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Fire and Smoke Remote Sensing and Modeling Uncertainties:
Case Studies in Northern Sub-Saharan Africa

Charles Ichoku,’ Luke T. Ellison,” Yun Yue,® Jun Wang,** and Johannes W. Kaiser®

ABSTRACT

Significant uncertainties are incurred in deriving various quantities related to biomass burning from satellite
measurements at different scales, and, in general, the coarser the resolution of observation the larger the uncer-
tainty. WRF-Chem model simulations of smoke over the northern sub-Saharan African (NSSA) region for
January-February 2010, using fire energetics and emissions research version 1.0 (FEERvI) aerosol emissions
derived from MODIS measurements of fire radiative power (FRP) and aerosol optical depth (AOD), resulted in
a severe model underestimation of AOD compared with satellite retrievals. Such uncertainties are attributable
to three major factors: limitations in the spatial and temporal resolutions of the satellite observations used to
quantify emissions, modeling parameters and assumptions, and the unique geographic characteristics of NSSA.
It is recommended that field campaigns involving synergistic coordination of ground-based, airborne, and satellite
measurements with modeling be conducted in major and complex biomass burning regions such as the NSSA,
and that significant improvements in the spatial and temporal resolutions of observation systems needed to

reduce uncertainties in biomass burning characterization be seriously considered in future satellite missions.

14.1. INTRODUCTION

Wildfires and other types of open biomass burning
represent one of the most ubiquitous disturbances to
vegetated land ecosystems globally [e.g., Andreae, 1991,
Ichoku et al., 2008a, 2012]. These vegetation fires are
either ignited by natural processes such as lightning or by
human action such as arson, accident, prescribed (controlled)
burning for land management, or societal cultural
practices as applicable to game hunting, slash-and-burn
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agriculture, and other forms of land clearing. Whatever the
nature or purpose of ignition, depending on circumstances,
such open fires can easily become hazardous to life and
property. The hazardous effects of fires are not limited to
the destructive effects of the associated flame and heat
[e.g., Cohen,2010], but also extend to the potential adverse
impacts of the emitted smoke on air quality and human
health both near and far [e.g., Colarco et al., 2004; Wang
et al., 2006; Wiedinmyer et al., 2006; Henderson et al.,
2011], as well as those of the postburn land surface pro-
cesses that may include erosion, landslides, mud deposits,
and pollution of water resources by soot and other residues
[e.g., Moody et al., 2013].

Determination of the areas and quantities of biomass
consumed by fires, and their resulting emissions and
impacts, can be done at local to global scales, depending
on the targeted application(s) and the available tools and
resources [e.g., Michalek et al., 2000; Ichoku and Kaufman,
2005; Roberts et al., 2005; van der Werf et al., 2006, 2010;
de Groot et al., 2007; Pouliot et al., 2008; Schultz et al.,
2008; Vermote et al., 2009; Giglio et al., 2010; Roy et al.,
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2010; French et al., 2011; Kaiser et al., 2012; Miettinen
et al., 2013; Peterson and Wang, 2013; Peterson et al., 2013;
Ichoku and Ellison, 2014; Schroeder et al., 2014a].
Irrespective of the approach or scale, such exercises are
generally associated with a wide range of uncertainties,
which are partly because of the dynamic and intractable
nature of biomass burning processes, and partly due to the
imperfections in the measurement approaches and mode-
ling assumptions used. Measurement methods may be
ground based, airborne, or satellite based. Ground-based
methods are typically used for localized measurements
with high precision over a short time period, whereas satel-
lite methods can be applied regionally or globally for an
extended time period albeit with a lower accuracy and pre-
cision. Based on the analysis of burned areas retrieved
from multiple satellite sensors during 1997-2008, it was
estimated that between 330 and 430 Mha were burned
annually globally, of which ~250 Mha (i.e., ~70%) was
estimated to have burned each year on the continent of
Africa alone [Giglio et al., 2010]. These numbers were
used, within the Global Fire Emissions Database version
3 (GFED3) framework, to estimate that the global annual
carbon emissions from open biomass burning for 1997-2009
was in the range of 1.6 Pg C yr! to 2.8 Pg C yr!, with an
annual average of 2.0 Pg C yr!, of which Africa alone
contributes ~52% [van der Werf et al.,2010]. Although the
emission uncertainties associated with such satellite-based
global estimates are large, they can be even larger at
regional scales. For instance, Zhang et al. [2014] found a
factor of 12 difference when comparing seven satellite-
derived fire emissions inventories for February 2010 in the
northern sub-Saharan African (NSSA) region. Therefore,
although the current paper will examine these uncertain-
ties from a global perspective, case studies will be mainly
based on data from the NSSA region, which comprise
mostly savanna fires [e.g., Gatebe et al., 2014].

Some of the main uncertainties in quantifying biomass
burning parameters stem from a variety of factors,
including the difficulty in addressing the following
questions: (1) Where and when exactly does a fire occur?
(2) What are the mass loadings and conditions of the bio-
mass fuel? (3) What is the fire intensity and/or size?
(4) What are the relative proportions of the fire phases
(flaming, smoldering, and glowing) per unit area and
how does this distribution vary in space and time?
(5) How long does a given fire burn, and how does it
affect (and is it affected by) environmental conditions?
(6) How far does a given fire spread, when is an area con-
sidered burned, and what is the total burned area when
the fire ends? (7) How much smoke is emitted per unit
time from a given fire? (8) How high is the plume injected
and how far is it spreading? (9) What are the important
constituents of the smoke and what are their respective
concentrations? (10) How do smoke constituents interact

with one another and with other atmospheric constituents
to change and/or form new ones over time? (11) How do
the characteristics of different fires in similar ecosystems
differ? (12) What are the fire diurnal cycle and the seasonal
burn pattern in a given area or region?

These questions are not an exhaustive list of the essential
questions concerning the quantification of biomass burn-
ing characteristics and emission constituents. Yet no single
measurement or modeling approach can address any
of them to the required accuracy at various spatial and tem-
poral scales. For instance, although ground-based and
airborne systems can be used for limited active fire meas-
urements at high temporal frequency over an extended part
of a day, only portions of the fire or smoke can be observed
at any given time. Conversely, satellite measurements can
cover much larger regions or even the entire globe, but only
for a smaller set of parameters at a much reduced spatial
resolution and/or temporal frequency, depending on
whether the satellite is geostationary or polar orbiting.
Ideally, the ability to address most of the above questions
to an acceptable level of accuracy should involve proper
synergy between the different (ground-based, airborne, and
satellite) measurement approaches and appropriate mode-
ling systems [e.g., Schroeder et al., 2014a].

This study addresses uncertainties related to the satel-
lite approach, which has become more and more widely
used for fire characterization and emissions estimation at
local to global scales. It is recognized that satellite obser-
vation systems are numerous and varied, thereby offering
a similarly diverse range of capabilities for remote sens-
ing of fires and smoke. However, the pyrolysis and emis-
sions processes of biomass burning are extremely dynamic
and continuous, and cannot be adequately followed by
satellite observations, which can only provide highly
discretized and sparse (both spatially and temporally)
sampling of such processes. This gap in observation
resulting from the intrinsic sampling intervals of different
satellite systems represents a significant fundamental
uncertainty in biomass burning characterization. Further-
more, even at the satellite sampling times, errors of
omission or commission do occur, imposing another
layer of uncertainty. These uncertainties related to non-
observation of existing fires or false alarms on nonexist-
ent fires, typically quantified in terms of errors of
omission and commission, respectively, have been quite
extensively investigated in the literature [e.g., Ichoku
et al., 2003; Li et al., 2003; Morisette et al., 2005; Csiszar
et al., 2006, 2014; Schroeder et al., 2008; Freeborn et al.,
2014]. Therefore, this study focuses on uncertainties of
measured parameters of actually observed fires, burned
areas, and smoke constituents.

The objective of this study is to investigate uncertain-
ties associated with the satellite characterization of bio-
mass burning, as they relate to the derived geophysical



FIRE AND SMOKE REMOTE SENSING AND MODELING UNCERTAINTIES 217

products such as smoke constituents and their applica-
tions. These uncertainties will be examined in the context
of the 12 basic relevant questions outlined above. To
anchor this study to contemporary reality, the analysis
will be limited to satellite observation systems that are
currently (or have been recently) operational, and known
to provide data products that are related to biomass burn-
ing (Table 14.1). Then, we will explore how the observa-
tion uncertainties can propagate when used in deriving
smoke emissions as well as in regional modeling. The
conclusions will include an outlook on the potential for
integration of available airborne and ground-based meas-
urements to improve results.

14.2. METHODS

Satellite measurements related to biomass burning
may be categorized into five groups of parameters,
namely: active fires, burned surfaces, smoke plume dis-
positions, aerosol distribution and particle properties,
and trace gas concentrations [Ichoku et al., 2012].
Whereas parameters of “active fires” (i.e., fire location,
fire temperature and area, and fire radiative power
[FRP]) and those of “burned surfaces” (i.e., burned area
and burn severity proxy indices such as the differenced
normalized burn ratio [ANBR]) are uniquely retrievable
from satellite measurements within the limitations of
remote sensing uncertainties [e.g., Roy et al., 2006, 2008;
French et al., 2008; Roy and Boschetti, 2009; Freeborn
et al., 2011; Randerson et al., 2012; Hyer et al., 2013;
Miettinen et al., 2013; Mouillot et al., 2014], direct satel-
lite retrieval of smoke constituents is somewhat more
ambiguous because they are often mixed with similar
particulate and gaseous constituents from nonfire
sources [e.g., Deeter et al., 2003; Kaufman et al., 2005].
Therefore, at regional to global scales, the most frequent
use of satellite active-fire and burned-area products is for
the estimation of smoke emissions, which are subse-
quently applied to various uses, including air quality and
climate modeling [e.g., Heald et al., 2003; Kasischke and
Bruhwiler, 2003; Kukavskaya et al., 2013].

The amount of a specific carbonaceous aerosol or trace
gas species emitted as a smoke constituent is traditionally
derived as follows [e.g., Lavoué et al., 2000; Andreae and
Merlet, 2001]:

M_ =EF.*M (14.1)

biomass

where M is the mass of the emitted smoke constituent x,
EF is 1ts emission factor, and M is the mass of the

biomass
dry biomass burned. M can be estimated as follows
[Seiler and Crutzen, 1980]:

b iomass

M =AxBxaxf (14.2)

biomass

where A is the burned area, B is the biomass density, a is
the fraction of aboveground biomass, and f is the frac-
tion consumed or combustion completeness.

Typically, EF _is derived from laboratory or field exper-
imentation, whereas A4, B, a, and f are derived through
satellite or airborne remote sensing, though they can be
based on hybrid approaches. Although most current
global and regional models employ emissions derived on
the basis of equations (14.1) and (14.2), there are numer-
ous uncertainties associated with this approach, particu-
larly with regard to the accuracy of determination of the
constituent parameters: EF_A, B, a, and f3, as well as the
error propagation that results when they are combined
[e.g., French et al., 2004].

In an effort to alleviate the complexity imposed by
requiring the solution of equation (14.2) as a prerequisite
to solving equation (14.1), Ichoku and Kaufman [2005]
established a similar relationship to equation (14.1), in
which EF _is replaced with C ¥, which is designated as the
emission coefficient (for any given smoke constituent x),
and M is replaced with either fire radiative energy

biomass

(FRE) or its release rate R, (i.e., FRP). Thus,

M_=C*-FRE
or (14.3)
Rx = CeY ’ Rﬁ'e

where R_is the rate of emission of species x (expressed
in kg/s) since R, is the FRE release rate expressed in
MlJ/s, or MW. C * is therefore expressed in kg/MJ. The
validity of the relationship in equation (14.3) has been
verified in a laboratory experiment, where satellite meas-
urements of fire energetics and smoke were replicated
by burning small biomass fuel samples in a burn chamber
equipped with a giant smoke stack upon which the rele-
vant instruments were set up, and the retrieved FRP and
AOD were used to derive C, for smoke aerosols [Ichoku
et al., 2008Db].

Based on equation (14.3), a new emissions dataset,
known as the fire energetics and emissions research ver-
sion 1.0 (FEERv1), has been developed from Terra- and
Aqua-MODIS measurements of FRP and AOD [Ichoku
and Ellison, 2014]. FEER.v1 is composed of a global
gridded C* dataset at 1° X 1° grid spatial resolution for
smoke aerosols and a number of other important con-
stituents. These gridded C values for smoke aerosols
were applied to equation (14.3) together with FRE data
obtained through time integration of MODIS FRP
measurements that have been gridded at 0.5° x 0.5° reso-
lution within the Global Fire Assimilation System
[GFASV1.0; Kaiser et al., 2012]. The resulting daily
emissions of smoke aerosols are then utilized as input
into the Weather Research and Forecasting coupled with
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Chemistry (WRF-Chem) regional model for simulation
of biomass burning aerosol emissions and dispersion
over the NSSA region [Zhang et al., 2014]. The WRF-
Chem AOD simulations are compared against MODIS-
derived AOD for January and February 2010.

14.3. RESULTS AND DISCUSSION

Uncertainties associated with satellite measurements
can vary widely because fires occur in different ecosys-
tems at various scales under a diversity of conditions.
Table 14.2 provides a summary of uncertainties associ-
ated with some of the satellite-based measurements of
fire- and smoke-related variables, as obtained from litera-
ture, classified according to the 12 essential questions
identified in the introduction, and expressed under differ-
ent ranges of sensor spatial resolutions (very high: 0.001—
0.01km, high: 0.01-0.1km, medium: 0.1-1km, coarse:
1-10km, and very coarse: 10-100km), for ease of refer-
ence. These sensor-resolution classifications were deter-
mined based on a reasonable assessment of typical
contemporary satellite instruments used for regional-
global remote sensing. The reported uncertainty value
ranges represent rough averages (not actual arithmetic
means) estimated from the variety of values and plots
published in the respective cited references. Overall, it is
noticeable that uncertainties not only differ by variable
but also by resolution, generally getting worse the coarser
the resolution, as can be observed in cases represented in
at least two spatial resolution categories. From the partial
distribution of values in Table 14.2, it is obvious that
most of the variables related to active fires and burned
areas are observed at medium to coarse resolutions,
whereas those associated with smoke are observed at
coarse to very coarse resolutions. Analysis of global fire
distributions has shown that lower FRP fires (which can
be either relatively small hot fires or cooler fires of vari-
ous sizes) occur much more frequently than larger ones in
virtually all regions of the world [e.g., Ichoku et al.,
2008a]. Thus, most fire-related variables are observed at
resolutions that are much coarser than their scale of
occurrence, thereby contributing to the uncertainty. Also,
because of the temporally discrete nature of satellite
observations, time-dependent fire and emissions charac-
teristics such as fire duration, smoke emission rates, and
transformations are not directly retrieved, though when
the fires are large enough to be observed from geostation-
ary satellites, it may be possible to determine fire dura-
tion. Otherwise, such time-dependent phenomena are
typically derived through postproduction modeling that
incorporates additional parameters from other sources.

One of the outcomes of the survey in Table 14.2 is that
all satellite retrievals are subject to significantly large
uncertainties (underestimation and overestimation).

However, at each scale, fire radiative power (FRP) appears
to be more prone to underestimation relative to higher
resolutions [Wooster et al., 2003; Roberts and Wooster,
2008]. Burned area (BA) also appears to have a greater
tendency toward underestimation [e.g., Roy and Boschetti,
2009]. This is probably because of the relatively coarse
resolutions at which they are observed, causing nondetec-
tion of smaller or less intense fires and smaller burned
areas [e.g., Wang et al., 2009; Tsela et al., 2014]. Since
FRP and BA are the satellite-retrieved variables that are
most commonly used for emissions estimates as in equa-
tions (14.2) and (14.3), the implications of their uncer-
tainties for emissions require evaluation. Part of the
reason why FRP and BA can be severely underestimated
is because of the imaging geometry constraints of most
satellite sensors, whereby pixels become large, fewer, and
sometimes overlap away from nadir, resulting in lower
total FRP, as illustrated in Figure 14.1. Similarly, BA has
the tendency toward underestimation, whether it is
derived using a change detection approach [e.g., Roy
et al., 2008] or estimated from the active fire-pixel counts
[e.g., Giglio et al., 2009]. A global assessment of the over-
all effect of this phenomenon based on a long record
(2003-2009) of MODIS active fire observations in rela-
tion to scan angles is illustrated in Figure 14.2. By com-
paring fires observed at a single pixel at different off-nadir
scan angles (starting from 25° up to the MODIS maxi-
mum of 55°) to the corresponding nadir pixel counts for
the same fire, it has been found that a single fire pixel
observed by MODIS at 55° off nadir can be equivalent to
up to 16 fire pixels observed at nadir. In terms of FRP,
although the value can be doubled at 55° off nadir, it
becomes less than 30% when evaluated per km?, which
amounts to a net underestimation, since there are consid-
erably fewer observations off nadir than at nadir.

To evaluate the uncertainty of aerosol emission esti-
mates on model simulations, FEERv] aerosol emissions
were implemented in WRF-Chem over the NSSA region.
Recent results of comparisons between FEERv1 aerosol
emissions against other major emissions inventories in
this region show that FEERvI emissions are higher (by
up to a factor of two) than many of the commonly used
global fire emissions inventories that are based on bot-
tom-up approaches [Ichoku and Ellison, 2014; Zhang
et al., 2014]. Those bottom-up emissions inventories are
typically used with enhancement factors in model simula-
tions of smoke aerosols to match observed atmospheric
aerosol distributions [e.g., Kaiser et al., 2012]. However,
even when provided with uniform emissions, different
models also have intrinsic characteristics that can signifi-
cantly affect the uncertainty of simulations of smoke
aerosol processes, transport, and impacts [e.g., Textor
et al., 2007]. The quantitative evaluation performed in
this study involves deriving aerosol optical depth (AOD)
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Terra-MODIS: Local time =11:45 am, scan
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Figure 14.1 Effect of scan angle on MODIS observation of the Station Fire in Pasadena, California, on 30 August
2009. Fire detections near nadir (bottom left) show pixels to be almost square shaped at 1 x 1 km resolution,
whereas near scan edge (bottom right) pixels are much fewer, individually stretched almost up to 4 x 2.5 km
resolution, duplicated, and overlapping one another, and total FRP is underestimated.

from WRF-Chem based on FEERv] emissions and com-
paring this with direct AOD retrievals from MODIS.
This is done for January and February 2010, which is the
typical peak of the burning season in NSSA. Incidentally,
significant dust emissions also occur in this region during
this season, as indicated by very heavy aerosol loading
that appears prominently in dark red colors in
Figure 14.3b, which represents a simple combination of
both Terra- and Aqua-MODIS Collection 5 (C5) AOD
retrievals from the Dark Target, Deep Blue, and Ocean
algorithms. Although the current MODIS Collection 6
(C6) AOD product has a combined version [e.g., Levy
et al., 2013], CS5 is used for the current comparison to
avoid an attempt to characterize additional discrepancy
due to version differences, as the FEERv1 emissions were
based on C5. Since WRF-Chem simulations did not
include dust emissions, to avoid (or at least limit) dust

influence in the satellite AOD samples, it was decided
that these comparisons would be most realistic at areas
that are not in the normal seasonal dust trajectory. Four
areas were selected for the MODIS/WRF-Chem AOD
comparisons and labeled according to the main country
or region covered, namely: Senegal, Gabon, Central
Africa, and Southern Sudan (Figs. 14.3b and 14.3c).
Terra- and Aqua-MODIS C5 AOD are in general good
agreement overall, but WRF-Chem AOD simulations are
very low (Fig. 14.3d), in spite of the fact that the FEERvI
emissions upon which they are based are higher than
those of most other existing smoke emissions inventories.
This AOD underestimation may be due to a combination
of multiple factors, one of which may be emissions under-
estimation, while others may include WRF-Chem model
variables and parameters as well as assumptions and pro-
cess treatment algorithms. Also, although the main areas
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Figure 14.2 Analysis of the effect of scan angle on collocated MODIS fire observation from Terra and Aqua,
within 20 min of each other globally for 2003-2009. This collocation is only possible within the high latitudes
(>55°N) where there is significant overlap of MODIS swaths between the two satellites. MxD14 represents the
official MODIS fire products from Terra (MOD14) and Aqua (MYD14). There were 11,295 pairs of Terra/Aqua fire
observations. (Top) Relative percentages of off-nadir single pixel fire detection from one satellite and correspond-
ing number of near-nadir pixels of the same fire from the other satellite. (Bottom) Ratios of the FRP value of single
off-nadir pixels to total FRP value of the corresponding near-nadir fire pixels, expressed both in terms of FRP (as
in MODIS collection 5) and FRP per unit area (as in MODIS collection 4). The point values are the means of such
ratios for bins of 1° off-nadir observations starting at 25° scan angle, whereas error bars are the corresponding

standard deviations of the FRP ratios.

of dust loading have been avoided in these comparisons,
there could still be some residual dust or even cloud con-
tamination in the MODIS-retrieved AOD. Because of
various types of AOD retrieval constraints and MODIS
swath coverage limitations, typical maps of AOD contain
significant data gaps, such that the boxes for the regions
of interest are seldom completely filled, as exemplified by
Figure 14.3b, unlike Figure 14.3¢c, which shows complete
coverage offered by the model. In Figure 14.3d, different
circle symbol sizes on the Terra and Aqua curves depict
the degree of coverage of sample areas for the MODIS
AOD curves. The plots show that WRF-Chem AOD
tends to agree better when the sample boxes have higher
coverage by MODIS retrievals, as the root mean square
error (RMSE) values denote in Table 14.3. Based on these
results, it can be inferred that WRF-Chem regional

modeling of smoke aerosols over NSSA using the
FEERv1 satellite-based emissions estimates produce a
net underestimation of AOD relative to satellite AOD,
with the discrepancy becoming larger as the gap in satellite
AOD coverage increases.

14.4. CONCLUSIONS

Satellite fire observation is relied upon for many appli-
cations. However, significant uncertainty is incurred in
the satellite retrieval or estimation of biomass burning
quantities, such as active fire location, area, temperature,
radiative power, burned area and burn severity, plume
injection and profile, and smoke constituents including
aerosols and trace gases. Typically, the uncertainties tend
to increase as the spatial and temporal resolutions of the
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Figure 14.3 Evaluation of uncertainty in aerosol optical depth (AOD) generated from WRF-Chem model based
on FEERv1 aerosol emissions, by comparison to satellite-observed AOD over northern sub-Saharan Africa (NSSA)
during January—February 2010: (a) Fire locations and associated FRP values from MODIS on Terra and Aqua;
(b) composited Terra and Aqua MODIS mean AOD for 5 February 2010, showing boxes where AOD comparisons
are made; (c) WRF-Chem simulation of only smoke aerosol AOD for 5 February 2010, also showing the sampling
box locations. AOD values increase from blue to red. Notice the difference in AOD value ranges as indicated by
the color scales between (b) and (c). Boxed areas are selected to avoid the main dust trajectory (as indicated by
the dark-red thick aerosol plume in [b]), such that the sampled AOD may be mainly smoke aerosols; (d) daily
MODIS average AOD at Terra and Aqua overpass times (colored curves) and corresponding WRF-Chem simula-
tions (black curves) for 12-1 p.m. local time, which coincides approximately with the average of the local times
of Terra and Aqua overpasses. The size of the circles on the satellite-AOD curves indicate the extent of spatial
coverage of the satellite retrievals within the sample boxes, as gaps do occur due to cloud or other factors that
can cause AOD retrieval to fail (as seen in [b]).
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Table 14.3 Root Mean Square Error (RMSE) Values Between WRF-Chem AOD Simulations and MODIS AOD Retrievals
for Terra and Aqua According to Bins of 25% Coverage of MODIS AOD Retrievals Over Each Sample Box Area Shown

in Figure 14.3b.

Senegal Gabon C. Africa S. Sudan
Box coverage (cov.) Terra Aqua Terra Aqua Terra Aqua Terra Aqua
75% < = cov. <100% -(0) 0.22(16)  —-(0) -(0) 0.13(20) 0.13(13) 0.20(20)  0.20(12)
50% < = cov. <75% 0.17(27) 0.20(20) 0.27 (1) -(0) 0.24 (14) 0.20(13) 0.20(17)  0.20(19)
25% < = cov. <50% 0.18 (25 025(17) 039(11) 0.47(2) 0.29(13)  0.25(21) 0.29(14) 0.25(15)
0% < = cov. <25% 0.13 (7) 0.24 (6) 0.53 (47) 0.49(6) 031(11) 0.29(12) 0.27(8) 0.33 (13)

Note: The numbers in parentheses represent the sample size (i.e., the number of days in January—February 2010 falling

within the respective coverage bins for each case).

satellite observations decrease. Incidentally, most of these
biomass-burning quantities are currently observed at
suboptimal spatial and temporal resolutions. For
instance, the current operational systems, such as MODIS
and VIIRS, that provide the most commonly used active
fire products, observe these fires at nominal 1000m and
dual (375m and 750m) spatial resolutions, respectively,
even though most open fires exist at much smaller scales.
As a result, most of these fires are omitted and the FRP
for those that are observed are mostly underestimated. In
the same way, burned areas are underestimated. Since
FRP and burned areas are used mostly to estimate smoke
emissions, these also become underestimated and are
propagated into modeling simulations of smoke distribu-
tions from fires.

Although such uncertainties affect fire measurements
and modeling everywhere, the northern sub-Saharan
African (NSSA) region has been used as a case study to
evaluate the effect of emissions uncertainty on aerosol
estimates for this study. This is fitting, given that NSSA
contributes 20%—-25% of global biomass burning, and
together with southern sub-Saharan Africa (SSSA) make
up>50% of the annual global biomass burning.
Nevertheless, NSSA biomass burning has been one of
the least investigated by means of ground-based or air-
borne measurement techniques, and therefore poten-
tially harbors the largest uncertainty, as estimates of its
biomass burning parameters are based mainly on satel-
lite observations and other proxy information. Overall,
it is found that FEERv1 emissions, which are based on a
top-down approach from MODIS measurements of
FRP and AOD, when used in regional smoke modeling
with the WRF-Chem model can underestimate AOD
relative to MODIS by 0.13 to 0.27 RMSE in AOD when
MODIS has AOD retrievals in 50% or more of the area
of interest. Paradoxically, a similar comparison of
MODIS C5 AOD against simulated AOD from the
Goddard Chemistry Aerosol Radiation and Transport
(GOCART) global model using emissions based on
satellite BA products through a variety of bottom-up

approaches show a severe overestimation in the NSSA
region [Petrenko et al., 2012]. This is even more surprising
because those bottom-up emissions based on BA had
been shown to produce lower smoke emissions than
FEERvI, which is based on a top-down approach using
FRP measurements [Ichoku and Ellison, 2014]. This type
of obvious discrepancy causes a general confusion
regarding which of the following three areas could be the
main source of the uncertainty: emissions, model, or
geographic region.

Uncertainties in the quantification of fire output, par-
ticularly smoke, by satellite and modeling can be affected
by a variety of factors, including: satellite measurement
characteristics, parameter retrieval algorithms, contami-
nation of desired variables by other undesired targets
such as clouds, model assumptions and resolution,
and the surface and atmospheric characteristics of the
geographic region of study. There is need for a well-
coordinated, comprehensive, and robust strategy to
address such uncertainty. Based on the results of the
current study and those cited here, the following three
recommendations become appropriate: (1) Conduct
integrated field experiments combining ground-based,
airborne, and satellite measurements and linking them to
modeling in a synergistic way [e.g., Schroeder et al., 2014a]
to better characterize biomass burning energetics and
emissions in a coherent manner. (2) Conduct such inte-
grated field studies in the NSSA region, which contrib-
utes 20%—25% of global biomass burning emissions and
even a larger proportion of atmospheric dust loading
within the same season, making remote-sensing discrimi-
nation of dust and smoke almost impossible over land,
and thus far investigated mainly over ocean [e.g., Kaufinan
et al.,2005; Guo et al.,2013]. (3) Design future fire-related
satellite missions with specific attention toward signifi-
cantly improving the spatial, temporal, spectral, and
radiometric resolutions of sensors to maximize the
retrieval of the various variables related to fires and
smoke, as listed in Table 14.2, in order to optimally
address their associated essential questions.
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