receptor-bound IgE, hence impacting on mast
cell degranulation and the elicitation of an inflammatory reaction.
Much less information is available with regard to the ability of food
processing to impact on the potential of a protein to induce the im-
munological priming required for the induction of IgE antibody
responses and the acquisition of allergic sensitisation.

Skewing of adaptive immune response to a Th2-type pheno-
type and IgE antibody production necessarily are preceded by an
innate immune response to the allergen. Activation of receptors on
cells of the innate arm of the immune system is a prerequisite for
the initiation of adaptive immune responses. Allergens have been
shown to have properties that allow interactions with various types
of pathogen recognition receptors, favouring Th2-biased immune
responses (see below for details). Allergen-bound lipids and glycans
might mimic pathogen-associated microbial patterns, favouring re-
ceptor binding (Thomas, 2013). As most foods that are contained
in the ‘big 8’ are often processed before being consumed, the ques-
tion emerges as to whether and to what extent such processing can
affect recognition of allergens by innate immune cells, in particu-
lar by dendritic cells (DCs) as most relevant antigen presenting cell
type that are pivotal in directing Th1 and Th2-responses. Molecular
characteristics of antigens (allergens) are crucial for biasing this Th-
response (Jankovic et al., 2001). It has now been shown that several
allergens, including some from foods, can directly activate DCs to
induce Th2-skewing (Ruiter and Shreffler, 2012). Next to this there
might also be a role for the epithelial cells. For instance it has been

shown that heat- or enzymatic induced aggregation of (milk) pro-
teins affected their transport across intestinal epithelia; as
aggregation appeared to induce a shift from transcytosis to uptake
via Peyer’s patches (Roth-Walter et al., 2008; Stojadinovic et al., 2014),
this may lead to a different immune response.

Processing changes the structural and chemical properties of pro-
teins, and hence of allergens. Proteins denature, aggregate, bind to
lipid structures, and undergo glycosylation and or glycation (Maillard
reaction). Clearly, these processing-related structural and chemi-
cal changes will have the potential to influence the allergenicity of
proteins as reflected by their propensity to bind to their specific IgE
antibodies.

Although most steps in the development of IgE-mediated aller-
gic sensitisation have been studied in some detail, much less is
known about the roles played by the innate immune system in this
process. Central events in the initiation of adaptive immune re-
sponses are the recognition, internalisation, processing and
presentation of antigen by specialised antigen presenting cells (APC)
(Kean et al., 2006). Here we consider briefly how food processing,
and the changes that result from it, may impact on the recogni-
tion by APC of antigens, and their interaction with them. In this
context probably the most important processing-related changes
are aggregation, denaturation, lipid binding, glycosylation and/or
glycation) (Thomas, 2014).

10.1. Glycosylation and glycation (Maillard reaction)

Analysis of the surface area of known allergens has shown that
many antigens are glycosylated (Jiménez-Saiz et al., 2014; Kean et al.,
2006). The glycosylated/carbohydrate structures can be recognised
by the C-type lectin receptors on dendritic cells redirecting a Th2
response. For example, the mannose structure of Der p 1 (house dust
mite allergen) is recognised by the mannose receptor (CD206) on
dendritic cells. Cross-linking of its ligand to the mannose receptor
leads to Th2 type polarisation of the dendritic cell (Chieppa et al.,
2003). Referring to food allergens, native Ara h 1 (a glycoprotein)
was found to stimulate monocyte-derived DCs, via binding to DC-
SIGN, to induce Th2-differentiation in naïve T-cells, whereas de-
glycosylated Ara h 1 did not (Shreffler et al., 2006). Analogously, heat-
induced glycation (Maillard reaction, i.e. formation of advanced
glycation end products, AGEs) may as well lead to allergic sensiti-
sation, as stimulation of DCs with AGE-modified protein induced
Th2-polarisation (Buttari et al., 2011; Mueller et al., 2013), in this
case possibly via the RAGE-receptor. A very recent elegant study by
Moghaddam et al. (2014) provides further support for the role of
glycation in allergic sensitisation to peanut. Exposure of BALB/c strain
mice, via either mucosal or cutaneous routes, to protein extracts from
dry roasted peanuts resulted in significantly enhanced IgG and IgE
antibody responses to raw peanut. The authors reported an in-
volvement of AGE-receptors (CD36 and RAGE) in this process
(Moghaddam et al., 2014). Ilchmann and her colleagues stimu-
lated murine myeloid dendritic cells (mDCs) with either native OVA
(hens’ egg white allergen), heat treated OVA without glucose or OVA
heated in the presence of glucose (AGE-OVA). Increased levels of
IL-2 in the AGE-OVA stimulated mDCs compared to the two con-
trols indicated enhanced T-cell activation by AGE structures. In
addition, increased IL-4 and IFN-γ secretion have been observed in
the AGE-OVA stimulated mDCs, indicating Th2-type polarisation of
the mDCs by AGE structures. Finally AGE-OVA was better taken up
by mDCS compared to non-glycated or native OVA (Ilchmann et al.,
2010). Hilmenyuk et al. (2010) observed that AGE-OVA, but not
non-modified OVA, stimulated the production of Th2-skewing
cytokines in mDCs.

Following this line of reasoning, the glycation products formed
by the Maillard reaction during processing might activate innate re-
ceptors to trigger allergic sensitisation by redirecting a Th2 response.
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10.2. Lipid binding

Allergen-lipid complexes may be formed endogenously from nat-
urally occurring lipids, but also be generated upon processing or
storage of foods (Bublin et al., 2014). Most allergens contain patches
with high proportions of surface exposed hydrophobic residues.
Seong and Matzinger (2004) state that such hydrophobic patches
are the main epitopes recognised by APCs triggering Th2 re-
sponses. In addition, the hydrophobic patches make allergens bind
lipids by electrostatic or hydrophobic interactions (Bublin et al.,
2014). It is found that the main allergens are often not covalently
bound to lipids but have structures mimicking lipids, glycans or gly-
colipids. The lipid structures can mimic pathogen-associated
microbial patterns and thereby cause binding of the antigens to TLR2,
TLR4 or C-type lectins, initiating a Th2 response (Thomas, 2013,
2014). For example, the milk protein β-lactoglobulin is a member
of the lipocalin family. Lipocalins have a hydrophobic ligand binding
site that is enclosed with a fold (Thomas, 2014). This hydrophobic
binding site allows lipid ligand binding, leading to enhanced Th2
skewing of the immune system (Bublin et al., 2014). Also,
β-lactoglobulin was found to be more thermo-stable when bound
to lipids (Considine et al., 2005). In addition, lipids can act as dietary
adjuvants and skew the immune response towards a Th2 re-
sponse, make food allergens more stable to proteolytic degradation
in the GI tract and enhance the uptake of allergens by epithelial cells
of the GI tract (Bublin et al., 2014).

10.3. Aggregation

Roth-Walter et al. (2008) have shown that during pasteurisation
aggregation of both β-lactoglobulin and α-lactalbumin occurs. Ag-
gregation is a consequence of denaturation. Whey proteins denature
above 65 °C, resulting in the exposure of hidden hydrophobic groups
(Croguennec et al., 2004). Hydrophobic residues of denatured whey
proteins interact and form aggregates. Aggregation is driven by ther-
modynamics, favouring mutual interaction of hydrophobic groups
over interactions with the aqueous environment (Raikos, 2010).
Roth-Walter et al. (2008) showed that aggregation due to
pasteurisation of both β-lactoglobulin and α-lactalbumin redi-
rects the site from epithelial cells towards Peyer’s Patches and that
enhanced uptake by the Peyer’s patches leads to sensitisation by
inducing enhanced secretion of IgE and Th2 cytokines. From this
it can be concluded that, during aggregation, already existing
epitopes and/or new epitopes are formed and expressed on the cell
surface of those aggregates, facilitating binding to APC present in
the Peyer’s Patches and redirecting a Th2 response.

Enzymatic cross-linking (with laccase) of β-lactoglobulin was
found to lead to a shift in uptake from epithelia to Peyer’s patches
and to increase its allergic sensitising capacity in BALB/c-mice (higher
levels of IgE, IgG1 and 2a) (Stojadinovic et al., 2014), corroborat-
ing earlier observations by Roth-Walter et al. (2008). Also, exposure
of DCs in vitro to cross-linked β-lactoglobulin induced a higher Th2-
response when co-cultured with T-cells (Stojadinovic et al., 2014).

10.4. Concluding remarks

• Allergens, especially if aggregated, glycated or lipid-associated,
can interact with a variety of pathogen recognition receptors, an
interaction that is often facilitated by ‘adjuvant’ structures, such
as e.g. lipids or glycans, that are bound to the allergens, possibly
mimicking pathogen-associated molecular pattern-like structures.

• Molecular characteristics of allergens are important for the type
of and magnitude of the subsequent innate response. Some of
such molecular characteristics that eventually lead to Th2-
type skewing, such as glycation, interactions with lipids and
aggregation, are influenced by processing.

11. Discussion

In this article the impact of processing (heat and non-heat treat-
ment) on the allergenic and antigenic integrity (IgE binding and IgG
binding, respectively) and allergenicity of food proteins has been
reviewed. The foods considered were peanuts, tree nuts, cows’ milk,
hens’ eggs, soy, wheat and mustard.

Much of the available literature has focused exclusively on the
impact of processing on the integrity, including the antigenic in-
tegrity, of food allergens. In such cases the effects of processing are
measured commonly as changes in the IgE-binding properties of
protein allergens. In many instances the effects of processing on the
IgE-binding activity of proteins have been (somewhat loosely) de-
scribed as changes in allergenicity, or in allergenic potential. However,
changes in the ability of a food protein to bind IgE antibody does
not necessarily translate into altered allergenic functionality. To
analyse allergenic functionality, methods such as mediator release
assays (MRA), basophil activation tests (BAT), skin prick tests, and
oral food challenges are required. Of these the double blind placebo-
controlled food challenge (DBPCFC) is widely regarded as being the
‘gold standard’ and providing the most definitive diagnosis of food
allergy. These tests are more relevant for predicting the effect of pro-
cessing on the ability of a protein to elicit an allergic reaction in a
previously sensitised subject. However, these tests are not always
readily available, and are usually found only in specialised clinical
centres.

A second important point is that changes induced by process-
ing on the ability of IgE antibody to bind to a food protein do not
necessarily indicate a change in the allergenicity of that protein
and its ability to cause the acquisition of sensitisation. Processing
may not only alter epitopes (changes in IgE antibody-binding
properties), but may also create new epitopes, that might have
the potential to induce sensitisation and food allergy. For this
reason it is important to consider whether processing has had an
impact on the inherent allergenicity of a food protein. However, it
is not currently possible to make such assessments using in vitro
methods and the most suitable approach involves the use of
animal models. Unfortunately, few such models are available, and
as yet none has been validated for the assessment of the allergenicity
of proteins.

In addition, there are other issues that arise from food process-
ing that are rarely addressed in the literature. For instance, it is
commonly assumed that food allergens are relatively stable pro-
teins and are resistant to proteolysis by pepsin in simulated gastric
fluid. In fact this is part of the mandated safety assessment package
required by WHO/FAO (FAO/WHO, 2001). It is possible that pro-
cessing, and also the matrix may have a significant impact on the
digestibility of a protein by altering susceptibility to gastrointesti-
nal enzymes (as demonstrated for example with ovalbumin from
egg (Takagi et al., 2003)). For this reason, a combination of pro-
cessing and digestion has to be taken into account in the assessment
of allergenicity and the resulting protein and peptide fragments
should be tested in functional assays like BAT or MRA.

Another issue is the solubility of proteins after processing. In some
cases solubility improves after heat processing, but in other in-
stances proteins will aggregate and display reduced solubility in
simple salt buffers (Lopez et al., 2012; Polenta et al., 2012). It is im-
portant, therefore, to monitor carefully the influence of processing
on the solubility of proteins as this could impact on the integrity
of assay systems. In most studies only tris or phosphate buffers are
used. As a consequence, only readily soluble proteins will be ex-
tracted from the food product and in this way an incomplete protein
panel is tested for allergenicity. The use of different buffers is there-
fore recommended, for instance a sequential extraction procedure
using in succession 20 mM tris buffer, 6 M urea, and 2% SDS/1% DTT
buffer. A more physiological approach would be to take into account
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the capacity of the digestion system to solubilise the processed
proteins and thus extraction methods that mimic the human di-
gestive system should be considered. In addition, processing and
the matrix can have a considerable impact on the detectability of
proteins, since both may affect allergen conformation and extract-
ability (Khuda et al., 2012). Due to changes in the immuno-reactivity
of proteins after heat treatment, the amount of residual proteins
detected using ELISA may also be variable. Direct detection methods
like mass spectrometry may offer improved detectability (Azarnia
et al., 2013; Popping, 2013).

Finally it is important to consider the number of patient sera that
should be used to assess IgE binding capacity or functionality. In
most studies only a few individual sera, or a serum pool, is used.
Both options have their advantages and limitations. Using pooled
sera will rule out the identification of inter-individual differences;
however, it might also average IgE reactivity and in this way reduce
detectability. Using individual sera would therefore be the pre-
ferred option, but an appropriate number of serum samples would
be required for the identification of significant differences between
individuals.

The overall conclusion drawn is that processing may influence,
but does not abolish, the allergenic potential of proteins. Only mi-
crobial fermentation and enzymatic or acid hydrolysis may have the
potential to reduce allergenic integrity and allergenicity to such an
extent that reactions will not be elicited. The combination of heat
processing and the aforementioned methods can improve this
hypoallergenic potency. Other processing methods such as pres-
sure treatments show promising results, though further studies are
needed to clarify the effects. Literature on the effect of processing
on allergenicity and the ability to induce sensitisation is scarce. This
is an important issue since processing may impact, in various ways,
on the ability of proteins to cause the acquisition of allergic sen-
sitisation, and this subject should therefore be an important focus
of future research. In addition, there remains a need to develop
robust, thoroughly evaluated and validated methods for the risk as-
sessment of food allergenicity where there is consideration of both
protein digestion and protein analysis.
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