
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Publications from USDA-ARS / UNL Faculty U.S. Department of Agriculture: Agricultural 
Research Service, Lincoln, Nebraska 

2005 

Molecular evolution of herbicide resistance to phytoene Molecular evolution of herbicide resistance to phytoene 

desaturase inhibitors in desaturase inhibitors in Hydrilla verticillataHydrilla verticillata  and its potential use to and its potential use to 

generate herbicide-resistant crops generate herbicide-resistant crops 

R. S. Arias 
U.S.D.A. National Peanut Res. Lab., renee.arias@usda.gov 

Michael D. Netherland 
USACE ERDC Env Laboratory 

Brian E. Scheffler 
USDA-ARS Genomics and Bioinformatics Research Unit, brian.scheffler@ars.usda.gov 

Atul Puri 
University of Florida 

Franck E. Dayan 
USDA-ARS, Natural Products Utilization Research Unit, fdayan@msa-oxford.ars.usda.gov 

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub 

 Part of the Agricultural Science Commons 

Arias, R. S.; Netherland, Michael D.; Scheffler, Brian E.; Puri, Atul; and Dayan, Franck E., "Molecular 
evolution of herbicide resistance to phytoene desaturase inhibitors in Hydrilla verticillata and its potential 
use to generate herbicide-resistant crops" (2005). Publications from USDA-ARS / UNL Faculty. 901. 
https://digitalcommons.unl.edu/usdaarsfacpub/901 

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research 
Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion 
in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of 
Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/188117051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usdaarsfacpub
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaars
https://digitalcommons.unl.edu/usdaarsfacpub?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F901&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1063?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F901&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/usdaarsfacpub/901?utm_source=digitalcommons.unl.edu%2Fusdaarsfacpub%2F901&utm_medium=PDF&utm_campaign=PDFCoverPages


Pest Management Science Pest Manag Sci 61:258–268 (2005)
DOI: 10.1002/ps.1022

Molecular evolution of herbicide resistance
to phytoene desaturase inhibitors in Hydrilla
verticillata and its potential use to generate
herbicide-resistant crops†

Renée S Arias,1 Michael D Netherland,2 Brian E Scheffler,1 Atul Puri3 and
Franck E Dayan1∗
1USDA/ARS, Natural Products Utilization Research Unit, PO Box 8048, University, Mississippi 38677, USA
2USACE ERDC Env Laboratory, Center for Aquatic and Invasive Plants 7922 NW 71st Street, Gainesville, FL 32653, USA
3Department of Agronomy, University of Florida, Gainesville, FL 32611, USA

Abstract: Hydrilla [Hydrilla verticillata (Lf) Royle] is one of the most serious invasive aquatic weed
problems in the USA. This plant possesses numerous mechanisms of vegetative reproduction that enable
it to spread very rapidly. Management of this weed has been achieved by the systemic treatment of water
bodies with the herbicide fluridone. At least three dioecious fluridone-resistant biotypes of hydrilla with
two- to fivefold higher resistance to the herbicide than the wild-type have been identified. Resistance is
the result of one of three independent somatic mutations at the arginine 304 codon of the gene encoding
phytoene desaturase, the molecular target site of fluridone. The specific activities of the three purified
phytoene desaturase variants are similar to the wild-type enzyme. The appearance of these herbicide-
resistant biotypes may jeopardize the ability to control the spread of this non-indigenous species to other
water bodies in the southern USA. The objective of this paper is to provide general information about
the biology and physiology of this aquatic weed in relation to its recent development of resistance to the
herbicide fluridone, and to discuss how this discovery might lead to a new generation of herbicide-resistant
crops.
 2005 Society of Chemical Industry

Keywords: non-indigenous species; invasive species; somatic mutations; herbicide resistance; aquatic weed;
molecular adaptation

1 INTRODUCTION
Non-indigenous invasive species have a significant
ecological impact and they threaten the survival of
nearly half of the endangered species.1 Furthermore,
the economical and environmental damage caused by
non-native organisms amount to US$ 125–140 billion
per year in the USA alone.2–4

Since most eradication programs for invasive weeds
rely on the use of selective herbicides, the manage-
ment of these noxious plants is set back every time an
invasive plant develops resistance. Recently, fluridone-
resistant biotypes of hydrilla [Hydrilla verticillata (Lf)
Royle], one of the most serious aquatic weed problems
in the southern and western USA, have emerged in
the waterways of Florida. In vitro assays have shown
that mutations at the codon for the amino acid 304
of phytoene desaturase (pds) gene of hydrilla rendered

this enzyme less sensitive to the herbicide fluridone.5

Fluridone is the only herbicide approved by the USA
Environmental Protection Agency (USA-EPA) for sys-
temic treatment of large water bodies that efficiently
controls hydrilla.

This review covers the recent findings on fluridone-
resistant hydrilla, and the biological and physiological
aspects that could have contributed to the emergence
of herbicide-resistant biotypes. Furthermore, we
discuss the potential use of these genes in creating
herbicide-resistant crops.

2 DISTRIBUTION OF HYDRILLA IN THE USA
In the early 1950s, the female form of the dioecious
hydrilla was brought from Ceylon (now Sri Lanka)
to Missouri, and from there it was sent to Tampa
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Bay, Florida.6 The monoecious form of hydrilla was
introduced years later and first identified in North Car-
olina in 1980.7 Dioecious plants have staminate and
pistillate flowers on different individuals, whereas in
monoecious plants both types of flowers are separated
but borne on the same individual. Extensive studies
with random amplified polymorphic DNA (RAPD)
analysis of hydrilla samples from the USA and from
around the world have indicated that hydrilla acces-
sions from Florida, Texas and California are dioecious
and related to accessions from Bangalore, India.8,9

The monoecious plants from the USA cluster with
hydrilla strains from Seoul, Korea.8 This supported
the hypothesis that there is a single common origin
for the dioecious hydrilla population found in the
USA, and confirmed its geographical point of origin
close to Sri Lanka.6 Apparently, there has been more
than one introduction of the monoecious hydrilla in
the USA. Information on the distribution of monoe-
cious and dioecious hydrilla in the USA has been
compiled by the USA Geological Survey (USGS)
(http://nas.er.usgs.gov/plants/maps/hy vert bio.jpg).
Hydrilla is widely distributed around the world, having
been reported in Europe, Asia, Africa, Australia and
America.10,11

3 ECOLOGICAL AND ECONOMICAL IMPACT
According to the Office of Technology Assessment,
at least US$ 100 million is spent annually to control
aquatic weeds.12 Additional losses and damages are
estimated at around US$ 10 million, giving a total cost
of US$ 110 million per year.2 In Florida, aquatic exotic
plants, including H verticillata (hydrilla), Eichhornia
crassipes (Martius) Solms-Laubach (water hyacinth)
and Pistia straiotes (L) (water lettuce) are affecting fish
and other aquatic animal species, choking waterways,
changing nutrient cycles and reducing recreational use
of rivers and lakes.2

Hydrilla has spread throughout the country’s water-
ways, clogging irrigation and drainage canals, degrad-
ing water quality, reducing productivity of recreational
fisheries and impeding navigation.12 Even with an
expenditure of US$ 50 million during the 1980s,
the percentage of Florida waters invaded by hydrilla
increased from 37 to 41%.13 The cost of using her-
bicide to control hydrilla is US$ 1235 per hectare
(www.ucsusa.org/global environment/invasive spec-
ies) while the mechanical control for hydrilla
can cost as much as US$ 2470 per hectare
(www.invasive.org/eastern/eppc/HYVE.html).

4 BIOLOGY OF HYDRILLA
Hydrilla verticillata is a member of the family
Hydrocharitaceae. This submersed macrophyte is well
adapted to freshwater environments,14 although it can
also grow at 0.7% salinity, approximately a fifth of
seawater concentration.15 There are dioecious and
monoecious forms of this species, and both are present

in the USA.8,9,11 In the overall distribution of hydrilla
throughout the world, the monoecious form is more
prevalent in warmer tropical areas, while the dioecious
form occupies lower temperature areas. Monoecious
hydrilla might be well adapted to high temperatures,
making it highly feasible for both biotypes to overlap
in the southern states of the USA.16 Hydrilla has the
general appearance to the untrained observer of being
a dicotyledonous plant, but is in fact classified as a
monocotyledonous plant. The lamina of a hydrilla leaf
is only two cell-layers thick.17 Since the harmful effects
of UV-B on sensitive photosynthetic tissues is reduced
by internal light scattering in thick leaves,18 it is very
likely that the reduced leaf thickness of hydrilla makes
it more susceptible than other plants to a herbicide
that induces photodamage, such as fluridone. Hydrilla
has low light compensation and saturation points, and
a low carbon dioxide compensation point, enabling it
to grow in only 1% of full sunlight.19 An interesting
physiological feature of hydrilla is that it is the only
known plant to operate a C4 photosynthetic carbon
dioxide concentration mechanism without possessing
Kranz anatomy.17,20

Hydrilla has developed an inducible C4-acid cycle
to combat adverse conditions, such as limiting carbon
dioxide, high oxygen concentration, high temperature
and irradiance. Therefore, hydrilla can shift between
C3- and C4-type photosynthesis, depending on the
environment.20 It is believed that the hydrilla system
represents an archetypal form of C4 photosynthesis
among angiosperms, and that this process may have
occurred in water before its appearance on land.20

4.1 Reproduction
Hydrilla reproduces in nature through a variety of
means, including fragmentation, seeds, tubers, stolons
and rhizomes. Stem fragments containing a single
node can form a mature plant and as much biomass
as 16 shoot tips.21,22 Such fragmentation can occur,
for example, by a boat propeller passing through a
patch of hydrilla. However, the main reason for its
persistence and longevity in natural environments is
through production of specialized dormant buds called
‘turions’. These structures pose the greatest challenge
for controlling this aquatic weed species. Turions
that form in the leaf axils and grow above ground
are named axillary turions; those that form at the
end of positively geotropic rhizomes extending into
the hydrosoil are named subterranean turions.23–25

Subterranean turions can remain dormant for as
long as 5 years and are thought to maintain hydrilla
growth within a given area, even through periods of
drought.26 Axillary turions are much smaller than
subterranean turions, and are generally formed on
detached floating mats of hydrilla. They last for about
1 year in the hydrosoil,26 and provide a mechanism for
intermediate distance dispersal within a waterbody
and between waterbodies.27–29 The two biotypes,
monoecious and dioecious appear very similar, but
differ in their reproductive cycle. In general, the
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monoecious hydrilla biotype is more prolific in
the formation of both subterranean and axillary
turions (two- to sevenfold greater) than the dioecious
biotype.30 Turion formation is a photoperiodic effect
and most production occurs under short days for the
dioecious biotype.11,31–33 In contrast, the monoecious
biotype produces turions throughout the year.31,34

Seed production has been reported for the monoe-
cious biotype in different parts of the world including
India,35 Australia36 and the USA.37 In addition, sex-
ual compatibility exists between the monoecious and
dioecious biotypes. In particular, the female form of
Florida’s dioecious hydrilla produced viable seed in
crosses with monoecious strains from Malaysia, Ban-
galore, Kashmir, New Zealand and Panama under
culture conditions.11 Out of 56 crosses, 71% produced
seeds, of which 90% were viable. Also, the female
hydrilla biotype from Florida was the second largest
seed producer out of 24 crosses with the monoecious
hydrilla from Penang Island (Malaysia).11 Monoecious
and dioecious biotypes have already been reported in
different lakes in California,25,38 and also growing
together at Lake Gaston on the Roanoke River located
on the Virginia–North Carolina border, USA.39 The
potential cross-pollination between monoecious and
dioecious hydrilla in areas where both biotypes grow
together could result in increased genetic variability
and possible enhanced adaptability of hydrilla to the
environment.

4.2 Growth
A hydrilla colony originating from a single stolon can
expand radially at a rate of 4 cm day−1, with an average
production of one new ramet m−2 day−1. Root crowns
develop stolons (horizontal above-ground shoots) that
extend into the area surrounding the parent plant and
establish new plants.27 For the dioecious hydrilla, most
of the colony expansion (99.9%) is by stoloniferous
growth, while the spread from fragmentation is only
0.02 ramets m−2 day−1.27 There have been reports
of 1250 to 1976 tubers m−2 being produced by the
dioecious hydrilla within a period of four months in
various Florida lake sediments.40 However, in other
areas, up to 2812 tubers m−2 were produced by
the dioecious hydrilla during winter, while for the
monoecious hydrilla the production of tubers during
the summer was 5366 tubers m−2 and 2740 tubers m−2

during winter.22 Hydrilla can grow from the substrate
to the water surface and reach up to 15 m in length,41

the stems can branch and they harbor leaf whorls
(nodes) every 11–12 mm in the dioecious hydrilla and
every 16 mm in the monoecious,39 and each node can
regenerate a new plant.23

Biomass allocation studies of the dioecious hydrilla
show that this plant can accumulate up to 1200 g m−2

dry weight of above-ground shoot tissue.42 Hydrilla
has several organs for storage of carbohydrates, eg
tubers, turions, stolons, stems and root crowns.42

Of these, the upper and lower stems contain the
largest amounts of total non-structural carbohydrates,

ranging from 100 to 700 g m−2 in the upper and lower
stems, respectively. Stolons and root crowns are the
main source for re-growth in spring, rather than from
tubers. Tubers can remain viable in the sediment for
up to 5 years. In Texas, the dioecious hydrilla could
accumulate 200 g m−2 dry shoot weight during the
winter months, and about 600 g m−2 day−1 during the
summer months.42

4.3 Genetic diversity
The genetic diversity level in aquatic macrophytes is
known to be lower than that in terrestrial plants.43

Hydrilla, however, is regarded as a species of
high genetic variation.44 Genetic variation between
hydrilla strains from the USA,10 Africa45 and other
regions has been examined by comparative isozyme
studies46,47 and random amplified polymorphic DNA
(RAPD).8,48,49 These studies were used to identify
hydrilla strains in infected areas, and to determine the
genetic relationship between geographically diverse
hydrilla populations. Generally, hydrilla populations
from Europe showed isozyme patterns distinct from all
other hydrilla strains, which may be due to ecological
adaptation and genetic drift.45 Isozyme patterns of
African biotypes are not very distinctive, probably
due to local infestations and the non-weed nature of
hydrilla in that continent.45 The non-invasive nature
of hydrilla in Africa could be due in part to the
presence of numerous species of insects (Diptera
and Lepidoptera) that feed on this species.50 Genetic
diversity in hydrilla was especially large in hydrilla
collections from Southeast Asia and even between
plants collected from a single lake in that region
(Curug, Indonesia).47 Southeast Asia is considered the
origin of distribution of this noxious weed species.51

The dioecious and monoecious biotypes of hydrilla
from the USA can be differentiated by isozyme
patterns52 and by RAPD analysis.39 Using RAPD
analysis, the monoecious biotype produces a single
amplification product (850 base pairs), while the dioe-
cious hydrilla produces two amplification products
(850 and 450 base pairs).39

4.4 Monoecious and dioecious biotypes
Dioecious hydrilla was reported to have been
introduced into the USA in the 1950s and was first
observed in a Florida lake in 1959.53 This dioecious
female plant has spread throughout Florida and much
of the southeastern USA.54 It has been reported in
different parts of Georgia, Tennessee, and South and
North Carolina,25 as well as Texas, California and
Connecticut.49,55 A second, separate introduction of
the monoecious biotype was reported in Delaware in
1976 and in the Potomac River in 1980, and is also
distributed throughout Virginia, Maryland and North
Carolina.56 Besides flowering and turion production,
these two biotypes are also different in terms of growth
habits. Growth of monoecious hydrilla is generally
prostrate, near the hydrosoil, with many horizontal
stems and higher densities than dioecious hydrilla.
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The monoecious biotype can tolerate, and is even able
to sprout at, cooler temperatures than the dioecious
biotype.33,48 In contrast to its worldwide distribution,
the monoecious hydrilla possesses an annual growth
habit, along with rapid turion production, adapting
this biotype to the northern USA, which has cooler
temperatures and shorter growing seasons.

4.5 Ploidy
Hydrilla does not sexually reproduce in Florida and
southeast USA, ie seeds are not produced, since
only the female form of the dioecious biotype is
present.23 In general, sexually reproducing species
are characterized by high genetic diversity compared
with asexually propagated species.57 However, it has
been documented that hydrilla is a polyploid plant. Its
chromosome counts vary widely within a vegetative
population.10,51 Plants in Asia, India and Europe
are either diploid (2n = 2x = 16) or triploid (3n =
3x = 24),51 while the presence of tetraploid plants
(2n = 2x = 32) has been reported in Alabama.38

Both diploid and triploid plants have been collected
from different parts of Washington DC, Maryland
and Texas,10,58 and those collected from California,
Florida, Texas and Connecticut have been recorded
as triploid.58,59

Hydrilla plants in various dioecious populations
in Japan are either diploid or triploid, whereas
monoecious strains in Japan are always triploid.60

However, in different parts of the USA, the presence
of diploid and triploid plants has been reported within
the monoecious strain.59 It has been suggested that
hydrilla may be an endopolyploid plant resulting
from chromosomal mutations in the original triploid
female stock,49 as an explanation for the occurrence
of different ploidy levels in plants within the same
population.58,61,62 Various combinations of diploid,
triploid and tetraploid cells have also been observed
in root tips of hydrilla from the same plant.54

Some plant species apparently have no consistent
ploidy level in the developing root tissue.63 The
higher frequency of triploid plants than diploid ones
in a hydrilla population may suggest an ecological
advantage for triploid plants.46 The molecular process
of polyploidy evolution is the primary mechanism to
generate genomic redundancy.64 In young polyploids,
both copies of a duplicated gene usually retain
expression, and some authors have observed a direct
relationship between the polyploidy and proliferation
of transposable elements.64 Genome duplication could
allow for gene function of duplicated genes to diversify
and bring about evolutionary innovation in general.65

In plants, it has been shown that there is also a
positive correlation between the expression level of
a gene and the increase of the ploidy.66 Although
the relative importance of genome duplication in
evolution is still not clear, it is possible that the
variable ploidy of hydrilla could contribute to its
adaptation.65 These large genetic variations within a
population, along with endopolyploidy, may offer the

species an opportunity to have clones10,54 that may
react differently to varying environmental conditions.
In the case of hydrilla, these factors may have
contributed to the rapid development of herbicide
resistance.

5 MECHANICAL, BIOLOGICAL AND CHEMICAL
CONTROL
Several methods have been investigated for the
control of hydrilla populations, including mechanical,
biological and chemical control. Drawdowns and
desiccation of hydrilla tubers have been shown to
reduce the viability of the tubers. However, the
efficacy of the desiccation treatment depends on
several factors. Although a reduction of 90% in the
number of tubers was achieved by this method, it
did not completely eliminate the tubers from the
sediments.67 This study showed that, in some cases,
drawdowns of 12 months were not enough to reduce
the number of tubers in the banks or to reduce
their viability.67 In fact, it has been reported that
if the drawdown is not long enough to kill the
shoot biomass of hydrilla, it could stimulate hydrilla
tuber production, which translates into more plants
sprouting and colonizing a given area.68 In the
monoecious hydrilla, vegetative biomass and tuber
number production were usually suppressed by one-
week drawdown periods.68

Several biological agents have been studied for
the control of hydrilla. For example, the fun-
gal pathogen Mycoleptodiscus terrestris Ostazeski, an
endemic pathogen that causes a short duration dis-
ease on hydrilla without persistence in plant debris
or plant tissue, has been used as a mycoherbicide.69

It can reduce hydrilla biomass in 80 days by up to
40% when applied alone, or by 93% when used in
combination with fluridone treatments.70 The use
of this mycoherbicide in combination with the sys-
temic treatment of lakes with the herbicide fluridone
seemed to increase the susceptibility of hydrilla to the
herbicide.71 A complete list of insects evaluated as
candidates for biological control has been surveyed
and published.72

Mechanical control of hydrilla involves the removal
of the vegetative tissues and/or the tubers/turions
by dredging. This process is not practical for
large lakes and is considered too expensive, cost-
ing about twice as much as chemical treatment
(www.invasive.org/eastern/eppc/HYVE.html). At pre-
sent, although much is known about hydrilla pop-
ulation biology, this knowledge has not been trans-
lated into effective control of this invasive species by
mechanical or biological control methods.73

Registered herbicides for hydrilla management are
limited to the contact herbicides endothall, diquat
and chelated copper, and the systemic compound
fluridone. Contact herbicides have been used to con-
trol hydrilla since the mid-1960s,74 but they are only
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effective to control newly emerging and smaller infes-
tations. These compounds have short residual effect
and the cost of product and application is in the range
700–1600 US$ ha−1. The herbicide fluridone is the
only cost-effective option to control large-scale hydrilla
infestations. The use rates of fluridone are between
5 and 30 µg liter−1, which result in up to a 30-fold
reduction in product volumes compared with contact
herbicides, and the cost for fluridone applications is
between 125 and 600 US$ ha−1.75 Hydrilla is suscep-
tible to very low concentrations of this herbicide that
are sub-lethal to other aquatic vegetation, and this her-
bicide is the only EPA-approved systemic compound
that can be used for treatment of large water bodies
(www.sepro.com/pdf lit/aquatics/sonar/Sonar Q La-
bel.pdf).

6 EVOLUTION OF RESISTANCE TO PHYTOENE
DESATURASE INHIBITORS
6.1 Biosynthesis and physiological functions of
carotenoids in plants
Carotenoids play important roles in plants. These
polyunsaturated molecules are antioxidants that
have essential functions in photosynthetic organisms
(plants, algae and cyanobacteria). In chloroplasts,
carotenoids accumulate in the thylakoids, in associa-
tion with the photosynthetic apparatus. They dissipate
excess light energy trapped by the antenna pigments,
while concomitantly participating in trapping light
for photosynthesis and protecting chlorophylls from
photodegradation under high light intensities. The
protective role of carotenoids is achieved by quenching
the excess excitation energy (in the form of electrons)
released when photoenergized chlorophyll returns to
ground state.

Carotenoids are also important precursors in the
synthesis of the plant hormones abscisic acid76,77

and gibberellic acid.76 Mutant plants with deficient
carotenoid pathways can exhibit dwarfism and altered
foliar development because of the resulting hormone
imbalance.78 Finally, carotenoids are responsible for
the yellow, orange and red coloring in many flowers
and fruits.

The biosynthesis of carotenoids is compartmental-
ized in plastids and the steps are well characterized.79

In brief, the first committed step in the biosynthetic
pathway of carotenoids is the head-to-head conden-
sation of two geranylgeranyl pyrophosphate molecules
catalyzed by phytoene synthase that yields phytoene,
a 40-carbon colorless carotenoid. Under normal con-
ditions, phytoene does not accumulate in plant cells
but is rapidly converted to the colored carotenoids
phytofluene and ζ -carotene by phytoene desaturase
(PDS). PDS is encoded by the pds gene, a mem-
ber of a low-copy-number nuclear gene family,80

and the protein is imported into the chloroplasts,80,81

where, as the mature PDS protein, it is detected in
soluble and membrane fractions of chloroplasts.80 ζ -
Carotene is subsequently converted to neurosporene

and lycopene by the action of ζ -carotene desaturase.
Most carotenoids downstream from lycopene (ie β-
carotene, lutein, zeaxanthin and violaxanthin) undergo
various levels of cyclization and oxidation (Fig 1).

6.2 Appearance of herbicide resistance
PDS inhibitors have been commercialized as her-
bicides for about 30 years.82 All PDS inhibitors
except fluridone have been registered for use in
agricultural crops. The herbicide fluridone was dis-
covered in the mid-1970s and approved by the
USA-EPA for use in aquatic systems in 1986
(http://aquat1.ifas.ufl.edu/guide/sup3herb.html). Si-
nce then, it has been highly effective in the control
of hydrilla.83 However, there has been a recent report
of the decrease in the efficacy of fluridone to control
this aquatic weed.5 Three dioecious hydrilla pheno-
types have been described with resistance to 36, 54
and 91 nM fluridone in Florida lakes; these three were
subsequently associated with mutations on the pds
gene (Fig 2).5

6.3 Mechanism of action of PDS inhibitors
The carotenoid biosynthetic pathway is an excel-
lent target for herbicides because it is essential for
plant development while being absent in animals.
Several chemical classes of PDS inhibitor have been
developed, including pyridazinones, pyridinecarbox-
amides and phenoxybutanamides.84 However, only a
few inhibitors of this pathway have been commercial-
ized because most of these compounds lack sufficient
crop selectivity. Of the many enzymes involved in the
formation of carotenoids, PDS is the primary her-
bicide target site in this pathway. Inhibition of this
enzyme stops the synthesis of carotenoids in develop-
ing tissues, causing the destruction of chlorophylls and
resulting in white foliage. Consequently, these herbi-
cides are often referred to as bleacher or bleaching
herbicides.

Mechanistically, PDS catalyzes the removal of two
pairs of electrons (four electrons total) required
to convert phytoene to ζ -carotene (Fig 1). Upon
inhibition of this enzyme, phytoene (a colorless
carotenoid) accumulates. Many kinetic studies have
shown that the inhibitors do not compete for the
binding of phytoene on PDS (Fig 3a).85 While the
exact mechanism of action for these inhibitors is not
completely understood, it was recently demonstrated
that these compounds compete for the binding site
of plastoquinone on PDS (Fig 3b).86 Plastoquinone
is an essential cofactor of PDS.87 It is interesting
that the quinone binding site is also the herbicide
target site of inhibitors of photosystem II,88 and
a vestige of a quinone binding site appears to be
the herbicide binding site of acetolactate synthase.89

In the resistant hydrilla biotypes, this binding site
might be modified to prevent interaction with the
herbicide, thus causing resistance, but this change
may not hinder the interaction with plastoquinone
since enzyme activity is not altered.5
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Figure 1. Simplified biosynthetic pathway of carotenoids. Enzyme names are indicated in bold. Compound names are indicated in normal font.

Figure 2. Mean and standard deviations obtained from laboratory
assays of the β-carotene content of hydrilla shoot apices following a
14-day exposure to fluridone concentrations ranging from 0 to 91 nM.
Phenotypes: ž: susceptible (179 lakes); °: low resistance (8 lakes);
�: intermediate resistance (7 lakes); �: high resistance (5 lakes)
(reprinted with permission of Blackwell Publishing from Michel et al5).

6.4 Molecular basis for resistance to PDS
inhibitors
Since the early 1990s there have been reports of
several mutations on the pds gene of cyanobacteria that
conferred resistance to PDS-inhibiting herbicides, ie
Val403 to Gly, Leu320 to Pro, Arg195 to Pro and
Leu436 to Arg, and a 20-nucleotide deletion in the
transit peptide.90 Cyanobacteria as a model system
has the advantage of combining the presence of a
photosynthetic apparatus with the fast growth rate
of prokaryotes. Using this model system, screening
methods to discover resistance to bleaching herbicides
were designed. Briefly, cyanobacteria were first
exposed to chemical mutagenesis and then selected
for herbicide resistance on growth media containing
various amounts of inhibitors. In particular, the point
mutation resulting in an amino acid substitution
(Val403 to Gly) in the phytoene desaturase gene of
Synechococcus PCC 7942 was responsible for herbicide
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Figure 3. Types of inhibition kinetics of phytoene desaturase.
(A) Non-competitive inhibition kinetics pattern obtained when a
herbicide (ketomorpholine A) is tested against the enzyme substrate
(phytoene) (Sandmann and Mitchell85) and (B) competitive inhibition
kinetics pattern obtained when a herbicide (norflurazon) is tested
against the enzyme cofactor (plastoquinone) (Breitenbach et al86).
Figures are with permissions from publishers.

resistance in the mutant NFZ 4.91 Using this mutated
gene to transform tobacco plants, it was found that the
gene conferred resistance to norflurazon and fluridone
58- and 3-fold higher than the wild-type controls,
respectively.92

6.5 Molecular basis for resistance to
PDS-inhibitors in hydrilla
The first case of a higher plant having evolved
resistance to the PDS-inhibitor herbicide fluridone
was discovered in hydrilla and published in 2004.5

This herbicide has been on the market for 20 years,
and when compared with other herbicide classes, it
is surprising that resistance to PDS inhibitors has
not been found previously. The pds alleles from
herbicide susceptible and herbicide-resistant hydrilla
biotypes have been cloned and sequenced. Alignment
of pds sequences of various organisms shows conserved
Arg codons in the same position (Fig 4). Three
independent base pair substitutions at the amino acid
304 codon (Arg to Ser, Cys and His) of the PDS
protein have been described in relation to fluridone

Arg

Arabidopsis   955 tcaatgcaatg-cattttgatagctttgaaccggtttcttcaggaaaaacatg 

Glycine      1060 tcaatgcaatgta-tattgattgctttaaaccgatttcttcaggagaaacatg 

Dunaliella    762 tcta-tgaccgttgtgctaacagcactgaaccgtttcctgcaagagcgacatg 

Synechocystis 648 tccg-ccacggtcgtcctaacggcactcaaccgcttcttgcaagagaagaaag 

Synechococcus 662 tccg-ccaccattttacttactgccctcaatcgctttttacaggaaaaaaatg 

Hydrilla      875 tcca-tgcaatgcatcctgattgccttaaaccgtttccttcaggaaaagcatg 

Lycopersicon 1278 tcaatgcagtg-cattttgatcgcattgaacaggtttcttcaggagaaacatg

Figure 4. Alignment of partial phytoene desaturase gene sequences
from various organisms showing arginine codons at the amino acid
position 304 of hydrilla’s PDS.

resistance.5 These mutations were the first known
cases of naturally occurring herbicide resistance to
PDS inhibitors based on an altered target site in higher
plants. Similar substitutions to the ones described for
hydrilla (Arg to Ser, Cys and His) were observed at
different positions within PDS of the cyanobacteria
Synechococcus and Synechocystis when the cultures
were grown on selection media with various PDS
inhibitors.93,94

Reported mutations in cyanobacterial pds genes
leading to herbicide resistance have usually been
associated with a reduced specific activity of the
enzyme.90 However, in the mutations found in
herbicide-resistant hydrilla populations, the specific
activity of the PDS enzymes expressed in E coli
was not significantly affected compared to the wild-
type enzyme.5 Since there were no differences in
specific activity of PDS enzymes of hydrilla, when
comparing the mutated proteins to the wild-type PDS,
plants harbouring the mutated forms of PDS may
still be able to compete in the environment without
the presence of fluridone. The sustained ecological
fitness of hydrilla plants carrying mutations on the pds
gene may have enabled these biotypes to become the
dominant populations within each lake.5

PDS is a nuclear-encoded protein with activity in
the chloroplasts, the site of carotenoid synthesis.80

Despite carotenoids being synthesized in all types
of photosynthetic tissues, plants usually have very
low levels of pds transcript. For example, no pds
transcripts could be detected in tomato leaves,95 and
in soybean, no pds transcripts could be detected in any
type of tissues by standard methods.80 Low levels
of transcription of a single copy gene have been
negatively correlated with its mutation frequency. By
using transformed Arabidopsis thaliana Heynhoe plants
with the β-glucuronidase (uidA) gene as a model
system, it was found that the frequency of somatic
mutations for a single copy gene in plants is two to
three orders of magnitude higher than in animals,
yeast or even bacteria.96 The predicted frequency of
forward mutations for a single copy gene with a low
level of transcription was 10−6 –10−7 events per base
pair in A thaliana.96 According to these predicted
values, the 1.7-kb pds gene of hydrilla could have
mutations in the order of 1.7 × 10−3 to 1.7 × 10−4.
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If genes with low levels of transcription have higher
mutation rates, then the pds gene that has a low level
of transcription could be prone to mutations and this
could be an additional factor in the development of
hydrilla biotypes with herbicide resistance. In hydrilla
samples from only four Florida lakes, a total of six
transversions and five transition mutations were found
in pds alleles; the frequency of transversions was
A → T (3×), C → A (2×), G → T (1×), while the
rate for transitions was A → G (2×), G → A (2×),
C → T (1×).5 This frequency is much higher than
expected for a dioecious plant that undergoes only
asexual propagation.

Variations in a single gene can be high in cross-
pollinated plants, but are expected to be low in
self-pollinated plants. An example of this can be found
in the gene for acetolactate synthase (ALS), which is
related to herbicide resistance. In ragweed (Ambrosia
artemisiifolia L), a mainly cross-pollinated species,
when a 385 nucleotide fragment of the acetolactate
synthase (ALS) gene was amplified, 48 nucleotides
were polymorphic.97 In the same study, a single
ragweed plant had up to 34 nucleotide polymorphisms
per 385-nucleotide sequence. However, in common
cocklebur (Xanthium strumarium L), primarily self-
pollinated, no polymorphisms were detected within
the ALS sequences of 24 plants from seven different
states (IL, MN, OH, NC, NM, MS and WA).97

Although, in these particular studies, the authors did
not find genetic variability related to resistance to
ALS-inhibitor herbicides, they did find significant
variability in the ALS genes and that the variability
differed among species.97 Given the high frequency
of mutations already reported for the PDS gene of
the dioecious hydrilla that reproduces asexually, even
higher variations could be expected if cross-pollination
occurs.

Factors that are likely to accelerate the selection
of resistant biotypes are the repeated use of the
herbicide in large areas, no use of alternative mode
of action herbicides, high efficacy of the herbicide on
the sensitive biotype at the rate used, and residual
herbicide activity. Examples of plants that have
developed resistance to herbicides via mutations can
be found for ALS-inhibiting herbicides and for acetyl-
CoA carboxylase-inhibiting herbicides. By 2002, eight
different amino acid substitutions for Pro197 had
been reported to confer herbicide (ALS-inhibitors)
resistance in weeds, and 17 amino acid substitutions
that conferred resistance in various organisms such
as plants, yeast, bacteria and green algae.98 The two
mechanisms of resistance to ALS-inhibiting herbicides
are increased herbicide metabolism resulting in rapid
detoxification of the herbicide, and the reduced
sensitivity of the target enzyme to inhibition by the
herbicide.98

Recently, a terrestrial plant showing resistance to
the PDS inhibitor diflufenican has been published.
Populations of the weed Raphanus raphanistrum L
developed resistance to the PDS inhibitor diflufenican

after only four applications of this herbicide. Up
to 16% of these populations of R raphanistrum
survived four times the commercial application rate
of diflufenican.99 The molecular mechanisms related
to the development of resistance in R raphanistrum
have not been elucidated.

7 POTENTIAL USE OF MUTATED PDS FOR
HERBICIDE-RESISTANT CROPS
The widespread adoption of glyphosate-resistant crops
has revolutionized traditional agriculture. Some of
the advantages of this technology are its broad-
spectrum weed control and simpler weed-management
practices. Several other transgenic crops possessing
herbicide-resistant traits are also commercially avail-
able. Engineering plants for herbicide resistance has
been the most effective way to obtain extremely high
selectivity between crops and weeds.100

The phytoene desaturase (PDS) gene from Erwinia
uredovora, crtI, which is not sensitive to PDS
inhibitors, has been expressed in plants to confer
resistance to norflurazon.101 However, bacterial PDS
can carry out four desaturation steps so that we can
expect with crtI a broad spectrum of resistance to PDS
and ζ -carotene desaturase inhibitors. Furthermore,
consumers have expressed concerns over plants that
have been transformed with prokaryotic genes. A
mutated PDS, NFZ 4, from Synechococcus, has been
expressed in tobacco where it conferred resistance
to norflurazon although not significant resistance to
fluridone.92

The mutations that we reported for hydrilla PDS
were directly related to fluridone resistance.5 On-going
work in our laboratory has shown that expression of
this gene in other plants confers a significant level
of resistance to fluridone and several other PDS
inhibitors.102 The use of the mutations on hydrilla
PDS for generating herbicide-resistant crops seems
promising and could open new markets for this class
of chemistry. This technology may also provide a new
tool to help fight the evolution of herbicide resistance
in weeds.

8 CONCLUSIONS
It is not possible to ascribe the emergence of herbicide
resistance in dioecious hydrilla to a specific factor.
Nevertheless, when analyzing hydrilla as a system,
possible causes can be hypothesized. Hydrilla is a fast-
growing plant with multiple means of propagation;
able to generate new individuals from a single
node, while each plant can be several meters long.
Hydrilla has variable ploidy levels which can result
in gene duplication and duplication of gene function,
favouring the presence of various alleles able to adapt
to variable environmental conditions. In addition,
increase in ploidy has been related to increased levels
of gene expression, which in the case of PDS could
also contribute to herbicide resistance. The ability
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of hydrilla to elongate at light intensities below the
compensation point and to alternate between C3 and
C4 metabolism assures nutrient support within the
plant in distant tissues that could be exposed to adverse
environments. The fact that the leaf lamina in hydrilla
is semi-transparent and only two cell-layers thick may
explain its susceptibility to fluridone at concentrations
that are sub-lethal for other vegetation. However, the
same leaf anatomy may contribute to higher rates of
mutation due to UV radiation on hydrilla biomass
growing on the surface of water bodies. A high rate
of somatic mutations has been described in dioecious
hydrilla, and these mutations can perpetuate, since
this biotype undergoes only asexual propagation in the
USA. In addition, the use of a single herbicide at low
doses being the most cost-effective method to control
this weed may in itself have contributed to the selection
of resistant biotypes, given the adaptive potential of
hydrilla as a system. Resistance in hydrilla is the result
of one of three independent somatic mutations at the
arginine 304 codon of the gene encoding phytoene
desaturase, the molecular target site of fluridone. The
use of these mutated genes offers a new approach to
generate herbicide-resistant crops.
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