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Realistic Pension Funding: A Stochastic Approach 

Shih-Chieh Chang* 

Abstractt 

The process funding pension plans is viewed as a dynamic control pro­
cess. Two performance measures are introduced to evaluate the effectiveness 
of plan contributions: the cost-induced performance measure ((IPM) and the 
ratio-induced performance measure (RIPM). A dynamic programming approach 
is used to determining the optimal contributions with the objective of mini­
mizing the performance measure. The methodology developed is applied to a 
sample of members of Taiwan's Public Employees Pension Plan (Tai-PERS). We 
show that RIPM produces more stable results than those using CIPM. 

Key words and phrases: contributions, control theory, dynamic programming, 
performance measure 

1 Introduction 

Following Haberman and Sung (1994), the process of pension plan 
funding is viewed as a stochastic control system where the plan's finan­
cial obligations are affected by random events (such as penSion plan 
turnover, investment returns, deaths, retirements, etc.). The meth­
ods of control theory can thus be used to assist plan administrators 
in choosing optimal contributions. Contributions may optimized with 

* Shih-Chieh Chang, Ph.D., is a professor of risk management and insurance in the 
College of Commerce at National Chengchi University in Taiwan. Dr. Chang received 
his bachelor's degree in mathematics from National Taiwan University and his Ph.D. 
in statistics from the University of Wisconsin-Madison. His research interests are in 
stochastic models for actuarial science and the Taiwanese financial market data. 

Dr. Chang's address is: Department of Risk Management and Insurance, College 
of Commerce, National Chengchi University, Taipei, Taiwan, R.O.C. Internet address: 
be ha ng@neeu.edu.tw 

tThe author wishes to thank the three anonymous referees and (especially) the editor 
for their detailed comments and numerous suggestions on an earlier draft of this paper. 
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respect to a performance measure or with respect to maximizing the 
probability of plan solvency during the period of budget planning. 

Several authors have studied pension funding using control theory 
or other similar methods including Bowers et al., (1982), O'Brien (1986, 
1987), Bacinello (1988), Dufresne (1988, 1989), Haberman (1992, 1993, 
1994), Daykin et al., (1994), Haberman and Sung (1994), Haberman and 
Wong (1997), ScMI (1998), and Chang(1999). Survey articles on applica­
tions of control theory to insurance in general include Martin-LOf (1994) 
and Runggaldier (1998). 

The objective of this paper is to use control theory techniques to 
determine the optimal employer contributions. The optimality crite­
rion used is based on the risks associated with the stability and secu­
rity of the pension plan. Two types of risks associated with pension 
plan stability and security (as proposed by Haberman and Sung (1994» 
are used: (0 the contribution rate risk, and (ll) the solvency risk. An 
objective function associated with these two risks is constructed and 
dynamic programming methods are then used to derive the optimal 
contributions that minimize the solvency risk subject to speCific con­
straints. Details of this dynamic optimization can be found in Chang 
(1999). The methodology is applied to the Taiwan Public Employees 
Retirement System (Tai-PERS). 

The paper is organized as follows: Section 2 describes two perfor­
mance measures and the dynamic optimization scheme. An expression 
is given for the minimum contribution. Section 3 contains a mathemat­
ical description of the benefit structure of Tai-PERS. Section 4 presents 
an application of the proposed methodology to the Tai-PERS data. 

2 The Model 

2.1 The Basic Notation 

Let T denote the plan administrator's planning time horizon, Le., the 
administrator is interested in achieving certain results related to plan 
stability and solvency by time T. For t = 0,1,2, ... , T -1, the following 
actuarial notations are used throughout this paper: 
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it = The actual rate of return on pension fund assets in [t, t + 1); 
Vt = The discount factor from time t to time 0, with Vo = 1; 
Ct = Contributions paid at time t for the plan year [t, t + 1); 
Bt = Total benefits paid during the plan year [t, t + 1); 

NCt = The normal cost at time t; 
Ft = Total pension plan assets at time t, excluding Ct; 

ALt = Total plan accrued liability at time t+; 
Jt = All plan information in [0, t); 
f3t = The risk-weighted ratio at time t; and 
'1 = The target funding ratio. 

7 

The parameter f3t is needed to balance the tradeoff between the sol­
vency risk and the stability risk (discussed later). To generalize the 
model, '1 is used as the target funding ratio with the understanding 
that the funding ratio may not necessarily be equal to the accrued lia­
bility, Le., '1 is not necessarily equal to one. 

We assume that for the period of the planning horizon, the plan 
valuations occur at times 0, 1, ... ,T -1 using the entry-age-normal cost 
method,l and that Jt contains all of the information gathered from all 
previous plan valuations. This information includes: 

• Vb for k = 0,1, 2, ... , t; 

• ib for k = 0,1, 2, ... , t - 1; 

• Ck, for k = 0, 1, 2, ... , t - 1; 

• NCb for k = 0,1, 2, ... , t; 

• ALb for k = 0,1, 2, ... , t; 

• Fb for k = 0,1, 2, ... , t; 

• f3b for k = 0,1, 2, ... , t; 

• Bb for k = 0,1, 2, ... , t; and 

• The information pertaining to plan demographics including em­
ployment and salary information for each employee that entered 
or left the plan during the period [0, t). 

1 For details on pension cost methods see, for example, Shapiro (1985) or Anderson 
(1990). 
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Thus the only information unknown at time t is the rate of return for 
the coming year, it, and the actual contribution, Ct. 

2.2 The Optimization Equation and Its Solution 

We will define the performance measures used to construct the op­
timization equation. 

2.2.1 Performance Measures 

A performance measure is a nonnegative function that is used to 
determine the set of parameters of the model that best fit the data over 
the entire planning horizon. Two performance measures are defined: 
the cost-induced performance measure (CIPM) and the ratio-induced 
performance measure (RIPM). The CIPM was proposed by Haberman 
and Sung (1994) as a discounted quadratic deviation risk measure to 
obtain the optimal contribution. The RIPM was proposed by Chang 
(1999). It employs relative performance ratios to measure the dis­
counted quadratic deviation in achieving the optimal funding status. 

The CIPM is defined as r, a function of the contributions: 

r == r (Co, ... , CT-l) 

~ E [I [v, (C, - NCd' + v,,, P'+l (F,+ 1 - ryAL,+ r) 
2

] 1 
and RIPM is defined as I, a function of the contributions: 

I==I(Co, ... ,CT-l) 

(1) 

~ {tJ, ( 1 - ~y +v,+ 1 P'+l ( 1 - ry:z,~J'll (2) 

Each performance measure can be split into two risk measure compo­
nents: the contribution rate risk and solvency risk as shown in Table 
1. 

2.2.2 The Optimization Equation 

The optimization problem at time t ::; T - 1 is to determine the 
sequence of contribution rates Co, Cl, ... , CT-l that minimize the chosen 
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Table 1 
Risk and Performance Measures 

Risk Measures 

Contribution Rate Risk: 

Solvency Risk: 

Performance Measures 
CIPM RIPM 

( C )2 Vt I--t 
NCt 

( Ft+ 1 ) 2 
Vt+l 1 - I]ALt+l 

9 

performance measure. In the case of the RIPM, J must be minimized, 
Le., the optimization equation is: 

[
T-l[ C)2 min J = min E I V5 1 __ 5 

Co, ... ,CT-l CO, ... ,CT-l 5=0 ( NC5 

+ VHIPHI (1 ~ /;{,~,) '] I~t] . 
If we set 

for k = t, t + 1, ... , T - 1, and 

then the optimization equation at t can be written as 

min J= min JOt+JtT. 
CO, ... ,CT-l cO, ... ,CT-l' , 

At time t, however, Co, Cl, ... , Ct-l are already known so JO,t is known. 

= JO,t + min Jt,T. 
Ct, ... ,CT-l 

Hence only Ct,Ct+l, ... ,CT-l and Jt,T need to be determined. In other 
words, we need only to minimize Jt,T subject to certain funding con­
straints. The full optimization problem thus is to 
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C 
min Jt,T = E [Til [V5 (1 - N

C
C
5 

)2 + VS+lf3S+l (1 - it )2]I:J t ] 
t, .•. ,CT-l 5=t 5 r} 5+1 

(3) 

subject to the funding constraint 

Ft+l = (Ft + Ct - Bd (1 + id . (4) 

Equation (4) assumes Bt is paid in a lump sum at the start of the year. 
As we will see, this is clearly not the case under Tai-PERS because its 
benefits are paid twice per year or as a lump sum. 

2.2.3 Some Assumptions 

For k = t, t + 1, ... ,T - 1, let Ok (Ft) be a function of F (t), where 

(5) 

As pension plans usually evaluate their financial status annually, it is 
reasonable to assume that F t is a Markov process. As Ok (Ft) involves 
the term E [F;+ll:J t ], then we can write 

(6) 

where, for t = 0,1, ... ,T, the terms al (t), a2 (t), and a3 (t) are se­
quences of constants. Following Haberman and Sung (1994), we use 
the boundary conditions al (T) = a2 (T) = a3 (T) = O. 

For mathematical simpliCity, the sequence of annual rates of return, 
Utl, is assumed to consist of independent and identically distributed 
normal variables with constant mean e and variance (Y2, i.e., 

(7) 

The first two moments of it are 

The moments of Ft+l I Ft are 
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E [Ft+l I FtJ = (1 + 8) (Ft + Ct - Bd 

and 

E [Fl+l 1Ft] = ((T2 + (1 + 8)2) (Ft + Ct -Bd 2
. 

The sequence of valuation discount factors {Vt}, however, is assumed 
to be independent of the sequence of itS. 

2.2.4 The Solution to the Optimization Equation 

The solution follows that proposed by Chang (1999). 

(8) 

where 
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R (C,J ~ v, (1 -~J' + V",P,.,E [( 1 _ /::,,'J 2 Il,] 

+ E [( a1 (t + 1) Fl+1 + a2 (t + 1) Ft+1 + a3 (t + 1)) l::i t ] 

= Vt (1- ~)2 
Net 

f3 [1 2 
(1 + 8) (Ft + Ct - Bd 

+ Vt+1 t+1 - AL 
ry t+1 

(cr 2 + (1 + 8)2) (Ft + Ct - Bd 2 ] 
+ 2 

(ryALt+1) 

+ a1 (t + 1) (cr2 + (1 + 8)2) (Ft + Ct - Bd 2 

+ a2 (t + 1) (1 + 8) (Ft + Ct - Bd + a3 (t + 1). (9) 

The first derivative of R (Cd is 

dR (Cd = - 2Vt (1 _ ~) 
dCt Net Net 

f3 [
-2(1+8) 2( 2 (1 n)2) (Ft+Ct-Bd] 

+ Vt+1 t+1 AL + cr + + (7 2 
ry t+1 (ryALt+d 

+ 2a1 (t + 1) (cr2 + (1 + 8)2) (Ft + Ct -Bd 

+a2(t+l)(1+8). (10) 

Setting equation (10) to zero and solving for the optimal ct yields 

D(R) - H(R) x F 
C* - t t t 

t - G~R) 
(11) 

where 
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(R) 2vt 2Vt+lf3t+l (1 + 8) 2Vt+lf3t+l (0- 2 + (1 + 8)2) 
Dt = -2 + + 2 2 Bt 

NC t I]ALt+l I] ALt +1 

+ 2al (t + 1) (0- 2 + (1 + 8)2) Bt - a2 (t + 1) (1 + 8) (12) 

HiR) = 2Vt+lf3t+l (1 + e) + 2a2 (t + 1) (0- 2 + (1 + 8)2) (13) 
I]ALt+ 1 

(R) 2Vt 2Vt+lf3t+l (0- 2 + (1 + 8)2) 
Gt = NC2 + n 2AL2 

t '/ t+l 

+ 2al (t + 1) (0- 2 + (1 + 8)2). (14) 

As 

Ot (Fd == R (en, 

it follows that 

al (t) Fl + a2 (t) Ft + a3 (t) 

= v, (1 -~~,) 2 + V'+IP'+IE [ (1 - ~::r~,) 2 131] 

+ al (t + 1) E [Fl+ll:Jt ] + a2 (t + 1) E [Ft+ 11:JtJ + a3 (t + 1) 

which yields 
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d 2R(Cd _ 2Vt +v f3 1+2e+e2 +u2 

dcl - NC~ t+1 t+1 (IJAL t+1)2 

+ a1 (t + 1) ((1 + e)2 + ( 2) 

> 0, 

which implies that 

a1 (t + 1) > - (i Vt + Vt+1f3t+1 ) . (17) 
((1 + e)2 + ( 2) NCF (IJAL t +1)2 

So ct is the unique optimum contribution for year t. 
Finally, the optimal contributions for a planning period of T years 

under CIPM are determined from the following equations: 

D(C) - H(C) x F 
C* t t t 

t = (C) Gt 
(18) 

where 
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D~C) = (2vt NCt + 2 (V t+l /3 + atCt + 1)) ((1 + 8)2 + (T2)) Bt 

+ (2vt+l/3ALt+l - a2(t + 1)) (1 + 8) (19) 

H~C) = 2vt NCt + 2 (v t+l /3 + adt + 1)) ((1 + 8)2 + (T2) ; (20) 

G~C) = 2vt + 2 (V t+l /3 + al(t + 1)) ((1 + 8)2 + (T2). (21) 

The {adt)} and {a2(t)} sequences used in equations (19), (20), and 
(21) are different from that used in the RIPM method. They are defined 
recursively as: 

t (v t+l /3 + adt + 1» ((1 + 8)2 + (T2) 
al (t) = V v t + (v t+l /3 + al (t + 1» ((1 + 8)2 + (T2) (22) 

and 

a2(t) = 2 (NCt - Bt)adt) 

v t (a2(t + 1) - 2v t+l /3AL t+l) (1 + 8) 

+ v t + (v t+l /3 + adt + 1» ((1 + 8)2 + (T2)' 
(23) 

3 Taiwan's Public Employees Retirement System 

The Taiwan Public Employees Retirement System (Tai-PERS) is a large 
defined benefit public retirement system that provides retirement and 
ancillary benefits to public employees, Le., employees of the national 
government or any local government in Taiwan. Retirement benefits 
are calculated according to length of service and final salary at retire­
ment. The present funding policy requires both employer and employee 
contributions to a public trust fund for a maximum 35 years. Each par­
ticipant in Tai-PERS contributes 2.8% of covered monthly salary while 
the employer (national or local government) contributes 5.2% of the 
participant's covered monthly salary. 

According to current Tai-PERS regulations, it is "mandatory" for em­
ployees to retire at the age of 65. If the employee is still healthy and 
willing to continue to work beyond age 65, however, Tai-PERS autho­
rizes the employee to work for a maximum of 5 years more under the 
condition that officials approve the employee's application for late re­
tirement. Thus the oldest retirement age is 70. 
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Retirees have three options at retirement: (i) a lump-sum retirement 
payment, (ii) a monthly pension with the cost of living adjustment that 
is decided by the government annually, or (iii) a combination of a lump­
sum payment and a monthly pension. Participants who have worked 
for more than 5 years and less than 15 years can have a lump-sum single 
retirement payment. 

3.1 More Notation 

Some of the actuarial notation used to describe Tai-PERS are: 

Y is the normal retirement age (y = 65 years by law); 

t is the current time; 

x is the current age; 

m is the minimum entry age into the plan; 

Sx,j,t is the base monthly salary of the participant j at age x at time t; 

Sx is the salary scale function at age x; 

hPlT) is the probability that an active participant age x is still active 
after h years; 

q}[) is the probability that an active participant age x retires within a 
year; 

qld) is the probability that an active participant age x dies within a 
year; 

q~) is the probability that an active participant age x is laid off and 
disabled within a year; 

qlW) is the probability that an active participant age x withdraws within 
a year; 

v = I! j is the discount factor under the assumed interest rate j; 

h(z) is the cost of living adjustment (COLA) function for a retiree z 
years after retirement, z ~ 0; 

Ax,t is the set of active participants in plan age x at time t; 

Yx,j,t is the number of years of service (employment) up to age x for 
participant j E Ax,t; 
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[z] denotes the largest integer less than or equal to z; 

MJ/J,t is the factor (based on the number of years of service) used 
to calculate a single lump-sum payment for participant j E Ax,t, 
where 

{ 

min(53,1.5[Yx ,j,t]) 

M~:J,t = ~n(53, 1.5 [Yx,j,t]) 
mm(53, 1.5 [Yx,j,tJ + 1.5) 

if Yx,j,t = [Yx,j,t] 

if Yx,j,t < [Yx,j,t] + 0.5 
if Yx,j,t 2: [Yx,j,t] + 0.5; 

M:':J,~ is the factor (based on the number of years of service) used to 
calculate a monthly pension for participant j E Ax,t. For partici­
pants with at least 15 years of service ([Yx,j,tJ 2: 15), 

{ 

min(35, [Yx,j,tJ) if Yx,j,t = [Yx,j,tJ 

M:':J,~ = ~n(35, [Yx,j,tJ + 0.5) ~f 0.5 > Yx,j,t - [Yx,j,tJ > o. 
mm(35, [Yx,),tJ + 1) If 1 > Yx,),t - [Yx,),tJ 2: 0.5, 

colaa12) is the cost of living adjustments mIDuity at age x, i.e., 

cola s~N is the n-year cost of living adjustments aIIDuity-certain, i.e., 

2n 1 k k ( W ) i 
cola 5 (2) = "" - V 2 n 1 + h ( - ) . 

W L2 2 ' 
k=I w=I 

PYFLS{ is the actuarial present value of the lump-sum (single) payment 
to participant j E Ax,t; and 

PYFMO{ is the actuarial present value of the monthly pension to par­
ticipant j E Ax,t. 
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It is important to note at this point that a public employee's salary 
structure under Tai-PERS differs from that of public employees in the 
United States. In Taiwan a public employee's salary is divided into two 
components. One component is the base salary (Le., SX,j,t), which varies 
according to the employee's years of service and job rank. The other is 
the merit payor bonus that varies according the employee's work per­
formance. These two components are roughly'50% of each employee's 
salary. For example, an employee may have monthly salary of $5,000 
(with base salary of $2,500 and an additional bonus of $2,500, while an­
other employee may have month salary of $5,000 but with base salary 
of $2,700 and an additional bonus of $2,300. In this study, the base 
salary (Le., roughly half of participant's earned salary) is used to cal­
culate the retirement benefits. Hence SX,j,t is assumed to be half of 
participant's actual monthly salary. 

Without losing accuracy and to avoid messy and complex presen­
tation, some minor modifications in formulating the various benefit 
payments are used. 

3.2 Normal Retirement Benefits 

According to the current Taiwanese public employees retirement 
and compensation law, it is mandatory for the employees to retire at 
the age of 65 unless permission is granted otherwise. A public employee 
can voluntarily retire at the age of 60 after 5 years of service or at any 
age after 25 years of service. Employees who have worked for more 
than 15 years are eligible to choose anyone of the following five benefit 
payment options: 

• Option 1: A lump-sum single payment; 

• Option 2: A monthly benefit; 

• Option 3: One half of the lump-sum payment and one half of the 
monthly pension; 

• Option 4: One third of the lump-sum payment and two thirds of 
the monthly pension; or 

• Option 5: One fourth of the lump-sum payment and three fourths 
of the monthly pension. 

Participants who have worked more than 5 years but less than 15 years, 
however, only have the lump-sum payment option. There is no retire­
ment benefit for the participants who have worked less than 5 years. 
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The so-called monthly pension under Tai-PERS is paid to retirees 
twice per calendar year on specific dates, namely January 16 and July 
16. The payment on January 16 is for the period between January and 
June and the payment on July 16 is for the period between July and 
December each year. Regulations specify that the last employer (at the 
time of retirement) provides the first payment and Tai-PERS provides 
the rest of the benefits every six months. So, for example, consider a 
person born on May 8, 1934, hired on May 8, 1959, and who retired 
on May 8, 1999 at age 65 with a pension of $3,000 per month. In this 
case, she will receive $ 3, 000 (1 + ~i) = $ 5, 323 from her last employer 
on May 8, 1999 for payment between May 8, 1999 and June 30, 1999. 
Then she will receive $18,000 from Tai-PERS every six months starting 
on July 16, 1999 until she dies. 

3.2.1 Lump-Sum Benefits 

For participants who choose the lump-sum payment option, it is 
assumed that the payment is made in the middle of the retiring age. The 
lump-sum retirement benefit is 1.5 times the monthly final salary for 
each year of service, with a maximum benefit of 53 times the monthly 
salary. To encourage early retirements, if the participant chooses to 
retire at age 55, he or she receives an extra lump-sum benefit of five 
more months credited to his or her years of service. 

Based on the information at time t, the actuarial present value of 
the lump-sum payment of participant j E Ax .t is 

y-x-I 

PVFLSi = '" SinEr . kP(T) q(r) vk+~ 
t L x+k.J.t x x+k ' 

k=O 

where 

sinEr . = 2Sx . t (5X+k Msi~ + 5I{x + k = 55} X 555 ) 
x+k.J.t .J. 5

x 
x.J.t 5

x 

and I {A} is the indicator function for an event (set) A, Le., 

I{A} = {I if A is ~rue 
o otherwIse. 

(24) 
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3.2.2 Monthly Benefits 

For participants who choose the monthly or the mixed payment op­
tion, the monthly pension is calculated according to the speCific percent 
of the participant's salary. This base monthly benefit for a participant 
currently age x who retires at age x + k, monB;+k,j,t' is 2% per year for 
each year of service, with a maximum benefit of 70% of final salary, i.e., 

monBY 2S Sx+k 2% M mon 12 
x+k,j,t = x,j,t Sx 0 X x,j,t X . 

The base monthly benefit is increased semi-annually with cost of living 
adjustments. 

In addition to their monthly retirement benefit, retirees who choose 
the monthly benefit are entitled to two extra death benefits: (i) a pay­
ment of six months of final salary, and (ii) an extra payment as an in­
ducement to encourage retirees to choose the monthly benefit option. 
SpeCifically, consider participant j who is currently age x who retires 
at age x + k then dies at age x + k + u: 

(i) The six months of final salary payment is 

Sx+k 
2Sx j" t-- X 6. 

" Sx 

(ii) The extra payment as an inducement is determined as follows: 
the quantities 

2S " Sx+k M sin (1 + i)U 
X,j,t Sx X,j,t 

(as if the retiree had chosen the lump-sum option) and 

2S " sx+k x 2% x M mon x 12 X coIas (2) 
X,j,t Sx x+k,j,t Ul 

(the accumulated value of the monthly pension that the retiree 
has already received) are compared. A benefit is paid when the 
accumulated value of the monthly pension he received is less than 
the payment based on lump-sum option. Thus the inducement 
benefit can be written as 

max{O 2S " Sx+k (MSin (1 + i)U - 0.24Mmon coIas (2))}. 
, X,j,t Sx X,j,t x+k,j,t Ul 
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The size of the total extra death benefit for a person who retires at 
age x + k is 

Sx+k 
XDBx+k,u,j,t = 2Sx ,j,t----;;;-

x [6 + max {o, M sin (1 + i)u X,j,t 
- 0.24Mmon. COlas (2)}] 

x+k,j,t Ul 

and the actuarial present value of the monthly retirement benefit plus 
the extra death benefit is 

y-x-1 
PVFMOj = '" p(T) q(Y) [monBY . vk+~ colaa (2) 

t L k x x+k x+k,j,t k+1/2 
k=O 

+ ~ V ~ !0.:lll qx+k XDBx+k U j' t] L 2 2 ' " 
u=o 

(25) 

where u;l I ~ qx+k is based on post-retirement mortality. Because we only 
have the retiree's age at retirement (recorded as an integer), 1/2 year 
is added to the recorded retirement age in order to adjust for the frac­
tional part. 

3.3 Benefits Other than Normal Retirement Benefits 

3.3.1 Withdrawal Refund Benefits 

In Tai-PERS both employers and employees make monthly contribu­
tions to the Tai-PERS trust fund. If d is the annual overall contribution 
rate (expressed as a percentage of salary) at age z for participant j, 

then 65% of d comes from the employer and 35% of d comes from 
the employee. 

An employee who withdraws from service can receive his or her ac­
cumulated contributions. In addition, if the employee withdraws at ex­
act age 35 or 45, the employee can also receive the employer's matching 
contribution. Based on the information available at time t, let AC~,z,t 
denote the projected accumulated contributions at age z ;::: x for par­
ticipant j who is currently age x. It follows that 

z-l 
j '" j Sk (12) ( , z-k 

ACx,z,t = L 24 x 0.35 x CzSX,j,tsa]l 1 + t) . 
k=m x 
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The actuarial present value of withdrawal refund benefit is: 

. Y-l[ 06S ] 
PVFWB~,t = z~ 1 + 0:3S (I{z = 3S} + I{z = 4S}) 

. 1 

X ACJ p(T) q(w) v(z-x)+z 
X,z,t z-x x Z • (26) 

3.3.2 Death Benefits for Active Participants 

The size and form of the death benefit for active participants de­
pends on the participant's years of service at the time of death. Ac­
cording to the regulation, a single payment is paid to his spouse if Yx,j,t 

is less than IS years, while a monthly pension plus an extra benefit is 
paid when Yx,j,t is equal or more than IS years. 

For participants who worked for less IS years the single payment 
death benefit is: 

For participants who worked for more than IS years, however, the 
death benefit is paid in two forms: 

(i) A semi-annual annuity paying an annual benefit of five months 
salary for 10 years to the surviving spouse, i.e., 

Scola 
lOS . x+k a(2) 

x,J,t Sx x+k:I6l 

where cOlaa~2lk:I6l is the actuarial present value of the semi-annual 
pension paid to the spouse. To simplify the calculations, we as­
sume that the spouse and the participant have the same age. 

(ii) A lump-sum payment of 15 months salary for IS years of service 
with an increase of half a month's salary for each year of service 
beyond IS years to a maximum 2 S months, i.e., 

Sx+k . {[ ]} 2Sx ,j,ts;: (IS + mm 10,0.S Yx,j,t - 14.S . 
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Thus the actuarial present value of the total death payments is: 

y-x-l 

PVFRB j - " DB j (T) (d) k+ ~ 
x,t - L x,x+k,t kPx qx+k V , (27) 

k=O 

where 

DB~,X+k,t = 25X,j,t S~:k [M~~J.tI{Yx,j,t < IS} 

+ 5co1aii(2) J{Y' ~ IS} x+k:IOl X,J,t 

+ (15 + min {1O,O.5 [Yx,j,t -I4.5]}I{Yx ,j,t ~ IS} J. 

3.3.3 Termination and Disability Benefits 

Tai-PERS provides a comprehensive compensation plan for its mem­
bers. According to the current Taiwan public employees retirement and 
compensation law, employees are terminated once they receive notice 
from their employer. Employees are then eligible for termination bene­
fits, which are the same as the lump-sum benefit for retirement, i.e., 1.5 
times the monthly final salary for each year of service, with a maximum 
benefit of 53 times the monthly salary and it excludes the extra benefit 
at age 55. 

When an employee is incapable of fulfilling his or her responsibility 
or performing similar other jobs, retirement is mandatory under Tai­
wanese law. Disability benefits are the same as termination benefits. 

y-x-l 

PVFDISB j - "DIS j (T) (d) k+~ 
X,t - L x+k,tkPx qx+k V , (28) 

k=O 

where 

DIS j 25 Sx+k M sin 
x+k,t = x,j,t ----;;- x,j,t· 
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4 Application of the Methodology to Tai-PERS 

4.1 Data Description 

There were about 271,215 active participants in the Tai-PERS system 
in 1996. A sample of 3,823 participants was chosen used to evaluate 
the performance of the minimization scheme proposed in Section 2. 

The average age of the sample of employees was 42.99 years and the 
average number of years of service was 15.6 years. Generally speaking, 
the employees in the sample were relatively older than the Tai-PERS 
population as a whole. Accordingly, the contribution rates obtained 
from the sample vary from that for Tai-PERS. The distribution of the 
sample is shown in Table 2. The distribution of new entrants into the 
sample is given in Table 3. 

A service table (Table 4) is constructed based on the experience data 
collected from July 1, 1995 to June 30, 1996. Though the earliest en­
try age into Tai-PERS is around 18 (after graduation from high school), 
making the youngest possible retirement age around 23, we set the 
youngest entry age to be 20. Tables 2, 3, and 4 are used to project the 
evolution of our sample of employees. 

4.2 Assumptions 

The basic actuarial assumptions are: 

Service Table: The Tai-PERS service table is based on plan experience 
in 1995-1996 (see Table 3); 

Post-Retirement Mortality: Follows the 1989 Taiwan Standard Ordi-
nary life table (1989 TSO) annuity table; 

Actuarial Cost Method: Individual entry age normal (EAN) cost method; 

Salary Scale: Sx = (1.035)X, i.e., salaries increase by 3.5% annually; 

Inflation Rate: h(z) = (1.03)2, i.e., a 3% annual inflation rate; 

Valuation Interest Rate: 6%, i.e., Vt = (1.06)-t; 

Target Fund Ratio: 17 = 75% annually; 

Risk Measurement Weight: f3t = 60% annually; 

Fund Return Parameters: e = 8% and (J2 = 0.0004; 

Initial Fund: Fo = 373,211,585 NT; 
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Table 2 
Distribution of Sample of Tai-PERS Employees 

Age No. of Average Years of Service Base Monthly 
x Employees Total In Plan Salary (NT$) 
21 1 2.39 1.39 9630.00 
22 6 2.40 1.31 9740.83 
23 9 3.42 1.33 13792.67 
24 27 2.69 1.30 14557.78 
25 32 3.25 1.33 14580.00 
26 60 3.82 1.39 15038.92 
27 75 3.80 1.39 17748.53 
28 88 4.59 1.41 16865.91 
29 93 5.21 1.44 15914.41 
30 85 5.68 1.48 18528.71 
31 112 6.44 1.50 17409.33 
32 119 6.78 1.49 18942.90 
33 157 7.40 1.47 18531.15 
34 152 8.67 1.49 18933.52 
35 173 10.08 1.50 19567.11 
36 162 9.57 1.49 19321.60 
37 184 11.19 1.50 20812.99 
38 179 11.89 1.50 21111.17 
39 169 12.73 1.50 22736.51 
40 146 13.31 1.51 24158.42 
41 169 14.17 1.51 24670.59 
42 137 14.34 1.51 24502.26 
43 120 15.27 1.51 25039.63 
44 133 16.42 1.51 26975.98 
45 124 16.74 1.51 25803.67 
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Table 2 (contd.) 
Age Distribution of Tai-PERS Sample 

Age No. of Average Years of Service Base Monthly 
x Employees Total In Plan Salary (in NT$) 
46 105 18.32 1.51 28092.10 
47 116 18.79 1.51 26684.96 
48 86 19.49 1.51 28444.19 
49 84 21.56 1.50 28695.89 
50 65 22.67 1.51 27389.92 
51 42 23.48 1.51 31958.93 
52 45 22.49 1.51 30450.67 
53 51 23.03 1.51 29586.47 
54 60 25.55 1.51 29098.58 
55 50 26.71 1.51 31298.30 
56 47 28.83 1.51 33984.26 
57 33 28.60 1.51 31777.27 
58 30 29.76 1.51 33272.83 
59 31 32.72 1.51 31489.19 
60 32 33.51 1.51 31162.97 
61 29 34.35 1.51 38002.76 
62 37 35.09 1.51 35186.08 
63 34 34.86 1.51 33188.38 
64 31 37.90 1.51 36694.52 
65 50 36.74 1.51 40514.10 
66 29 37.36 1.51 38078.62 
67 4 41.78 1.51 47010.00 
68 10 39.21 1.51 46951.00 
69 3 39.86 1.51 47010.00 
70 6 42.95 1.51 45535.00 

Table 3 
The Recruitment Distribution of New Entrants 

Age 20-24 25-29 30-34 35-39 40-44 
Percentage 20% 60% 18% 1% 1% 
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Table 4 
Service Table of Tai-PERS 

x l1T l q1al qfl q1wl q~l 
20 100,000 0.06% 0.00% 0.03% 0.00% 
21 99,905 0.12% 0.00% 1.18% 0.00% 
22 98,608 0.13% 0.00% 1.32% 0.01% 

23 97,166 0.10% 0.00% 0.54% 0.01% 

24 96,530 0.08% 0.00% 0.35% 0.01% 
25 96,106 0.05% 0.00% 0.45% 0.01% 
26 95,612 0.05% 0.01% 0.69% 0.01% 
27 94,888 0.08% 0.00% 0.78% 0.01% 
28 94,057 0.07% 0.01% 0.67% 0.01% 
29 93,347 0.06% 0.01% 0.57% 0.03% 
30 92,730 0.07% 0.00% 0.57% 0.02% 
31 92,109 0.06% 0.00% 0.56% 0.02% 
32 91,524 0.07% 0.00% 0.52% 0.04% 
33 90,942 0.07% 0.00% 0.47% 0.06% 
34 90,394 0.06% 0.00% 0.47% 0.06% 

35 89,858 0.08% 0.01% 0.50% 0.11% 

36 89,235 0.08% 0.00% 0.39% 0.08% 
37 88,738 0.09% 0.00% 0.38% 0.11% 

38 88,221 0.08% 0.01% 0.34% 0.16% 

39 87,706 0.12% 0.01% 0.29% 0.17% 
40 87,187 0.07% 0.01% 0.26% 0.18% 
41 86,728 0.12% 0.00% 0.24% 0.23% 
42 86,215 0.12% 0.03% 0.20% 0.26% 

43 85,693 0.11% 0.02% 0.20% 0.21% 
44 85,235 0.15% 0.08% 0.16% 0.25% 
45 84,684 0.14% 0.18% 0.17% 0.23% 
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Table 4 (contd.) 
Service Table of Tai-PERS 

x 11Tl q1al qfl q1wl qrl 

46 84,071 0.20% 0.22% 0.16% 0.27% 
47 83,351 0.25% 0.30% 0.06% 0.22% 
48 82,661 0.22% 0.32% 0.07% 0.21% 
49 81,984 0.27% 0.26% 0.08% 0.22% 
50 81,310 0.25% 2.30% 0.04% 0.09% 
51 79,128 0.25% 1.83% 0.06% 0.15% 
52 77,325 0.21% 1.62% 0.09% 0.13% 
53 75,736 0.28% 1.91% 0.14% 0.18% 
54 73,835 0.43% 1.34% 0.04% 0.12% 
55 72,410 0.38% 9.92% 0.04% 0.08% 
56 64,863 0.45% 1.90% 0.04% 0.17% 
57 63,210 0.21% 2.84% 0.10% 0.07% 
58 61,182 0.43% 3.42% 0.12% 0.12% 
59 58,679 0.50% 9.37% 0.05% 0.10% 

60 52,805 0.45% 8.90% 0.09% 0.09% 
61 47,776 0.47% 5.12% 0.11% 0.07% 
62 45,015 0.55% 6.07% 0.09% 0.04% 
63 41,982 0.56% 6.53% 0.04% 0.12% 
64 38,938 0.63% 7.58% 0.07% 0.19% 
65 35,643 0.24% 98.82% 0.45% 0.00% 
66 176 0.00% 29.85% 1.01% 0.00% 
67 122 0.00% 20.32% 1.22% 0.00% 

68 95 0.00% 17.86% 0.00% 0.00% 
69 78 0.00% 57.93% 0.00% 0.00% 
70 33 1.52% 70.97% 0.00% 0.00% 
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Initial Plan Size: 3,823 employees; and 

Benefits: For simplicity, we assume that all benefits are paid at the be­
ginning of each year. To accomplish this, some adjustments are 
done in simulating the payment streams. 

An additional adjustment is needed to determine the retirement 
benefits for the entire plan. This is done as follows: Let ¢i denote 
the probability that a retiree chooses option i, i = 1,2,3,4,5, with 
L ¢i = 1. The actuarial present value of retirement benefits for 
all active employees in Tai-PERS at time tis: 

y-l 

PVFRBt = L L PVFRB~,t (29) 
X~mjEAx.t 

where PVFRB~,t denotes the actuarial present value of retirement 
benefits for employee j who is age x at time t in Tai-PERS. 

PVFRB~,t can be written as a weighted sum of the the five options 
listed at the start of Section 2, i.e., 

PVFRB~,t = PVFLS{ X ¢l + PVFMO{ X ¢2 

[ 1 '1 'J + "2 PVFLSi + "2 PVFMOi X ¢3 

[
1 ,2 'J + '3 PVFLSi + '3 PVFMOi X ¢4 

[
1 ,3 'J + 4" PVFLSi + 4" PVFMOi X ¢s. (30) 

In reality, the ¢is will depend on an individual's age at retirement, 
number of years of service, financial circumstances, health status, 
etc. So, in general, it will be difficult to estimate each individual's 
¢i. Thus the ¢is actually used in our simulations are aggregate 
probabilities for the entire plan and are estimated using the Tai­
PERS experience in 1995-1997. 

It must be pointed out that the work force and benefit payments used in 
the objective function are simulated under the assumption of an open 
group with a constant size. That is, we assume that the overall number 
of employees in the sample is held at a constant level, as is required by 
Taiwanese government policy in order to reduce the financial burden 
of Tai-PERS. 
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4.3 The Results and Analyses 

Using the data and plan assumptions in Sections 4.1 and 4.2 and 
three planning periods (T = 10, 15, and 20 years), the benefits (Bd, 
plan experience, and the interest earned on investments (it) are sim­
ulated for 20 years. They are used to estimate actuarial accrued lia­
bilities, normal costs, and fund assets. The optimal contributions for 
each planning period under RIPM are determined from equations (11) 
through (14). The optimal contributions for each planning period un­
der CIPM are determined from equations (18) through (21). The results 
are shown in Tables 5 through 10. 

Figures 1 through 3 show the optimal contribution ratios (CtlNCd 
and funding ratios (Ft I ALt) for the various planning periods. These fig­
ures show that these ratios vary over time, suggesting that they might 
be influenced by the demographic assumptions from our simulations. 
There is a consistent pattern of contribution ratios gradually decreas­
ing from about 140% in 1997 to 100% at the end of the planning period 
under RIPM. There is a much wider variation under CIPM, from 160% 
in 1997 to roughly 60% at the end of the planning period. The optimal 
funding ratios tend to move in the opposite direction. They are grad­
ually increasing by years from 70% in 1998 to about 97% at the end of 
the planning period under CIPM, while from 70% in 1998 to 100% at the 
end of the planning period under RIPM. The contribution ratios under 
CIPM seem to fluctuate more than under RIPM. 

Figures 4 and 5 show the optimal contributions under CIPM and 
RIPM, respectively, for the various planning periods. These figures show 
that the size of the optimal contributions in any year decreases as we 
extend the length of the planning period. 

The ratios of optimal contributions (CFPM ICfIPM) are also plotted 
in Figure 6 for comparison. These ratios behave Similarly during the 
first seven years or so. They then fluctuate significantly. Thus, we can 
expect different optimal contributions using RIPM and CIPM after the 
first seven to ten years. 



Table 5 
Optimum Contributions Using Haberman and Sung (1994) with T = 10 

t Ft Bt it NCt ALt ct 
0 373,211,585 106,636,560 0.081 264,658,176 585,530,240 413,806,784 
1 735,466,112 48,948,364 0.076 254,203,072 851,652,800 315,874,944 
2 1,078,517,154 89,903,272 0.072 250,750,880 1,152,353,024 290,852,704 
3 1,371,757,669 95,409,192 0.080 247,360,208 1,461,198,464 275,160,192 
4 1,675,629,429 67,699,656 0.086 243,759,120 1,775,253,248 247,427,728 
5 2,014,240,058 76,361,992 0.085 240,339,776 2,101,083,136 230,731,024 
6 2,352,101,536 65,474,592 0.090 238,243,632 2,454,753,024 217,235,248 
7 2,728,191,745 102,758,760 0.091 235,766,864 2,813,157,888 214,558,960 
8 3,098,192,936 134,871,760 0.091 233,146,752 3,183,145,472 213,573,856 
9 3,467,139,484 193,478,128 0.089 231,159,440 3,578,989,056 169,976,656 
10 3,750,704,679 161,202,912 227,970,288 3,953,183,488 
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Table 6 
Optimum Contributions Using Chang (1999) with T = 10 

t Ft Bt it Net ALt 

0 373,211,585 106,636,560 0.081 264,658,176 585,530,240 
1 652,645,634 48,948,364 0.076 254,203,072 851,652,800 
2 972,393,725 89,903,272 0.072 250,750,880 1,152,353,024 
3 1,250,364,179 95,409,192 0.080 247,360,208 1,461,198,464 
4 1,540,061,470 67,699,656 0.086 243,759,120 1,775,253,248 
5 1,880,346,539 76,361,992 0.085 240,339,776 2,101,083,136 
6 2,228,378,413 65,474,592 0.090 238,243,632 2,454,753,024 
7 2,623,226,718 102,758,760 0.091 235,766,864 2,813,157,888 
8 3,010,889,344 134,871,760 0.091 233,146,752 3,183,145,472 
9 3,395,413,562 193,478,128 0.089 231,159,440 3,578,989,056 
10 3,740,144,404 161,202,912 227,970,288 3,953,183,488 

c* t 
337,189,323 
300,062,452 
283,749,928 
271,027,799 
259,663,643 
250,553,324 
244,624,247 
239,496,195 
235,155,913 
232,006,863 
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Table 7 ~ 
(\) 

Optimum Contributions Using Haberman and Sung (1994) with T = 15 ~ 

Ft Bt it NC t ALt C* 
i::;' 

t ..... 
t ;::;. 

° 373,211,585 106,636,560 0.076 264,658,176 585,530,240 413,807,424 "1:J 
(\) 

1 731,995,223 48,948,364 0.101 254,203,072 851,652,800 318,112,256 ::; 

"" 
2 1,102,432,124 89,903,272 0.067 250,750,880 1,152,353,024 275,453,824 0' 

::; 

3 1,374,074,884 95,409,192 0.072 247,360,208 1,461,198,464 273,680,352 ~ 
4 1,663,767,839 67,699,656 0.090 243,759,120 1,775,253,248 255,104,096 

::; 
!>:l.. 

5 2,018,193,822 76,361,992 0.106 240,339,776 2,101,083,136 228,293,248 
~. 

\S:) 

6 2,400,078,024 65,474,592 0.100 238,243,632 2,454,753,024 186,703,904 
7 2,772,486,847 102,758,760 0.081 235,766,864 2,813,157,888 187,585,408 
8 3,088,821,372 134,871,760 0.094 233,146,752 3,183,145,472 228,123,600 
9 3,479,795,126 193,478,128 0.080 231,159,440 3,578,989,056 216,944,064 

10 3,783,522,098 161,202,912 0.055 227,970,288 3,953,183,488 222,646,480 
11 4,057,552,838 209,269,152 0.081 225,249,024 4,343,038,464 288,066,880 
12 4,472,912,082 186,510,336 0.080 221,934,336 4,712,074,752 247,495,104 
13 4,896,608,792 222,970,272 0.080 219,645,904 5,146,928,640 221,517,792 
14 5,286,769,028 225,303,168 0.076 216,970,176 5,565,712,384 139,811,344 
15 5,599,154,131 225,283,040 214,121,360 5,987,062,784 

w 
w 



w 
,j::.. 

Table 8 
Optimum Contributions Using Chang (1999) with T = 15 

t Ft Bt it Net ALt c* t 

° 373,211,585 106,636,560 0.076 264,658,176 585,530,240 350,178,999 
1 663,540,043 48,948,364 0.101 254,203,072 851,652,800 313,132,211 
2 1,021,568,503 89,903,272 0.067 250,750,880 1,152,353,024 293,796,067 
3 1,307,374,409 95,409,192 0.072 247,360,208 1,461,198,464 281,704,276 
4 1,600,879,698 67,699,656 0.090 243,759,120 1,775,253,248 270,224,146 

'-
5 1,966,115,867 76,361,992 0.106 240,339,776 2,101,083,136 259,003,289 0 

s:: 
6 2,376,445,902 65,474,592 0.100 238,243,632 2,454,753,024 249,622,442 

""; 
~ 

~ 
7 2,815,687,083 102,758,760 0.081 235,766,864 2,813,157,888 242,331,492 0 

8 3,194,703,571 134,871,760 0.094 233,146,752 3,183,145,472 237,606,661 
-., 
:t:. 
r, 

9 3,605,954,219 193,478,128 0.080 231,159,440 3,578,989,056 233,316,809 ... 
s:: 

10 3,937,456,489 161,202,912 0.055 227,970,288 3,953,183,488 229,179,783 ~ 
""; 

11 4,226,892,750 209,269,152 0.081 225,249,024 4,343,038,464 226,784,402 ~ 
"\J 

12 4,589,761,801 186,510,336 0.080 221,934,336 4,712,074,752 222,857,052 ""; 
~ 

13 4,996,197,398 222,970,272 0.080 219,645,904 5,146,928,640 220,173,079 
r, ... 
i'). 

14 5,392,872,435 225,303,168 0.076 216,970,176 5,565,712,384 217,197,027 ~ 

15 5,796,679,404 225,283,040 214,121,360 5,987,062,784 ~ 
.?> 

"" 0 
0 
0 



Table 9 9 
Optimum Contributions Using Haberman and Sung (1994) with T = 20 ~ 

::; 

t Ft Bt it Net ALt c* ~ 
t ;:.., 

0 373,211,585 106,636,560 0.057 264,658,176 585,530,240 413,807,424 (\) 

~ 

1 718,864,907 48,948,364 0.061 254,203,072 851,652,800 326,569,440 ~ ...... 
2 1,056,906,812 89,903,272 0.083 250,750,880 1,152,353,024 304,776,480 ;::;. 

3 1,377,752,643 95,409,192 0.063 247,360,208 271,311,552 
""IJ 

1,461,198,464 (\) 
::; 

4 1,651,177,015 67,699,656 0.067 243,759,120 1,775,253,248 263,213,824 '" o· 
5 1,971,131,272 76,361,992 0.082 240,339,776 2,101,083,136 258,606,032 

::; 

~ 6 2,330,794,365 65,474,592 0.080 238,243,632 2,454,753,024 231,329,568 ::; 

7 2,696,381,396 102,758,760 0.080 235,766,864 2,813,157,888 236,605,056 
So:l.. 
~. 

8 3,056,646,538 134,871,760 0.084 233,146,752 3,183,145,472 248,848,608 IS::> 

9 3,435,770,039 193,478,128 0.107 231,159,440 3,578,989,056 245,305,776 
10 3,859,855,541 161,202,912 0.058 227,970,288 3,953,183,488 173,510,544 

11 4,097,383,674 209,269,152 0.062 225,249,024 4,343,038,464 262,651,472 
12 4,410,027,561 186,510,336 0.085 221,934,336 4,712,074,752 289,607,296 

13 4,898,313,408 222,970,272 0.103 219,645,904 5,146,928,640 232,266,864 
14 5,414,224,333 225,303,168 0.083 216,970,176 5,565,712,384 144,879,232 

15 5,774,126,863 225,283,040 0.088 214,121,360 5,987,062,784 182,089,664 

16 6,202,151,121 340,608,224 0.088 212,082,800 6,427,823,616 176,958,464 
17 6,570,279,274 384,232,000 0.050 209,096,448 6,821,858,816 157,806,992 

18 6,658,007,323 422,253,632 0.091 206,210,160 7,183,346,176 271,490,016 

19 7,096,278,014 510,401,472 0.080 202,645,072 7,431,084,544 104,960,320 
20 7,226,104,098 564,830,528 199,309,184 7,703,323,648 w 

Vl 



Table 10 w 
OJ 

Optimum Contributions Using Chang (1999) with T = 20 
t Ft Bt it Net ALt C* t 
0 373,211,585 106,636,560 0.057 264,658,176 585,530,240 364,317,179 
1 666,575,492 48,948,364 0.061 254,203,072 851,652,800 328,944,297 
2 1,003,965,740 89,903,272 0.083 250,750,880 1,152,353,024 313,678,298 
3 1,330,043,764 95,409,192 0.063 247,360,208 1,461,198,464 297,754,027 
4 1,628,575,732 67,699,656 0.067 243,759,120 1,775,253,248 285,976,833 

5 1,971,303,895 76,361,992 0.082 240,339,776 2,101,083,136 275,267,053 
6 2,349,014,952 65,474,592 0.080 238,243,632 2,454,753,024 265,528,632 

'-
7 2,752,994,621 102,758,760 0.080 235,766,864 2,813,157,888 257,003,484 0 

~ 

8 3,139,819,127 134,871,760 0.084 233,146,752 3,183,145,472 249,404,354 
~ ::s 

9 3,526,500,242 193,478,128 0.107 231,159,440 3,578,989,056 243,021,150 
~ 
0 

10 3,957,741,588 161,202,912 0.058 227,970,288 3,953,183,488 234,354,560 
-.... 
> 

4,265,346,112 209,269,152 225,249,024 4,343,038,464 231,038,516 
..... 

11 0.062 .... 
~ 

12 4,554,893,586 186,510,336 0.085 221,934,336 4,712,074,752 226,938,696 
!>:l 
~ 

13 4,987,526,269 222,970,272 0.103 219,645,904 5,146,928,640 222,891,400 ~ 
"\J 

14 5,502,303,373 225,303,168 0.083 216,970,176 5,565,712,384 218,218,211 ~ 
!>:l 

15 5,948,870,582 225,283,040 0.088 214,121,360 5,987,062,784 214,753,310 
..... .... ;:;. 

16 6,427,793,436 340,608,224 0.088 212,082,800 6,427,823,616 212,199,100 !I:I 

17 6,854,136,765 384,232,000 0.050 209,096,448 6,821,858,816 208,924,539 ~ 
18 7,009,570,609 422,253,632 0.091 206,210,160 7,183,346,176 206,373,028 5X> 
19 7,408,653,370 510,401,472 0.080 202,645,072 7,431,084,544 202,667,418 f\J 

20 7,668,993,166 564,830,528 199,309,184 7,703,323,648 
<:) 
<:) 
<:) 
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Figure 1 
Optimal Contribution Ratios (Ct /NCt ) 

And Funding Ratios (Ft / ALt) for T = 10 Under CIPM and RIPM 
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Figure 3 
Optimal Contribution Ratios (Ct /NC t ) 

And Funding Ratios (Ft / ALd for T = 20 Under CIPM and RIPM 
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Figure 4 
Optimal Contributions (Cd for T = 10, 15 and 20 Under CIPM 
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Figure 5 
Optimal Contributions (Cd for T = 10, 15 and 20 Under RIPM 
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Some empirical observations worth noting are the following: 

1. If RIPM is chosen for its robustness with respect to the variation 
cross years, then a long-term stable decreasing trend would be 
found in contribution rates. 

2. When CIPM is adopted, much more variable contribution rates may 
occur. Based on our analysis, a longer projection period results 
in much more unstable contribution rates. 

3. There is no clear better performance measure for funding ratios 
in RIP M and CIPM within different time frames. 

4. The effects on these ratios are diminished when we reduce the 
length of the planning horizon. It explains that the effects due to 
policy intervention in contribution ratios are significant in longer 
time frames under both performance measures. 

5. RIPM is a relatively stable strategy for decision making that pro­
vides more consistent and smoother optimal solutions under pol­
icy intervention. 

5 Closing Comments 

As the percentage of the population past retirement age increases, 
pension-related topics have taken on a new Significance, and much at­
tention has been focused on the implementation of better retirement 
systems. We hope the approach presented here can be used in this 
effort. 

A summary of the advantages of this approach is listed below: 

1. With the ready availability of today's high speed computers, the 
plan administrator can forecast the plan's future cash flows; 

2. The optimal contribution can be estimated under various scenar­
ios based on specific plan investment and recruiting strategies; 

3. The optimal funding and actuarial status of the plan can be esti­
mated under specific performance measure implemented through 
a computerized system; and 

4. Running an extensive set of scenarios will clarify the interaction 
between the plan liability and the investment performance. 
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As we mentioned previously, Figures 4 and 5 show that the size of 
the optimal contributions in any year decreases as we extend the length 
of the planning period. One area for further study is to determine if it 
is better to use a single planning period of length 2n years (20 years, 
say) or use two planning periods of n years (10 years) each. 
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Risk Sources in a Life Annuity Portfolio: 
Decomposition and Measurement Tools 
Mariarosaria Coppola, * Emilia Oi Lorenzo, t and Marilena 
Sibillo* 

Abstract§ 

The paper considers a model for a homogeneous portfolio of whole life 
annuities immediate. The aim is to study two risk factors: the investment risk 
and the insurance risk. A stochastic model of the rate of return is used to 
study these risk factors. Measures of the insurance risk and the investment 
risk for the entire portfolio are suggested. The problem of the longevity risk 
is presented, and its consequences with different projections of the mortality 
tables are analyzed. The model is applied to some concrete cases, and several 
illustrations show the importance of the two components of the riskiness in 
terms of the number of poliCies in the portfolio. Understanding these risks 
will allow insurance companies to control, to some extent, the overall risk of 
their annuity portfolios. 

Key words and phrases: Ornstein-Uhlenbeck process, investment risk, insur­
ance risk, longevity risk, moments of insurance functions 
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1 Introduction 

Most of the problems faced by an insurer managing a portfolio of 
life insurance policies are based on the investment risk (due to interest 
rates) and insurance risk (due to mortality) and on their interactions. 
Because of the nature of these risks, most of the research has been done 
on the present value of a single policy within a framework whereby both 
interest rates and mortality are random. Recently the focus has shifted 
to similar problems concerning an entire portfolio of policies. Among 
the contributions in this area are Norberg (1993), Parker (1993), (1994a), 
(1994b), (1996), and (1997), and Frees (1998). 

Norberg (1993) gave the first two moments of the present value of 
stochastic payment streams and applied them to a portfolio of tempo­
rary insurance contracts. Parker (1993) studied moments of the present 
value of future cash flows modeling the force of interest by (i) a white 
noise, (ii) a Wiener process, and (iii) an Ornstein-Uhlenbeck process. 
Parker found moments of the present value of a portfolio of benefits re­
lating to life poliCies (1994a) and endowment insurance poliCies (1994b) 
by modeling the force of interest using a Vasicek model; see Vasicek 
(1977). Parker (1996) proposed two methods to obtain the limiting dis­
tribution of the present value of a portfolio of benefits. Parker (1997) 
provided an interesting paper on the interaction between investment 
and insurance risks for a portfolio of life insurance poliCies with ran­
dom curtate future lifetimes. Using the Vasicek model for the rate of 
return Parker considered the variance as a measure of the riskiness of 
a portfolio and divided it into insurance and investment risks. Frees 
(1998) showed the utility of the coefficient of determination for quanti­
fying the relative importance of each source of uncertainty where there 
are more than two sources of risks. 

The aim of the paper is to study the risk of an annuity portfolio 
by dividing this risk into two components: an investment risk and an 
insurance risk. We offer some ways of controlling these by means of the 
variability measures of the expected value of the life annuities portfolio 
with respect to each of these two components. 

In dealing with a portfolio of life insurance policies, it is well-known 
that the effect of accidental deviations of mortality can be reduced by 
using pooling techniques. But as pointed out in Marocco and Pitacco 
(1998) and Olivieri (1998), however, in the case of a portfolio of life 
annuities, a phenomenon not controllable by pooling techniques is the 
longevity risk, which is the systematic deviations of the actual number 
of deaths from the expected number of deaths due to the improve­
ments in future mortality. The longevity risk produces actuarial losses 
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in the case of a life annuity portfolio, while in the case of life insurance 
contracts it produces actuarial gains. For these reasons it seems partic­
ularly useful to include suitable projections of mortality improvements 
in the case of a life annuity portfolio. 

In Section 2 we propose the random variables in a portfolio of ho­
mogeneous whole life annuities immediate and we obtain the first two 
moments of the present value of the portfolio and of the average cost 
per policy. Section 3 presents a description of the stochastic process 
used to model the instantaneous rate of return, while in Section 4 we 
consider the two sources of risk and their measures for the entire port­
folio; the longevity risk is introduced also. In Section 5, the model is 
applied and several illustrations concerning the importance of the two 
components of the riskiness, as they relate to the number of poliCies in 
portfolio, are presented. 

2 Portfolio of Life Annuities 

Let us consider a portfolio of c homogeneous whole life annuity­
immediate poliCies. These poliCies are assumed to have been issued to 
c lives each age x and pay an annual benefit of one unit payable at the 
end of each year to each of the survivors. For i = 1, 2, ... , c, let Ti be 
the random variable representing the curtate-future-lifetime of the ith 
life insured and let Zi be the random variable representing the present 
value of the lifetime annuity benefits for the ith annuitant 

if Ti = 0; 

if Ti = 1, 2, ... , 
(1) 

where: 

y(t) = f~ Dsds, t > 0, 

with Ds being the random instantaneous rate of return at time s that is 
used for discounting the payments. 

Moreover we suppose (see, for example, Bowers et al., 1987, Chap­
ters 3 and 8, and Parker 1994a) that the following assumptions hold: 

(i) For i = 1, 2, ... , c, the TiS are independent and identically dis­
tributed; 
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(ii) Given knowledge of y(h) for h = 1,2, ... , the ZiS are independent 
and identically distributed for i = I, 2, ... , c; and 

(iii) For i = I, 2, ... , c, the TiS and 8s are mutually independent. 

The random Zi variables are independent only when conditioning on the 
knowledge of the sequence of y (h) s for h = I, 2, .... In general they are 
not independent, as the same rates of return are used for discounting 
the payments. 

For our valuations it is necessary to compute the first and the second 
moments of Zi that are: 

00 

E[Zd = E[E[Zi lTd] = L hPxE[e-y(h)] 
h=l 

00 

E[zl] = L hPxE[e- 2y (h)] 
h=l 

00 h-l 

+ 2 L hPx L E[e-y(r)e-y(h)]. 
h=2 r=l 

The proof of equation (3) is easily derived as follows: 
Proof: 

E[zl] = E[E[Zll {y(h)}h=l]] 
00 h 

= L E[( L e-y (k»)2 h [1 qx 
h=l k=l 

00 h 

= L E[( L e-y (k»)2](hPx - h+1Px) 
h=l k=l 

(2) 

(3) 

00 { h+l h } 
= E[e-2Y(l)]px + h~l E[(k~l e-

y
(k»)2] - E[(k~l e-

y
(k»)2] h+1Px 

00 h-l 
= E[e-2Y(l)px + L hPx ( L 2e-y (r) e-y(h) + e-2y(h»)] 

h=2 r=l 

and equation (3) holds. o 

Let Z (c) denote the total present value for the entire portfolio of c 
armuities, i.e., 
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c 

Z(c) = L Zi. 
i=l 

The first two moments of Z(c) are: 

00 

E[Z(c)] = c L hPxE[e-y(hl] 
h=l 

c c 

E[Z(C)2] = E[L zl + L ZiZj] 
i=l 

c c 

= L E[ZI] + L E[ZiZj]. 
i=l i.j=J 

i"j 
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(4) 

(5) 

(6) 

Next we need an expression for E[ZiZj]. But, by virtue of assumptions 
(i), (ii), and (iii) (Parker 1994a), 

E[ZiZj] = E[E[ZiZj I {y(h)}h=l]] 

= E[E[Zi I {y(h)}h=l]E[Zj I {y(h)}h=l]] 

= E[E[ZI I {y(h)}h=d E [Z2 I {y(h)}h=l]] 

= E[ZlZ2] 

TJ Tz 
= E[ L e-y(hl L e-y(kl] 

h=l k=l 
TJ Tz 

= E[E[ L e-y(hl L e-y(kl I {y(r) };'=l]] 

h=l k=l 
00 00 

= E[ L hPxe-y(hl L kPxe-y(kl] 
h=l k=l 

00 00 

= L L hPx kPxE[e-Y(hl-y(kl]. 
h=lk=l 

Therefore equation (6) can be written as: 

(7) 
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c 00 00 

+ L L L hPxkPxE[e-y(h)-y(k)] 

i,j~l h=l k=l 
ifj 

= cE[Zl] 
00 00 

+ c(c - 1) L L hPxkPxE[e-y(h)-y(k)]. (8) 

h=lk=l 

Finally, from equations (5) and (8), we can obtain the variance of Z(c). 
For our analysis it will be useful to consider the average cost per 

policy, Z (c) / c, of the portfolio under consideration. 

3 Stochastic Rate of Retu rn 

One of the problems facing insurance companies is the financial 
risk arising from fluctuations of their rate of return. To investigate this 
problem we follow Di Lorenzo, Sibillo, and Tessitore (1997) and model 
the instantaneous global rate of return (y(t)) as a sum of two compo­
nents: a deterministic component (0 (t)) and a stochastic component 
(X(t)) that describes the deviations of the instantaneous global rate 
of return from its expected value, o(t). This means that Y(t) can be 
written as: 

Y(t) = o(t) + X(t). (9) 

We suppose that o(t) is determined by forecasts based on the ex­
isting investments. In addition, {X(t),O ::0; t < +oo} is an Ornstein­
Uhlenbeck process, with parameters {3 > 0 and u > 0 and initial value 
X(O) = o. X(t) is characterized by the following stochastic differential 
equation: 

dX(t) = -{3X(t)dt + udW(t) (10) 

where W(t) is a standard Wiener (Brownian motion) process. 
It follows from equation (9) that the stochastic present value at time 

o of a payment of one monetary unit at time t is given by: 
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e-y(t) = e- fci Y(s)ds 

= e- fci(8(s)+X(s))ds 

= v (t)F(t) (11) 

where 

v (t) = e- fci 8(s)ds (12) 

and 

F(t) = e-fJX(s)ds. (13) 

Clearly v (t) is the deterministic discounting factor and F (t) is the 
stochastic discounting factor. F(t) is log normally distributed with pa­
rameters -E[f6 X(s)ds], and Var[f6 X(s)ds] and its rth moment about 
the origin is given by the formula 

E[(F(t))r] = exp{-rE[I: X(s)ds] + ~r2var[I: X(s)ds]}. 

Using the fact that E[X(t)] = 0 and letting: 

CP(t) = Var[ I: X(s)ds] 

we obtain (Crow and Shimizu 1988): 

E[F(t)] = e~<P(t) 

and 

Var[F(t)] = e<p(t) [e<P(t) -1]. 

(14) 

(15) 

(16) 

(17) 

Finally, according to Di Lorenzo, Sib ill 0 , and Tessitore (1997), the 
autocovariance function can be written as follows: 

Cov[F(h),F(k)] = e~(<P(h)+<P(k))[e<l>(h,k) -1] (18) 

where: 

<fJ(h, k) = Cov[ Ia
h 

X(s)ds, I: X(s)ds]. 
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4 Measures of Sources of Uncertainty 

As Frees (1998) points out, it is important to identify the factors 
affecting the total risk. To this end, we will consider mortality and 
stochastic interest as risk factors and make actuarial valuations using 
an instantaneous total rate of return (interest income plus capital gains 
and losses) represented by the stochastic process defined in equations 
(9) and (10). Moreover, we will take into account the mortality compo­
nent, both relating to the riskiness caused by random mortality devia­
tions, and to the riskiness caused by improvements in mortality trend. 

After identifying the risk factors, we must study ways to manage 
them. The risk control tools are different depending on the risk com­
ponents considered. For example, 

• The risk due to random deviations of the numbers of deaths from 
their expected values can be controlled by means of pooling tech­
niques and reinsurance; 

• The investment risk can be controlled by various well-known fi­
nancial risk management techniques such as immunization tech­
niques and hedging strategies (Frees 1998); and 

• The longevity risk (due to an improved mortality trend) can be con­
trolled by using projected mortality tables that are constructed on 
the basis of forecasts of the future mortality trend (Marocco and 
Pitacco 1998 and Olivieri 1998). 

In light of the above conSiderations, it is important to quantify the con­
tribution of each risk factor to the total riskiness of the portfolio. It 
is for this purpose that we want to study the mortality and investment 
components of the life annuity portfolio considered in Section 2. 

4.1 Insurance and Investment Risk Measures 

For valuation purposes, it seems reasonable to adopt a simple mea­
sure of the two risk components affecting the portfolio. We adopt a 
well-known formula for the decomposition of the variance and apply it 
to the variance of the present value of the annuity portfolio. 

First we observe that Var[Z(c)], the variance of the present value of 
the portfolio considered in our study, can be decomposed in two ways 
as follows (Parker 1997): 

Var[Z(c)] = E[Var[Z(c) I {Td~=l]] + Var[E[Z(c) I {Td~=l]] (19) 
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and 

Var[Z (c)] = E[Var[Z (c) I {y (k)} k= 1]] 

+ Var[E[Z(c) I {y(k)}k=l]]· (20) 

In equation (19), Var[E[Z(c) I {Tdf=l]] provides a measure of the 
variability of Z(c) caused by cash flows connected to random events 
(mortality, survival), after averaging out the effect of the stochastic dis­
counting factors. Thus, we have the following definition: 

Definition 1. The insurance risk measure is Var[E[Z(c) I {Tdf=rJ]. 

Analogously, E[Var[Z(c) I {Tdf=l]] is an average over cash flows 
connected to random events of the variability in Z (c) due to the stochas­
tic rate of return, and it can be considered as an investment risk mea­
sure. In equation (20), however, Var[E[Z(c) I {y(k)}]] is a measure of 
the variability of Z(c) due to the effect of the stochastic discounting 
factors as the effect of random events connected with mortality and 
survival have been averaged out, so it is a measure of the investment 
risk. Thus, we have the following definition: 

Definition 2. TheinvestmentriskmeasureisVar[E[Z(c) I {y(k)}k=rJ]. 

We choose equation (20) for our valuations, because, as Parker (1997) 
explains, it allows us to clearly relate the risk components to the num­
ber of policies. We get: 

c 

Var[E[Z(c) I {y(k)}k=l]] = Var[E[I Zi I {y(k)}k=rJ] 

also given by: 

i=l 
00 

= Var[c I hPxe-y(hl] 
h=l 

00 00 

= c2 I I hPxkPxCov[e-y(hl, e-y(kl] (21) 
h=lk=l 

00 00 

Var[E[Z(c) I {y(k)}k=l]] = c2 I I hPxkPxE[e-Y(hl-y(kl] 
h=lk=l 

00 

- (c I hPxE [e-y (hl])2 
h=l 
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and 
c 

E[Var[Z(c) I {y(k)}k=dJ = E[Var[I Zi I {y(k)}k=l]] 
i=l 

= E[cVar[Zi I {y(k)}k=l]] 

= cE[E[zll {y(k)}k=l]] 

- cE[(E[Zi I {y(k)}k=1])2]. (22) 

With regard to the average cost per policy, Z (c) / c, we get: 

Z(c) 00 00 

Var[E[-c- I {y(k)}k=l]] = I I hPXkPxCov(e-Y(h), e-y(k») (23) 
h=l k=l 

and 

E[Var[Z~C) I {y(k)}k=l]] = ~(E[E[ZII {y(k)}k=dJ 

- E[[E[Zi I {y(k)}k=1]]2]). (24) 

4.2 The Longevity Risk 

Together with the risk due to accidental deviations of death frequen­
cies from their expected values, the improvements of mortality trends 
at adult ages have consequences on all life insurance contracts. As life 
annuities are contracts pertaining to survival benefits, the calculation of 
present values should be based on mortality tables with built-in mortal­
ity projections, because unexpected improvements in future mortality 
at the older ages could result in an underestimation of future costs and 
result in actuarial losses. 

Definition 3. The longevity risk is the systematic deviation of the actual 
number of deaths from their expected values across the older ages. 

By analyzing mortality trend in terms of survival functions, two as­
pects known as rectangularization and expansion emerge. Rectangular­
ization refers to the higher concentration of deaths around the mode of 
the curve of deaths, lowering the risk for the insurer. Expansion refers 
to the random advancement of the mode of curve of deaths toward the 
ultimate life time (Olivieri and Pitacco 1999) and hence a higher risk for 
the insurer. Longevity risk is the result of rectangularization and ex­
pansion acting jointly (Marocco and Pitacco 1998). It can be mitigated 
by using projected mortality tables;, that is, tables constructed on the 
basis of a forecast of the future mortality trend (Pitacco 1998). 
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5 Numerical Illustrations 

Let us consider a portfolio of c whole life annuities immediate as 
described in Section 2. We will quantify the insurance and investment 
risks on the basis of equations (21) to (24) and four different mortality 
tables. 

Following Olivieri (1998), we assume that the basic distribution of 
future lifetimes can be represented by a Weibull distribution, i.e., the 
survival function from age 0 to age x, s(x), is given by: 

s(X) = e-(X/IX}J', x > 0, 

where ()( > 0 and y > 0 are constant parameters. The projected survival 
function from age 0 to age x is also assumed to follow a Weibull dis­
tribution. The basic mortality table and the three projected tables with 
increasing survival probabilities are based on the parameters ()( and y 
suggested by Olivieri (1998). These parameter values are given below. 

Parameter Values 
Survival Tables ()( 
Basic 82.7 
Pessimistic Projection 83.5 
Realistic Projection 85.2 
Optimistic Projection 87.0 

y 

7.00 
8.00 
9.15 
10.45 

The parameters f3 and (J of the force of interest process (equation 
(9)) used in our calculations are determined in a manner similar to Di 
Lorenzo, Sibillo, and Tessitore (1997). As the Ornstein-Uhlenbeck pro­
cess, X(t), (equation (9)) represents the deviations of the force of inter­
est from its expected values, we use the differences between the actual 
observed rates and the corresponding forecasted rates. Then by means 
of the covariance equivalence principle (pandit and Wu 1983 and Parker 
1994), we can estimate f3 and (J from these differences. 

Using data from Italian short-term (three months) bonds, regularly 
reported in Statistical Bulletin, we obtain 6 = 0.09, f3 = 0.11, and (J = 
0.005. 

Tables 1 and 2 show the mean, variance, investment risk component, 
and insurance risk component of the present value of a portfolio of c 
annuities issued at age 65. Table 1 is based on c = 15, while Table 2 is 
based on c = 1000. 
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Tables 3 and 4 show the mean, variance, investment risk component, 
and insurance risk component of the present value of the average cost 
per policy of a portfolio of c annuities issued at age 6S. Table 3 is based 
on c = IS, while Table 4 is based on c = 1000. 

Tables Sand 6 show the mean, variance, investment risk component, 
and insurance risk component of the present value of a portfolio of c 
annuities issued at age 4S. Table 5 is based on c = 15, while Table 6 is 
based on c = 1000. 

Tables 7 and 8 show the mean, variance, investment risk component, 
and insurance risk component of the present value of the average cost 
per policy of a portfolio of c annuities issued at age 4S. Table 7 is based 
on c = IS, while Table 8 is based on c = 1000. 
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Table 1 
Present Value of Annuity Portfolio at Age 65 with c = 15 

Projections 
Basic Pessimistic Realistic Optimistic 

E[Z(c)] 106.654 110.00l 114.706 120.257 
Var[Z(c)] 199.384 196.662 196.012 197.376 
Var[E[Z (c) I {y} ]] 94.698 102.631 114.973 131.174 
E[Var[Z (c) I {y} ]] 104.686 94.031 81.039 66.202 

Table 2 
Present Value of Annuity Portfolio at Age 65 with c = 1000 

Projections 
Basic Pessimistic Realistic Optimistic 

E[Z(c)] 7110.24 7333.41 7647.04 8017.12 
Var[Z(c) ] 427861.00 462405 516394.00 587408.00 
Var[E[Z (c) I {y} ]] 420882.00 456136.00 510992.00 582995.00 
E[Var[Z(c) I {y}]] 6979.00 6269.00 5402.00 4413.00 

From Tables 1 and 2 we observe that the mean value of Z(c) increases 
with the projection; the global variance, for c = 15, decreases, except 
for the optimistic projection, while it always increases for c = 1000. 
Analyzing the two risk components we note that for both values of c 
the financial risk increases with the projection, while the insurance risk 
decreases. 

Tables 3 and 4 show a similar behavior to Tables 1 and 2, respec­
tively. The numerical results for the global variance are confirmed if 
we study it as function of the c: 
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Table 3 
Present Value of Average Cost per Policy at Age 65 with c = 15 

Projections 
Basic Pessimistic Realistic Optimistic 

E[ Z(c)] 
c 7.11024 7.33341 7.64704 8.01712 

Var[ z(c)] 
c 0.88614 0.87404 0.87116 0.87725 

Var[E[ Z~C) I {y}]] 0.42088 0.45613 0.51099 0.58299 
E[Var[ Z~C) I {y}]] 0.46526 0.41791 0.36017 0.29426 

Table 4 
Present Value of Average Cost per Policy at Age 65 with c = 1000 

Projections 
Basic Pessimistic Realistic Optimistic 

E[ Z(c)] 
c 7.11024 7.33341 7.64704 8.01712 

Var[ Z(c)] 
c 0.42786 0.46240 0.51639 0.58740 

Var[E[z~C) I{y}]] 0.42088 0.45613 0.51099 0.58299 
E[Var[z~C)I{Y}]] 0.00698 0.00627 0.00540 0.00441 

V [Z(c)] _ 537790 60.5039 + 54.2351(c -1) ar pess - -. + ---------
C C 

= 0.4561 + 6.2688 
c 

Var[ Z(c) heal = -58.4772 + 64.3908 + 58.9882(c - 1) 
c c 

= 0.5110 + 5.4026 
c 

V [ Z(c)] _ 642742 69.2707 + 64.8572(c -1) ar -- opt - -. + 
c c 

= 0.5830 + 4.4135. 
c 

So the variance related to the pessimistic projection is greater than 
the variance related to the realistic projection for c < 16; moreover, the 
variance related to the realistic projection is greater than the variance 
related to the optimistic projection for c < 14. 
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Table 5 
Present Value of Annuity Portfolio at Age 45 with c = 15 

Projections 
Basic Pessimistic Realistic Optimistic 

E[Z(c)] 143.506 145.974 148.913 151.390 
Var[Z(c)] 263.391 264.082 269.890 276.967 
Var[E[Z(c) I {y}]] 227.782 239.457 254.678 268.497 
E[Var[Z(c) I {y}]] 35.609 24.625 15.212 8.470 

Table 6 
Present Value of Annuity Portfolio at Age 45 with c = 1000 

Projections 
Basic Pessimistic Realistic Optimistic 

E[Z(c)] 9567.07 9731.6 9927.55 10092.7 
Var[Z(c)] 1014670 1065890 1132920 1193880 
Var[E[Z(c) I {y}]] 1012360 1064250 1131900 1193320 
E[Var[Z(c) I {y}]] 2310 1640 1020 560 

For all values of c, the financial risk increases and the insurance 
risk decreases when the projection increases. We observe that the de­
creasing behavior of the insurance risk is stronger when the number 
of policies is small. From a mathematical point of view, we can justify 
this behavior by means of equation (24) in which the dependence of 
E[Var[ Z~C) I {y(k)}]] on c is evident. 

For every fixed survival table, the global variance of Z~C) decreases 
as c increases. In particular, the financial risk takes the same value 
(from equation (23) we see that Var[E[ Z~C) I {y (k)} ]] does not depend 
on c), while the insurance risk decreases to zero as c tends to infinity 
(see equation (24)). 

We can repeat analogous considerations about Tables 5, 6, 7, and 8. 
Observe that for x = 45 the global variance always increases; in fact we 
have: 
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Table 7 

Present Value of Average Cost per Policy at Age 65 with c = 15 
Projections 

Basic Pessimistic Realistic Optimistic 
E[ Z~c) ] 9.56706 9.73160 9.92753 10.0926 
Var[ Z(c) ] 

c 1.17062 1.17369 1.19951 1.23096 
Var[E[ Z~c) I {y}]] 1.01236 1.06425 1.l3190 1.19332 
E[Var[ Z~c) I {y}]] 0.15826 0.10944 0.06761 0.03764 

Table 8 
Present Value of Average Cost per Policy at Age 65 with c = 1000 

Projections 
Basic Pessimistic Realistic Optimistic 

E[ Z(c) ] 
c 9.56706 9.73160 9.92753 10.0926 

Var[ Z(C)] 
c 1.01467 1.06589 1.l3292 1.19388 

Var[E[z~C) I{y}]] 1.01236 1.06425 1.l3190 1.19332 
E[Var[ Z~C) I {y}]] 0.00231 0.00164 0.00102 0.00056 

Var[Z(C) ]pess = -94.5385 + 97.2269 + 95.599(c -1) 
C C 

= 1.0605 + 1.6279 
C 

Var[Z(c) ]real = -98.3670 + 100.497 + 99.495(c -1) 
c c 

= 1.1280 + 1.0020 
c 

Var[Z(c) ]opt = -101.6260 + 103.368 + 102.814(c -1) 
c c 

= 1.1880 + 0.5460. 
c 

The variance related to the pessimistic projection is greater than 
the variance related to the realistic projection for c < 10; moreover, the 
variance related to the realistic projection is greater than the variance 
related to the optimistic projection for c < 8. 
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6 Summary and Concluding Remarks 

We have analyzed and quantified two risk sources for a portfolio of 
life annuities: the investment risk and the insurance risk. This analysis 
was done in a framework in which both mortality and rates of returns 
are random. 

The global rate of return is modeled as the sum of two components: 
a deterministic one, which considers the existing investments of the 
company, and a stochastic one, representing the deviations of the real 
rate of return from its anticipated values. The stochastic component is 
an Ornstein-Uhlenbeck process with a mean reversion level of zero. 

We also consider the longevity risk, the risk due to the improve­
ments in mortality trend. The effects of the mortality improvements 
are investigated using different projected mortality tables. 

On the basis of the numerical examples presented, we may conclude 
that the insurance risk decreases when the projection increases. On the 
other hand, the financial risk increases when the projection increases, 
because the company could be exposed for a longer period to a risk 
of systematic nature. Moreover, the mean value of the present value of 
the cash flows connected to the portfolio increases when the projection 
increases, because the insurer could bear bigger costs. 

In conclusion, the numerical results presented in Section 6 show how 
the use of projected mortality tables allows the insurer to front the risk 
of greater costs and how the exposure to the financial risk and to the 
insurance risk varies, depending on the longevity of the lives insured. 

One area for future research is the development of the model pre­
sented in the paper, focusing on the effect of the randomness of the 
projections in the valuations concerning the considered portfolio. Such 
research can lead to the determination of the systematic risk compo­
nent due to the type of randomness depicted by the survival functions 
used for constructing mortality tables. 
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A Comparative Study of the Performance of Loss 
Reserving Methods through Simulation 
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Abstract* 

Actuaries are often asked to provide a range or confidence level for the loss 
reserve along with a point estimate. Traditional methods of loss reserving do 
not provide an estimate of the variance of the estimated reserve, and actuaries 
use various ad hoc methods to derive a range for the indicated reserve. We use 
a Monte Carlo simulation method to compare various loss reserve estimation 
methods, including traditional methods and regression-based methods of loss 
reserving. 
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1 Introduction 

Loss reserving, or projecting losses to their ultimate value, is an im­
portant actuarial function. The loss development factor (LDF) method 
attempts to estimate the pattern with which losses for a given cohort of 
claims change over time. This method produces a point estimate of the 
required reserve and is the most commonly used actuarial technique 
for projecting losses to their ultimate value. Actuaries are often asked 
to provide a range or the variability associated with the point estimate 
of the loss reserve. 

Mack (1994) developed a methodology to estimate the variability of 
the estimated loss reserves when the LDF method is used. His method 
may not be appropriate in many situations, however, as the selection 
of the development factors is often judgmental. Holmberg (1994) has 
also presented a model by which actuaries can estimate the variabil­
ity of their loss reserve estimates. Regression modeling of the loss 
triangle, which can provide both a point estimate and the variability as­
sociated with the point estimate, is receiving increasing attention from 
actuaries. Regression methods provide an estimator of the variance 
more directly. These methods, however, are rarely used by actuaries 
because of the methods' complexity. It is desirable to thoroughly test 
a new methodology before it can be accepted as an appropriate tech­
nique and used in practice. Comparisons of forecasting methods based 
on historical data are not generally considered an objective method for 
testing forecasting methods. Such studies are likely to be biased by the 
preference of the investigator. 

Alternatively, statistical simulation is a well-accepted technique for 
comparing various methods of estimation when the properties of the 
estimators cannot be studied analytically. Stanard (1985) used this 
technique to compare various traditional methods of loss reserving. 
We shall apply the same technique to compare the traditional methods 
with the regression method of loss reserving. OUf'study uses a variety 
of methods to Simulate the loss triangles. 

We have selected the LDF method as one to compare because it is the 
most commonly used traditional actuarial method. We have included 
the Biihlmann complementary loss ratio method (which Standard refers 
to as the additive model), because this method was the best of the tested 
methods per the Stanard (1985) study. We compare these loss reserve 
estimation methods and regression methods. The various loss reserve 
estimation regression models considered in this study differ in the num­
ber of the parameters used in modeling the loss triangle. 
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Our approach is to simulate random loss triangles with a variety of 
methods and estimate the corresponding loss reserves using the loss 
development method, Blihlmann complementary loss ratio method, and 
log-regression models. We assume that the ultimate losses (and hence 
the reserves) are known with certainty. We compute the deviations 
of the estimated reserves from the actual reserves derived by various 
methods. We expect this deviation to be small for a good reserving 
method. We use several criteria to compare the estimated deviations of 
actual versus estimated reserves under the various reserving methods. 

In the second section the particular methods of simulating random 
loss triangles are described. We do not claim that these methods cap­
ture all the intricacies of the claims process. Our methods also do not 
generate loss triangles that incorporate the effects of structural changes 
in the loss process. We also require that incremental losses be positive 
in our generated triangles. In reality, this constraint may be violated 
in some actual loss triangles. We believe, however, that our methods 
generate loss data triangles that are stochastic and do not provide an 
apparent advantage to any particular method of loss reserve estima­
tion. A particular method of reserve estimation may incorporate some 
underlying assumptions about the claims process and will obviously 
provide a better estimate of the loss reserve if those assumptions are 
valid. In practice it may not be possible to test the assumptions under­
lying a particular loss reserve estimation method. If a statistical test 
is applied, it can only detect a gross violation of the assumptions and 
cannot confirm that those assumptions are true. 

Loss development factor methods have an extensive history of use 
in actuarial practice that preceded the investigation and documenta­
tion of the assumptions underlying these methods. Given the current 
and historical familiarity with loss development factor methods, the 
assumptions underlying these methods are in some sense secondary 
to the methods themselves. Given their widespread historical use and 
technical adequacy as loss development estimation methods, loss de­
velopment factor methods would be used by actuaries even if no studies 
about the underlying assumptions were ever published. This is a major 
consideration, which leads us to use a variety of methods to simulate 
the random loss triangles. 

We are comparing a traditional loss development factor loss reserve 
estimation method, the Blihlmann complementary loss ratio method, 
and three fixed regression loss estimation models to estimate the loss 
reserves. These methods and models are briefly described below. We 
also discuss the criteria used to compare the results of the simulations. 
One can definitely define comparison criteria other than those used 
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here. The criteria used are comprehensive, and an estimator perform­
ing better in the criteria considered will likely be a good estimator with 
respect to other reasonable criteria. We have also provided a brief sum­
mary of the results of the simulations for the aggregate loss reserves in 
this section. Appendix A provides the individual accident year results 
of our computations. We end with several observations of the results 
and some conclusions based on this simulation study. 

2 Simulating Random Loss Triangles 

Modeling a claims process to generate the random elements of a loss 
triangle is complicated. There does not appear to be any study that de­
rives a severity distribution for losses where the individual loss amount 
may change over time. Stanard (1985) and Pentikainen and Rantala 
(1995) describe methods of simulating random loss triangles. Their 
methods are fundamentally different. The Stanard method is based on 
a loss severity distribution of individual claim amounts whereas Pen­
tikainen and Rantala use an aggregate stochastic claim process. 

The various methods of loss triangle simulation used here do not 
satisfy the assumptions underlying the various methods of loss reserv­
ing compared. For example, for log-regression modeling, it is assumed 
that the incremental losses are independent. This assumption is vio­
lated by all the methods used for simulating the random loss triangles. 
Similarly the random loss triangle simulation methods do not satisfy 
the basic requirement of the LDF method that the future development 
is determined by the latest available data. One can infer that our study 
tests the robustness of the various methods of loss reserving against 
data sets that do not conform to the assumptions underlying the re­
serve estimation methods. 

We have used four different techniques for simulating the loss tri­
angles. The Pentikainen and Rantala (1995) method is one of them. As 
we shall see later, the log-regression method of loss reserving requires 
that the incremental losses be positive. If this is not the case, some sub­
jective judgments need to be made. One way to treat such incidences 
is to delete such observations from the data set. To be uniform and 
consistent, we have selected loss triangle simulation methods that will 
generate positive incremental losses. Stanard's method does not satisfy 
this requirement and is not used. 

For all the methods in this study, 11 accident years are considered. 
It is further assumed that the losses completely mature at the 11 th year 
of development, i.e., the first accident year is at the ultimate loss level 
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and no further development is expected. Because we require complete 
knowledge of the ultimate losses for a proper comparison of the reserve 
estimation results of the different estimation methods, we generate a 
complete history for each accident year. In estimating the reserves, only 
the top half of the loss triangle is available to the actuary as data. The 
top half is used to estimate the lower half of the triangle, particularly the 
last (right) column, which represents the projection of ultimate losses. 
For i, j = 1,2, ... , let Si,j denote the incremental losses for the accident 
year i at the end of the calendar year i + j - 1, and let Li,j denote the 
cumulative losses for the accident year i at the end of the calendar year 
i + j - 1, i.e., 

j 

Li,j = L Si,k. 
k=l 

The ultimate loss for accident year i, Li, is given by 

Li = ~im Li,j' 
J-OO 

For simplicity, the losses are assumed to be fully developed after 11 
years, i.e., Li ='Li,ll. In addition, we consider only 11 accident years. 

2.1 Random Reporting Factor 

The steps of this random loss triangle generation method for acci­
dent year i ( i = 1, ... ,11) are: 

Step 1: Generate Ni, the number of losses for accident year i, as a 
Poisson random variable with mean 100. 

Step 2: Generat~ Ni claim amount variables {Ci,l, Ci,2, ... ,Ci,N;} where 
each Ci,k is log-normally distributed with parameters J-l = 

7.3659 and (J" = 1.517427.1 These parameters correspond 
to a loss severity mean of 5000 and a coefficient of variation 
of 3. The ultimate losses for accident year i is 

N; 

Li = Li,ll = 1.06(i-l) L Ci,k. 
k=l 

1 A random variable X is said to be log-normally distributed with parameters J1 and 
a if lnX is normally distributed with mean J1 and variance a 2. 
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Step 3: Generate ten random numbers Ui,j, for j = 1, ... ,10, that are 
uniform on (0,1). 

Step 4: For j = 1, ... ,10 compute 

(1) 

and 

j 

X- '= " Tk. t,) L I, (2) 
k=1 

Step 5: The simulated cumulative loss for accident year 1 at lag (de­
lay) j, Ll,j is given by 

L' , = L'II(l- e-Xi,j) t,} t, • 

Note that the accident year losses are inflated by 6 percent 
per year. 

Though this method may look like a development factor model, it 
does not strictly satisfy the assumptions of the loss development factor 
model. The ratio of the expected losses E[Li,j+d / E[Li,j] is a constant, 
not the conditional expectation. It also does not satisfy the assumption 
of independence of incremental losses underlying the log regression 
models of loss reserves. 

2.2 Random Backward Development Factor 

This method is Similar to method 1 except that the factors are com­
puted in reverse order. The steps of the method for accident year i 
are: 

Step 1: Generate Ni, the number of losses for accident year i, as a 
Poisson random variable with mean 100. 

Step 2: Generate Ni claim amount variables {Ci,l, Ci,2, ... , Ci,Ni } where 
each Ci,k is log-normally distributed with parameters J.l = 

7.3659 and if = 1.517427. The ultimate loss for accident 
year i is 
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Ni 

Li = Li,lI = l.06(i-l) L Ci,k. 
k=I 

69 

Step 3: For j = 1,2, ... ,10, generate the log-normal variates Yi,ll-j 

with parameters J.li,j = aj and (Yi,j = bj where 

and 

b. _ (j + (j - 1)2) 
] - 500 

Note that Yi,j is a randomly generated development factor 
for the development period j to j + l. 

Step 4: Losses reported at the end of year 10 for the accident year 
i, Li,lo, are Li/Yi,lo. The reported losses at earlier valuation 
dates are computed by dividing by Yi,j successively, Le., 

L· . 1 
L .. - ~ . 109 2 1 t,] - y..' J = " ... , , . 

t,] 

The aj and bj parameters are selected so that Pr[Yi,j > 1] = 1 - E 

for very small E. 

2.3 Individual Losses with Changing Severity 

This method is based on the ideas of Stanard (1985) and Kuhlmann, 
Schnieper, and Straub (1980). As in Stanard, we assume an exponential 
delay in reporting and settlement with the added assumption that the 
severity distribution varies with delay. The claim amounts are assumed 
to follow a Pareto distribution with parameters A and 8.2 

2 A random variable X is said to have a Pareto distribution with parameters ,\ and e 
if 

Pr[X ~ xl = 1 - (1 + I )-e x> o. 
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As each individual claim develops, the percentile level of the individ­
ualloss is assumed to remain constant over time but the parameters i\ 
and 0 are assumed to change until the claim is settled. In other words, 
if the kth claim in accident year i is initially of size Ci,k. the percentile 
level of the claim is Ui,k where 

( 
C )-e 

Ui,k = 1 - 1 + ~k 

For k = 1, 2, ... ,Ni, the kth claim in accident year i, Ci,k, is assumed 
to have three random characteristics measured from the beginning of 
the accident year: the date of occurrence, Xi,k,l, which is a uniform 
variate on (0,1); the reporting delay, Xi,k,2, which is exponentially dis­
tributed with mean 2; and the settlement delay, Xi,k,3, which is exponen­
tially distributed with mean 2. As we require that the ultimate values of 
a claim be known within 11 calendar years after it occurred, we truncate 
both Xi,k,l + Xi,k,2 and Xi,k,l + Xi,k,2 + Xi,k,3 at 11 if they exceed 11. This 
provides loss amounts for each claim for delays for j = 1,2, ... ,11. 
Specifically, let ri,k and Ri,k be nonnegative integers such that 

ri,k = min {l (Xi,k,l + Xi,k,2) J, 11} 

Ri,k = min {l (Xi,k,l + Xi,k,2 + Xi,k,2) J, II} 

(3) 
(4) 

where lx J denotes the largest integer less than or equal to x. It follows 
that the kth claim in accident year i is reported in calendar year i + n,k 

and is settled in calendar year i + Ri,k. The estimated loss after delay j 
is Ci,k,j, which is defined as: 

C"k" -l, ,J -

o 

i\(j) ((1- Ui~k)l/e(j) -1) 
i\(j) ((1- Ui,:)l/e<Ri,k) -1) 

if j = 1,2, ... ,ri,k; 

if j = n,k + 1, ... ,Ri,k; 

if j = Ri,k + 1, ... ,11; 

where i\ = i\l, 0 = 01 

i\(j) = 50(20 + j -1)(1.06)j-l 

and 

O(j) = (50 - (j -1))/20. 

(5) 
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Note that the middle expression for Ci,k,j in equation (5) can be writ­
ten as 

((I _ Ui~k)l/B(j) - 1) = ( (1 + C~k) BIB(j) - 1) 

and that if a claim is settled at delay j then Ci,j,k remains constant at 
later valuations. 

The estimated claim amount Ci,k,j increases over time (as j increases). 
In actual practice, however, the estimated claim amount may decrease 
from an earlier to a later valuation for some claims. The procedure used 
here will always increase the severity of the loss from one valuation to 
the next. This is done to force the incremental losses to be positive. 

The steps of the method for accident year i are: 

Step 1: Generate Ni, the number of losses for accident year i, as a 
Poisson random variable with mean 100. 

Step 2: Generate Ni claim amount variables {Cu, Ci,2, ... ,Ci,Ni} where 
each Ci,k is a Pareto distribution with parameters ,\ = 1000 
and e = 2.5. The corresponding {Ui,I, Ui,2, ... ,Ui,Ni} are also 
determined. 

Step 3: For the k = 1,2, ... Ni, generate uniform (0,1) variates Xi,k,l 

for the occurrence date and exponential variates Xi,k,2 and 
Xi,k,3 with mean 2 and 5 respectively for the reporting delay 
and the settlement delay. The quantities ri,k and Ri,k are 
calculated according to equations (3) and (4). 

Step 4: Calculate the Ci,k,jS for j = 1,2, ... 11. Note that the ultimate 
loss for accident year i is 

Ni 
Li = LUI = 1.06(i-l) I Ci,k,U. 

k=l 

2.4 Pentikainen-Rantala Method 

(6) 

This method is based on the procedure described by Pentikainen 
and Rantala (1995). Our implementation differs slightly from theirs. 
We shall describe the computational steps of this method briefly; the 
reader is encouraged to review the original Pentikainen-Rantala paper 
for a complete explanation of their method. The computational steps 
of this method are: 
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Step 1: We assume a reporting pattern for a cohort of aggregate losses. 
This pattern is assumed not to change over time and includes 
pure IBNR. Specifically, let XU) denote the proportion of the 
losses in accident year i reported in calendar year i + j -1, j = 

1,2, ... ,11. The pattern used is X(I) = 0.220, X(2) = 0.180, 
X(3) = 0.150, X(4) = 0.120, X(5) = 0.100, X(6) = 0.080, 
X(7) = 0.060, X(8) = 0.040, X(9) = 0.027, X(10) = 0.016, 
X(ll) = 0.007. 

Step 2: Claims for the accident year i reported at delay j are given 
by 

Si,j = K x XU) x XP(i) x qU,j) x INFU + j - 1) (7) 

where K is constant parameter related to the total losses for 
accident year 1; 

XPU) = ((1.01)(1.06))i-l Exposure and inflation growth; 

q(i,j) = 0.4 + 0.6qU,j -1) + ti,j 

where qU, 0) = 1 and ti,j ~ N(O, 0.05) 

t 

INF(t) = n (1 + 8 (k)); 
k=l 

8(k + 1) = max(0.06 + 0.7(8(k) - 0.06) + Wk) 

and 8(1) = 0.06 and Wk ~ N(0,0.015). 

This method is based on randomizing the aggregate losses of all the 
claims for an accident year. Claim reporting and inflation are modeled 
by autoregressive processes. We further restrict the inflation rate to a 
minimum of 3 percent. This method also has an exposure growth of 1 
percent. 

We note that in the simulation of random loss triangles by the meth­
ods of Sections 2.1, 2.2, and 2.3, individual claim severity is unlimited. 
In practice individual losses will have an upper limit in most cases. Oc­
currence of an individual large loss in the simulation process may cause 
an individual accident year loss to be out of line with other accident year 
losses in an individual loss triangle. 

It is worth stating that the computations for the simulations were 
performed in Excel. We have, however, implemented our own module 
to generate the uniform random variate. 
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3 Methods of Loss Reserving 

One can see that each of the four methods of generating loss tri­
angles in Section 2 has several parameters. As these parameters are 
changed, the simulated triangles may exhibit significantly different de­
velopment patterns. A particular method of loss reserving, considered 
best with a selected set of loss triangle generation parameters, need 
not be better for any other set of loss triangle generation parameters. 
The simulation conducted here emphasizes a variety of methods of loss 
triangle generation rather than the sensitivity of the loss triangle gen­
eration methods over a range of possible parameters. 

Let us assume that there is no further claim development beyond 
year n or, equivalently, that Li,n is the ultimate loss value for the acci­
dent year i. (Recall in Section 2 that n = 11.) Further assume that all 
Si,j are positive and let 

(8) 

To simplify the later exposition of our estimation process, let us 
further assume that the accident year loss inflation rate is 6 percent 
and there is no exposure growth except for the Pentikainen-Rantala 
method in which constant exposure growth of 1 percent is assumed. 
Our problem is to estimate Li,j fori = 1,2, ... ,nand} = n+2-i,n+3-
i, ... , n given thatLi,j is known for i = 1,2, ... ,nand} = 1, ... ,n+l-i. 

Two traditional methods of loss reserving and three regression mod­
els are used. The two traditional methods are the loss development fac­
tor method and the BUhlmann complementary loss ratio method. The 
loss development factor method is the most commonly used actuarial 
technique. The BUhlmann loss ratio method was chosen for this anal­
ysis because this method outperforms other actuarial methods in the 
simulation study by Stanard (1985). 

The three regression models we have selected for comparison are 
similar; the differences among them lie in the number of parameters 
fitted. These methods are described next. 

Loss Development We compute: 
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f . . - Li,j+1 
t,) - L .. 

t,) 

1 n-j 

fJ = n _ j I fi,j 

n-1 

Uk = n fj 
j=k 

and the estimated Li,n is given by 

t=l 

Biihlmann Complementary Loss Ratio Method This method of loss re­
serving has not been commonly applied in North America and is 
suitable for application to paid loss data. It is based on the pre­
sumption that the proportion of losses paid at a particular delay 
remains constant over time. This proportion is estimated from 
the historical loss experience and is used to forecast the future. 
We compute: 

1 n-j+1 . 
- "( n-t f Mj = . 1 L Si,j 1 + r) or j = 2,3, ... ,n and 

n - J + i=l 

St,j = Mj(1 + r)i-n for j = n + 2 - i, ... ,n and i = 2,3, ... ,n 

where r is rate of inflation for losses and is assumed to be 6 per­
cent in our simulation. 

Regression Models Our discussion of the regression models consid­
ered in our analysis is brief. These models are discussed in greater 
detail by Zehnwirth (1994) and Verrall (1994) among others. We 
have used an unbiased estimator for the loss reserves as recom­
mended by Verrall (1994) rather than Bayes or maximum likeli­
hood estimates (MLE). In these models the incremental losses are 
assumed to follow some stochastic distribution. Usually some 
transformation is applied to the incremental losses before the 
model parameters are estimated. Although various transforma­
tions have been investigated, the logarithmic transformation is 
most commonly used. Let us describe the methodology briefly 
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with the log transformation for completeness. Readers not famil­
iar with the methodology are encouraged to review the papers by 
Verrall (1994) and Zehnwirth (1994). 

Recall equation (8). We assume that 

z· . = J.l + (X. + {3. + f· . t,) t) t,) 

where J.l, (Xi, and {3j are the constant parameters of the model and 
the fi,j are error terms that are assumed independent identically dis­
tributed normal variates with mean 0 and variance u 2 and are the error 
terms or the random noise. We make the usual assumption that (Xl = 0 
and {3I = 0 to make the model of full rank. The parameters of the model 
are estimated by the least squares method. Under the assumption of 
the normality of the error terms, the estimates are also MLEs. We use 
the unbiased estimate for the forecasting and require that the errors 
are independent and normally distributed. 

The three regression models investigated in this paper are: 

Modell: (Xi and {3j are all different for i,j = 2,3, ... ,n. 

Model 2: (Xi = (i - 1) (X for i = 2, ... ,11 and {3 j are different for j = 

2,3, ... ,no 

Model 3: (Xi = (i -1)(X and {3j = (j -1){3 + yln(j) for i,j = 2,3, ... ,n. 

In the actual application of regression models, one will select the 
model that provides the best fit to the data based on the evaluation of 
the residuals and other statistics of the fitted models. Such an approach 
is not feasible in simulation. Zehnwirth (1994) emphasizes parsimony 
when applying the regression models for forecasting. The number of 
parameters used in the three regression models is 21, 12, and 4, re­
spectively. The difference among the three models lies in the number 
of parameters used to fit the data. As defined, regression model 1 has 
too many parameters and model 3 too few to capture the essence of 
a random loss triangle. Model 2 and model 3 assume some underly­
ing relationships among the model 1 parameters. In selecting these 
regression models, our purpose is not to compare these models with 
each other, but to see the effect of using fewer parameters in regression 
modeling. 

The parameters are estimated by the least squares method and used 
to forecast ultimate losses. We refer the reader to Verrall (1994), who 
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provides a complete description of the estimation method and an unbi­
ased estimator of the lower triangle for model 1. The other regression 
models require revisions to the design matrix and modification of the 
appropriate equations from those described in Verrall (1994). 

4 Comparison of Procedures 

We have generated 5000 hypothetical loss triangles for each of the 
simulation methods described earlier. For each of the 5000 sets of 
hypothetical data, the reserves are estimated by the loss development 
method, Biihlmann complementary loss ratio method, and the regres­
sion loss reserve estimation methods. The deviations between the loss 
reserve estimates and the actual reserves are computed. 

An important property of a good estimator is that it is unbiased. 
Stanard (1985) used this criterion for comparing various loss reserve 
estimators. If an estimator is unbiased, the average deviation of esti­
mated versus actual reserves over many simulations will be negligible. 

Between two unbiased estimators, statisticians prefer the estimator 
with the smaller variance. Between biased estimators, the estimator 
with the minimum mean square error is preferred. In our context, this 
means that the average squared deviations between the estimated and 
actual reserves should be small. This is an important criterion for a 
reserve estimation method in the insurance context. 

The reserves are an important component of the insurer's financial 
reporting. A reserving method that provides estimates with small bi­
ases, but for which the individual simulation (data set) estimates vary 
a lot from the actual reserves, may not be an appropriate reserve esti­
mation method. One will prefer the reserve estimates to be closer to 
the true value. We use root mean square error (RMSE) and the average 
absolute deviation of the estimated versus the actual reserve to test 
the closeness of the reserve estimators to the actual reserve values. 
We also compute the average percentage error. A reserve estimation 
method that generates a smaller percentage error in the estimate is 
better. Another criterion used to compare the various loss reserving 
methods is to compute the correlation between the actual reserves and 
the estimated reserves. One would expect a high correlation for a good 
reserving method. 

We compare the reserve estimates for each of the loss reserve esti­
mation methods, for each of the random loss triangle simulation meth­
ods. Our comments follow: 
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Random Reporting Factor: The Biihlmann complementary loss ratio 
method is the best loss reserve estimation method for the ran­
dom reporting factor method of random loss triangle simulation. 
The regression models of loss reserve estimation perform better 
than the loss development factor method. The correlation for all 
the reserving methods is low and surprisingly is smallest for the 
Biihlmann complementary loss ratio method. Regression model 
2 performs slightly better than regression model 1. The main 
difference between these models is that regression model 2 esti­
mates accident year inflation and allows one parameter for that 
model component, whereas regression model 1 allows an infla­
tion parameter for each accident year. Our results indicate that 
parsimony in the regression model is important and that over­
parametrization may provide inferior results. 

Random Backward Development Factor: Regression model 3 appears 
to be the best method for this loss simulation method based on 
aggregate combined accident years' forecast. The Biihlmann com­
plementary loss ratio method is superior in the individual accident 
year forecasts. Regression model 3 does not capture the payout 
pattern correctly. The other regression models perform better 
than the loss development factor method. The Biihlmann method 
again shows poor correlation with the actual reserves, while the 
other methods show a reasonable correlation level. We conclude 
that the Biihlmann method and regression model 2 perform bet­
ter for this method of random loss triangle simulation than the 
other tested methods. 

Individual Losses with Changing Severity: The loss development met­
hod performs well for this loss simulation method. Regression 
model 2 appears to be better overall. Regression model 3 per­
forms poorly, perhaps because of an insufficient number of model 
parameters. 

Pentikainen and Rantala Method: Regression models 1 and 2 outper­
form the other methods. The loss development factor method 
performs better than the Biihlmann complementary loss ratio met­
hod and regression model 3. 

Table 1 summarizes our results for each of the four methods of 
random simulation of the hypothetical loss triangles. Tables 2 through 
5 provide similar statistics for individual accident years. These tables 
show that one of the three regression models considered in this analysis 
is generally better than the LDF method. 



78 Journal of Actuarial Practice, Vol. 8, 2000 

Table 1 
Summary of Results the Four Methods 

Of Random Simulation of Hypothetical Loss Triangles 
Forecast Method 

Loss Dev. BUhlmann Regression 
Method Loss Ratio Model 1 Model 2 Model 3 

Five Thousand Iterations Under Method 1 
Actual Total Reserve: Average = 1,108,298, Std. Dev. = 244,287 
Bias 151,681 5,222 36,486 31,240 51,367 
RMSE 466,055 266,874 395,819 328,870 341,537 
AAD 364,628 204,674 314,829 254,069 263,444 
APE 
CORR 

16.84% 
0.25 

4.84% 
0.09 

6.22% 
0.25 

Five Thousand Iterations Under Method 2 

6.75% 
0.15 

8.69% 
0.14 

Actual Total Reserve: Average = 3,665,734, Std. Dev. = 485,206 
Bias 157,684 (8,088) 55,356 15,393 3,125 
RMSE 512,092 639,187 481,727 542,257 519,705 
AAD 391,022 485,769 373,282 420,438 403,056 
APE 
CORR 

4.38% 
0.70 

1.23% 
0.11 

1.58% 
0.70 

Five Thousand Iterations ,Under Method 3 

0.79% 
0.57 

0.47% 
0.58 

Actual Total Reserve: Average = 1,634,559, Std. Dev. = 252,631 
Bias 30,566 (83,039) (144,192) (52,327) (176,089) 
RMSE 413,137 441,109 375,367 299,099 340,506 
AAD 356,932 347,340 314,629 259,057 280,243 
APE 
CORR 

1.39% 
0.62 

-4.36% 
0.39 

-9.49% 
0.68 

Five Thousand Iterations Under Method 4 

-3.31% 
0.66 

-9.52% 
0.32 

Actual Total Reserve: Average = 3,183,654, Std. Dev. = 330,776 
Bias 10,106 (21,441) 5,326 4,789 34,136 
RMSE 186,688 186,916 183,351 195,148 201,012 
AAD 147,536 147,830 145,029 153,675 157,283 
APE 
CORR 

0.23% 
0.89 

-0.24% 
0.84 

0.07% 
0.89 

0.06% 
0.88 

0.98% 
0.88 

Notes: Loss Dev. = Loss Development; Std. Dev. = Standard Deviation; RMSE 
= Root Mean Square Error; AAD = Average Absolute Deviation; APE = Average 
Percentage Error; and CORR = Correlation between the Actual Reserves and 
the Estimated Reserves. 
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Table 2 
Random Reporting Factor 

Forecast Method 
Loss Dev. BUhlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Bias 
2 0 0 (0) 0 (0) 
3 1 1 (1) (1) 3 
4 3 3 (5) (4) 7 
5 (1) 3 (26) (23) (17) 
6 21 12 (68) (62) (144) 
7 60 (10) (211) (158) (607) 
8 371 (60) (383) (105) (1,228) 
9 1,365 (121) (844) 1,135 665 
10 9,755 1,141 985 7,587 14,377 
11 140,106 4,253 37,041 22,871 38,312 
Total 151,681 5,222 36,486 31,240 51,367 

AY RMSE 
2 7 8 4 8 5 
3 25 31 17 29 25 
4 101 122 72 116 107 
5 388 478 291 451 425 
6 1,371 1,772 1,066 1,662 1,583 
7 4,478 6,041 3,722 5,660 5,390 
8 13,713 18,441 12,389 17,657 16,815 
9 37,972 51,449 37,716 51,583 50,046 
10 110,938 117,820 118,183 125,616 126,393 
11 441,193 218,265 368,764 258,292 265,187 
Total 466,055 266,874 395,819 328,870 341,537 

Notes: Loss Dev. = Loss Development; AY = Accident Year; 
RMSE = Root Mean Square Error. 
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Table 2 (continued) 
Random Reporting Factor 

Forecast Method 
Loss Dev. Biihlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Average Absolute Deviations 
2 5 6 3 6 4 
3 19 23 12 21 18 
4 74 90 51 85 79 
5 288 356 209 332 312 
6 1,018 1,295 772 1,198 1,119 
7 3,373 4,430 2,750 4,150 3,876 
8 10,440 13,784 9,320 13,206 12,359 
9 29,290 37,826 28,973 38,281 37,003 
10 86,296 88,748 91,752 96,232 97,421 
11 346,382 166,051 296,479 197,807 203,655 
Total 364,628 204,674 314,829 254,069 263,444 

AY Average Percentage Errors 
2 25.67% 36.00% 9.95% 35.38% 19.36% 
3 22.20% 33.13% 9.27% 29.45% 35.19% 
4 20.02% 29.68% 8.80% 25.10% 29.48% 
5 16.10% 26.60% 7.65% 21.81% 21.16% 
6 14.12% 23.31% 7.46% 19.31% 15.14% 
7 11.63% 20.28% 6.92% 17.33% 11.96% 
8 10.17% 17.67% 7.00% 16.12% 12.08% 
9 8.67% 15.01% 6.57% 15.10% 14.19% 
10 9.89% 13.16% 7.30% 14.80% 17.14% 
11 30.23% 10.57% 12.90% 13.69% 16.36% 
Total 16.84% 4.84% 6.22% 6.75% 8.69% 

Notes: Loss Dev. = Loss Development; AY = ACCident Year; 
RMSE = Root Mean Square Error. 
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Table 3 
Random Backward Development Factor 

Forecast Method 
Loss Dev. Biihlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Bias 
2 2 11 (22) (22) 16,639 
3 119 208 69 40 32,153 
4 222 360 156 (54) 38,008 
5 694 (470) 534 (1,165) 27,398 
6 1,321 (904) 664 (1,643) 2,799 
7 3,705 (643) 1,683 (678) (26,084) 
8 8,940 (3,630) 3,237 (2,019) (47,440) 

9 23,597 1,501 12,390 5,744 (37,721) 
10 42,679 (1,854) 16,585 5,805 (15,255) 
11 76,406 (2,667) 20,062 9,384 12,628 
Total 157,684 (8,088) 55,356 15,393 3,125 

AY RMSE 
2 1,564 2,837 1,591 2,786 17,107 
3 4,614 9,596 4,791 9,176 33,712 
4 11,084 24,442 11,681 22,880 44,274 
5 22,705 50,969 24,318 46,958 52,965 
6 40,045 87,472 43,509 78,937 77,117 
7 64,981 133,834 70,337 121,306 120,900 
8 105,093 188,472 111,145 171,608 174,206 
9 154,998 222,490 157,449 210,056 208,665 
10 231,105 269,200 222,925 271,969 268,947 
11 320,345 287,746 293,720 318,988 317,808 
Total 512,092 639,187 481,727 542,257 519,705 

Notes: Loss Dev. = Loss Development; AY = Accident Year; 
RMSE = Root Mean Square Error. 
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Table 3 (continued) 
Random Backward Development Factor 

Forecast Method 
Loss Dev. BUhlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Average Absolute Deviations 
2 1,187 2,082 1,206 2,056 16,639 
3 3,553 7,119 3,681 6,848 32,192 
4 8,525 18,316 8,996 17,259 39,640 
5 17,267 37,913 18,525 34,859 43,380 
6 30,623 63,847 33,027 57,937 57,143 
7 49,699 99,623 53,807 89,929 86,860 
8 78,098 133,685 82,422 122,794 119,958 
9 115,161 163,563 118,176 156,441 151,540 
10 167,451 193,324 163,199 200,545 196,412 
11 233,783 211,057 219,487 240,241 239,523 
Total 391,022 485,769 373,282 420,438 403,056 

AY Average Percentage Errors 
2 4.73% 13.54% 4.23% 13.27% 360.75% 
3 3.43% 12.41% 3.18% 11.90% 171.65% 
4 2.61% 11.08% 2.51% 10.42% 77.29% 
5 2.30% 9.75% 2.21% 8.90% 31.55% 
6 2.01% 8.80% 1.74% 7.86% 9.62% 
7 2.25% 9.06% 1.74% 8.10% 0.62% 
8 2.65% 8.33% 1.55% 7.37% -2.07% 
9 4.37% 8.81% 2.64% 8.09% 0.93% 
10 6.14% 8.52% 2.75% 8.36% 5.41% 
11 9.19% 8.02% 2.65% 8.63% 9.01% 
Total 4.38% 1.23% 1.58% 0.79% 0.47% 

Notes: Loss Dev. = Loss Development; AY = Accident Year; 
RMSE = Root Mean Square Error. 
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Table 4 
Individual Losses with Changing Severity 

Forecast Method 
Loss Dev. Bfrhlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Bias 
2 1,048 3,668 788 3,751 (9,394) 
3 2,867 (5,109) 508 (5,560) (19,900) 
4 (25,022) (28,645) (27,849) (28,329) (43,090) 
5 36,381 (18,287) 17,366 (17,199) (31,036) 
6 29,767 40,903 24,706 39,074 23,710 
7 (64,522) (77,462) (72,000) (80,096) (93,727) 
8 40,487 6,886 16,237 6,239 (2,950) 
9 3,817 9,224 (7,890) 13,152 8,934 
10 8,224 41,085 (9,994) 52,394 46,612 
11 (2,480) (55,304) (86,063) (35,753) (55,246) 
Total 30,566 (83,039) (144,192) (52,327) (176,089) 

AY RMSE 
2 31,330 36,022 30,391 35,694 14,678 
3 52,869 43,391 51,745 43,108 38,400 
4 115,037 126,487 114,408 125,039 118,422 
5 171,424 78,184 130,753 78,614 75,765 
6 61,614 69,934 58,478 64,412 40,414 
7 222,605 230,023 221,536 232,337 262,153 
8 110,891 107,524 86,577 95,115 80,851 
9 117,997 55,953 119,472 77,183 74,298 
10 94,518 97,249 96,401 90,863 86,043 
11 259,037 222,586 260,944 173,258 169,985 
Total 413,137 441,109 375,367 299,099 340,506 

Notes: Loss Dev. = Loss Development; AY = Accident Year; 
RMSE = Root Mean Square Error. 
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Table 4 (continued) 
Individual Losses with Changing Severity 

Forecast Method 
Loss Dev. Buhlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Average Absolute Deviations 
2 19,830 24,090 18,965 24,010 12,509 
3 37,669 31,125 36,969 31,640 24,974 
4 72,059 77,787 70,388 76,060 62,687 
5 105,641 59,338 88,162 61,260 54,471 
6 35,254 45,292 33,024 44,186 31,115 
7 111,397 120,745 106,008 113,100 119,757 
8 94,362 87,744 76,900 78,766 66,943 
9 90,948 48,065 88,693 66,927 63,907 
10 81,845 75,610 77,164 75,122 66,540 
11 202,172 161,009 209,386 135,948 127,446 
Total 356,932 347,340 314,629 259,057 280,243 

AY Average Percentage Errors 
2 47.87% 94.00% 44.07% 95.99% -17.10% 
3 49.86% 20.49% 42.22% 20.10% -13.53% 
4 57.18% 63.35% 48.78% 62.45% 16.07% 
5 119.19% 12.26% 80.54% 16.42% 0.49% 
6 56.20% 77.73% 48.35% 74.57% 48.74% 
7 5.03% -0.81% 0.06% -3.61% -7.82% 
8 42.12% 29.37% 27.35% 25.73% 17.56% 
9 15.32% 8.67% 9.34% 14.34% 13.17% 
10 6.43% 21.75% 0.22% 25.76% 23.66% 
11 20.04% 3.88% -2.87% 5.32% -1.39% 
Total 1.39% -4.36% -9.49% -3.31% -9.52% 

Notes; Loss Dev. = Loss Development; A Y = Accident Year; 
RMSE = Root Mean Square Error. 



Narayan and Warthen: Study of Loss Reserving Methods 85 

Table 5 
Pentikainen and Rantala Method 

Forecast Method 
Loss Dev. Bilhlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Bias 
2 2 1 (2) 11 6,037 
3 26 (44) 12 11 9,160 
4 114 (52) 78 118 9,389 
5 283 (217) 213 190 7,237 
6 313 (680) 197 162 (755) 
7 456 (1,090) 222 473 (9,710) 
8 1,225 (2,113) 855 549 (14,271) 

9 1,837 (3,756) 1,257 497 (7,450) 
10 3,050 (5,083) 1,984 1,456 7,505 
11 2,801 (8,407) 509 1,322 26,995 
Total 10,106 (21,441) 5,326 4,789 34,136 

AY RMSE 
2 672 608 620 607 6,101 
3 1,897 1,724 1,759 1,733 9,399 
4 4,070 3,650 3,822 3,687 10,222 
5 7,375 6,387 6,997 6,478 9,896 
6 12,478 10,855 11,986 10,987 10,942 
7 19,710 17,324 19,117 17,606 19,634 
8 29,727 26,563 29,027 27,007 29,730 
9 40,540 37,157 39,974 37,662 37,813 
10 54,967 51,969 54,481 53,464 54,281 
11 74,329 71,882 73,934 76,120 82,500 
Total 186,688 186,916 183,351 195,148 201,012 

Notes: Loss Dev. = Loss Development; AY = Accident Year; 
RMSE = Root Mean Square Error. 
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Table 5 (continued) 
Pentikainen and Rantala Method 

Forecast Method 
Loss Dev. Biihlmann Regression 

Method Loss Ratio Modell Model 2 Model 3 

AY Average Absolute Deviations 
2 536 482 493 480 6,037 
3 1,499 1,363 1,388 1,368 9,160 
4 3,229 2,912 3,029 2,924 9,401 
5 5,839 5,070 5,547 5,105 8,119 
6 9,887 8,663 9,495 8,759 8,728 
7 15,628 13,742 15,153 13,986 15,864 
8 23,414 21,143 22,868 21,350 23,951 
9 31,748 29,300 31,319 29,800 30,088 
10 43,420 41,011 43,107 41,990 42,469 
11 58,767 56,865 58,504 60,077 64,294 
Total 147,536 147,830 145,029 153,675 157,283 

AY Average Percentage Errors 
2 0.42% 0.51% 0.32% 0.56% 89.77% 
3 0.38% 0.25% 0.29% 0.34% 40.30% 
4 0.44% 0.35% 0.35% 0.48% 18.60% 
5 0.46% 0.23% 0.37% 0.38% 7.81% 
6 0.30% 0.06% 0.21% 0.25% -0.35% 
7 0.25% 0.08% 0.15% 0.30% -3.72% 
8 0.37% 0.00% 0.26% 0.25% -3.71% 
9 0.34% -0.13% 0.23% 0.15% -1.36% 
10 0.40% -0.09% 0.25% 0.22% 1.06% 
11 0.26% -0.22% 0.02% 0.16% 2.82% 
Total 0.23% -0.24% 0.07% 0.06% 0.98% 

Notes: Loss Dev. = Loss Development; A Y = Accident Year; 
RMSE = Root Mean Square Error. 
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The BOhlmann method is slightly better in some cases, but we as­
sumed that the inflation rate is known for the Buhlmann method. We 
are therefore using additional information for this method and are ob­
taining slightly better answers. Such information will ordinarily not be 
available in actual practice. Actual loss data will be tainted by both 
exposure changes and the inflationary loss cost changes that will vary 
over time. For most of the methods of random loss generation the ef­
fect of inflation has a minimal impact on the ultimate answer derived by 
traditional methods. Inflation affects the weighting given to individual 
accident years in the total reserve. For regression models, inflation will 
affect the forecast in a more complicated fashion. 

Although no particular method can be identified as superior in every 
situation, the regression models generally performed well. It is worth 
noting that we have not performed a sensitivity analysis of the individ­
ual methods of simulating the loss triangles. By changing the inflation 
rate or the reporting pattern, for example, one may find that the per­
formance of the individual methods of loss reserving will be different. 
We suspect, however, that the overall performance will be similar. 

5 Closing Comments 

Regression modeling provides an appropriate tool for estimating 
loss reserves. Regression methods do not provide the best answers in 
all situations, but are stable and have the added advantage of providing 
directly the variance or the confidence interval for the reserve estimate. 
The regression models studied are a priori fixed. In actual practice, the 
structure of the models will be determined from a much wider set of 
possible models based on an analysiS of the data under review. Testing 
and selection of an appropriate loss reserving regression model should 
improve the ultimate loss reserve forecast in actual application. 

Actuaries do not apply the more traditional LDF method blindly. The 
. array of development factors is typically examined carefully before a 

selection of particular factors entering the reserve estimation is made. 
The appropriateness of the LDF method is determined for the given data 
set before the results of any such analysis are accepted. Professional 
judgment and the selection of an appropriate model are more important 
when regression loss reserve estimation methods are used. Therefore, 
an important step is missing for the regression methods as applied in 
this study. For the BOhlmann method, we assume knowledge of the 
inflation rate in addition to what is assumed known for other methods. 
In practice, inflation will not be known precisely, and the loss triangle 
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will be distorted by exposure changes and inflation. This method may 
therefore not be as well-behaved in practice as in the simulation studies 
presented here. 

The point estimation of the loss reserve has been the primary focus 
of this study, and we have not considered the variability of loss reserves 
around the point estimate. Verrall (1994) has outlined the procedures 
for computing the variance of the forecast including both the forecast­
ing error and the parameter uncertainty. 

The overall performance of the LDF method is satisfactory. The 
closeness of the answers of the various methods assures us that the 
actuarial methods of loss reserve estimation are generally well behaved. 
These results also tell us that regression modeling provides estimates 
similar to traditional actuarial methods, and one should not hesitate to 
use them. Given the advantage that regression methods also estimate 
the variability of the estimated reserve, it is expected that their use in 
the actuarial field will increase. 
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Abstract* 

This paper uses an National Association of Insurance Commissioners (NAIC) 
1995 data set to examine the concentration of property and liability insurance 
by line of insurance in the U.S. The primary measure of concentration used is 
the Herfindahl index. The largest 100 affiliates are divided into three largest 
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1 Introduction 

1.1 Background 

Ng (1995) has observed that structure, conduct, and performance 
are key elements in comprehending the organization of any industry, a 
view shared by Adams and Brock (1995) in their survey of 11 major U.S. 
industries. But while the economics literature is rich in the study of the 
industrial organization of a majority of businesses in the U.S., loskow 
(1973) has noted a lack of such research in the U.S. insurance industry. 
loskow attempts to rectify by addressing organizational issues such as 
business concentration, economies of scale, and ease of entry. 

Mayers and Smith (1988) address the issue of the alternative owner­
ship characteristics of property and casualty insurance, indicating that 
Lloyds, common stock, mutual, and reciprocal are the main types of 
ownership. Cummins and Weiss (1991) wrote a seminal paper on the 
subject addressing recent problems of property and liability insurance 
such as pricing, rate regulation, anticompetitive practices, market con­
centration, and profitability. More recent contributions are provided by 
Chidambaran et al., (1997) and Bajtelsmit and Bouzouita (1998). 

An important facet of an industry'S structure is concentration. Con­
centration depicts the level of control of an industry by a few domi­
nant firms. For instance, Chidambaran et al., (1997) find that among 
18 lines of insurance, concentration levels in private passenger auto­
mobile insurance are the highest. Similarly, Bajtelsmit and Bouzouita 
(1998) examine the relationship between profitability and concentration 
in automobile insurance. The underlying focus of the research in these 
papers is the connection of concentration with excess profits through 
collusion to restrict supply and thus gain artificially high premiums. 

Another way to look at concentration 1 is to take into account the 
relationship between concentration and corporate demand for insur­
ance, an approach exemplified by Mayers and Smith (1982, 1990). They 
explain that though the demand for insurance by individuals demon­
strates risk aversion, the incentives to purchase insurance by corpora­
tions, aside from risk averSion, are viewed as being part of finanCing 
policies, which include taxes and contracting costs. They also show 
that among the factors that affect the demand for insurance are busi­
ness concentration, geographic concentration, and line of bUSiness. 

IThe authors are indebted to an anonymous referee for this viewpoint 
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1.2 Insurance Regulation 

To protect against erosion and subversion of competition in the U.S., 
Congress passed a series of laws to protect consumers. Lereah (1985) 
explains that 1944 marked a reversal in regulation of insurance pre­
miums, as a consequence of a Supreme Court decision, from primar­
ily regulation by states to federal regulation as well when insurance is 
transacted across state borders. Subsequently, insurers became subject 
to antitrust regulation through federal laws such as the Sherman and 
Clayton Antitrust Acts. Through the McCarren-Ferguson Act of 1945, 
however, Congress allowed priority for regulation to the states unless 
effective state regulation was absent. For more on the regulation of in­
surance companies, see, for example, Black and Skipper (1994, Chapter 
34), and Hamilton (1997). 

The insurance industry in the last two decades has been accused 
of price-fixing and anticompetitive and monopoly practices, which may 
deserve attention by the federal government (Joskow and McLaughlin 
1991, Chidambaran et al. 1997, Bajtelsmit and Bouzouita 1998). It is 
an article of faith among most economists that substantial seller con­
centration affects the social performance of an industry to the detri­
ment of consumers (Caves 1967, Schutz 1995).2 Brown (1914) made 
it clear that the tendency toward monopoly and the tendency toward 
concentration are closely interrelated. Weiss (1983) and Adams and 
Brock (1990) argue that bigness undermines performance, effiCiency, 
innovation, and technical progress. Scherer and Ross (1990) provide a 
comprehensive picture for the proposition that monopoly prices reduce 
economic welfare due to distortions to efficiency that can be amplified 
through successive vertical stages of output. Wenders (1987) indicates 
also that part of the gains from monopoly power are dissipated into 
higher wages in addition to higher profits. 

Costs under monopoly conditions may also be excessive because 
cost controls become lax and wasteful expenditures to strengthen and 
defend monopoly positions proliferate. Advertising, excessive product 
variety, and excessive government regulation costs compound further 
the decline in economic welfare due to concentration. Other dimen­
sions of the impact of concentration on performance mentioned by 
Scherer and Ross include the possibility of redistribution of income 

2Not all economists agree that control of a large share of a market by a few firms is 
necessarily bad. For instance, Brozen (1982) takes the view that bigness is the reward 
for efficiency. Concentration is indicative of a movement away from high-cost firms 
toward lower-cost, more efficient firms. 
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benefiting the shareholders and, to a certain extent, institutional in­
vestors. 

1.3 Aim and Purpose 

The property and liability insurance industry is composed roughly 
of 3,000 companies and about 40 major lines of property and liability in­
surance. Many of these companies deal with mul tiple lines of insurance. 
There is a great deal of affiliation among these companies, resulting in 
approximately 800 affiliations or groups. The individual companies in a 
group have considerable autonomy. Joint directorships and ownership 
of a group make it appropriate to consider an insurance group as one 
firm when investigating the questions of concentration. According to 
Huebner, Black, and Webb (1996), the affiliates had combined admitted 
assets3 of $571.5 billion in 1993. Most of the affiliates operate in more 
than one state, and a substantial number operate nationwide. 

A distinction is made between industry concentration where a few 
sellers dominate a specific market and aggregate concentration where 
a few conglomerate firms control large chunks of an economy. A con­
glomerate controls many lines of business. The lines mayor may not be 
associated with high concentration. Nissan (1996) provides an assess­
ment of aggregate concentration in the property and liability insurance 
for the years 1985, 1989, and 1993 for the largest 200 firms. The main 
finding of Nissan's work is a slight increase in aggregate concentration 
between 1985 and 1993 that is most pronounced among the top 20 
firms. 

While Nissan's concern is concentration on an aggregate basis, irre­
spective of the line of insurance, this paper takes Nissan's research a bit 
further: it provides an assessment of the degree of concentration by the 
major lines of property and liability insurance in the most recent year 
of data availability. The paper compares the degree of concentration 
among the major lines under consideration. Our focus is on concentra­
tion for 12 lines (as indicated in Tables 2 to 4) and we deal only with the 
largest 100 firms (affiliates) in each line (from Table 5 onward). Also, 
comparisons with previous studies on concentration are made. The 
analysis is conducted for all the affiliates in a line of insurance as well 
as by sets of hundreds. 

3 Admitted assets encompass all assets not prohibited by statute or regulation and 
include cash and bank deposits, real estate, mortgage loans', stocks, bonds, and other 
assets. 
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1.4 Database and Data Handling 

The data used in this research were obtained from the National Asso­
ciation of Insurance Commissioners (NAIC). The association has existed 
some 125 years. The NAIC (1998) publication furnishes a brief synop­
sis of the extent and type of information gathered from some 5,500 of 
such insurance companies as life and health, property and liability, and 
the like. The data collected by NAIC account for 98 percent of all U.S. 
domiciled insurance companies. 

This research benefits from the electronic company listing way of 
handling the data. The company listing for the property and liability 
insurance provides information on all member insurance companies 
including company name, company type (line), state of domicile, NAIC 
group code, and NAIC company code. 

Because the data were provided in a disaggregated form covering 
some 40 different lines of insurance, it was necessary to undertake a 
massive effort to aggregate the 5,500 data points of the 40 lines in each 
state into a manageable number of groups of companies (affiliates or 
firms) which are then used as the database for this research. Through­
out the rest of this paper the term affiliates or firms will denote a group 
of companies. 

A note about economic data is in order. In economics one can only 
obtain a single realization (sample) of the economic process as we can­
not stop the economy and restart the economic process to produce a 
new realization. Economists view the values obtained from that single 
realization as random values in the sense that if a new realization un­
der the same conditions can be obtained, one would almost certainly 
not obtain identical numerical values. In fact, Darnell and Evans (1990, 
p. 25) state that 

It is our argument that any economic data may be conceived 
as being a random sample from a hypothetical population, 
and that this implies certain testable properties of the data 
which contribute to the design of the framework of data anal­
ysis. 

Similar observations regarding economic data were made by others; see, 
for example, Griliches (1985) and McCloskey (1985). 
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2 Measurements 

2.1 Measures of Concentration 

There are two types of measures of concentration: static measures 
and dynamic measures (TschoegI1982). Static measures of concentra­
tion include the concentration ratio (eRn) of market share of the n 
largest firms and weighted measures of the form 

N 

Ch = L h(Zi)Zi 
i=l 

(1) 

where N is the number of firms in the market; Zi 2':: 0 is the market 
share of the ith firm in the total amount, with L Zi = 1; and h(Zi) is a 
nonnegative weight function; see ]acquemin and Kumps (1971). In this 
paper we take Zi as the share (proportion) of premiums written by firm 
i. 

The weighted measures will differ depending on the selection of 
h(·). Two common weighted concentration measures are the Herfind­
ahl index (where h(Zi) = Zi), and Theil's entropy (where h(zd = -In(zi)). 
Another static measure suggested by Kwoka (1977) is the dominance 
index D given by 

N-l 

D = L (Z(i) - Z(i+1)2 
i=l 

where z(i) is the market share of the ith largest firm, i.e., z(i) 2':: Z(i+l). 
For this measure the emphasis is on the gaps between successive firms 
when they are ranked by size. 

The concentration ratio is simple to construct, easy to understand, 
and hence widely used according to Hannah and Kay (1977). The choice 
of n is arbitrary. Typically, n is chosen as the largest four firms, eight 
firms, ten firms, 20 firms, or 50 firms. The Herfindahl is the most popu­
lar (Scherer and Ross 1990). The various static measures of concentra­
tion, however, are highly correlated, as indicated by Scherer and Ross 
(1990). 

The dynamic measures, on the other hand, reflect the change in 
size of firms over a time period. An example of a dynamic measure, 
as pointed out by Tschoegl, is the index of market share instability 
developed by Hymer and Pashigian (1962). This index takes the form 
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N-l 

1= L Izi,t - Zi,t-21 
i=l 

where Zi,t is the ith firm's market share at time t. If a firm is not in the 
top 100 or 20 (depending on the market considered), at either time t or 
t - 2, the market share for that time period is set to zero. A greater de­
gree of change over the period (taken here as 2 years) induces a higher 
value for the index I, which implies a greater competitive turbulence 
and a greater amount of entry and exit of firms. Other dynamic mea­
sures are derived from standard stochastic growth models which take 
into account any first-order serial correlation in growth rates. 

This paper uses two static concentration indexes to compare the 
concentration levels by line of insurance: the concentration ratio and 
the Herfindahl index, H 

N N 

H = L ZiZi = L zi- (2) 
i=l i=l 

When one firm holds all shares, H = 1. When shares are held equally, 
H = liN. Thus liN :s: H :s: 1. The Herfindahl index is used in 
merger guidelines by the Department of Justice Antitrust Division and 
the Federal Trade Commission in merger and monopolization cases. 
The Herfindahl index also has a wide appeal among economists, ac­
cording to Clarke and Davies (1983), because of its origins in economic 
theory and history. 

For a concentration index Ch, as expressed by equation (2), a concept 
known as numbers equivalent, Mh, provides an intuitive understanding 
of the extent of concentration. Specifically, Mh is the number of equally 
sized firms that will produce the given concentration index. For Mh 
firms, Zi = 1/Mh, for i = 1,2, ... ,Mh, so that 

If h is invertible, then 
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1 
Mh == h- 1 (Ch)' (3) 

For the Herfindahl, Ch == Hand h -1 == h so that 

(4) 

The interpretation of MH is that for the Herfindahl index for the N 
firms each with market share 1/ N, the index value will correspond to 
MH equally sized firms. 

2.2 Variance and Herfindahl Decompositions 

Suppose the N firms in a line can be placed into G distinct sets 
for comparison purposes among the lines, and the sets are labeled 
1,2, ... ,G. Each line is composed of a number of affiliates or firms. 
Let Ag denote the set of indices in the 9th set for a given line. The ith 
firm is in Ag if and only if i E A g. We assume that each firm appears in 
exactly one and only one set. The total variance and the square of the 
coefficient of variation of the ZiS are S2 and Cy2 respectively where 

(5) 

and 

(6) 

with 

Standard results of a statistical analysis of variance (ANOYA) shows that 
the variance can be decomposed into a between sets sum of the squares 
and a within sets sum of the squares.4 The variance can be decomposed 
as 

4For more on ANOVA see, for example, Scheffe (1959, Chapter 3) or Neter, Wasser­
man, and Craig (1990, Chapters 14). 
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G N 
5 2 '" g(- -)2 = L - Zg-Z 

g=l N 
Between Sets 

G 

'" N
g 

'" 1 2 + L N.L N(Zi - 2g) 
g=l tEAg 9 

Within Sets. 

where N g is the number of firms in Ag and 2g = LiEA zi/Ng. 
9 

97 

(7) 

Theil (1967) shows that CY2 can be decomposed similarly into the 
between-set squared coefficient of variation, which measures between­
set concentration, and the within-set squared coefficients of variation, 
which measures concentration between firms within a given set. Let 

(8) 

(9) 

(10) 

(11) 

(12) 

and 

Hg = L zf. (13) 
iEAg 

It follows that 

(14) 

and 

G N 
-2CY2 = -2Cy2 '" --.!l.. -2cy 2 Z Z + L N Zg g, 

g=l 

(15) 
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which implies, 

CY2 = Cy2 Between Sets Squared CY 

G N 22 
+ '" -ll-IiCY 2 L N 22 9 

g=1 
Within Sets Squared CY. (16) 

There is a relationship between Hand CY. Clarke (1985) shows that 

Cy2 = N xH-1. 

It immediately follows that 

which implies, 

G -2 
_ '" N g Zg N H - 1 = GH - 1 + L N 22 (NgHg - 1) 

g=1 

G - ~ Ng 2~ 
H = N H + L N2 22 (NgHg - 1). 

g=1 

(17) 

(18) 

(19) 

It is also useful to test the equality of variances and by implication 
the equality of the Herfindahl measures for the various pairs of lines of 
insurance by the test statistic: 

F* _ sf 
- 2 

Sj 
(20) 

where k is the number of firms in one line and j is the number of firms in 
another line, and sf and SJ are the variances computed from equation 
(11). (As there are 12 lines, there will be 66 (= 12!/(2!l0!) different 
pairs of tests.) The test statistic F* is compared for Significance with 
a tabular F* «(X, nk-l. nj-d for Significance level (X with nk-1 and nj-1 
degrees of freedom, reflecting the number of firms in the two lines of 
insurance under consideration. 

3 Empirical Results 

Table 1 reports the distribution of the total premium written of ap­
proximately $271 billion in 1995 among the major lines of property 
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and liability insurance, listed in order of magnitude from the largest 
to the smallest. The private passenger auto liability line, with approxi­
mately $60 billion of business accounting for 21.6 percent of the total, 
is the largest. The various lines of automobile insurance (private and 
commercial) together account for 44.2 percent of the total. Workers 
compensation with 12.3 percent and homeowners multiple peril with 
9.3 percent are the next two largest lines. 

Even though some of the lines contribute a small percentage to the 
total, such as fire (1.9 percent) and allied (1.3 percent), they command 
large dollar amounts. For the fire line, premium written is over $ 5 
billion. For the allied line, the premium written is almost $4 billion. 

Table 2 provides the distribution of premiums written for various 
years for the ten largest lines, which constitute almost 90 percent of the 
total. It shows that the percentages, with the exception of a slight in­
crease in private passenger auto liability, remained virtually unchanged 
between 1981 and 1995. 

Table 3 provides the extent to which property and liability insur­
ance is dominated by the largest four, ten, and 50 firms for 1989 and 
1995 as measured by the aggregate shares and the concentration ra­
tio (eRn). For private passenger auto liability damage for instance, the 
largest four, ten, and 50 firms in 1989 have shares of 43.2 percent, 56.6 
percent, and 85.6 percent, respectively. For 1995, the corresponding 
percentages are 47.2,62.2, and 88.4. 

Another line of insurance that demonstrates large increases in con­
centration for the largest groups of companies is homeowners insur­
ance where for the top four, ten, and 50 firms the respective concentra­
tions for 1989 are 39.5 percent, 52.7 percent, and 82.1 percent. These 
concentrations increase in 1995 to 47.0 percent, 61.3 percent, and 87.7 
percent. The other lines of insurance in Table 3 demonstrate, in general, 
similar increases in percentages between 1989 and 1995. 

O'Neill (1996) provides data on aggregate concentration in non-man­
ufacturing sectors in 1987: the largest 50 firms in banking held 48.3 
percent of assets; in life insurance, the top 50 firms controlled 70 per­
cent of assets and 48 percent of written premiums; for electric and gas 
utilities, the largest 40 firms controlled 64.5 percent of assets; and for 
retail trade and transportation, the top 50 firms controlled 23.0 percent 
and 74.0 percent of assets, respectively. 



Table 1 
Premiums Distributions of Property and liability by line of Insurance 

Type of Insurance Total ($1000s) % of Total 
Other Private Passenger Auto Liability 59,932,460 21.6 
Private Passenger Auto Physical Damage 37,435,637 13.5 
Workers Compensation 34,139,204 12.3 
Homeowners Multiple Peril 25,846,863 9.3 
Other Liability 22,512,579 8.1 
Other Commercial Auto Liability 13,163,519 4.7 
Commercial Multiple Peril (Non-Liability Portion) 11,176,538 4.0 
Commercial Multiple Peril (Liability Portion) 9,777,047 3.5 
Private Passenger Auto No-Fault (Personal Injury Protection) 7,491,338 2.7 
Inland Marine 6,917,010 2.5 
Medical Malpractice 6,164,639 2.2 
Fire 5,350,244 1.9 
Group Accident and Health 5,218,269 1.9 
Commercial Auto Physical Damage 4,750,182 1.7 
Allied Lines 3,734,984 1.3 
Aggregate Write-Ins for Other Lines of Business 2,993,766 1.1 
Surety 2,734,916 1.0 
Product Liability 2,262,510 0.8 
Ocean Marine 2,127,036 0.8 
Mortgage Guaranty 2,076,288 0.7 
Source: NAIC (1998) and calculations by the authors. 
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Table 1 (Contd.) <: <::;. 
Premiums Distributions of Property and liability by Une of Insurance '" t"l 

Type of Insurance Total ($1000s) % of Total 
~ 

t"l 

Aircraft (All Perils) 1,395,441 0.5 ~ 
~ 

Farm Owners Multiple Peril 1,331,496 0.5 ~ 
Earthquake 1,277,090 0.5 ~ 

~ 

Other Accident Only 1,258,281 0.5 -;::; 

All Other A & H 1,105,694 0.4 Q 
Multiple Peril 956,723 0.3 ~ 

C"\ 
(\) 

Fidelity 954,182 0.3 ~ ..... 
Financial Guaranty 818,348 0.3 ~ g. 
Boiler and Machinery 786,604 0.3 ~ 

Guaranteed Renewable A & H 521,741 0.2 ~. 

Credit 374,237 0.1 ~ .... 
0 

Nonrenewable for Stated Reasons Only 365,709 0.1 ~ 
(\) 

Commercial Auto No-Fault (Personal Injury Protection) 358,268 0.1 
.... ..... 

" Credit A & H (Group and Individual) 312,622 0.1 Qo 
r-

Federal Employees Health Benefit Premium 250,048 0.1 !is. 

Burglary and Theft 132,264 0.0 ~ 
;::;: 

Collectively Renewable A & H 51,156 0.0 " r-
Glass 15,251 0.0 ~. 

(\) 

Noncancelable A & H 2,679 0.0 '" 
TOTAL 278,072,881 100.0 ,.... 
Source: NAIC (1998) and calculations by the authors. 0 ,.... 



Table 2 
Premiums Distributions of Property and liability 
By Major line of Insurance (Percent of Total, in %) 

Line of Insurance 1981 1985 1989 1992 1995 
Private Passenger Auto Liability 19.1:) 193 
Private Auto Physical Damage 14.1 14.5 
Commercial Auto Liability 4.8 5.4 
Commercial Auto Physical Damage 2.7 2.8 
Homeowners ll.5 9.6 
Fire and Allied 5.1 4.3 
Commercial Multiple Peril 6.9 8.3 
General Liability 6.1 7.9 
Medical Malpractice 1.3 2.0 
Workers Compensation 14.7 ll.8 
Other 13.0 14.1 
Total Premiums ($ billions) 99.3 146.1 

L1.1 

14.2 
5.8 
2.5 
8.5 
3.4 
8.4 
8.8 
2.1 

13.6 
11.6 

208.4 

LO.S 
13.2 

5.1 
1.7 
8.6 
2.9 
7.3 
7.9 
2.1 

15.7 
15.0 

247.9 

21.6 
13.5 
4.7 
1.7 
9.3 
3.2 
7.5 
8.1 
2.2 

12.3 
15.9 

278.7 

Sources: 1981, 1985, and 1989 entries (Cummins and Weiss 1991); 1992 and 1995 entries are 
calculated by the authors from NAIC (1998). 
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Table 3 ~ 
::; 

Concentration Ratios for Premiums Written >:l.. 

By Property and liability Insurance (Selected Years) ~ 
(§ 

Top 4 Firms Top 10 Firms Top 50 Firms ::; 

Line of Insurance 1989 1995 1989 1995 1989 1995 
":'; 

Q 
Private Passenger Auto Liability 43.2 47.2 56.6 62.2 85.6 88.4 ::; 

Private Auto Physical Damage 41.8 46.7 53.9 60.2 80.4 85.7 
r. 
~ 
::; 

Commercial Auto Liability 19.6 20.6 38.1 37.9 80.9 81.4 .... 
~ 

Commercial Auto Physical Damage 19.6 18.9 35.0 35.3 78.0 81.3 .... o· 
Homeowners 39.5 47.0 52.7 61.3 82.1 87.7 ::; 

~. 

Fire [18.9] 30.0 [36.3] 45.3 [73.9] 83.0 "\J 

Allied 22.7 43.3 82.9 d 
"I::s 

Commercial Multiple Peril [21.8] 24.2 [43.1] 45.1 [85.9] 87.7 ~ 
..... .... 

Commercial Multiple Peril (Liability) 28.3 49.1 88.9 " S2I> 
General Liability 32.6 40.0 51.9 59.8 84.5 88.6 r-

Medical Malpractice 32.0 37.0 52.3 62.7 2.4 99.8 
SS· 
g 

Workers Compensation 26.7 28.4 49.2 50.3 88.4 87.3 ;:;: 

" r-
Sources: 1989 entries (Cummins and Weiss 1991); 1995 entries are calculated by the authors ~. 

from NAIC (1998). ~ 

'" 
'""' 0 
w 



104 Journal of Actuarial Practice, Vol. 8, 2000 

Table 4 
Herfindahl Index of Concentration for Premiums 

Written by Major Property and liability Insurance (All Affiliates) 
Line of Insurance 1989 1995 CY2 MH 

Private Passenger Auto Liability 0.0650 0.0836 7.36 11.96 
Private Auto Physical Damage 0.0676 0.0850 7.50 11.76 
Commercial Auto Liability 0.0214 0.0218 1.18 45.87 
Commercial Auto Physical Damage 0.0313 0.0203 1.03 49.26 
Homeowners 0.0573 0.0882 7.82 11.34 
Fire [0.0149] 0.0365 2.65 27.40 
Allied 0.0268 1.68 37.31 
Commercial Multiple Peril [0.0263] 0.0293 1.93 34.13 
Commercial Multiple Peril (Liability) 0.0359 2.59 27.86 
General Liability 0.0450 0.0674 5.74 14.84 
Medical Malpractice 0.0364 0.0574 4.74 17.42 
Workers Compensation 0.0364 0.0331 2.31 30.21 
Sources: 1989 entries (Cummins and Weiss, 1991). 

1995 entries are calculated by the authors from NAIC (1998) 

In contrast, the top 50 companies in property and liability insur­
ance (Table 3) controlled much larger shares in premium written, rang­
ing between 81.3 percent for commercial auto physical damage to 99.8 
percent for medical malpractice in 1995. For 1989, the corresponding 
range is between 78 percent and 88.4 percent. 

Table 4 provides the Herfindahl index of concentration for all af­
filiates for 1989 and 1995 and the numbers equivalent for 1995. The 
Herfindahl index is calculated using equation (1), Cy2 is calculated using 
equation (3), and the numbers equivalent is calculated using equation 
(2). MH = 49.26 is the largest and MH = 11.76 is the smallest among 
the equally sized firms. In contrast to the insurance industry, for in­
stance, Adams and Brock (1995) report that the U.S. crude oil market 
had in 1991 a Herfindahl index of 0.02894, corresponding to MH = 36. 

The concentration index increased noticeably between 1989 and 
1995 in almost all lines of property and liability insurance. The most 
noticeable increase, from 0.0650 in 1989 to 0.0850 in 1995, is for the 
private passenger auto physical damage line. The only slight decrease 
in concentration, from 0.0364 in 1989 to 0.0331 in 1995, is for the 
workers compensation line. 



Table 5 
Dollar Magnitudes of Premium Written 

By Top 100 Affiliates and Proportions by Sets for 1995 
Line 

Codes Total Set 1 
Private Passenger Auto Liability 1 54,312,023,302 0.756 
Private Auto Physical Damage 2 33,635,781,692 0.754 
Workers Compensation 3 26,326,667,644 0.674 
Homeowners 4 23,412,901,987 0.765 
General Liability 5 20,476,334,144 0.774 
Commercial Auto Liability 6 11,848,100,515 0.582 
Commercial Multiple Peril 7 10,115,152,209 0.694 
Commercial Multiple Peril (Liability) 8 8,949,287,219 0.705 
Fire 9 4,402,251,361 0.663 
Commercial Auto Physical Damage 10 4,233,965,153 0.569 
Medical Malpractice 11 3,560,398,869 0.848 
Allied 12 3,338,366,360 0.665 
Notes: Set 1 (top 20 affiliates), Set 2 (next 30 affiliates), and Set 3 (bottom 50 affiliates). 

Sources: NAIC (1998) and calculations by the authors. 

Set 2 Set 3 
0.149 0.095 
0.150 0.095 
0.226 0.100 
0.151 0.085 
0.148 0.078 
0.281 0.137 
0.218 0.088 
0.212 0.083 
0.223 0.114 
0.293 0.138 
0.149 0.002 
0.208 0.127 
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4 Comparing the Top 100 Affiliates 

4.1 Defining the Sets 

Because the top 100 affiliates in each line command the larges t share 
of premium written and to make the comparison for concentration 
among the lines meaningful, the analysis for 1995 will concentrate on 
the premiums written by the top 100 affiliates for each line. Also, in 
order to take advantage of the disaggregation procedure of equation 
(16) whereby the total Cy2 can be split into a between-set component 
and within-set component, the top 100 affiliates are grouped into the 
top 20 affiliates (Set 1), the next 30 affiliates (Set 2), and the remaining 
50 affiliates (Set 3). 

Table 5 provides a dollar amount summary of the 100 affiliates of 
the largest 12 lines arranged from the largest magnitude to the smallest. 
Coding facilitates comparisons and analysis. The table reveals that the 
top 20 affiliates of each line control a substantial proportion of premi­
ums written, ranging from 0.569 for commercial auto physical damage 
to 0.848 for medical malpractice. 

4.2 Decomposition Results 

The results of the computations from equation (16) for the top 100 
affiliates, whereby the square of the coefficient of variation is decom­
posed into between-set and within-set components, are shown in Tables 
6 and 7.5 Tables 6 and 7 arrange the lines of the top 100 affiliates ac­
cording to their 52 and by implication by Cy2 magnitude. Thus, the 
homeowners line (code 4) at Cy2 = 8.60 is the most concentrated line. 
The least concentrated line at Cy2 = 1.28 is recorded by the commercial 
auto physical damage line (code 10). 

The total CY2 from equation (16) is decomposed into the between­
set and within-set components then expressed as totals in Table 6 and 
as proportions in Table 7. Thus, for the homeowners line, the total 
CY2 = 8.60 is split into between-set concentration of a total amount 
2.00 and within-set concentration of a total amount 6.60, translated 
into respective proportions in the amounts 0.233 and 0.767. 

SNote that we are not using analysis of variance to test between and within sets of 
firms in a given line. This disaggregation was made only to produce Tables 6 and 7. 
We are only testing for equality of total variances of two lines at a time; each line is 
composed of 100 firms. 



;z: 
i;;' 
v, 
s;) 
::s 
s;) 
::s 

Table 6 s::t. 

Decomposition of Total CV2 of the Top 100 Affiliates ~ 
Between Sets Within Sets ~ 

::s 
Line Code Total Set! Set 2 Set 3 Total Set! Set 2 Set 3 Total ':'S 

Homeowners 4 8.60 1.59 0.07 0.34 2.00 6.58 0.01 0.00 6.60 ~ 
::s 

Private Passenger APD 2 8.44 1.54 0.07 0.33 1.94 6.50 0.00 0.00 6.50 C") 
(\) 

::s 
Private Passenger Ai 1 7.36 1.54 0.08 0.33 1.95 5.40 0.01 0.00 5.41 ..... 

~ 
General Liability 5 6.30 1.65 0.08 0.36 2.09 4.21 0.01 0.00 4.21 g. 
Fire 9 3.15 1.07 0.02 0.30 1.39 1.74 0.02 0.01 1.76 ::s 

Medical Malpractice 11 2.84 1.01 0.20 0.25 1.46 1.37 0.02 0.00 1.38 
~. 

." 
Commercial MPL 8 2.82 1.27 0.03 0.35 1.65 1.14 0.03 0.00 1.17 ~ 
Workers Compensation 3 2.51 1.12 0.02 0.32 1.46 1.03 0.01 0.01 

~ 
1.05 (\) 

"" Commercial MP 7 2.18 1.22 0.02 0.34 1.58 0.57 0.03 0.00 0.60 
..... 

'" 
Allied 12 1.98 1.08 0.02 0.28 1.38 0.57 0.02 0.01 0.60 

QI> 
r-

Commercial AL 6 1.45 0.73 0.00 0.26 0.99 0.42 0.02 0.01 0.45 SS· 

~ Commercial APD 10 1.28 0.68 0.00 0.26 0.94 0.31 0.02 0.01 0.34 ::;: 

'" Notes: APD = Auto Physical Damage, Ai = Auto Liability, MPL = Multiple Peril (Liability), MP = Multiple Peril. 
r-
~. 
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V, 
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Table 7 
Proportional Decomposition of Total CV2 of the Top 100 Affiliates 

Between Sets Within Sets 
Line Code Total Set 1 Set 2 Set 3 Total Setl Set 2 Set 3 Total 
Homeowners 4 1.00 0.185 0.008 0.040 0.233 0.765 0.001 0.000 0.767 
Private Passenger APD 2 1.00 0.182 0.009 0.039 0.230 0.770 0.000 0.000 0.770 
Private Passenger AL 1 1.00 0.209 0.011 0.045 0.265 0.734 0.001 0.000 0.735 '-0 
General Liability 5 1.00 0.262 0.013 0.057 0.332 0.668 0.002 0.000 0.668 s::: 

~ 

Fire 9 1.00 0.340 0.006 0.095 0.441 0.552 0.006 0.003 0.559 :::s 
~ 

Medical Malpractice 11 1.00 0.356 0.070 0.088 0.514 0.482 0.007 0.000 0.486 0 
~ 

Commercial MPL 8 1.00 0.450 0.011 0.124 0.585 0.404 0.011 0.000 0.415 :t>-
<"'I 

Workers Compensation 1.00 0.446 0.008 0.128 0.582 0.410 0.004 0.004 0.418 
.... 

3 s::: 
>:l 

Commercial MP 7 1.00 0.560 0.009 0.156 0.725 0.261 0.014 0.000 0.275 ~ 

~ 
Allied 12 1.00 0.545 0.010 0.142 0.697 0.288 0.010 0.005 0.303 "\J 

Commercial AL 6 1.00 0.504 0.000 0.179 0.683 0.290 0.014 0.007 0.317 s:; 
<"'I 

Commercial APD 10 1.00 0.531 0.000 0.203 0.734 0.242 0.016 0.008 0.266 
.... ;:;. 
~C1:) 

Notes: APD = Auto Physical Damage, Ai = Auto Liability, MPL = Multiple Peril (Liability), MP = Multiple Peril. ~ 
~ 
I\.J 
0 
0 
0 
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Table 7 shows general increases in the between-set proportions and 
simultaneous decreases in the within-set proportions as one moves 
from the largest CY2 = 8.60 to the smallest Cy2 = 1.28 with corre­
sponding between-set proportions increasing from 0.233 to 0.734 and 
corresponding within-set proportions declining from 0.767 to 0.266. 
This suggests that among the major lines of the insurance industry, 
the effects of within-set concentration are highest among the largest 
20 affiliates as observed under Set 1 in Tables 6 and 7. In either case, 
as observed in Tables 6 and 7, the biggest contributors to between-sets 
and within-sets components of Cy2 are the largest 20 affiliates (Set 1). 

Inspection of equation (16) indicates that in computing CY2 and its 
decomposition the between-set concentration is due to the presence of 
heterogeneous sets that have mean premiums written that differ from 
the overall 100 affiliates' mean. The contribution of each set to the 
variance is weighted by its respective share of the sample. For Set 1 
the weight is 20/100; for Set 2 the weight is 30/100; and for Set 3 the 
weight is 50/100. 

The within-set concentration, on the other hand, is due to the aggre­
gate contribution to CY2 within each of the three groups, again weighted 
by their respective shares. Thus, for the between-set concentration 
case, the mean premiums written by the largest 20 affiliates differ con­
Siderably from the overall mean. For the within-set concentration, the 
premium written by the largest affiliates among the 20 affiliates differ 
significantly from the mean premiums written of their own group. 

Using the relationship between the squared coefficient of variation 
CY2 and the Herfindahl index provided in equation (17), the test statistic 
for testing the equality of two variances, F*, is helpful. The procedure 
is to align the Cy2 values from Table 6 in ascending order and to use 
equation (20) to test for statistical significance of the F* ratio. The re­
sults are compared with the tabular F* for the five percent significance 
level, which for large samples equals approximately 1.35. 

The first two rows of Table 8 show the arrangement in ascending or­
der and the corresponding line codes. The entries in columns 3 through 
14 represent the F* ratios for all possible comparisons of two specific 
lines. An asterisk (*) in the matrix indicates there is no significance 
between the two lines. For example, the * in column 3 indicates that 
there is not a significant difference in the concentration of the home­
owners and the private passenger auto physical damage lines. All other 
comparisons with the homeowners line (rest of column 3) show a sig­
nificant difference. The complete matrix indicates that in the majority 
of cases there are noticeable differences in concentration among the 
different lines. 
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5 Closing Comments 

A large body of literature pertaining to aggregate concentration de­
scribes, depending on the economic philosophy of the researchers, the 
adverse or beneficial consequences of increasing aggregate concentra­
tion. Some argue that firms that practice in markets characterized by 
high levels of concentration will likely exhibit tacit or collusive behav­
ior, providing these firms with monopoly profits. Others argue that the 
greater efficiency of the leading firms leads to greater concentration 
and, thus, a positive relation between concentration and profitability 
is a result of efficiency rather than monopolization. In the majority of 
cases, however, government agencies concerned with promoting com­
petition among firms in an industry treat increases in concentration 
with disfavor. Government fears that concentration will result in lessen­
ing of competition and enhancement of corporate and political power, 
both of which can be detrimental to the interests of consumers. 

While the property and liability insurance industry is relatively ex­
empt from federal laws through help from the McCarren-Ferguson Act 
of 1945, the act is blamed as being the cause of a variety of problems 
faced by that same industry (Joskow and McLaughlin 1991). There are 
calls for the repeal of the act making the industry subject to antitrust 
rules because of the perceived excessive control of the industry by a few 
large firms. Therefore, research into the level of concentration by line 
of insurance for property and liability is useful in pointing out those 
lines with the largest concentration. 

This paper extends the previous literature in two ways. First, the 
paper updates the previous findings. Second, it provides finer statisti­
cal tools and testing procedures to compute the level of concentration 
by the line of insurance and to identify the lines that are most concen­
trated. 

In this regard, the paper shows that there was an increase in concen­
tration (sometimes sizable) between 1989 and 1995 for almost all the 
lines of property and liability insurance. A plausible explanation is the 
extensive acquisition of firms by other firms, a phenomenon that has 
prevailed throughout U.S. industries in recent years. The second imp or­
tantresult of this research is an ordering of the various lines of property 
and liability insurance by their degree of concentration as shown in the 
matrix of Table 8. One notices here that the most concentrated is the 
homeowners line, followed closely by private passenger auto physical 
damage. 



Table 8 
F-ratios for Testing Hypothesis of Equality of Herfindahl Index for Premium 

Written by Top 100 Affiliates of Property and liability Insurance 
Code 

4 2 1 5 9 11 8 3 7 12 6 10 
Line Code 8.60 8.44 7.36 6.30 3.15 2.84 2.82 2.51 2.18 1.98 1.45 1.28 
HOME 4 1.000 
PPAPD 2 1.019* 1.000 
PPAL 1 1.168 1.147* 1.000 
GENLB 5 1.365 1.340* 1.168 1.000 
Fire 9 2.730 2.679 2.337 2.000 1.000 
MEDMP 11 3.028 2.972 2.592 2.218 1.109* 1.000 
CMLPL 8 3.050 2.993 2.610 2.234 1.117* 1.007* 1.000 
WORKC 3 3.426 3.363 2.932 2.510 1.255* 1.131 * 1.124* 1.000 
CMLP 7 3.945 3.872 3.376 2.890 1.445 1.303* 1.294* 1.151* 1.000 
Allied 12 4.343 4.263 3.717 3.182 1.591 1.434 1.424 1.268* 1.101* 1.000 
CMAL 6 5.931 5.821 5.076 4.345 2.172 1.959 1.945 1.731 1.503 1.366 1.000 
CMAPD 10 6.719 6.594 5.750 4.922 2.461 2.219 2.203 1.961 1.703 1.547 1.133* 1.000 

Source: NAIC (1998) and calculations by equation (5). Notes: HOME = Homeowners, PPAPD = Private Passenger Auto Physical Damage, 
PPAL = Private Passenger Auto Liability, GENLB = General Liability, MEDMP = Medical Malpractice, CMLPL = Commercial Multiple Peril 
(Liability), WORKC = Workers Compensation, CMLP = Commercial Multiple Peril, CMAL = Commercial Auto Liability, CMAPD = Commer-
cial Auto Physical Damage. A superscripted * indicates no statistical significance in concentration between the corresponding pairs of 
insurance lines at 5% level. 
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The above two conclusions present a picture of the property and 
liability insurance industry as being highly concentrated. Concentra­
tion alone does not preclude competitiveness, however, as observed 
by Joskow and McLaughlin (1991). They claim that most major lines 
of property and liability insurance are provided by a large number of 
firms; that firms can add any line they choose as part of their business, 
implying no monopolization exists by any of the lines; that entry and 
exit of firms are relatively easy; and that many commercial customers 
may opt to purchase insurance from other established firms. In addi­
tion, self-insurance and the availability of industry insurance groups 
are other alternatives. These factors may combine to exert pressure on 
the industry to be competitive. 
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Safe-Side Requirements in Life Insurance: A 
Corporate Perspective 

Annamaria Olivieri* and Ermanno Pitacco t 

Abstract* 

Safe-side requirements concern the assumptions used to calculate premi­
ums in relation to a set of more realistic assumptions. Roughly, safe-side re­
quirements express the capability of premiums to generate positive margins. 
In a strictly actuarial framework, safe-side requirements are given in terms of 
some notion of expected profit, calling for assumptions that let such profit be 
nonnegative. An expected profit of zero, however, is not a realistic aim for the 
insurer. 

We investigate the notion of conservative assumptions by adopting a un­
conventional approach. Our focus is the management of the financial re­
sources coming both from premiums and from shareholders' capital. This 
leads to a general structure that includes as particular cases the results ob­
tainable in a strictly actuarial environment. 
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1 Introduction 

Though the concept of safe-side requirements has always been an 
integral part of actuarial science, it is only recently that it has become 
a core topic in Europe. This is especially true in Italy, as a consequence 
of the European Third Directive concerning life insurance regulation 
(Directive EEe, No. 96 of 1992).1 Because tariffs are no longer subject to 
approval, other tools must be used to monitor the stability of insurance 
companies. 

Expressions such as "prudent," "prudent valuation," and so on are 
Widely used in current legislation2 in order to define freedom in choos­
ing premium ratings. These terms are often used vaguely or dubiously. 

In this paper we have tried to outline a general structure that can 
help in understanding what a safe-side requirement is and to what it 
refers. We have adopted two approaches: (i) a purely actuarial ap­
proach, referring to some classical results of actuarial mathematics 
such as the notion of expected profit and the contribution formula of 
Homans (1863) (see also Haberman and Sibbett 1995, pages 287-297) as 
well as to some ideas developed in the framework of multistate models 
(see Hoem (1988) and Olivieri (1999»; and (ii) a corporate approach in­
troducing the notion of shareholders' capital, which is not usually con­
Sidered in traditional actuarial mathematics. The corporate approach 
has proved to be more general than the purely actuarial one. The results 
obtained in the actuarial framework are special cases of the corporate 
approach. These approaches lead to a unitary formal structure. 

Our basic set of assumptions are: 

(a) Only life insurance policies issued on a single life are considered. 
Policies involving more than one life or health insurance poliCies 
are disregarded; 

(b) As we are considering only net premiums, expenses and expense 
loadings are also disregarded; 

(c) Benefits and premiums are specified at policy issue and remain 
unchanged throughout the insured period (hence, financial ad­
justments of benefits and/or premiums are not permitted); 

1 Directive EEC, No. 96 of 1992 has been published on the Gazette Officielle des Com­
munautes Europeennes, loi n. 360 du 9/12/1992. 

2 The legislation is the Italian D.Lgs. 174/95 (published on the Gazzetta Ufficiale della 
Repubblica Italiana, n. 56,18/5/1995), which introduces European legislation in Italy. 
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(d) Premiums are assumed to be paid at the start of each year and 
death benefits are paid at the end of the year of death (thus we 
adopt a time-discrete approach); and 

(e) Though the underlying processes may vary, we consider expected 
values only (some remarks on the possibility of considering higher 
moments or, in general, probability distributions are made in Sec­
tion 6). 

The model is simple, but it makes the interpretation of the results eas­
ier. Moreover, comparisons with the traditional actuarial model are 
immediate. 

Section 2 introduces the notion of prudence; this notion is referred 
to as a "first order basis" in comparison to a given set of more realistic 
assumptions that are referred to as a "second order basis." A formal 
structure is introduced under which various safe-side requirements can 
be classified. In Section 3 various definitions of safe-side requirements 
are given in a strictly actuarial framework. Section 4 adopts a corpo­
rate approach; some comparisons between the two approaches are then 
made. Section 5 discusses some numerical examples. 

2 Technical Bases and Prudence 

2.1 Some Preliminary Aspects 

One of the objectives of actuarial valuations is to assess the ade­
quacy of premiums and to forecast future payments by the insurer and 
the insured. This objective requires the choice of a convenient set ofba­
sic assumptions on which to base the forecast. In life insurance, such 
basic assumptions include demographic assumptions (e.g., mortality, 
morbidity, and lapse rates) and financial assumptions (e.g., interest and 
inflation rates). Throughout this paper, the set of assumptions used to 
derive net premiums will be called the technical basis. 

When life insurance premiums are calculated according to the equiv­
alence principle,3 the expected profit for the insurer is zero if a realistic 
technical basis is used. Hence, it is necessary to: 

(i) Use a realistic technical basis and adopt premium principles other 
than the equivalence principle in order to include an explicit safety 
loading into premiums; or to 

3The equivalence principle states that the actuarial present value of premiums is 
equal to the actuarial present value of benefits. 
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(ii) Adopt the equivalence principle and use a conservative technical 
basis in order to include an implicit safety loading into premiums. 

In both cases, the safety loading leads to a positive expected profit. 
Among European life insurance companies, choice (ii) is commonly made. 

The first order technical basis (briefly TBl) is the set of conservative 
assumptions (Le., assumptions favorable to the insurer) used in choice 
(ii). This set is relatively easy to define. It includes the valuation rate of 
interest (usually constant) as well as a mortality table. 

The second order technical basis (briefly TB2) is the set of realistic 
assumptions. The concept of second order basis is more complex. TB2 
must give a realistic description of the scenario facing the insurance 
company and the insured person. Thus, it should include assumptions 
about policyholder behavior, investment performance, and company 
behavior and assumptions about macro- and micro-economic forces. 

It is likely that in the early days of actuarial practice the two concepts 
emerged simultaneously. Given the contractual relevance of TBl, TB2 
has usually been expressed as a simple shift of TBl. Hence, TBl and 
TB2 were usually assumed to have the same structure; for example, 
for insurance poliCies TBl includes a lower interest rate and higher 
mortality than that included in TB2, while for annuities TBl includes a 
lower interest rate and lower mortality than in TB2. 

In these days of easy access to high speed computers, it is important 
to adopt a more flexible structure for T B2. For example, the financial as­
sumption may include a (deterministic) term structure of interest rates 
or a convenient stochastic model; as to the demographical aspect, a pro­
jected table can represent the future trend of mortality. (A stochastic 
model can express the uncertainty of the projection.) 

For the sake of simplicity and for obtaining results that can be com­
pared to the traditional model, we will adopt a conventional structure 
for TB2. On the other hand, a deterministic term structure of interest 
rates as well as a (deterministic) projected mortality table would not 
add significance to the considerations discussed below. 

2.2 Formal Aspects 

As we have stated in Section 2.1, safe-side requirements will be re­
ferred to as TBl in relation to a given realistic basis TB2. We need 
a yardstick to assess whether TBl is on the safe side with respect to 
TB2. From a formal viewpoint, this yardstick is represented by a vector­
valued mapping of the two technical bases. Given the dynamic nature 
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of life insurance contracts and the length of these contracts, the vec­
tor could quantify safe-side requirements imposed on any single year. 
In other cases, the elements of the vector will represent the different 
components of the contract that can generate safety loadings and thus 
contribute to the expected profit. We will consider only deterministic 
mappings obtained as expected values of random variables. 

If r denotes the particular insurance policy, we will deal with func­
tions <I> that map (TBI, TB2, n to quantities (typically expected profits) 
that are used to assess prudence. These quantities are specified in the 
proposed safe-side requirements. In particular, r allows us to specify 
benefits and to determine premiums and reserves. If <I> is a vector­
valued function, its elements will be denoted by <PI, <P2, ... ,. 

As we have stated in Section 2.1, we adopt a constant rate of interest 
i and a given set of mortality rates qy, y = 0,1, ... for TBI and i* and 
q;, y = 0,1, ... for TB2. Thus we have 

TBI = (i,{qy}) 

TB2 = (i*, {q;}). 

As usual, we put py = 1 - qy and p; = 1 - q;. Traditional actuarial 
notation is used whenever possible. 

We will focus on insurance policies with the following characteris­
tics: 

• x is the issue age, and w is the limiting age of the mortality table; 

• Term n years, where n = 1,2, ... ,w - x; 

• The death benefit, paid at the end of the tth policy year of death, 
is Ct , where t = 1,2, ... ,n; 

• Sum S is paid in case of survival to age x + n (when n is finite); 
and 

• The premiums are paid at the start of each policy year (if the in­
sured is then alive). The premium paid at time k (Le., age x + k) 
is Pk, k = 0, 1, ... , n - 1. The cases with single premiums and pre­
miums payable for at most m years (with m ~ n) are included; 
annuities are also included, by letting Pk < ° (thus paid by the 
insurer). 

Such a. general insurance structure includes many practical poliCies 
such as term, whole life, endowment, pure endowment insurances, and 
immediate and deferred annuities. 
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We assume that premiums are calculated according to the equiva­
lence principle (obviously, with TBl). The net premium reserve at time 
t, Vt, is defined as 

n-t-l 

Vt = L Ct+h+l V h+
l 

hPx+t qx+h+t + S v n- t n-tPx+t 
h=O 
n-t-l 

- L Pt+h v h 
hPx+t 

h=O 

(1) 

where v = 1/(1 + i). The boundary conditions are Vo = 0 and Vn = S 
(when n is finite). Vt satisfies the recurrence equation 

(Vt + Pd(1 + i) = (Ct+l - Vt+l) qx+t + Vt+l. (2) 

3 Safe-Side Requirements in an Actuarial Frame­
work 

3.1 Profits and Second Order Reserves 

From the recurrence equation (2), we get an expression for Ui+l' the 
annual profit at the end of the t + 1st policy year, which is obtained 
evaluating the assets and liabilities using the realistic basis TB2. We 
have 

Ui+l = (Vt + Pd(1 + i*) - (Ct+l - Vt+l) q~+t - Vt+l (3) 

from which we obtain the contribution formula of Homans (1863) 

Ui+l = (Vt + Pt+l) (i* - i) + (Ct+l - Vt+l) (qx+t - q~+t) (4) 

where the financial and demographic components of profits are: 

fui+l = (Vt + Pt+l) (i* - i) 

dui+l = (Ct+l - Vt+l) (qx+t - q~+t) 

Financial Component (5) 

Demographic Component. (6) 

The total future expected profit at time 0 is u * where 
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n-l 

u* = L uh+lhP~ (1 + i*)-(h+l). (7) 
h=O 

After substituting equation (3) into equation (7), and some algebraic 
manipulations, we obtain the following expression for total profit: 

n-l 

u* = L PhhP~ (1 + i*)-h 
h=O 

n-l 

- L Ch+l hP~ q~+h (1 + i*)-(h+l) - S nP~ (1 + i*)-n. 
h=O 

(8) 

As before, total profit can be split into the financial and demographic 
components: 

n-l 
fU* = L fUh+1 hP~ (1 + i*)-(h+l) 

h=O 
n-l 

(9) 

dU* = L dUh+l hP~ (1 + i*)-(h+l). (10) 
h=O 

More generally, we can define the expected future profit after time t, 
i.e., in the interval [t, n], as 

n-t-l 

u*(t,n)= L U;+h+lhP~+t(I+i*)-(h+l). 
h=O 

Specifically, U * = U * (0, n). Also this expected profit can be split into 
its financial and demographic components; moreover, a result similar 
to equation (8) holds for u* (t, n). 

Finally, we define vt as the second order reserve calculated using 
the realistic assumptions of TB2 

n-t-l 
vt = L Ct+h+l hP~+tq~+t+h (1 + i*)-(h+l) + S n-tP~+t (1 + i*)-(n-t) 

h=O 
n-t-l 

- L Pt+hhP~+t (1 + i*)-h. 
h=O 

(11) 
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3.2 Safe-Side Requirement (SSR) Definitions 

Let us now turn to various safe-side requirements, which are re­
ferred to as TBl in relation to TB2. We will then analyze the links 
between the various definitions; we will verify that some safe-side re­
quirements (SSR) imply others. 

Definition 1 (Naive SSR): 

We say that TBl is on the safe side (with respect to TB2) if and 
only if 

• 1. Benefits are payable in case of survival only, 
2. i:s; i*, and 
3. qx+h-l :s; q;+h-l for h = 1,2, ... , n; 

or 

• 1. Benefits are payable in case of death only, 
2. i:s; i*, and 
3. qx+h-l c q;+h-l for h = 1,2, ... , n. 

In this case prudence is directly measured on the single elements 
of the two technical bases. The corresponding mapping <P is a 
vector with n + 1 elements, given by 

4>h = qx+h-l - q;+h-l for h = 1,2, ... , n 
4>n+l = i* - i. 

The safe-side requirement can be easily stated in terms of the 
mapping <P. Such a definition can be applied only to a restricted 
number of cases; for example, it cannot be used for policies that 
contain both survival and death benefits. 

Definition 2 (Financial/Demographic Annual Profits SSR): 

Let us consider the mapping <P = [4>1,4>2, ... , 4>2n] where 

4>2t-l = Jui for t = 1,2, ... , n 

4>2t = dui for t = 1,2, ... , n. 

(12) 

(13) 

We say that TBl is on the safe side if and only if 4>h c 0 for 
h=I,2, ... ,2n. 
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In this case, as in the following ones, the measurement of pru­
dence relies on expected present values, which consist in equa­
tions (12) and (13) of the components of expected annual profit. 
From the definition of Jui and dui (see equations (5) and (6» 
conditions on the elements of TBI can be derived. The condi­
tion concerning the demographical assumption is based on the 
sum at risk (Ct + I - Vt + I); hence, it is more widely applicable than 
simply requiring that qx+h-l :::;; q~+h-l or qx+h-l ~ q~+h-l for 
h = 1,2, ... ,no 

Definition 3 (Annual Profits SSR): 

Let <I> = [CPI, CP2, ... , CPn], where 

CPt = ui, t = 1,2, ... ,n. 

We say that TBI is on the safe side if and only if CPt ~ 0 for t = 
1,2, ... ,n. 

Definition 4 (Total Profit SSR): 

Let 

<I>=u*. 

We say that TBI is on the safe side if and only if <I> ~ o. 

Definition 5 (Financial/Demographic Total Profit SSR): 

Let <I> = [cpI. CP2], where 

CPI = JU* 

CP2 = d U *. 

We say that TBI is on the safe side if and only if CPI ~ 0, CP2 ~ o. 
Definition 6 (Residual Profits SSR): 

Let <I> = [CPI, CP2, ... , CPn], where 

CPt=u*(t-l,n) t=I,2, ... ,n. 

We say that TBI is on the safe side if and only if CPt ~ 0 for t = 
1,2, ... ,n. 

Definition 7 (Reserves SSR): 

Let <I> = [cpI. CP2, ... , CPn] where 

CPt =Vt-I-Vt~l t = 1,2, ... ,n 
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We say that TBI is on the safe side if and only if CPt ~ 0 for t = 

1,2, ... ,n. 
This requirement means that in each year what is set aside to meet 
future net liabilities (Vt) must be at least equal to the realistic value 
of future net liabilities themselves (Vt). 

The quantity Vt-l - Vt~l is called the "Loewy increment." (See 
Hoem (1988) and Loewy (1917).) From equations (1) and (ll), after 
some manipulations we get 

Vt-l - Vt~l = u* (t, n) (14) 

which becomes, in particular, Vo - V6' = u * (0, n), i.e., 

Vo* = -u*. (15) 

Relations among the previous definitions can be easily found. Each 
definition involves a different degree of strictness. For example, a TBI 
which complies with Definition 2 also complies with Definition 3, the 
latter being less strict than the former. Let us adopt the following no­
tation: 

• (Di) denotes Definition i, e.g., (D3) refers to Definition 3; and 

• (Di) => (D j) means that a first order technical basis TBI that is on 
the safe side according to (Di) is also on the safe side according 
to (Dj). 

It can be easily verified that 

(Dl) => (D2) => (D3) => (D6) ¢=> (D7) => (D4) 

and 

(D2) => (D5) => (D4). 

Note that a severe requirement that involves a higher premium could 
produce high profits per policy. High premiums may reduce the de­
mand of the insurance policy, however, and profits for the entire port­
folio. 



Olivieri and Pitacco: Safe-Side Requirements 125 

The discussion in this section allows to verify the link between the 
first two safe-side requirements common in actuarial practice (Le., (D 1) 
and (D2), which are severe) and the seventh safe-side requirement 
(Le., (D7), which has been recently proposed in actuarial literature, see 
Hoem (1988)). Moreover, the definitions above described give a gen­
eral picture that allows to understand the meaning of the expression 
"prudent actuarial valuation." 

Definitions (Dl) through (D7), as well as equations (14) and (15), 
show that the notion of prudence is linked to some notion of implied 
expected profit. Having used only expected values, it is impossible to 
consider explicitly measures of demographic or financial riskiness. As a 
result, the (positive) lower bound for profit can be chosen arbitrarily. It 
would be interesting, considering definition (D4), to require conditions 
such as <I> ;::.: u' where u' represents a minimum value for expected profit 
(or safety loading in terms of single premium) to be fixed in relation to 
the riskiness of the insurance contract. 

We will briefly comment on an expliCit consideration of risk in Sec­
tion 6. In Section 4 we will introduce a structure that, although based 
on expected values only, is more general than the one just described. 
This structure allows us to single out positive lower bounds for profit. 

4 Safe-Side Requirements and the Cost of Capital: 
Toward a Corporate Approach 

4.1 Portfolio Fund, Discounted Cash Flow (DCF) 

The safe-side requirements analyzed in Section 3 are minimal re­
quirements in a corporate perspective. It is not enough for the policy 
to generate profits, but such profits must be enough to pay some min­
imum return to the invested capital. Because shareholders' capital is 
allocated at a portfolio level, in this section we refer not to a policy only, 
but to a portfolio of life insurance. 

For SimpliCity, however, we consider a cohort of homogeneous poli­
cies, issued at the same time, identical in terms of insurance policy, age 
at entry, term, benefits, and premiums. Under such assumptions, Swill 
be the total amount paid in case of survival of all poliCies at maturity. 
The amount actually paid at time n is a random variable that depends 
on the random number of survivors. At time 0, its expected value is 
given by S x nPi (according to TB2); similarly, Vt x tPi represents the 
(expected) portfolio reserve at time t. Similar relations hold for the 
other quantities. 



126 Journal of Actuarial Practice, Vol. 8, 2000 

For the sake of brevity, we adopt the following notation 

~ * Vt = Vt x tPx 

Ut+l = Ut+l X tP~· 

For t = 0,1, ... , n, let Zt denote the expected portfolio fund accu­
mulated at time t (according to the information available at time 0) and 
let Kt (t = 0,1, ... ,n) be the shareholders' capital flow withdrawn from 
(Kt > 0) or paid to (Kt < 0) the portfolio fund. The sign of Kt is de­
termined from the point of view of shareholders. The behavior of the 
portfolio fund can then be described by 

Zt+l = Zt (1 + i*) + Pt (1 + i*) tP~ - Ct+l tp~q~+t - Kt+l (16) 

for t = 0,1, ... , n -1, where we assume Zo = -Ko with Ko :s: 0. As Kt is 
assumed to be deterministic, no mortality factor is needed. 

The analysis of cash flows is also considered in recent actuarial mod­
els, for example in profit testing techniques (see Goford (1985». In that 
framework, however, shareholders' flows are not included-the main 
aim is the assessment of technical profit. 

We will consider the sequence {Kt} as given flows. In concrete terms, 
flows depend both on corporate strategies and insurance regulation. In 
any case, we assume 

Kn = Zn-l (1 + i*) + Pn (1 + i*) nP~ - Cnn-lp~q~+n-l - S nP~ (17) 

so that Zn = 0. Moreover, we suppose that flows Kt are chosen so that 
Zt ;::: \It for t = 1,2, ... , n - 1. We define "free portfolio fund" as the 
(nonnegative) quantity Zt - \It, which consists of the financial resources 
in excess of the expected reserve. Zt - \It represents the shareholders' 
capital globally linked to the portfolio at time t. 

Let G (p) denote the discounted cash flow (DCF) at time ° for share­
holders, calculated with a rate p, Le., 

n 
G(p) = I K t (1 + p)-t. 

t=O 

(18) 

The rate p represents the yield required from shareholders on the cap­
ital invested in the portfolio (Le., the opportunity cost of capital). We 
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assume that p ;::: i*. The DCF can be split into a sequence of periodic 
contributions. (This notion has been proposed, for a financial operation 
in general, by Peccati (1989).) 

Let Bt+l (p) be the contribution at time t + 1 to the DCF G(p), evalu­
ated at time 0. The splitting of DCF is based on the notion of outstand­
ing capital at each time t, Le., the capital invested at that time, which, 
as seen above, is given by the free portfolio fund Zt - Vt. The annual 
contribution to DCF can then be defined by amending the annual share­
holders' flow Kt+l with the variation in the free portfolio fund. Hence, 
for t = 0,1, ... , n - 1, we have 

( ) _ -(Zt - Vd + (Kt+l + Zt+l - Vt+d 
Bt+l p - (1 + p)t (1 + p)t+l (19) 

The structure of equation (19) is coherent with that of annual profit 
as defined in conventional life insurance mathematics. In the latter 
quantity, however, only debt capital (Le., the reserve) is taken into con­
sideration (see equation (3)). It can be easily verified that 

n-l 

G(p) = I Bt+dp). 
t=O 

(20) 

Subtracting equation (3) (previously multiplied by tPi) from (16) we 
obtain 

Zt+l - Vt+l = (Zt - Vd (1 + i*) - Kt+l + Ui+l' (21) 

Solving for Zt - Vt, with initial condition Zo -Vo = -Ko, we obtain 

t t 
Zt - Vt = - I Kh (1 + i*)t-h + I uh (1 + i*)t-h. (22) 

h=O h=l 

Substituting equation (21) into equation (19) we get 

Bt+l(P) = [Ui+l - (Zt - Vd (p - i*)] (1 + p)-Ct+l) (23) 

for t = 0,1, ... , n -1. Equation (23) shows that the periodical contribu­
tion to DCF is equal to the annual profit amended by the loss incurred 
by investing the free portfolio fund at rate i* instead of the required p. 
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From equation (18), noting that Kn is equal to the accumulated value 
of the insurance profit plus the accumulated value of shareholders' cap­
ital flows (as can be checked by substituting equation (22) into equation 
(17», we obtain the following expression for DCF: 

G(p) = (1 + p)-n [u' x (1 + i,)n 

+ f Kt x (1 + p)n-t - (1 + i*)n-t)] . 
t=O 

(24) 

Expression (24) can be easily interpreted in terms of the loss origi­
nating from the difference between p and i*. Obviously, equation (24) 
could be obtained also by discounting back to time 0 the annual losses 
(Le., by substituting (23) and (22) into (20». 

Equation (24) allows us to separate two components of DCF: 

• The technical component, 

(1 + p)-n x u* x (1 + i*)n, 

which stems from the technical management of the insurance 
portfolio, and 

• The capital component, 

n 
(1 + p)-n L Kt x ((1 + p)n-t - (1 + i*)n-t), 

t=O 

which stems from the management of shareholders' capital flows. 

4.2 More Safe-Side Requirements 

The notions of DCF, splitting the DCF into annual contributions 
and then splitting the annual contributions themselves, suggest other 
safe-side requirements. We will consider mappings of the form <I> = 

<I>(TBl, TB2,f,p). 

Definition 8 (DCF Annual Contributions SSR): 

Let <I> = [CPdp),CP2(P), ... ,CPn(P)] where 
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¢t(p) = Bt(P) t = 1,2, ... , n, 

P is the opportunity cost of capital, and B (p) is defined in equation 
(23). For a given p, we say that TBl is on the safe side if and only 
if ¢dp) ;::: 0 for t = 1,2, ... , n, i.e., if and only if 

itt ;::: (Zt-l - Vt-l) (p - i*) t = 1,2, ... , n. (25) 

Definition 8 (D8) leads to some interesting observations, especially 
when compared with (D3). Considering the nonnegativity of the free 
portfolio fund, the lower bound for itt depends on the difference be­
tween the rates p and i* (which can reasonably be assumed to be non­
negative). Note in particular that 

(i) If we require a yield of p on the free portfolio fund that is higher 
than i*, equation (25) expresses a more severe condition than 
(D3), as a positive lower bound for the expected annual profit is 
imposed (unless the free portfolio fund is equal to zero). In ad­
dition, the entity of the lower bound depends on the value of the 
free portfolio fund; hence, it depends on the strategy concerning 
the choice of {Kt }. (We will comment on some particular cases 
later.); 

(ii) If P = i*, we have (D3); 

(iii) The (overall) riskiness of the insurance business can be introduced 
into the safe-side requirement by properly choosing the rate p 
(p > i *), which may include a risk premium. 

Definition 9 (DCF SSR): 

Let <l> = G(p), where p is the opportunity cost of capital, and G(p) 
is defined in equation (18). For a given p, we say that TBl is on 
the safe side if and only if G(p) ;::: O. According to equation (24), 
G(p) ;::: 0 is achieved when 

n 
u* ;::: (1 + i*)-n L -Kt ((1 + p)n-t - (1 + i*)n-t). (26) 

t=O 
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For certain choices of the sequence {Kd, the capital component of 
DCF can be positive, in which case equation (26) gives a negative bound 
for total profit.4 Equation (26) must then be modified as follows 

u* ;::: max{o, (1 + i*)-n ± -Kt ((1 + p)n-t - (1 + i*)n-t)}. (27) 
t=o 

According to equation (27), we say that a TBI is on the safe side if and 
only if G(p) ;::: ° and u*;::: 0. 

Equation (27) can now be compared to (D4). The lower bound that 
is now required for total profit u * depends both on the spread p - i* 
as well as on the sequence of shareholders' capital flows {Kt}. If p = i * 
and/or the capital component of DCF is positive, we find u* ;::: 0, i.e., 
the requirement of (D4). 

It is interesting to examine some cases related to particular choices 
of {Kt}. 

(i) Consider an initial investment followed by one withdrawal only at 
maturity, i.e., Ko < 0, Kl = K2 = ... = Kn-l = 0. From equation 
(27) we find 

u* (1 + i*)n ;::: -Ko [(1 + p)n - (1 + i*)n]. (28) 

Equation (28) points out the need for the total profit to compen­
sate the shareholders for missed returns occurring when the ini­
tial investment of shareholders' equity incurrs a return of i* in­
stead of the required p. In terms of annual profits, equations (25) 
and (22) lead to 

t 

Ui+l ;::: [-Ko (1 + i*)t + 2: u~ (1 + i*)t-h] (p - i*), (29) 
h=l 

which shows that the expected annual profit must cover the missed 
yield, equal to p - i*, obtained on shareholders' equity accumu­
lated at the beginning of the year. As shown in equation (29), 

4This is unacceptable from the point of view of looking for premiums to meet the 
benefits. Selling some insurance policies at a loss, however, might be profitable for 
an entire portfolio in the long run if other policies generate cash flows that can be 
invested profitably elsewhere. Throughout the rest of this paper we will disregard this 
opportunity, as it is not allowed by insurance regulations in many countries. 
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shareholders' capital (which is equal to the free portfolio fund) at 
time t comes from the accumulated value of the initial investment 
and previous (undistributed) annual profits. 

(ii) Considerthe case where Ko < 0 and Kh = uh for h = 1,2, ... , n-l. 
In general terms, equations (25) and (22) lead to 

t 
ui+l ;::: [-Ko (1 + i*)t - L Kh (1 + i*)t-h 

h=l 
t 

+ L uh (1 + i*)t-h] (p - i*). 
h=l 

(30) 

When Kh > 0 for h = 1,2, ... , t, equation (30) shows the decrease 
in the lower bound due to shareholders' capital withdrawals. When 
Kh = uh' h = 1,2, ... , t, equation (30) becomes 

(31) 

The loss is incurred only on the accumulated value of the initial in­
vestment. Multiplying both sides of equation (31) by (1 + i* )-(t+l) 

and summing with respect to t, we obtain 

u* ;::: -nKo (p - i*) (1 + i*)-l. (32) 

The lower bound for total profit provided by equation (32) is more 
severe than that coming from equation (27), as equation (32) is 
obtained discounting the annual lower bounds with a higher fac­
tor. It can be easily verified that the lower bound implied by 
equation (28) is greater than that implied by equation (32) (and, 
therefore, than that implied by equation (27». When Kh = uh' 
h = 1,2, ... , n - 1, it is possible to reinvest annual profits at the 
rate p, hence weakening the bound on total profit. 

(iii) As shown by the above mentioned examples, the notion of pru­
dence depends on the strategy of shareholders' equity (as well as 
on the yield p). It is interesting to consider an objective strategy. 
To this aim, let us define the sequence {Md, t = 0,1, ... , n - 1, 
where Mt is the minimum solvency margin that must be assigned 
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(according to insurance regulation) to the insurance portfolio at 
time t. Suppose the shareholders set their capital flows such that 

Zt - Vt = Mt for t = 0,1, ... , n - 1. 

The consequent bounds on profit can be interpreted on one hand 
as those implied by the opinion on the riskiness of the insurance 
business expressed by current legislation (through {Mt }), and on 
the other hand by shareholders (through p). 

5 Numerical Examples 

We consider two types of policies: (i) a IS-year endowment insur­
ance with face value of 1,000 monetary units that is issued to an Italian 
male age 50; and (ii) a IS-year deferred whole life annuity with annual 
benefits of 100 monetary units that is issued to an Italian male age 50. 
In both poliCies premiums are level and paid for 15 years, the second 
order rate of interest is i* = 0.06, and the opportunity cost of capital 
is p = O.OS. 

5.1 Endowment Insurance 

For the endowment insurance, the second order level of mortal­
ity is derived from the Italian Table SIM1992 (which is referred to the 
Italian male population, observed in 1992). Denoting by q~IMl992 the 
rate of mortality calculated according to Table SIM1992, we assume 
q; = 0.7oqfMl992. 

In Table 1 the traditional approach is adopted; thus prudence is 
analyzed only according to profits. Three different technical bases are 
used as examples . 

• In the first example (Columns (2) to (4) in Table 1), the TEl (i = 

0.03, q = 1.2 q*) complies with all safe-side requirements . 

• In the second example (Columns (5) to (7) in Table 1), the TEl 
(i = 0.03, q = O.Sq*) is used. This example does not satisfy 
(D2). The financial profit in each year, however, is enough to allow 
positive annual profits. Thus, (D3) and (D4) as well as (D6) and 
(D7), are satisfied. 
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• In the third example (Columns (8) to (10) in Table 1), a higher tech­
nical rate of interest has been chosen. Total profit is dramatically 
reduced as compared to the first example. 

In Tables 2 to 4 the corporate approach is implemented. In each ta­
ble, a different strategy of shareholders' capital flows has been adopted. 
In Table 2, we have an initial investment (Ko < 0) and a final withdrawal 
(Kl = K2 = ... = Kn-l = 0, Kn > 0). The amount of the initial invest­
ment has been chosen according to a reasonable solvency fund to be 
assigned to the portfolio. Both of the technical bases, (i = 0.03, q = 

1.2 q*) and (i = 0.03, q = 0.8 q*), satisfy (D8) and (D9) of prudence. 
In Tables 3 and 4 withdrawals of shareholders' capital are permitted 

also at times t = 1,2, ... , n - 1. The requirements on armual and total 
profits are relaxed; note, however, that in Table 4 the TEl (i = 0.03, q = 

0.8 q*) cannot be adopted as the free portfolio fund becomes negative. 

5.2 Deferred Annuity 

For the deferred armuity, mortality rates are taken from a projected 
table, which is obtained from Table SIM1992 using an exponential pro­
jection model; it reflects the future expected (decreaSing) trend of mor­
tality. We point out that the limiting age of the mortality table is w = 

109. 
In Table 5 the traditional approach is adopted. It is difficult to cover 

financial losses with mortality profits (and mortality losses with finan­
cial profits) throughout the whole insurance period. In Table 6 the strat­
egy Ko < 0, Kl = K2 = ... = Kn-l = 0 is examined (also in this case, 
Ko has been chosen according to a reasonable solvency fund to be as­
signed to the portfolio). Because of the length of the insurance contract, 
such strategy is unsatisfactory when (D8) is assumed. In Table 7 with­
drawals of shareholders' capital at time t = 1,2,... are considered. 
(Their amount has been chosen according to the behavior of annual 
profits and to the interests required on the initial investment.) Because 
of the length of the contract, when a sequence {Kt} is given, there is 
not much freedom in the choice of TEl. 

Similar results can be obtained when expenses and other loadings 
are considered. 
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Table 1 
Endowment Insurance: Traditional Approach 

i = 3%, qx = 1.2q~, i = 3%, qx = 0.8q~, i = 4%, qx = 1. 2 q~, 
and P = 55.572 and P = 54.441 and P = 51.479 

t ~* u t 
~* 

JUt 
~* 

dUt 
~* u t jUi dui 

~* u t 
~* 

JUt 
~* 

dUt 

1 2.274 1.667 0.607 1.026 1.633 -0.607 1.639 1.030 0.609 
2 3.883 3.265 0.618 2.614 3.232 -0.618 2.644 2.021 0.623 
3 5.532 4.896 0.636 4.230 4.866 -0.636 3.686 3.042 0.644 
4 7.224 6.559 0.664 5.869 6.533 -0.664 4.769 4.094 0.675 ..... 

0 

5 8.932 8.250 0.682 7.549 8.230 -0.681 5.868 5.173 0.696 s:: 
"'; 
:::s 

6 10.668 9.969 0.699 9.258 9.956 -0.698 6.997 6.280 0.716 ~ 
7 12.415 11.713 0.702 11.008 11.708 -0.700 8.136 7.414 0.722 0 -... 
8 14.173 13.481 0.692 12.796 13.485 -0.690 9.291 8.576 0.715 

):. 
«"'I .... 

9 15.942 15.273 0.669 14.619 15.286 -0.667 10.459 9.764 0.695 s:: 
~ 

10 17.714 17.085 0.629 16.480 17.106 -0.626 11.635 10.979 0.656 
"'; 

~ 
11 19.482 18.916 0.565 18.382 18.943 -0.561 12.811 12.219 0.592 ~ 

12 21.240 20.765 0.475 20.324 20.794 -0.471 13.984 13.484 0.500 ~ 
«"'I .... 

13 22.982 22.629 0.354 22.306 22.656 -0.350 15.149 14.775 0.374 n· 
~~ 

14 24.704 24.507 0.197 24.331 24.526 -0.195 16.299 16.090 0.209 
~ 15 26.398 26.398 0.000 26.398 26.398 0.000 17.430 17.430 0.000 

u* 120.174 u* 108.885 u* 79.299 ~Oo 

I\J 
0 
0 
0 
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Table 2 
Endowment Insurance: Corporate Approach 

i = 3% and q = 1.2 q* i=3%andq=0.8q* 
t K t Zt Zt - Vt L(un Zt Zt - Vt L(un 

0 -20.000 20.000 20.000 20.000 20.000 
1 0.000 76.900 23.474 0.400 75.702 22.226 0.400 
2 0.000 136.765 28.765 0.469 134.301 26.174 0.445 
3 0.000 199.673 36.023 0.575 195.870 31.975 0.523 
4 0.000 265.663 45.408 0.720 260.446 39.762 0.640 
5 0.000 334.883 57.065 0.908 328.173 49.697 0.795 
6 0.000 407.397 71.157 1.141 399.109 61.936 0.994 
7 0.000 483.357 87.841 1.423 473.403 76.660 1.239 
8 0.000 562.884 107.284 1.757 551.172 94.055 1.533 
9 0.000 646.081 129.663 2.146 632.512 114.318 1.881 
10 0.000 733.057 155.158 2.593 717.529 137.657 2.286 
11 0.000 823.953 183.949 3.103 806.359 164.299 2.753 
12 0.000 918.908 216.225 3.679 899.133 194.480 3.286 
13 0.000 1018.070 252.181 4.325 995.997 228.455 3.890 
14 0.000 1121.587 292.016 5.044 1097.089 266.494 4.569 
15 0.000 0.000 5.840 0.000 0.000 5.330 

Kn 335.935 Kn 308.881 
G(p) 85.901 G(p) 77.372 

GT(p) 90.791 GT(p) 82.262 
GC(p) -4.890 GC(p) -4.890 
L(u*) 6.473 L(u*) 6.473 

Notes: L(Un denotes the lower bound for -ai; L(u*) denotes the lower bound 
for u *; CT (p) denotes the technical component of DCF; and CC (p) denotes the 
capital component of DCF. 
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Table 3 
Endowment Insurance: Corporate Approach 

i = 3% and q = 1.2 q* i = 3% and q = 0.8 q* 

t Kt Zt Zt - Vt L(un Zt Zt - Vt L(un 

0 -20.000 20.000 20.000 20.000 20.000 
1 1.333 75.567 22.141 0.400 74.369 20.893 0.400 
2 1.333 134.019 26.018 0.443 131.554 23.428 0.418 
3 1.333 195.428 31.778 0.520 191.625 27.730 0.469 
4 1.333 259.830 39.575 0.636 254.614 33.930 0.555 
5 1.333 327.367 49.548 0.792 320.657 42.181 0.679 
6 1.333 398.097 61.856 0.991 389.809 52.636 0.844 
7 1.333 472.165 76.649 1.237 462.211 65.468 1.053 
8 1.333 549.688 94.088 1.533 537.975 80.859 1.309 
9 1.333 630.759 114.342 1.882 617.191 98.996 1.617 
10 1.333 715.482 137.583 2.287 699.955 120.083 1.980 
11 1.333 803.991 163.986 2.752 786.396 144.336 2.402 
12 1.333 896.414 193.732 3.280 876.640 171.987 2.887 
13 1.333 992.894 227.005 3.875 970.820 203.279 3.440 
14 1.333 1093.567 263.996 4.540 1069.069 238.473 4.066 
15 0.000 0.000 5.280 0.000 0.000 4.769 

Kn 306.234 Kn 279.180 
G(p) 87.530 G(p) 79.001 

GT(p) 90.791 GT(p) 82.262 
GC(p) -3.261 GC(p) -3.261 
L(u*) 4.316 L(u*) 4.316 

Notes: L(un denotes the lower bound for ut; L(u*) denotes the lower bound 
for u *; CT (p) denotes the technical component of DCF; and CC (p) denotes the 
capital component of DCF. 
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Table 4 
Endowment Insurance: Corporate Approach 

i = 3% and q = 1.2 q* i = 3% and q = 0.8 q* 

t Kt 2t 2t - Vt L(Un 2t 2t - Vt L('un 

0 -20.000 20.000 20.000 20.000 20.000 
1 2.000 74.900 21.474 0.400 73.702 20.226 0.400 
2 4.000 130.645 22.645 0.429 128.181 20.054 0.405 
3 6.000 187.186 23.536 0.453 183.383 19.488 0.401 
4 8.000 244.427 24.172 0.471 239.210 18.526 0.390 
5 10.000 302.373 24.554 0.483 295.662 17.186 0.371 
6 12.000 360.936 24.695 0.491 352.648 15.475 0.344 
7 14.000 420.108 24.592 0.494 410.154 13.411 0.309 
8 16.000 479.840 24.240 0.492 468.128 11.011 0.268 
9 18.000 540.054 23.637 0.485 526.486 8.291 0.220 
10 20.000 600.669 22.769 0.473 585.141 5.269 0.166 
11 22.000 661.621 21.617 0.455 644.027 1.967 0.105 
12 24.000 722.836 20.154 0.432 703.062 -1.591 0.039 
13 26.000 784.235 18.346 0.403 762.161 -5.380 -0.032 
14 28.000 845.721 16.151 0.367 821.223 -9.372 -0.108 
15 0.000 0.000 0.323 0.000 0.000 -0.187 

Kn 43.518 Kn 16.464 
C(p) 97.152 C(p) 88.623 

CT(p) 90.791 CT(p) 82.262 
CC(p) 6.361 CC(p) 6.361 
L(u*) 0.000 L(u*) 0.000 

Notes: L(-ail denotes the lower bound for -at; L(u*) denotes the lower bound 
for u *; CT (p) denotes the technical component of DCF; and CC (p) denotes the 
capital component of DCF. 
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Table 5 
Deferred Annuity: Traditional Approach 

i = 3%, q = 0.8q*, i = 3%, q = q = 1.1 q* i = 4%, q = 0.8 q* 
and P = 73.689 and P = 64.979 and P = 64.979 

t ~* u t 
~* 

JUt 
~* 

dUt 
~* u t 

~* 
JUt 

~* 
dUt 

~* u t 
~* 

JUt 
~* 

dUt 

1 2.275 2.211 0.064 1.921 1.949 -0.028 1.286 1.232 0.054 
2 4.614 4.476 0.138 3.889 3.950 -0.061 2.625 2.508 0.117 
3 7.025 6.798 0.226 5.903 6.003 -0.100 4.021 3.828 0.193 
4 9.515 9.176 0.338 7.959 8.109 -0.150 5.483 5.193 0.290 '-0 
5 12.080 11.611 0.469 10.062 10.270 -0.208 7.008 6.604 0.404 t:: 

""; 

6 14.732 14.102 0.630 12.206 12.486 -0.280 8.608 8.062 0.546 ::s 
~ 

7 17.464 16.649 0.816 14.396 14.758 -0.362 10.278 9.568 0.710 0 -... 
8 20.284 19.251 1.033 16.628 17.088 -0.459 12.026 11.123 0.904 ~ 

r, 

13.860 
..... 

9 23.197 21.909 1.288 18.901 19.476 -0.574 12.727 1.133 t:: 
!::l 

10 26.207 24.620 1.587 21.214 21.923 -0.709 15.784 14.380 1.404 ""; 

~ 
11 29.312 27.385 1.928 23.567 24.430 -0.862 17.797 16.083 1.715 "i::I 

12 32.517 30.201 2.316 25.960 26.999 -1.039 19.908 17.836 2.072 i.1 
r, 

13 35.823 33.067 2.756 28.390 29.629 -1.239 22.118 19.639 2.479 
..... 
ri' 

14 39.236 35.982 3.255 30.856 32.324 -1.468 24.438 21.493 2.945 
,(\) 

15 42.768 38.943 3.825 33.352 35.083 -1.731 26.879 23.397 3.481 ~ 
,00 

I\J 
0 
0 
0 
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Table 5 (continued) ~. 

:::!. 
Deferred Annuity: Traditional Approach ~ 

::; 
i = 3%, q = 0.8q*, i = 3%, q = q = 1.1 q* i = 4%, q = 0.8q* t:l.. 

and P = 73.689 and P = 64.979 and P = 64.979 ~ .... 
~ 

t A* 
Jut 

A* A* A* A* A* 
Jut 

A* C'"\ u t dUt u t JUt dUt u t dUt C'"\ 

45 2.946 1.099 1.847 0.076 0.811 -0.735 2.513 0.709 1.804 ~ 
V) 

46 2.317 0.807 1.510 -0.011 0.588 -0.599 1.999 0.521 1.478 ~ 

~ 
47 1.777 0.577 1.201 -0.060 0.414 -0.474 1.550 0.373 1.177 ~ 

48 1.332 0.400 0.932 -0.084 0.283 -0.367 1.174 0.259 0.915 is: 
(\) 

49 0.967 0.268 0.699 -0.088 0.186 -0.274 0.861 0.174 0.688 ;.;:, 
(\) 

~ 
50 0.680 0.173 0.508 -0.081 0.118 -0.199 0.612 0.112 0.500 ~ 

51 0.458 0.107 0.352 -0.066 0.071 -0.137 0.416 0.069 0.347 
~. 

~ 
52 0.296 0.063 0.233 -0.050 0.041 -0.091 0.271 0.041 0.230 (\) 

::; 

53 0.184 0.035 0.149 -0.036 0.022 -0.058 0.170 0.023 0.147 
.... 
'" 

54 0.104 0.018 0.085 -0.022 0.011 -0.033 0.097 0.012 0.085 
55 0.059 0.009 0.050 -0.015 0.005 -0.020 0.056 0.006 0.050 
56 0.027 0.004 0.023 -0.007 0.002 -0.010 0.026 0.002 0.023 
57 0.012 0.001 0.011 -0.004 0.001 -0.005 0.012 0.001 0.011 
58 0.003 0.001 0.002 -0.001 0.000 -0.001 0.003 0.000 0.002 
59 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

u* 326.378 u* 239.886 u* 206.533 
...... 
w 
co 
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Table 6 
Deferred Annuity: Corporate Approach 
i = 3% and q = 1.2 q* i = 3% and q = q = 0.8 q* 

t Kt Zt Zt - Vt L(Un Zt Zt - Vt L(un 
0 -60.000 60.000 60.000 60.000 60.000 
1 0.000 141.711 65.875 1.200 128.917 64.886 1.200 
2 0.000 227.997 74.441 1.317 201.695 71.404 1.298 
3 0.000 319.112 85.932 1.489 278.550 79.709 1.428 
4 0.000 415.321 100.603 1.719 359.703 89.974 1.594 '-c 
5 0.000 516.890 118.719 2.012 445.380 102.381 1.799 s:: .... 
6 0.000 624.105 140.574 2.374 535.823 117.131 2.048 

~ 

~ 
7 0.000 737.259 166.473 2.811 631.280 134.438 2.343 c -.., 
8 0.000 856.665 196.745 3.329 732.015 154.530 2.689 )::. 

(") .... 
231.747 3.935 838.307 177.662 3.091 9 0.000 982.652 s:: 

So:l 

10 0.000 1115.564 271.859 4.635 950.445 204.106 3.553 .... 
~ 

11 0.000 1255.761 317.482 5.437 1068.736 234.149 4.082 ~ 

12 0.000 1403.626 369.048 6.350 1193.501 268.106 4.683 ~ 
(") 

13 0.000 1559.559 427.014 7.381 1325.080 306.310 5.362 
.... ;:; . 

14 0.000 1723.986 491.871 8.540 1463.834 349.127 6.126 
• (1:) 

15 0.000 1897.356 564.151 9.837 1610.140 396.953 6.983 ~ 
.00 

I'v 
<:::> 
<:::> 
<:::> 



Table 6 (continued) Q 
Deferred Annuity: Corporate Approach 

~. 

iii· 
i = 3% and q = 1.2 q* i = 3% and q = q = 0.8 q* :::!. 

~ 
t Kt Zt Zt - Vt L(Un Zt Zt - Vt L(un ~ 

s::t. 
45 0.000 5347.312 5311.426 100.160 3697.691 3662.637 69.059 ~ .... 
46 0.000 5658.625 5632.428 106.229 3910.027 3884.394 73.253 ~ 

t"\ 

47 0.000 5990.748 5972.151 112.649 4137.235 4119.008 77.688 
t"\ 
~ 

48 0.000 6344.604 6331.812 119.443 4379.880 4367.322 82.380 V) 
~ 

49 0.000 6721.183 6712.688 126.636 4638.575 4630.223 87.346 Cti' 
~ 

50 0.000 7121.551 7116.129 134.254 4913.987 4908.648 92.604 ~ 
(\) 

51 0.000 7546.867 7543.556 142.323 5206.849 5203.584 98.173 :::tI 
(\) 

52 0.000 7998.388 7996.465 150.871 5517.969 5516.070 104.072 oS:) 
s:: 

53 0.000 8477.487 8476.437 159.929 5848.243 5847.204 110.321 ~. 

54 0.000 8985.666 8985.126 169.529 6198.667 6198.133 116.944 ~ 
(\) 

55 0.000 9524.543 9524.293 179.703 6570.324 6570.076 123.963 ~ .... ...., 
56 0.000 10095.543 10095.778 190.486 6964.413 6964.307 131.402 
57 0.000 10701.576 10701.537 201.916 7382.215 7382.177 139.286 
58 0.000 11343.644 11343.632 214.031 7825.123 7825.110 147.644 
59 0.000 0.000 226.873 0.000 0.000 156.502 

Kn 12024.263 Kn 8294.630 
G(p) 68.250 G(p) 28.470 

GT(p) 108.334 GT(p) 68.554 
GC(p) -40.084 GC(p) -40.084 ...... 
L(u*) 120.762 L(u*) 120.762 ~ ...... 
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Table 7 
Deferred Annuity: Corporate Approach 
i = 3% and q = 1.2 q* i = 3% and q = q = 0.8 q* 

t Kt Zt Zt - Vt L(ui) Zt Zt - Vt L(ui) 
0 -60.000 60.000 60.000 60.000 60.000 
1 6.000 135.711 59.875 1.200 122.917 58.886 1.200 
2 8.000 213.637 60.081 1.197 187.335 57.044 1.178 
3 11.000 292.891 59.711 1.202 252.328 53.488 1.141 
4 13.000 374.526 59.808 1.194 318.908 49.179 1.070 '-

<:) 

5 16.000 457.648 59.476 1.196 386.138 43.138 0.984 s:: 
"': 

6 18.000 543.308 59.777 1.190 455.026 36.334 0.863 
::; 
~ 

7 21.000 630.614 59.828 1.196 524.635 27.793 0.727 <:) ...... 
8 24.000 719.621 59.701 1.197 594.972 17.487 0.556 )::. 

r, 

9 27.000 59.480 666.040 
.... 

810.386 1.194 5.396 0.350 s:: 
!i::l 

10 30.000 902.961 59.256 1.190 737.843 -8.497 0.108 "': 

~ 
11 33.000 997.403 59.124 1.185 810.377 -24.209 -0.170 ""\:J 

12 36.000 1093.766 59.188 1.182 883.641 -41.754 -0.484 ~ 
r, 

13 39.000 1192.108 59.562 1.184 957.629 -61.141 -0.835 
.... ;:::;. 

14 43.000 1291.488 59.373 1.191 1031.335 -83.372 -1.223 
~ 

15 46.000 1392.907 59.703 1.187 1105.692 -107.495 -1.667 ~ 
,90 
I\J 
0 
0 
0 



Table 7 (Continued) Q 
Deferred Annuity: Corporate Approach 

;;;. 
(i;' 

i = 3% and q = 1.2 q* i = 3% and q = q = 0.8 q* ::!. 
~ 

t Kt Zt Zt - Vt L(ui) Zt Zt - Vt L(un ~ 
~ 

45 6.000 94.002 58.116 1.154 -1555.619 -1590.673 -29.947 ~ ;::;: 
46 6.000 84.116 57.920 1.162 -1664.481 -1690.115 -31.813 ~ 

(") 

47 5.000 76.769 58.172 1.158 -1776.744 -1794.971 -33.802 
(") 

~ 

48 5.000 70.786 57.994 1.163 -1893.938 -1906.496 -35.899 ~ 
~ 

49 4.000 66.936 58.441 1.160 -2015.672 -2024.024 -38.130 Cti' 
~ 

50 4.000 64.049 58.628 1.169 -2143.515 -2148.854 -40.480 ~ 
51 4.000 61.915 58.604 1.173 -2278.103 -2281.368 -42.977 ;:.;, 

~ 

52 4.000 60.339 58.416 1.172 -2420.080 -2421.979 -45.627 -S:l 
s:: 

53 4.000 59.155 58.105 1.168 -2570.089 -2571.128 -48.440 ~. 

54 4.000 58.234 57.695 1.162 -2728.765 -2729.299 -51.423 ~ 
~ 

55 4.000 57.465 57.215 1.154 -2896.753 -2897.001 -54.586 ~ ..... ...., 
56 4.000 56.783 56.675 1.144 -3074.689 -3074.796 -57.940 
57 4.000 56.127 56.088 1.134 -3263.233 -3263.272 -61.496 
58 4.000 55.469 55.457 1.122 -3463.053 -3463.065 -65.265 
59 0.000 0.000 1.109 0.000 0.000 -69.261 

Kn 58.797 Kn -3670.836 
G(p) 230.785 G(p) 191.005 

GT(p) 108.334 GT(p) 68.554 
GC(p) 122.451 GC(p) 122.451 .... 
L(u*) 0.000 L(u*) 0.000 *"" w 
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6 Some Final Remarks 

This paper first considers a purely actuarial approach to prudence 
and then shows how it is possible to introduce risk measures in a struc­
ture based on expected values only. Risk is introduced through the cost 
of capital and the amount of shareholders' capital (Le., the free portfolio 
fund) linked to the insurance portfolio. 

Safe-side requirements can also be formulated in a stochastic frame­
work by considering the distribution of the random profits. Below is a 
possible definition: 

Definition 10 (A Possible Stochastic Safe-Side Requirement): 

Let R denote the present value at time 0 of the future random 
profits, and let 

We can say that a TBI is on the safe side if and only if 

where p is a given bound. 

Sirttilar (and more strict) definitions can be given considering annual 
random profits or their components. Several analytical results can be 
used in this approach; among the more recent contributions, we men­
tion Hesselager and Norberg (1996), which deals with multistate mod­
els. 

An individual approach (Le., based on a single contract) has the dis­
advantage that in order to limit the safety loading, low levels of p must 
be chosen. A collective approach based on the entire portfolio may help 
in quoting competitive premiums; however, forecasts on the future size 
and composition of the portfolio are required, thus leading to a further 
element of uncertainty in the choice of the first order basis. 

Finally, we must emphasize that an approach based on expected val­
ues only has the advantage that the results, relative to a whole portfolio, 
are linear in respect of those relative to single cohorts. On the other 
hand, a stochastic approach to prudence may lead to a more compre­
hensive classification of the notion of safe-side requirements. 
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1 Introduction 

Planning for retirement is increasingly important because individu­
als are living longer, demanding a better quality of life, and are facing 
a higher cost of living. Individuals must continually assess how much 
to save during their working years and how much retirement income 
will be sufficient. These types of decisions are generally influenced by 
several factors including the education, level of income, age at entry 
into the work force, expected retirement age, investment returns, sur­
vivorship trends, inflation, wage increases, and expense pattern. 

In retirement planning, the individual first must consider the various 
sources of income he or she will have at retirement. In several coun­
tries, the primary sources of income are generally derived from social 
security benefits, employer-provided retirement benefits, and personal 
savings. As illustrated in Rejda (1988, Chapter 4, pages 64-65), retire­
ment benefits from social security or other public pension schemes and 
personal savings and investments generally form a large proportion of 
post-retirement income in the U.S. 

Once the various sources of retirement income have been identified, 
the individual must determine whether he or she will have sufficient 
income for retirement. As Cordell (1999) observes, post-retirement fi­
nancial adequacy is often measured by the level of standard of living 
enjoyed by the individual during the period just prior to retirement. 
This level of standard of living is best quantified in terms of the annual 
salary of the individual just prior to retirement. 

In this paper, we will use the replacement ratio, RRx, to express the 
amount of annual retirement income as a fraction of the individual's 
final annual salary just prior to retirement. The amount of annual re­
tirement income can be determined by converting savings into a life 
annuity and aggregating all annuity payments. In effect, we have 

RRx = Annual Retirement Income 
Final Annual Salary 

(1) 

So, for example, consider a retiree age 65 with a final salary of $100,000. 
The retiree has savings of $50,000 in a bank account, $575,000 in a 
defined contribution plan,l receives $7,200 per year from a social in­
surance scheme, and receives $12,000 per year from a defined benefit 

1 In a defined contribution plan, the employer and employee make speCific contribu­
tions into a fund for the employee. The accumulated contributions at retirement are 
used to purchase an annuity penSion benefits. 
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plan.2 If it costs $11. 541 to purchase an annuity due paying $1 per year 
for life, then the annual retirement income is: 

. $50 000 + $575 000 
Annual RetIrement Income = $7,200 + $12,000 + '1 4 ' 

1.5 1 
= $73,354.75, 

yielding a replacement ratio of 73.355%. 
There are several reasons to purchase a fixed life annuity at retire­

ment. Alternatives to purchasing a life annuity, however, do exist. For 
example, the retiree can purchase an annuity certain for a period that is 
equal to the retiree's life expectancy at retirement. An obvious problem 
with this choice is that the retiree may outlive the annuity and be left 
with no source of income beyond that age. On the other hand, it can be 
argued that a larger amount of income can be derived with an annuity­
certain if the retired individual does not live beyond the life expectancy 
at retirement. With a life annuity, the risk resulting from survivorship 
beyond the life expectancy at age of retirement is transferred to the 
company issuing the life annuity. Furthermore, any investment risk 
also is borne by the issuing company. With a fixed life annuity, the in­
terest rate generally is guaranteed from issue by the company. From 
the perspective of the retired individual, there is no uncertainty that 
may arise from interest rate changes that may affect his or her annuity 
income. See Borch (1984) for more on these issues. 

Inflation is another consideration. In the annuity market, it is pos­
sible to purchase an annuity contract that provides some floor of pro­
tection against inflation. In some countries, the law may require that 
income arising from disbursements of retirement benefits come in the 
form of a life annuity (McGill 1984, Chapter 6, pages 125-129). 

We will now develop replacement ratio formulas and explore the 
various factors that can affect the replacement ratio at retirement. The 
results are general and intuitively appealing. They are not country­
specific as we take into account that the various sources of income that 
are common to most countries (although the proportions derived from 
the various sources may differ significantly). We do not recommend 
the level of replacement ratio that is adequate for an individual's re­
tirement. Our hope is to provide a tool that can be used to assist in 
retirement planning. 

2In a defined benefit plan the employer promises to pay an annual pension benefit 
to the employee for life starting at retirement. The size of the benefit is determined by 
a specified mathematical formula. 
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The paper is organized as follows. In Section 2 we provide a simple 
model for calculating replacement ratios where the sole source of re­
tirement income is derived from personal savings. Section 3 contains 
an analysis of the various partial derivatives of the replacement ratio. 
Section 4 gives several modifications of the simple model. In section 5, 
the case of Singapore is considered. The paper concludes in Section 6. 

The following standard actuarial notation are used; see, for example, 
Kellison (1991). For j ~ 0 and n = 1,2, ... , 

n-l 

snJj = L (1 + j)n-t; 
t=O 
n 

snJj = L (1 + j)n-t; 
t=l 
n-l 

anJj = L (1 + j)-t; 
t=O 
n 

anJj = L (1 + j)-t; 
t=l 
n 

(Ia)nJj = L t(1 + j)-t; 
t=l 
n-l 

(Da)nJj = L (n - t)(1 + j)-t; 
t=O 
00 

kay = L (1 + k)-ttPy; 
t=O 

where kay is the present value of a life annuity due paying 1 annually 
beginning age r and discounted at the effective rate of interest k, and 
tPy is the probability that a person age r survives to age r + t, and 

00 

k(Ia)y = L t(1 + k)-ttPy· 
t=l 

2 Calculating Replacement Ratios: A Simple Model 

Consider an individual currently age x whose sole source of retire­
ment income is derived from personal savings and saves a percentage 
S of annual salary for retirement. We assume that the person will retire 
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at the normal retirement age r. Let AS(x) be this individual's actual 
annual salary at age x and assume that salaries increase at the annual 
rate of w. Salaries are assumed to be paid at the start of the year. So 
the expected annual salary from age x + t to x + t + 1 for a person 
currently age x is paid at age x + t and is given by 

ESx (x + t) == AS (x) (1 + w)t . (2) 

The individual will save the amount of 5 ES(x + t) at age x + t. If 
savings accumulate at the annual effective interest rate of i, then the 
portion of the retirement income derived from savings at age x + t will 
be 

z (x + t,r) == sAS (x) (1 + w)t (1 + i)r-x-t. (3) 

Let FSx denote the accumulated future savings resulting from the an­
nual savings made from age x to retirement, then 

where 

r-x-1 
FSx == L Z (x + t, r) 

t=O 

== 5 AS (x) G (i, w) , 

r-x-1 t 
G (i, w) == (1 + i)r-x L (11+ ~) . 

t=O + t 

It is straightforward to show that: 

where 

{

(I + w)r-x Sr-xliJ 

G(i,w)== (l+Or-x(r-x) 
(1+0 r - x .. 
(1+jz) sr-xU2 

. == (~)-1 J1 1 + W ' 

. (l+W) 1 J2 == T+i - . 

if i > W 

if i == W 

if i < W 

(4) 

(5) 
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Suppose that at age x, the individual has saved accumulated past of 
PSx . At retirement, the individual can expect to have saved a total of 

TSx (r) = PSx (1 + if-x + FSx . (6) 

The amount TSx will then be used at age r to purchase a retirement life 
annuity with level annual payments of Bx (r) given by 

B ( ) = TSx (r) 
x r k .. 

ar 
(7) 

where kar is the actuarial present value of a life annuity due. 
The replacement ratio at normal retirement age r for a person cur­

rently age x, RRx (r), is given by 

Bx (r) 
RRx (r) = ES

x 
(r) . 

Note that 

RR (r) = PSx (1 + i)r-x + FSx 
x AS(x)(I+wf Xkar 

PSx [(1 + 0/(1 + w)f-x sG(i,w) (1 + w)-(r-x) 

= AS (x) kar + kar 

= PSx,r + fSx,r 

where 

[ 
1 + i Jr-x ex 

PSx,r = 1 + W kar 

and 

f _ s G (i, w) 
sX,r - (1 + w)r x kar 

(8) 

(9) 

(10) 

(11) 

The term PSx,r can be intuitively interpreted as the portion of replace­
ment ratio contributed by savings already made at age x accumulated 
to retirement, and the term fSx,r can be intuitively interpreted as that 
portion contributed by savings from salary beginning from age x until 
retirement. Note that 



Lian, Valdez, and Low: Replacement Ratios 

PSx 
ex = AS (x) 

153 

from equation (10) represents the proportion of past savings expressed 
as a percentage of salary at age x. 

Some interesting results can be derived from y (r) 

FSx 
y(r)=PSx (l+i)r x' 

which is the ratio of future expected savings to past savings. If i > w, 
then 

() 
sAS(x) (I+W)r-x.. S .. 

Y r = PS
x 

T+i Sr-xlij = ex ar-xlij 

and therefore 

which gives an upper bound on the change y for increases in the normal 
retirement age. Here, dl = jl/(1 + jl) and <h = In(1 + jd are the 
usual discount and force of interest corresponding to interest rate jl. 
If i = w, it is straightforward to show that 

S 
Y (r) = - (r - x) 

ex 

so that we have 

oy (r) s 
or ex 

If i < w, then 

( ) _ s AS (x) (SY=Xl jz) _ ~ . 
y r - PSx 1 + j2 - ex sr-x!J2 
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and therefore 

which gives a lower bound on the change of the ratio for increases in the 
normal retirement age. To interpret these results, when the increase in 
the wages is greater than the interest earned on savings, then salary 
increases will raise FSx relative to PSx . For the other cases, a similar 
interpretation will hold. 

For purposes of illustration, Figure 1 displays the relationship be­
tween the savings rate and the replacement ratio. In Figure 1, we as­
sume the following: x = 25, r = 65, i = 3 percent, W = 4 percent, and 
a life annuity factor of a65 = 11.541 based on the United Kingdom's 
A1967-70 Mortality Table (ultimate). Savings to-date vary between -200 
percent (a negative savings represents a net debt) and +200 percent of 
current annual salary. Notice the relationship between savings rate and 
replacement ratio is linear, with a greater intercept for larger savings-to­
date. The linear relationship is positively sloping, which demonstrates 
the fact that increasing savings rate tends to increase the income re­
placement ratio at retirement. If the assumptions hold, a 25 year old 
individual with zero savings to-date must save about 35 percent of his 
or her annual salary to achieve a 100 percent replacement ratio at re­
tirement at age 65. 

Figure 2 displays the relationship of the age at retirement and the 
replacement ratio assuming x = 25, i = 3 percent, W = 4 percent, 
s = 20 percent, and life annuity factors based on theA1967-70 Mortality 
Table (ultimate). Savings to-date vary between -200 percent and +200 
percent of current annual salary. Unlike Figure 1, Figure 2 displays a 
nonlinear relationship between retirement age and replacement ratio. 
It demonstrates that deferring the retirement, a choice that many can 
make today because of increasing life expectancy, will help increase the 
replacement ratio at retirement. According to the figure, a 25 year old 
individual with zero savings who intends to save 20 percent of salary 
annually can achieve a 100 percent replacement ratio when retirement 
is made at a little below age 75. Furthermore, for the same individual, 
if retirement were chosen at age 65, the replacement ratio will be below 
60 percent. 
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Figure 1 
Replacement Ratio RRx (65) and Savings Rate s 
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3 Sensitivity of the Replacement Ratio 

We now investigate the sensitivity of the RRx to r, i, W, and x, 
respectively. To illustrate, the replacement ratio depends on the age 
at retirement r. Intuitively, for an individual who decides to retire at a 
later age, his or her replacement ratio is expected to increase because he 
or she will have a longer employment period which allows him or her 
to save more wealth for retirement. Furthermore, a later retirement 
age allows for a smaller life annuity factor kiir (which decreases as 
r increases) and, as a result, a larger replacement ratio because the 
annuity is spread over a shorter expected retirement period. 

3.1 The Effect of r on RRx 

We now show that, under certain conditions a RRx (r) lar ;::: O. Three 
different cases are considered. 

Case 1: i > w. If the interest rate is larger than the rate of wage 
increase, the replacement ratio in equation (9) becomes 
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Figure 2 
Replacement Ratio RRx (r) and Age at Retirement r 
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70 

ex (1 + Jd r
-

x + 5 Sr-xUj 
RRx (r) = k" ar 

where 

and 

Note that 

og , ~ t 
~ = 9 = L v tPr (J.lr - J.lr+d 
ur t=O 

75 

f 
9 

80 

(12) 

(13) 

where J.ly is the force of mortality at age y ~ r; see Jordan 
(1967). Now, consider the first derivative of equation (12): 
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~ RRx (r) = ~ (t) = (1'g -Ig') , (14) 
or or 9 g2 

where 

l' = ~~ = (1 + j1(-X <h (Cx + ;J = <h (I + ;J . 
It is apparent that 1 > 0 and 9 > 0; similarly, l' > O. If the 
post-retirement force of mortality is a nondecreasing func­
tion of age, Le., J.lr ::; J.lrH for any t > 0, then g' ::; O. Thus, 
from equation (14),0 RRx (r) lor> O. 

Case 2: i = w. If the interest rate and the rate of wage increase are 
the same, the replacement ratio in equation (9) becomes 

where 

RR ( ) 
= Cx + S (r - x) 1 

x r k" 9 ar 

1 = C x + (r - x) S and 9 = k iir . 

(15) 

Note that l' = S > O. Under a nondecreasing force of mortal­
ity requirement, it is straightforward to see that 0 RRx (r) lor> 
O. 

Case 3: i < w. If the interest rate is smaller than the rate of wage 
increase, the replacement ratio in equation (9) becomes 

Cx (1 + jl)r-x + S (1 + jd r
-

x 
sr-xUz = t 

RRx (r) = k" (16) 
ar 9 

where 

1 (1 ' )r-x (1 . )r-x =Cx +)1 +S +)1 Sr-xUz 

It follows that 
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(17) 

Under the condition s > cxj2, we have f' > O. The reverse is 
true when s ~ cx j2. Consider the first derivative of equation 
(16). Both f and 9 are positive terms. Under the condition 
s > cx j2 we also have f' > O. Furthermore, if the force 
of mortality is increasing with age, we have g' ~ O. Thus, 
oRRx (r) jor > O. 

We are now ready to state our first result. 

Proposition 1. If the post-retirement force of mortality J1y is a nonde­
creasing function of y ~ r, then oRRx (r) jor > 0 if (i) i ~ w, or (ii) 
i < wand s > cx j2. 

According to Proposition 1, there will be possible situations where 
RRx (r) is a decreasing function of r. This does not mean, however, 
that the annuity payment is also a decreasing function of r. In other 
words, the retiree is not necessarily getting a smaller annuity payment 
by delaying retirement. 

3.2 The Effect of i on RRx (r) 

From equation (9), we have 

o RRx (r) 0 PSx,r 0 fSx,r 
ot = ----ai + at 

where 

opsx,r = cx (r - x) 1 (~)r-X-1 
ot kar (l+w) l+w 

( ) (1 . )r-X-1 cx r - x +)1 
-'----,-"-"'-'----

kar (1+w) 

and 

s oG (t, w) 

(1 + wf x kar oi 

(18) 

(19) 

(20) 
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We can easily see that 

as . n-l 
rill '" ( ) (1 ,)n-t-l (1 ,)n-l [.. (1) ] (21) -a-'- = L n - t + ) = + ) na111 j - a 111 j . 
) t=l 

Equation (21) is obviously nonnegative because na111j > (Ia)rilj. We 
now consider the three cases: i > w, i = w, and i < w. 

Case 1: i > w. If the interest rate is larger than the rate of wage 
increase, from equations (5) and (21), we have 

ac (i, w) = (1 )r-x aSr=iH ajl 
ai +w ajl ai 

as . 
= (1 )r-x-l r=xJlJ 

+w a' )1 

= (1 + Or-x-l [(r - x)ar-xUj - (Ia)r-x Uj ] 

(22) 

which is obviously nonnegative. 
Case 2: i = w. If the interest rate and the rate of wage increase are 

the same, from equation (5), we have 

ac (i, w) = ( _ )2 (1 ,)r-x-l 
ai r x + t (23) 

which is also obviously nonnegative. 
Case 3: i < w. If the interest rate is smaller than the rate of wage 

increase from equations (5) and (21), we have 

ac (i, w) = (1 )r-x aar_xlh aj2 
ai + W aj2 ai 

r-x -1 (-(l+W)) 
= (1 + w) (1 ') (Ia)r-xU2 , 2 + )2 (1 + t) 

= (1 + w)r-x 1 ~ i (Ia)r-xlh 

which is also nonnegative. 

(24) 
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Figure 3 
Replacement Ratio RRx (65) and Interest Rate i 
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In summary, combining equations (22) through (24) and the result 
from the three cases examined above, we have both 

which implies that 

Opsx,r > 0 
oi - and ofsx,r > 0 

oi -

oRRx (r) ~ 0 
oi 

under all circumstances. 
Figure 3 shows the relationship of the interest rate on savings and 

the replacement ratio. Figure 3 is based on the following information 
x = 25, r = 65, W = 5 percent, AS(25) = 20,000, S = 20 percent, and 
a life annuity factor of ax = 11.541 based on the A1967-70 Mortality 
Table (ultimate). Savings to-date vary between -200 percent and +200 
percent of current annual salary. Notice that there is a sharper increase 
for larger interest rates. This means that one way to increase income 
replacement ratio is to increase the interest earnings, assuming all other 
factors are fixed. 
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Due to the scaling of the graph, there appears to be little difference 
in the replacement ratio for differing amounts of savings, but such is 
not actually the case. For example at i = 4 percent, with savings of twice 
the current salary, the replacement ratio will be about 76 percent. With 
savings of minus twice the current salary (the individual is in debt), the 
replacement ratio is 42 percent and is almost halved. 

3.3 The Effect of w on RRx (r) 

From equation (9), we have 

It is clear that 

o RRx (r) 0 PSx,r 0 fSx,r 
--=-'ow"'-'--'- = -ow- + -ow-' 

o PSx,r 0 ---aw< . 
Turning to the second term, we have 

ofsx,r = (_S ) ~ [ G (i,w) ] 
ow kar ow (1 + w)r x . 

(25) 

Consider the three cases: i > w, i = w, and i < w. It turns out that in 
all three cases, 

ofsxr 0 h' h' l' h oRRx (r) 0 au:- ::::; w IC lffiP Ies t at ow <. 

Case 1: i > w. If the interest rate is larger than the rate of wage 
increase, from equations (5) and (21), we have 

ofsx,r 5 (1 + jd r
-
x 
(.. ) au; = - (1 + w) kar (r - x)ar-xIJJ - (Ia)r-xUj . 

(26) 

Equation (26) is always negative. 
Case 2: i = w. If the interest rate and the rate of wage increase are 

the same, from equation (5), we have 
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ofsx,y = 0 
ow . (27) 

Case 3: i < w. If the interest rate is smaller than the rate of wage 
increase from equations (5) and (21), we have 

Ofsx,y 5 (Ia)~i2 
aw = - (1 + w)ka y ' 

(28) 

which is also always negative. In this case, when the invest­
ment earnings rate is lower than the wage increase rate, then 
a further increase in wages will decrease the replacement ra­
tio. This is true because the replacement ratio is expressed 
as a percentage of the retiree's final salary just prior to re­
tirement. In this case, accumulation from savings is not in­
creasing fast enough to keep pace with increases in wages, 
which may be a reflection of inflation. 

To summarize, we have oRRx (r)/ow ::; O. 
Figure 4 displays the relationship of the replacement ratio and the 

rate of increase in wages. We observe a declining replacement ratio un­
der all circumstances. The decline in the replacement ratio caused by 
increasing rates of wages, however, should not be viewed negatively. 
When wages are particularly high, there is usually a tendency for indi­
viduals to increase their savings rate. In this analysis, we have assumed 
that the savings rate is constant regardless of the level of income. In 
reality, this may not be the case. We therefore caution the reader to 
carefully interpret these results. 

The opposite effect that i and w have on the replacement ratio can be 
expected because of their impact on the numerator and denominator 
in the replacement ratio formula. The net impact of i and w on the 
replacement ratio depends on the change in the value of the composite 
rate of jl when i > w or j2 when i < w. 

3.4 The Effect of x on RRx(r) 

The current age can be viewed as the starting age for which the 
individual consciously saves for retirement. It is expected that delaying 
savings for retirement will lower the replacement ratio. We consider the 
following three cases. 
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Replacement Ratio RRx (65) and Wage Increase w 
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Case 1: i > w. If interest rate is larger than the rate of wage increase, 
the replacement ratio in equation (9) becomes that in equa­
tion (12). We express it as f / 9 with 

f = Cx (1 + JI)r-x + SSr_xlij and 9 = kar. 

Therefore, we have 

o 1 of (h ( . )r-x ( S ) 
ox RRx (r) = 9 ox = -9 1 +)1 Cx + d

1 
• (29) 

Using this result, we have oRRx (r)/ox < O. When invest­
ments are earning at a larger rate than the rate of increase of 
wages, a delay in savings for retirement will lower the replace­
ment ratio. This is intuitively true-a delay in savings means 
forfeiting the opportunity to earn more through investing. A 
delay also means a lower amount of savings because of the 
shorter period to save. 
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Case 2: i = w. If the interest rate and the rate of wage increase 
are the same, the replacement ratio in equation (9) becomes 
equation (15) which can be expressed as fig with 

f = Cx + (r - x)s and 9 = k ar . 
Consider the first derivative of equation (15): 

a 5 
~RRx (r) = -- < O. 
uX 9 

(30) 

While in both cases 1 and 2, the replacement ratio decreases 
with increasing age x, the rate of decrease is greater when 
i > w than when i = w. This follows directly from 

(1 + jd r
-

x 151 (Cx + ;1) > s. 

Case 3: i < w. If interest rate is smaller than the rate of wage in­
crease, the replacement ratio in equation (9) becomes (16) 
which can be expressed as fig with 

f = Cx (1 + jr)r-x + 5 (1 + jr)r-x sr-xli2 

Thus, we have 

and 

a (. )x-r ( 5 ) ox RRx (r) = 152 1 + J2 CX - j2 . 

k .. 
9 = ar · 

(31) 

It is also obvious that a RRx (r) lax < 0 under the condition 
that 5> cxh. 

We now state this as our next proposition. 

Proposition 2. a RRx (r) lox < 0 if (i) i ~ w; or (iO i < wand 5 > cxJz. 

The conditions in Propositions 1 and 2 are identical, but the signs 
of their respective partial derivatives are opposite. This makes sense 
because x and r would have the opposite effect on the savings accumu­
lation period prior to retirement. Nevertheless, it should be noted that 
the impact of ron RRx is much greater than the impact x has on RRx. 
In addition to the impact on the savings accumulation period prior to 
retirement, r also has an effect on the cost in providing the retirement 
benefit. 
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4 Extensions to the Replacement Ratio 

We now offer some suggestions on ways of extending the concept of 
replacement ratios introduced in Section 2. These extensions include 
considering (i) the impact of inflation during retirement, (ii) payments 
other than annual payments, and (iii) the incorporation of other possi­
ble sources of retirement income. 

4.1 The Inflation-Adjusted Replacement Ratio, IARRx (r + z) 

Recall the central idea behind the replacement ratio: replace a frac­
tion of the salary at retirement age r with a level annuity income. Sup­
pose, however, after age r, the retiree could have continued working 
and could have expected annual salary increases of lOOw' %. It seems 
reasonable to calculate the replacement ratio at age r + z, that is z ;::: 0 
years after retirement age r, based on the projected retirement benefit 
at age r + z and the hypothetical post-retirement salary at age r + z. 

Another factor to consider is the impact of inflation on both benefits 
and salaries. To ensure that there is no deterioration in the standard 
of living after the retirement age, it is important to have a benefit that 
increases annually to compensate for the corrosive effects of inflation 
and hence provide a measure of financial stability throughout the re­
tirement period. 

In defining the inflation-adjusted replacement ratio at age r + z 
there are two factors to consider: (i) the hypothetical projected wage 
increases (that would have occurred had the retiree kept on working), 
and (ii) the expected inflation during the post retirement years. Specif­
ically, we use the ratio of projected benefits to projected salary where 
both quantities are expressed in constant dollars to define the new re­
placement ratio. 

Let Ex (r + z) denote the annual retirement annuity income to be 
received at age r + z. Given a projected total savings of TSx (r), the 
benefits satisfy 

00 

TSx (r) = LEx (r + t) vttPr 
t~O 

(32) 

where the right side of the equation gives the expected present value 
of the annuity benefits to be received during retirement. 

Assuming a constant inflation rate of s per annum throughout the 
retirement period, the benefit at age r+z expressed in inflation-adjusted 
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(Le., constant) dollars is Bx (r + z) (1 + S')-Z, while the projected hy­
pothetical salary expressed in inflation-adjusted dollars is ESx (r) (1 + 
w')Z(l + O-z. 

The inflation-adjusted replacement ratio at age r + z, IARRx (r + z), 
is thus defined as: 

Bx (r + z) (1 + S')-Z 
IARRx (r + z) = ESx (r) (1 + w')Z(1 + S')-Z 

_ Bx (r + z) 
- ESx (r)(l+w')z, 

(33) 

which appears to be independent of inflation, S', even though it implic­
itly does depend on inflation. 

To reduce the effects of inflation on the retiree's standard of living 
during retirement, the retiree may purchase an annuity with a benefit 
that increases annually at a constant rate b'.3 Thus 

where 

and 

Bx (r + z) = Bx (r) (1 + b'r ' 

00 

TSx (r) = I Bx (r) (1 + b,)t vttPr 
t=O 

00 (1 + b') t , 
= Bx (r) to 1 + k tPr = Bx (r) k iir 

l+k 
1 + k' - -l-+-b-" 

Thus, we can solve for 

B ( ) = TSx (r) 
x r k"" ar 

It follows that 

(34) 

(35) 

3 Another option is to purchase a variable annuity that is linked to inflation. See, for 
example Black and Skipper (1994, pp. 159-161), 
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Ex (r) (1 + b' )2 
IARRx (r + z) = ESx (r) 1 + w' 

= RRx (r) ( 1 + b', ) 2 

1 +w 

TSx (r) ( 1 + b' )2 
= ESx (r) k'iir 1 + w' 

167 

(36) 

(37) 

To consider the effects of inflation on IARRx , we split interest into 
two components: inflation and real interest. In addition, we split wage 
increases and benefit increases into two components: increases due to 
inflation and real increases. Thus, 

k' = (+ k* (38) 

b' = (+ b* (39) 

and 

w'=(+w*. (40) 

where k * is the real rate of interest, b * the real rate of benefit increases 
and w * is the real rate of wage increases. (Note that - 00 < k* , b* , w * < 
00.) The IARRx is now given by 

with 

IARR TSx (r) ( 1 + ( + b* )2 
x(r+z) = ESx(r)k'iir l+(+w* 

1 + k' = 1 + ( + k* . 
1 + (+ b* 

(41) 

Consider the rate of change of the replacement ratio with respect to (, 
and applying the chain rule of differentiation, we get 

o IARRx (r + z) [ (b* - w*) 
o(IARRx(r+z)=- (1+(+b*) z(l+(+w*) 

+ , r 
(k* - b*) k' (fa) 1 
(1 + ( + k*) k iir 

(42) 
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where k' (I a)y is the expected present value of an increasing life annuity 
immediate issued to a person age r. We have used the result 

-(k* -b*) 
(1+(+b*)2 

o l+(+b* (b*-w*) l+(+b* 
( )

z ()Z-l 
o( l+(+w* =-Z(1+(+w*)21+(+w* 

and from Bowers, et al., (1997, Chapter 5), we have 

o (k'" ) 1 k' (I ) 
ok' ay = - (1 + k') a y. 

The sign of the partial derivative is not clear as it depends on the 
sign of (b* - w*) and (k* - b*). For example, for U.S. hourly paid 
workers, the average annual percentage change in hourly earnings in 
constant dollars (w*) ranged from -4.5 percent in 1980 to 1.5 percent 
in 1997.4 On the other hand, as k* is set by the insurer, it would reflect 
the insurer's conservative estimate of its expected real rate of return on 
its investments. In 1990, U.S. insurers earned on average 8.89 percent 
on its assets, which decreased to 7.17 percent in 1996. During the 
same period the annual rate of inflation dropped from 5.4 percent to 
2.3 percent, so their real rate of return ranged between 3 and 6 percent. 5 

The retiree sets b * . 

4.2 Adjustments for Monthly Factors 

The definition of the replacement ratio in equation (8) assumes that 

(1) The savings arising from salary are made at once at the beginning 
of each year, and 

(2) The life annuity payable at retirement commences immediately 
and is paid also once a year. 

In reality, employees are paid more frequently than once a year and 
the retired individuals want to receive income more often than once a 

4Source: Statistical Abstract of the Unites States 1998. U.S. Department of Commerce, 
page 434, Table No. 693. 

5 Source: Statistical Abstract of the Unites States 1998. U.S. Department of Commerce, 
page 489, Table No. 772 (for inflation) and page 536, Table No. 854 (for insurers' re­
turns). 
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year. It is easy to extend the replacement ratio definition to reflect such 
frequent payments. For the numerator, we adjust FSx by mUltiplying it 
by a~m) assuming that salaries are paid m times during the year and the 
first such salary in the year commences at the end of the first l/mth 
of the year. Similarly, for the denominator, the life annuity factor kay 

will be replaced by ka~m), where the annuity income is payable m times 
during the year and the first such income commences at the start of the 
first l/mth of the year. 

Thus, from equations (8) and (9), the replacement ratio definition 
becomes 

PSx (1 + i)Y-X + FSxa(m) 
RR(m) (r) = 11 . 

x AS (x) (1 + w)Y-X ka~m) 
(43) 

In the case of monthly contributions and benefits, m = 12, and the m 
during the saving stage (numerator of equation (43)) is not necessarily 
the same as the m during the payout stage (denominator of equation 
(43)). The sensitivity analysis in Section 3 can therefore be repeated 
using equation (43) for the replacement ratio. 

4.3 Accounting for Other Sources of Retirement Income 

In the previous development of replacement ratios, it has been as­
sumed that the sole source of retirement income is personal savings. 
This is unrealistic. In several countries, primarily in well-developed 
ones, other sources of retirement income include social security ben­
efits and benefits from employer-sponsored pension plans. For either 
the public or private pension plan, employers generally make a con­
tribution and "a significant part of labor's compensation consists of 
pension benefits" (Hsiao 1984). 

Social security programs of several nations share common charac­
teristics. Coverage is usually compulsory, i.e., every working individual 
is required to make a contribution, together with a portion of the em­
ployer's share, toward providing pension benefits. Although benefits 
are generally related to earnings, some programs pay benefits so that 
there is a certain level of standard of living attained by participants. For 
our purposes, we will assume that pension benefits derived from social 
security are fixed and pre-determined at retirement. We shall denote 
the annual social security benefit payable at age r + z by SSnz. 

With respect to employer-sponsored pension plans, there are two 
main types of plans: defined benefit plans and defined contribution 
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plans. To simplify introducing these other sources of income into the 
replacement ratio formula, we shall denote the defined benefit payable 
at age r + z as BBnz . 

For the defined contribution pension plan, the contribution of the 
total employer and employee contribution at age x + t is BCXH where 

BCXH == c AS (x + t) 

and c is the rate of total contributions as a percentage of salary. This 
amount will be assumed to earn interest at the annual rate of (. Thus, 
the amount of benefit derived from this defined contribution plan is 
expected to accumulate to 

r-x-l ,r-(x+tl r-x-l , r-x-t 
L Bex+t (1 + i ) == LeAS (x + t) (1 + i ) 
t=O t=O 

==cAS(X)C(i',w) (44) 

at retirement age r. 
In summary, the equivalent amount of annual retirement benefit at 

r can then be expressed as: 

TSx(r) cAS(X)C((,w) 
Bx (r) == k .. + (SSr + BBr) + k .. . ar ar 

5 The Case of Singapore 

In Singapore, there are two unique elements that must be incorpo­
rated in the calculation of replacement ratios. First, employees and 
employers are required to make periodic contributes to the Singapore's 
Central Provident Fund (CPF), which is Singapore's major social secu­
rity program to provide income at retirement. These contributions then 
accumulate with interest until the employee's retirement. The accumu­
lated contributions are then used to purchase a retirement annuity. It 
is therefore similar to a defined-contribution plan. The CPF provides a 
major source of income during retirement. 

The contributions are directly tied to earnings and the contribution 
rates are reviewed periodically and are generally linked to the country's 
econOlnic performance. In good economic times, the contribution rates 
are higher and vice versa. For our purposes, CPF contribution rates can 
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be viewed as forced savings, thus helping the individual boost his or 
her replacement ratio. For an in-depth discussion of the CPF prograrD 
in Singapore, see Chen and Wong (1998). 

The second unique element that must be considered when planning 
for retirement in Singapore is home ownership. Singapore is believed 
to have one of the highest percentage of home ownership in the world. 
According to the 1998 Singapore Yearbook of Statistics, more than 90 
percent of Singaporeans own a home in Singapore. Most homes in Sin­
gapore are generally referred to as HDB flats; the term HDB refers to 
the Housing Development Board, a government agency that develops 
and manages housing for Singaporeans. Because housing is generally 
considered an essential commodity in Singapore, the premium paid for 
owning one will decrease the amount that can be saved from personal 
income for retirement purposes. This is of major concern because the 
price of a house in Singapore is expensive relative to income. For ex­
ample, a four-room HDB flat approximately costs $140,000, a five-room 
HDB flat can be double that amount, and landed properties can range 
in prices exceeding $1 million.6 

Suppose that at age x, an individual purchases a house and borrows 
an amount of HLx for a period of r - x years at the housing loan rate 
of h. Assuming level annual amortization repayments of Px , then 

P _ HLx 
x - .. 

ar-xlh 
(45) 

For Simplicity, equation (45) assumes the first loan repayment is made 
at the time of the origination of the loan. Each year's salary therefore 
reduces the disposable income by an amount of Px . Furthermore, as­
sume that the rate of contribution to the CPF will be constant each year 
at c and that investments on CPF will earn an effective rate of (. In 
Singapore, CPF members are allowed to repay their housing loans out 
of their accounts. Thus, accumulated future savings, FS~, become 

r-x-l 
FS~ = L s ES (x + t) (1 + or-x-t 

t=O 
r-x-l 

+ L [cES (x + t) - Px ] (1 + (r- x
-

t
. (46) 

t=O 

6 As of October 2000, the average annual income in Singapore was approximately 
$36,000 (Singapore dollars), with US$l = $1.75 (Singapore dollars). 
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Equation (46) can be simplified to: 

r-x-l t 
FS~ = 5 AS (x) L (1 + i)r-x (11+ ~) 

t=O + 1 

r-x-l , r-x (1 + W)t 
+ c AS (x) L (1 + i ) -1-" 

t=O + 1 

r-x-l 
-Px L (1 + {r- x

-
t 

t=O 

= 5 AS (x) G (i,w) + cAS (x) G ((,W) - PXsr_xli' 

= AS (x) [5 G (i, W) + c G ({ , W) ] 
a .' 

( 
.,)r-x r-xl t 

- HLx 1 + 1 .. . 
ar-xlh 

(47) 

Again, similar to Section 2, we suppose that at age x the individual has 
saved a total of PSx . At retirement, the individual can expect to have 
saved a total of 

TSx (r) = PSx (1 + i)r-x + FS~. (48) 

This amount will then be used to purchase a life annuity at retirement 
for which the level annual payments will be as given in equation (7). 
Therefore, the replacement ratio becomes 

PSx (1 + i)r-x 

RRx (r) = AS (x) (1 + w)r x kar 

AS (x) [SG (i, w) + c G ((, W) ] 
+ AS (x) (1 + wf x kar 

HLx (1 + (r- x 
ar_xli' 

AS(x) (1 +wf Xkarar_xlh' 

Using symbols earlier defined, we can express equation (49) as 

(49) 
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Table 1 
Effect of c on Replacement Ratios 

In Singapore, with hx = 10 

Retirement Age 
c 50 55 60 65 70 75 

10% -35.1% -34.9% -34.0% -31.8% -27.0% - 17.5% 
20% -19.2% -12.8% -3.4% 10.7% 32.5% 67.0% 
30% -3.3% 9.4% 27.2% 53.2% 92.1% 151.4% 
40% 12.6% 31.5% 57.9% 95.7% 151.7% 235.8% 
50% 28.4% 53.6% 88.5% 138.3% 211.2% 320.3% 

Table 2 
Effect of hx on Replacement Ratios 

In Singapore, with c = 30% 

Retirement Age 
hx 50 55 60 65 70 75 

0 74.8% 103.5% 143.1% 198.9% 279.6% 398.4% 
5 35.7% 56.5% 84.2% 126.1% 185.9% 274.9% 

10 -3.3% 9.4% 27.2% 53.2% 92.1% 151.4% 

15 -42.4% -37.7% -30.7% -19.6% -1.7% 27.9% 

20 -81.4% -84.8% -88.6% -92.5% -95.5% -95.6% 

(l+jd r - x [ sG(i,W)+CG((,w) 
RRx(r) = k"" cx+ (1 .)r x(1 )r-x ar +)1 + W 

where 

HLx 
hx = AS (x) 

is the housing loan expressed as a multiple of salary at age x. 
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For purposes of illustration, consider the case where we have a Sin­
gapore individual who is currently age 25 and is receiving an annual 
salary of $20,000. Assume he or she has saved $20,000 and that his or 
her salary is expected to increase at the rate of 3 percent per annum. 
Apart from contributions to the CPF, he or she expects to save annu­
ally 10 percent for retirement. Interest rates will be assumed at i = 5 
percent, ( = 4 percent, and h = 5 percent. 

Tables 1 and 2 display the result of varying the CPF contribution 
rates and the ratio of housing loans to salary, respectively, on the value 
of the replacement ratio at different retirement ages. Table 1 shows the 
effect of varying the contribution ratE'S to the CPF, and Table 2 shows the 
effect of varying the housing loan ratio. To further illustrate the results, 
at a CPF contribution rate of say 30 percent, this same individual can 
retire at age 65 with a replacement ratio of 53.2 percent. Similarly, if 
he or she borrows money for housing at the amount five times current 
salary and CPF contribution rate stays at 30 percent, he or she can 
retire at age 65 with replacement ratio of a whopping 126.1 percent. 
The results in Tables 1 and 2 generally demonstrate that to improve 
replacement ratios, one can either: 

• Decide to delay retirement; 

• Increase contribution rates to the CPF scheme; or 

• Control the budget for housing. 

6 Concluding Remarks and Future Research 

This paper proposes a financial measure, the replacement ratio, that 
can be used for individuals in planning for retirement. The replacement 
ratio, which is expressed as the proportion of the retirement income to 
that of the final salary at retirement, is an intuitively appealing finan­
cial construct. The paper does not recommend a suitable level of the 
replacement ratio: it is left to each person to determine the level that 
is appropriate. 

The size of a person's retirement income depends on several factors 
such as wage increases, savings rate, interest rates, and inflation both 
prior to and during retirement. The replacement ratio developed in this 
paper readily allows us to examine the effect of changes of these fac­
tors to the replacement ratio. In Section 3, we examined the sensitivity 
of the replacement ratio with respect to changes in the retirement age 
r, the investment earnings rate i, the rate of wage increases w during 
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employment periods, and the current age x (the age at which the indi­
vidual consciously begins to set aside funds specifically for retirement 
purposes). 

We found that under certain conditions, delaying the retirement age 
and increasing the return on investments have the effect of increasing 
the replacement ratio. On the other hand, delaying the age at which 
savings for retirement commences has the effect of reducing the re­
placement ratio. For wage increases, the replacement ratio will either 
increase or decrease depending upon the relationship of the rate of i 
and w. We caution the reader when interpreting the results when wage 
increases are concerned. Large increases in wages can cause the re­
placement ratio to be smaller-this should not be interpreted to mean 
that a lower replacement ratio leads to a deterioration of retirement 
income. When the base salary is large and yet savings have not been ac­
cumulating, the replacement ratio may be relatively low but the amount 
of retirement income can still be large. 

Our work here is only a beginning to better understanding the var­
ious factors that can affect income at retirement. The discussion has 
been Simplified to facilitate understanding. For example, we have as­
sumed constant interest rates and constant rate of wage increases. Fur­
thermore, we have assumed that interest rates, savings rates, and the 
rates of wage increases are all independent. In reality, this is not true. 
One possible future research is to examine empirical data that may sup­
port evidence of dependence and that may account for the time series 
nature of these variables. Some recent papers by Knox (1993) and Booth 
and Yakoubov (2000) that suggest the use of a stochastic approach may 
be helpful in these instances. It will be interesting to explore the link 
of these stochastic approaches in further developing the replacement 
ratio model recommended in this paper. Another possible future re­
search area is the impact of mortality improvement, a phenomenon 
that is observed worldwide. 
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1 Introduction 

1 .1 Background 

The theory of life contingencies comes from deterministic begin­
nings. Random fluctuations in risk factors such as mortality, morbidity, 
interest, and expenses historically have been ignored. Instead, actuar­
ies traditionally have attempted to allow for random fluctuations by 
using conservative assumptions for each factor. For example, in the 
calculation of the present values of the liabilities for a policy, actuaries 
can assume that mortality follows a known mortality table or that the 
variability due to mortality (Le., variability in future lifetimes) can be ig­
nored because of the presence of a large number of identical liabilities 
in respect to different lives. Similarly, the interest rate may be assumed 
to be constant, or an implicit allowance may be made by adopting a con­
servative estimate of future interest rates (Bowers et al., 1997, Chapter 
16, or Gerber 1995, Chapter 5). 

A next step in the development of life contingencies was the semi­
stochastic approach, which was to consider the time until decrement 
(death, disability, and so on) as a random variable in the calculation of 
the actuarial present value of actuarial functions, while the interest rate 
was assumed to be constant. 

Actuaries were criticized for failing to account for the variability 
in interest rates in their financial calculations. Only since 1970 has 
there been interest in actuarial models that consider both the time until 
decrement and the investment rate of return as random variables. 

Pollard (1971) and Boyle (1976) consider interest rate fluctuations 
by treating the force of interest as a random variable. Boyle (1976) 
examines the case in which the force of interest in any year is a normally 
distributed random variable that is independent of the force of interest 
in any other year. This simple assumption is explored further in Section 
2. 

Pollard (1971), on the other hand, models the force of interest using 
a stationary autoregressive process of order two. Panjer and Bellhouse 
(1980) and Bellhouse and Panjer (1981) develop a general theory for 
unconditional and conditional autoregressive models of order one and 
two of the force of interest. 

Giaccotto (1986) has developed an algorithm for evaluating present 
value functions when interest rates are assumed to follow an ARIMA 
process. Also Wilkie (1976), Waters (1978), Westcott (1981), de jong 
(1984), Dhaene (1989), and Frees (1990) consider stochastic interest 
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models in the calculation of the standard actuarial functions of life 
insurance mathematics. 

There remains a fundamental question: Is the stochastic nature used 
for the calculation of interest rates correct? Many actuaries remain 
skeptical about stochastic interest rate models because they believe that 
the results provided by such models are due to the peculiarities of the 
specific model rather than to any underlying reality. I 

In this paper we do not consider the consequences of the choice of 
an incorrect interest model. 

1.2 Objectives 

In this paper, we concentrate on certain time series models of the 
force of interest called moving average processes. 

Let ik represent the random effective rate of interest from time k 
to time k + 1, for k = ... , -1,0,1, .... Without loss of generality, this 
period can be considered to be one year. The force of interest in the 
kth period, C!k is defined as 

The sequence of C!kS is assumed to be a moving average process of 
order q (MA(q), q = 0,1,2, ... ) in the sense of Box and Jenkins (1976), 
i.e., for k = ... , -1,0,1, ... the C!kS are defined as 

C!k = {) + aoEk + alEk-1 + a2Ek-2 + ... aqEk-q. (1) 

Here {) is the mean about which the C!kS fluctuate, and the EkS are inde­
pendent and identically distributed random variables with mean zero 
and variance (J'2. The coefficients ao, aI, ... , a q are usually constrained 
so that the roots of the characteristic polynomial equation in x 

q 

ao - L aixi = ° 
i=l 

1 The question of the significance of model sensitivity is the subject of current re­
search. For example, Wright (1997) and Chadburn and Wright (2000) investigate the 
sensitivity of outcomes in pension funding models and life insurance asset-liability 
models, respectively, to the choice of stochastic asset model. 
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lie outside the unit circle. These constraints are required so that the 
model is invertible, i.e., that 

00 

6.k - 0 = L bj(6.k-j - 0) (2) 
j=O 

for some sequence of constants bj, j = 0,1, .... The invertibility re­
quirement ensures that the right side of equation (2) is convergent (Box 
and Jenkins, 1976). 

Two MA(q) models are considered: 

• q = 0, in which case the 6.kS are independent, identically dis­
tributed random variables; and 

• q = 1,2, ... , in which case the 6.kS are dependent random vari­
ables. 

These cases are considered in Sections 2 and 3, respectively. 
For each MA(q) model, we derive the moments of the k-period dis­

count factor (measured from time 0), Vb where 

k 
Vk = n 1 = e-I~=I~S 

5=1 (1 + ik) 
(3) 

for k = 1,2, ... with Vo = 1. In addition the moments of certain insur­
ance and annuity functions are derived. 

Throughout this paper we use the notation 

M(T) = E[e ET
], 

which is the moment-generating function of E. We assume M(T) exists 
for some T > 0. 

Finally, we give an expression for the coefficients of skewness and 
kurtosis for a random variable X with mean Ox and variance a} 

. . E[(X - Ox)3] 
CoeffiClent of Skewness of X = 3 

ax 

C ffi · fK . fX E[(X-OX)4] oe Clent 0 urtoslS 0 = 4 
ax 

The coefficient of skewness measures the lack of symmetry in a prob­
ability distribution. The coefficient of kurtosis measures the extent to 
which the peak of a unimodal probability distribution departs from the 
shape of a normal distribution by being flatter or more pointed. 
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2 The Independent Interest Rate Model MA(O) 

Let us consider the case where the EkS are assumed to be a sequence 
of LLd. normal random variables with mean 0 and variance (52. 2 This 
assumption also provides a benchmark assumption against which more 
complex models can be compared. 

2.1 Some Basic Results 

As EkS are LLd. normal random variables with mean 0 and variance 
(52, their moment generating function is 

1 2 2 
M(T) = ezT (]" . 

The moment-generating function of 6.k is thus 

The moments of Vk can easily be found as: 

where 

E[vr] = E[e-n2:Y~l ilj] 

= (Mil (_n))k 

= e-nk8 (M(-n))k 

E[vr] = e- kdn 

1 
d n = no - Z-n2(52 for n = 1,2, .... 

Similarly, for r, 5, m, n = 1,2, ... and r ~ 5 + 1, we find that 

(4) 

(5) 

(6) 

(7) 

2The LLd. assumption means that In(vk) is a random walk, which is a desirable 
feature from a financial economics viewpoint. The random walk is a special case of 
a martingale, and its structure does not permit riskless arbitrage (Baxter and Rennie 
(1996)). No riskless arbitrage is a desirable quality in modern finance theory. 
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E[v;tvf] = E[e-mL:j~1 L'..j+-nL:k~1 L'..k] 

= E[eL:j~I-(m+n)L'..j+L:j~S+1 -mL'..j] 

= (ML'.. (- (m + n»))s (ML'.. (-m)) (r-s) 

= e-(m+n)sc5 (M(-(m + n»))s e-m (r-s)c5 (M(_m»(r-s) 

= e-(mr+ns)c5+~(s(m+n)2+(r-s)m2)a-2 

= esmna-2 e-(rdm+sdn ). (8) 

Next, we let iinl denote the stochastic equivalent for the traditional 
immediate annuity-certain anl, i.e., 

It follows that 

where 

n 
E[iinl] = L ek<pk 

k=l 

c5 I 2 
e = e- and <p = eza- . 

(9) 

Waters (1978) provides simple expressions for some of the moments 
of iinl that are useful for calculating the high order moments of certain 
actuarial functions. They will be used later in some numerical examples. 
The following results are obtained by Waters (1978): 

n n k-l 

E[ii~] = L e 2k <p4k + 2 L L e(k+ j) <p(k+3j ) (10) 
k=l k=2j=1 
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n 

E[a~] = L e 3k cp9k 

k=l 

n k-l 
+ 3 L L [e(2k+j)cp(4k+S j ) + e(k+2j )cp(k+8j )] 

k=2j=1 

n k-lj-l 

+ 6 L L L e(i+ j+k) cp(Si+3 j +k) 

k=3 j=2 i= 1 

n 
E[a~] = L e 4k cp16k 

k=l 

n k-l 
+ 4 L L (8(k+3 j )cp(k+1S j ) + e(3k+ j )cp(9k+7j ») 

k=2 j=l 

n k-l 
+ 6 L L e(2k+2 j )cp(4k+12j ) 

k=2 j=l 

n k-lj-l 
+ 12 L L L [e(i+ j +2k)cp(7i+S j +4k) 

k=3 j=2 i=l 

+ e(i+2j+k) cp(7i+8j +k) + e(2i+ j+k) cp (12i+3j+k)] 

n k-l j-l i-l 
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(11) 

+ 24 L L L L e(h+i+ j +k)cp(7h+Si+3j +k) (12) 
k=4j=3 i=2 h=l 

and 

ifm ;:::n 

(13) 

ifm < n. 

2.2 Moments of Life Insurance Functions 

This section is based on the approach of Frees (1990). We assume 
that there is only one decrement (mortality) and that mortality is inde­
pendent of the sequence !::,.k. Let T == T(x) denote the random future 
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time until death of a person age x and K == K(x) denote the largest in­
teger less than or equal to T, Le., K ~ T < K + 1. The standard actuarial 
notation is used where possible. 

Two types of general contracts are considered: insurance and annu­
ity contracts. For k = 0,1, ... , a general insurance contract is consid­
ered with death benefit bk+l ;:::: ° is taken to be payable at the end of 
the policy year of death given that death occurs during the k + 1 policy 
year, Le., in year (k, k + 1). The random present value of this insurance 
benefit is 

(14) 

For k = 0, 1, ... , the general annuity contract pays Ck (- 00 < Ck < 00) 
at the start of the policy year, Le., at time k, and payments continue for 
life. The random present value of the annuity benefits is then: 

The nth moment of Z is easily derived as follows: 

E[Zn] = E[E[v~+lb~+lIK]] 

= E[e-(K+l)dn b~+d 

00 

= I e-(k+l)dnbr+lk Ilqx. 
k=O 

(15) 

(16) 

This equation, however, is the net single premium (or actuarial present 
value) for a general whole life policy evaluated using a constant interest 
i~ given by 

(17) 

This interpretation only makes sense, of course, ifdn ;:::: 0. 
For the case of general annuity contracts, the moments are more 

difficult to determine. The first two moments are: 
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and 

K 

E[Y] = E[E[I vscslK]] 

K 

s=o 
K 

= E[ I cse-Sd1 ] 
s=o 

00 k 

= I I cse-Sd1 k Ilqx 
k=Os=O 

00 

= I cse-Sd1 sPx 
s=o 

E[y2] = E[E[(I vscs)2IK]] 
s=o 
K K r-l 

= E[E[ I vic} + 2 I I VsCsVrCr IK]] 
s=o r=ls=O 

K K r-l 
= E[I e-d2S c}] + 2E[ I I e-dlSe-(d2-dJlrCrCs] 

s=o r=ls=O 
00 k 

= I k Ilqx I e-dzsc} 
k=O s=o 

00 K r-l 
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(18) 

+ 2 I k Ilqx I I e-d1Se-(dz-dJlr CrCs· (19) 
k=l r=ls=O 

In addition, 

K 

E[ZY] = E[E[bK+l I vsCsIK]] 
s=O 

K 

= E[bK+l I e-S(d2- dJl e -(K+l)dl cs] 

s=o 
00 k 

= I k Ilqxh+l I e-S(d2-dJle-(k+l)dlcs. (20) 
k=O s=o 
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For basic insurance and annuity products, the expressions for E[Z] 
and E[Y] can be simplified. For example, let Z be the present value of 
the benefit for a standard whole life insurance policy with death benefit 
of 1 issued to a life age x. 

00 

E[Z] = I k Ilqxe-(k+l)d1 = A;, 
k=O 

which is the net single premium for a traditional whole life policy eval­
uated using a constant interest i* = ed1 - 1. This interpretation only 
makes sense, of course, if dl ;::: O. A similar result applies to term in­
surance and endowment insurance poliCies with face value 1, i.e., use a 
constant interest i* to determine their net single premiums. This new 
force of interest dl (defined by equation (7)) consists of the mean force 
of interest (j less an allowance for the inherent volatility (0- 2 /2). 

Let Y be the present value of a standard annuity due paying 1 per 
year for life issued to a life age x. Then, 

00 

E[y] = I e-5d1 sPx = a; 
5=0 

which is the actuarial present value of a traditional whole life annuity 
evaluated using a constant interest i*, i.e., constant force of interest 
dl. A similar result applies to temporary annuities, i.e., use a constant 
interest i*. 

2.3 Examples 

We will now derive the net single premium (mean), variance, skew­
ness, and kurtosis of five baSic insurance products: endowment, term 
(temporary) insurance, whole life, temporary annuity, and whole life 
annuity. The calculations are based on the assumption that all lives are 
subject to the mortality experience of the British A 1967-70 (Ultimate) 
mortality table, and that (j = 0.07. 

Let 
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and 

VK+l 

o 

K=O,I •...• n-l 
K = n.n+ 1 •... ; 

K = 0.1 •... • n-l 
K = n.n+ 1 •... ; 

K=O.I •...• n-l 

K =n.n+ 1 •... ; 

n-Year Endowment 

n-Year Term Insurance 

Whole Life 

n-Year Temporary Annuity 

Whole Life Annuity. 

Equation (16) is used to determine the moments of ZI. Z2. and Z3. The 
results of equations (9) to (12) combined with the methodology under­
lying equations (18) and (19) are used to determine the moments of Yl 
and Y2. Note that 

Tables 1 to 5 show the mean. standard deviation. skewness. and 
kurtosis for several values of (T. x. and n (as appropriate). and 8 for 
the respective cases of a standard endowment (Zd. term (Z2). and 
whole life (Z3) insurance. and a temporary (Yd and whole life (Y2) 
annuity. Notice that in each example. the standard deviation of the 
random variable increases as (T increases. but the amount of increase 
is not significant. 

The results in Tables 1 to 5 show that the greater part of the differ­
ences between these means is due to fluctuations in the age at death 
as opposed to fluctuations in the interest rates. This situation changes 
if we consider a large number of independent lives - then the fluctua­
tions in interest rates would become more important; see. for example. 
Marceau and Gaillardetz (1999). 
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Table 1 
Endowment Insurance for 20,30, and 40 Years 

Using the I.I.D. Model with {j = 7% 
(Y = 0.00 (Y = 0.03 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.2507 0.1310 0.0759 0.2530 0.1326 0.0771 
30 0.2522 0.1354 0.0846 0.2544 0.1371 0.0858 
35 0.2560 0.1444 0.0999 0.2582 0.1461 0.1012 
40 0.2632 0.1599 0.1240 0.2654 0.1617 0.1255 
45 0.2757 0.1848 0.1591 0.2779 0.1866 0.1607 

Standard Deviation 
25 0.0401 0.0550 0.0652 0.0524 0.0590 0.0669 
30 0.0438 0.0625 0.0753 0.0553 0.0663 0.0771 
35 0.0547 0.0787 0.0936 0.0644 0.0821 0.0955 
40 0.0721 0.1017 0.1173 0.0798 0.1047 0.1194 
45 0.0946 0.1289 0.1433 0.1008 0.1317 0.1455 

Coefficient of Skewness 
25 12.17 9.48 7.74 5.61 7.82 7.33 
30 10.28 7.41 5.82 5.26 6.37 5.58 
35 7.77 5.46 4.32 4.89 4.96 4.19 
40 5.70 4.03 3.26 4.29 3.80 3.20 
45 4.17 2.98 2.50 3.51 2.87 2.46 

Coefficient of Kurtosis 
25 165.99 106.91 76.52 59.54 82.93 71.18 
30 122.68 68.83 46.31 50.67 56.49 43.72 
35 71.70 38.79 26.67 39.35 34.28 25.64 
40 39.42 21.94 16.08 27.59 20.42 15.65 
45 21.87 12.83 10.21 17.85 12.31 10.01 
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Table 1 (contd.) 
Endowment Insurance for 20,30, and 40 Years 

Using the I.I.D. Model with 8 = 7% 
u = 0.05 u = 0.07 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.2570 0.1357 0.0793 0.2631 0.1404 0.0826 
30 0.2584 0.1402 0.0881 0.2646 0.1449 0.0916 
35 0.2622 0.1492 0.1036 0.2683 0.1540 0.1073 
40 0.2694 0.1649 0.1281 0.2756 0.1698 0.1321 
45 0.2819 0.1899 0.1636 0.2880 0.1949 0.1680 

Standard Deviation 
25 0.0700 0.0663 0.0702 0.0925 0.0774 0.0756 
30 0.0724 0.0732 0.0806 0.0943 0.0839 0.0863 
35 0.0797 0.0882 0.0991 0.1002 0.0980 0.1051 
40 0.0927 0.1102 0.1233 0.1111 0.1191 0.1296 
45 0.1115 0.1369 0.1498 0.1275 0.1453 0.1566 

Coefficient of Skewness 
25 2.70 5.82 6.67 1.74 4.14 5.80 
30 2.69 5.03 5.19 1.77 3.82 4.67 
35 2.86 4.24 3.99 1.92 3.49 3.73 
40 2.94 3.44 3.09 2.08 3.03 2.95 
45 2.73 2.69 2.40 2.10 2.48 2.32 

Coefficient of Kurtosis 
25 21.16 55.42 62.40 10.08 33.57 51.08 
30 19.86 41.05 39.45 9.94 27.42 33.92 
35 19.10 27.88 23.94 10.41 21.24 21.72 
40 16.92 18.06 14.95 10.50 15.31 14.06 
45 13.17 11.46 9.69 9.43 10.42 9.30 
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Table 2 
Term (Temporary) Insurance for 20, 30, and 40 Years 

Using the I.I.D. Model with f> = 7% 
if = 0.00 if = 0.03 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.0088 0.0158 0.0257 0.0088 0.0159 0.0259 
30 0.0131 0.0253 0.0405 0.0132 0.0255 0.0410 
35 0.0225 0.0425 0.0645 0.0226 0.0428 0.0651 
40 0.0395 0.0705 0.0991 0.0397 0.0711 0.1001 
45 0.0675 0.1125 0.1448 0.0679 0.1133 0.1461 

Standard Deviation 

25 0.0688 0.0763 0.0794 0.0693 0.0771 0.0804 
30 0.0800 0.0901 0.0922 0.0806 0.0912 0.0936 
35 0.1022 0.1129 0.1114 0.1030 0.1143 0.1131 
40 0.1332 0.1414 0.1334 0.1344 0.1432 0.1354 
45 0.1705 0.1711 0.1549 0.1720 0.1732 0.1572 

Coefficient of Skewness 

25 8.95 6.76 5.72 8.98 6.75 5.68 
30 6.97 4.92 4.16 7.00 4.92 4.13 
35 5.10 3.56 3.15 5.12 3.56 3.12 
40 3.68 2.60 2.50 3.70 2.61 2.48 
45 2.63 1.90 2.06 2.65 1.91 2.04 

Coefficient of Kurtosis 
25 91.00 58.89 47.46 91.45 58.58 46.68 
30 56.77 33.44 27.65 57.14 33.29 27.18 
35 31.21 18.68 17.00 31.47 18.62 16.74 
40 17.07 11.08 11.54 17.23 11.05 11.37 
45 9.52 7.05 8.39 9.61 7.02 8.27 
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Table 2 (contd.) 
Term (Temporary) Insurance for 20, 30, and 40 Years 

Using the 1.1.0. Model with 0 = 7% 
if = 0.05 if = 0.07 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.0089 0.0161 0.0264 0.0090 0.0165 0.0272 
30 0.0133 0.0258 0.0418 0.0135 0.0264 0.0430 
35 0.0228 0.0434 0.0664 0.0231 0.0444 0.0683 
40 0.0400 0.0721 0.1019 0.0406 0.0736 0.1047 
45 0.0685 0.1148 0.1485 0.0694 0.1171 0.1522 

Standard Deviation 
25 0.0700 0.0663 0.0702 0.0715 0.0807 0.0853 
30 0.0724 0.0732 0.0806 0.0836 0.0962 0.1001 
35 0.0797 0.0882 0.0991 0.1071 0.1209 0.1213 
40 0.0927 0.1102 0.1233 0.1397 0.1514 0.1451 
45 0.1115 0.1369 0.1498 0.1787 0.1831 0.1682 

Coefficient of Skewness 
25 9.03 6.73 5.60 9.12 6.74 5.51 
30 7.05 4.93 4.09 7.15 4.96 4.04 
35 5.18 3.58 3.09 5.26 3.61 3.07 
40 3.75 2.62 2.45 3.82 2.65 2.43 
45 2.68 1.91 2.01 2.74 1.94 1.98 

Coefficient of Kurtosis 
25 92.41 58.15 45.39 94.24 57.83 43.75 
30 57.93 33.12 26.44 59.46 33.14 25.58 
35 32.01 18.59 16.33 33.04 18.71 15.88 
40 17.55 11.03 11.10 18.16 11.11 10.81 
45 9.80 7.00 8.08 10.15 7.03 7.87 
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Table 3 
Whole Life Insurance 

Using the I.I.D. Model with 8 = 7% 
Age (]" = 0.0 (]" = 0.03 (]" = 0.05 (]" = 0.07 

Net Single Premium 
25 0.0469 0.0477 0.0491 0.0513 
30 0.0630 0.0639 0.0656 0.0683 
35 0.0856 0.0867 0.0888 0.0920 
40 0.ll61 0.ll74 0.ll98 0.1236 
45 0.1556 0.1572 0.1600 0.1643 

Standard Deviation 
25 0.0739 0.0750 0.0772 0.0807 
30 0.0837 0.0852 0.0879 0.0924 
35 0.1006 0.1023 0.1056 0.ll08 
40 0.1221 0.1241 0.1278 0.1339 
45 0.1459 0.1481 0.1523 0.1590 

Coefficient of Skewness 
25 6.24 6.13 5.94 5.66 
30 4.81 4.73 4.58 4.39 
35 3.77 3.71 3.61 3.49 
40 3.01 2.97 2.90 2.81 
45 2.40 2.37 2.32 2.25 

Coefficient of Kurtosis 
25 55.44 53.89 51.18 47.35 
30 34.98 33.98 32.31 30.07 
35 22.08 21.54 20.64 19.49 
40 14.50 14.20 13.71 13.10 
45 9.77 9.59 9.32 9.00 
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Table 4 
Temporary Annuity for 20, 30, and 40 Years 

Using the I.I.D. Model with 6 = 7% 
<Y = 0.0 <Y = 0.03 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 10.324 11.969 12.718 10.362 12.026 12.786 
30 10.299 11.898 12.583 10.337 11.954 12.650 
35 10.237 11.756 12.348 10.275 11.811 12.412 
40 10.119 11.512 11.980 10.156 11.565 12.039 
45 9.917 11.127 11.450 9.953 11.176 11.504 

Standard Deviation 
25 0.6188 0.8311 0.9759 0.9411 1.2325 1.4091 
30 0.6796 0.9482 1.1273 0.9812 1.3111 1.5105 
35 0.8505 1.1929 1.3982 1.1051 1.4929 1.7119 
40 1.1188 1.5366 1.7473 1.3206 1.7731 1.9941 
45 1.4637 1.9407 2.1276 1.6203 2.1244 2.3189 

Coefficient of Skewness 
25 -11.84 -9.27 -7.60 -3.21 -2.66 -2.33 
30 -9.91 -7.20 -5.71 -3.14 -2.54 -2.18 
35 -7.46 -5.31 -4.24 -3.26 -2.55 -2.13 
40 -5.47 -3.92 -3.22 -3.21 -2.42 -2.02 
45 -4.00 -2.90 -2.48 -2.86 -2.10 -1.79 

Coefficient of Kurtosis 
25 157.96 102.91 74.47 31.19 22.93 18.77 
30 114.76 65.62 44.96 27.92 19.40 15.36 
35 66.63 36.98 26.01 24.55 16.17 12.65 
40 36.66 21.01 15.80 19.68 12.61 10.08 
45 20.41 12.39 10.11 14.12 9.15 7.71 
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Table 4 (contd.) 
Temporary Annuity for 20, 30, and 40 Years 

Using the 1.1.0. Model with 8 = 7% 
(]" = 0.05 (]" = 0.07 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 10.431 12.128 12.910 10.535 12.283 13.099 
30 10.405 12.054 12.770 10.509 12.208 12.955 
35 10.342 11.909 12.527 10.445 12.059 12.703 
40 10.222 11.659 12.147 10.323 11.803 12.312 
45 10.017 11.264 11.602 10.114 11.399 11.751 

Standard Deviation 

25 1.3463 1.7504 1.9818 1.8128 2.3592 2.6667 
30 1.3735 1.8021 2.0444 1.8316 2.3921 2.6995 
35 1.4625 1.9314 2.1818 1.8966 2.4815 2.7839 
40 1.6283 2.1450 2.3885 2.0229 2.6369 2.9188 
45 1.8749 2.4290 2.6389 2.2196 2.8520 3.0880 

Coefficient of Skewness 

25 -0.81 -0.60 -0.48 0.06 0.21 0.30 
30 -0.86 -0.66 -0.53 0.03 0.16 0.25 
35 -1.15 -0.89 -0.72 -0.16 0.00 0.10 
40 -1.50 -1.12 -0.91 -0.46 -0.23 -0.10 
45 -1.67 -1.20 -0.99 -0.74 -0.43 -0.28 

Coefficient of Kurtosis 
25 9.59 7.83 7.02 5.32 4.94 4.82 
30 9.30 7.46 6.60 5.27 4.86 4.72 
35 9.72 7.46 6.48 5.55 4.94 4.73 
40 9.83 7.18 6.21 5.88 4.98 4.70 
45 8.80 6.30 5.58 5.84 4.77 4.52 
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Table 5 
Whole life Annuity 

Using the 1.1.0. Model with (j = 7% 
Age (J" = 0.0 (J" = 0.03 (J" = 0.05 (J" = 0.07 

Net Single Premium 
25 13.097 13.174 13.312 13.525 
30 12.860 12.933 13.064 13.265 
35 12.526 12.593 12.715 12.902 
40 12.074 12.136 12.247 12.417 
45 11.489 11.544 11.643 11.794 

Standard Deviation 
25 1.093 1.536 2.135 2.863 
30 1.239 1.625 2.175 2.860 
35 1.488 1.804 2.283 2.902 
40 1.806 2.055 2.454 2.994 
45 2.157 2.350 2.672 3.125 

Coefficient of Skewness 
25 -6.242 -2.033 -0.380 0.366 
30 -4.809 -1.914 -0.437 0.313 
35 -3.769 -1.927 -0.626 0.162 
40 -3.009 -1.889 -0.833 -0.047 
45 -2.399 -1.732 -0.951 -0.244 

Coefficient of Kurtosis 
25 55.440 15.873 6.496 4.793 
30 34.979 13.205 6.166 4.696 
35 22.083 11.305 6.125 4.689 
40 14.505 9.441 5.981 4.670 
45 9.765 7.493 5.485 4.505 
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Tables 1 to 3 show that the values of skewness and kurtosis are 
both large, reflecting the skew and sharply peaked shape of the density 
functions. They also show that an increase in ()" is associated with 
decreases in the absolute values of the skewness and kurtosis because 
when ()" increases, the density function will tend to be spread more 
evenly over its range. Tables 4 and 5 show similar features, although 
the skewness is negative for many cases and becomes more positive as 
()" is increased. 

3 The Moving Average Process MA(q) 

As noted by Frees (1990), the assumption that the sequence 6.k con­
sists of LLd. random variables is a useful advance on the traditional 
deterministic assumption that allows the volatility of interest rates to 
be incorporated in the model. 

In practice, however, the LLd (normal or not) assumption will rarely 
be satisfied. Investment returns often feature underlying patterns, in­
cluding characteristics such as dependency, trend, seasonality, and cyclic 
fluctuations. It is more reasonable to assume that successive interest 
rates are stochastic and dependent. Thus we assume that the force of 
interest follows a moving average model of order q (MA(q» and gen­
eralize some of the ideas of Frees (1990), who used the Simpler MA(l) 
model. 

The MA(q) model accounts for some correlation between the rates 
and is tractable (in the mathematical sense) in terms of the calcula­
tion of insurance functions. Moving average time series models are 
more tractable than autoregressive time series models-as exemplified 
by comparison of our closed-form results with those of Panjer and 
Bellhouse (1980). Further, as noted by Mills (1999), the autocorrela­
tion functions and partial autocorrelation functions of these two struc­
turally different time-series models often appear similar. 

Although there are many examples in the literature of successful 
empirical studies using AR (p) models, there are fewer case studies 
using MA(q) models. Examples include: 

• MA(2) model fitted to the differences in the U.K. de Zoete Eq­
uity Index from 1919 to 1978 (Maturity Guarantees Working Party, 
1980) 

• MA(l) model fitted to Salomon Brothers u.S. Bondlndex from 
1926 to 1985 (Frees, 1990) 
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• MA(l) model fitted to nominal returns on the U.K. Financial Times 
- Actuaries All Share Index from 1965 to 1995 (Mills, 1999). 

The MA(q) model also has been applied to pension funding problems 
by Haberman and Wong (1997) and Bedard and Dufresne (1998). 

3.1 Basic Results 

We will now derive expressions for E[ Vk] and E[ vptv'J"] for an MA(q) 
process. 

Proposition 3. Suppose t:.k follows a MA(q) process, i.e., 

for q = 1,2, ... with ao = 1. It follows that 

and 

k k 

I t:.r = k6 + I (){h (k)Eh 
r=l h=l-q 

k 

E[Vk] = e-ko n M(-(){h(k» 
h=l-q 

for k = 1,2, ... , where M(T) = E [e TEk ], and for (i) q :::: k, 

and, (ii) q < k, 

for h = 1 - q, 2 - q, ... , k - q - 1 

for h = k - q, k - q + 1, ... ,0 

forj=I,2, ... ,k 
for h:::: k + 1 

for h = 1 - q, 2 - q, ... ,0 

forh= 1,2, ... ,k-q-l 

for h = k - q, k - q + 1, ... , k 
for h:::: k + 1. 

(21) 

(22) 

(23) 

(24) 
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q 

Llr =6+ LajEr-j forr= ... ,-l,O,l, ... 
j=O 

it follows that 

k k q 

L Llr = k6 + L L ajEr-j. 
r=l r=lj=O 

Substituting h = r - j yields 

k q h=k-j 

L Llr = k6 + L L ajEh. 
r=l j=O h=l- j 

We change the order of summation and write 

k k 

L Llr = k6 + L ()(h(k)Eh 
r=l h=l-q 

where the ()(h (k)s are constants to be determined. 
When changing the order of summation, there are then two cases to 

consider (i) q ~ k and (ii) q :::; k - 1. 

Case 1: q ~ k. 
The second term of equation (21) corresponds to summing 
over the area represented by the parallelogram ACFE in Figure 
1. There are three distinct regions: the triangles ACB and DFE 
and the parallelogram BCDE. Changing the order of summa­
tion corresponds to changing from summing over horizontal 
strips to summing over vertical strips. 
It is then straightforward to show that the form of ()(h (k) is 
given by equation (23). 

Case 2: q:::; k - 1. 

The second term of equation (21) now corresponds to sum­
ming over the area represented by the parallelogram ADFB in 
Figure 2. The distinct regions are the triangles ACB and DFE 
and the rectangle BCDE. It is theh straightforward to show 
that the form of ()(h (k) is given by equation (24). The propo­
sition is thus proved. 
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We can easily use Proposition 1 to prove the following: 

t 

E[vr]=e-nkO n M(-nOl.h(t)) fort,n=I,2,... (25) 
h=l-q 

and, for s, t, m, n = 1,2, ... 

Max(s,t) 

= e-(ms+nt)o n M (-(mOl.h(s) + nOl.h(t))) for sf=. k. 
h=l-q 

Under the simplifying assumption that E ~ N(O, (]"2), 

and equation (25) yields 

k 
E[Vr]=e-nko n e~U2(nlXh(k))2 

h=l-q 

= e-nko+~n2u2 Itl_Q(lXh(k))2. 

(26) 

(27) 

It is straightforward to show that the particular case q = 1 leads to the 
results obtained by Frees (1990). 

Recall equations (6) and (7), which give the corresponding result for 
the LLd. case: 

It is not clear which of these two expected values (in equations (6) and 
(27)) is the larger and, hence, which would lead to larger single premi­
ums or reserves. The answer depends on whether or not the term 

k 

L (OI.h(k))2 ~ k. 
h=l-q 
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3.2 Life Insurance Actuarial Functions 

If we consider the general insurance and annuity contracts given in 
equations (14) and (15), respectively, we can easily calculate their first 
two moments. 

For convenience, we will define the quantities 

and 

k 

Dk(n) = n M(-nOl.h(k» 
h=l-q 

Max(s,t) 

(28) 

Gs,dm,n)= n M(-(mOl.h(s)+nOl.h(t»). (29) 
h=l-q 

For Z, the nth moment is given by 

E[zn] = E[E[v~+lb~+lIK]] 

= E[e-no(K+l) DK+l (n)b~+d 
00 

= L e-n(k+l)o Dk+l (n)br+lk ilqx. 
k=O 

(30) 

For the case of general annuity contracts, the moments are more 
difficult to determine. The first two moments are: 

and 

K 

E[Y] = E[E[L vscsIK]] 
s=o 

K 

= E[L cse-SOD s(I)] 
s=O 

00 k 

= L L cse-soDs(lh ilqx 
k=Os=O 

00 

= L cse-SODs(l)spx 
s=o 

(31) 
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K 

E[y2] = E[E[(I VsCs )2IKJ] 
s=O 
K K r-l 

= E[E[ I vic; + 2 I I VsCsvrcrIK]] 
s=O r=l s=O 

K K r-l 

= E[ I e- 2SODs (2)c;] + 2E[ I I e-2(r+s)oGr ,s(l, l)cscr ] 
s=o r=l s=o 

00 k 

= I k Ilqx I e- 2SODs (2)c; 
k=O s=o 

00 k r-l 

+ 2 I k Ilqx I I e-2(r+S)OGr,s(l, l)crcs. (32) 
k=l r=ls=O 

3.3 Examples 

Tables 6 to 8 present the calculated values for the moments in the 
cases of an endowment, temporary insurance, and whole life insurances 
in the MA(l) case (with al = 0.5) with /5 = 0.07 for different choices of 
x, n (where appropriate) and (T. The tables show that an MA(l) model 
with E~N(O, (T2) yields a higher standard deviation for Z than an LLd. 
model with 6..k~N(/5, (T2). This is because 6..k has a higher variance. 
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Table 6 
Endowment Insurance for 20,30, and 40 Years 

Using An MA(l) Model with al = 0.5 and t5 = 7% 
(T = 0.00 (T = 0.03 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.0088 0.0158 0.0257 0.0089 0.0160 0.0260 
30 0.0131 0.0253 0.0405 0.0132 0.0255 0.0411 
35 0.0225 0.0425 0.0645 0.0226 0.0429 0.0653 
40 0.0395 0.0705 0.0991 0.0397 0.0712 0.1004 
45 0.0675 0.1125 0.1448 0.0680 0.1135 0.1465 

Standard Deviation 
25 0.0688 0.0763 0.0794 0.0694 0.0773 0.0807 
30 0.0800 0.0901 0.0922 0.0808 0.0914 0.0939 

35 0.1022 0.1129 0.1114 0.1032 0.1147 0.1136 
40 0.1332 0.1414 0.1334 0.1347 0.1436 0.1360 
45 0.1705 0.1711 0.1549 0.1723 0.1737 0.1578 

Coefficient of Skewness 
25 8.95 6.76 5.72 8.99 6.74 5.67 
30 6.97 4.92 4.16 7.01 4.92 4.13 
35 5.10 3.56 3.15 5.13 3.57 3.12 
40 3.68 2.60 2.50 3.71 2.61 2.48 
45 2.63 1.90 2.06 2.65 1.91 2.04 

Coefficient of Kurtosis 
25 91.00 58.89 47.46 91.58 58.51 46.49 
30 56.77 33.44 27.65 57.24 33.26 27.07 
35 31.21 18.68 17.00 31.54 18.61 16.68 
40 17.07 11.08 11.54 17.27 11.04 11.33 
45 9.52 7.05 8.39 9.64 7.01 8.24 
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Table 6 (contd.) 
Endowment Insurance for 20,30, and 40 Years 

Using An MA(l) Model with al = 0.5 and (5 = 7% 
(T = 0.05 (T = 0.07 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.0089 0.0162 0.0266 0.0091 0.0166 0.0276 
30 0.0133 0.0260 0.0421 0.0136 0.0267 0.0437 
35 0.0229 0.0437 0.0669 0.0233 0.0448 0.0693 
40 0.0402 0.0724 0.1026 0.0408 0.0743 0.1061 
45 0.0687 0.1154 0.1495 0.0699 0.1183 0.1542 

Standard Deviation 

25 0.0705 0.0790 0.0831 0.0722 0.0819 0.0870 
30 0.0823 0.0939 0.097l 0.0846 0.0978 0.1023 
35 0.1052 0.1179 0.1176 0.1083 0.1230 0.1241 
40 0.1373 0.1476 0.1407 0.1414 0.1541 0.1484 
45 0.1757 0.1786 0.1632 0.1809 0.1863 0.1719 

Coefficient of Skewness 
25 9.05 6.73 5.58 9.18 6.75 5.48 
30 7.08 4.93 4.07 7.21 4.98 4.03 
35 5.20 3.58 3.08 5.31 3.64 3.06 
40 3.76 2.63 2.44 3.86 2.67 2.42 
45 2.69 1.92 2.00 2.77 1.96 1.98 

Coefficient of Kurtosis 
25 92.83 58.02 44.93 95.40 57.86 43.07 
30 58.28 33.09 26.18 60.42 33.30 25.27 
35 32.25 18.60 16.19 33.68 18.87 15.74 
40 17.69 11.04 11.01 18.53 11.22 10.72 
45 9.88 7.00 8.01 10.37 7.09 7.81 
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Table 7 
Term (Temporary) Insurance for 20, 30, and 40 Years 

Using An MA(1) Model with al = 0.5 and 8 = 7% 
u = 0.05 u = 0.07 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.2507 0.1310 0.0759 0.2535 0.1331 0.0774 
30 0.2522 0.1354 0.0846 0.2550 0.1375 0.0861 
35 0.2560 0.1444 0.0999 0.2588 0.1465 0.1015 
40 0.2632 0.1599 0.1240 0.2660 0.1622 0.1258 
45 0.2757 0.1848 0.1591 0.2785 0.1871 0.1611 

Standard Deviation 
25 0.0401 0.0550 0.0652 0.0551 0.0600 0.0673 
30 0.0438 0.0625 0.0753 0.0579 0.0673 0.0776 
35 0.0547 0.0787 0.0936 0.0667 0.0829 0.0960 
40 0.0721 0.1017 0.1173 0.0817 0.1054 0.1199 
45 0.0946 0.1289 0.1433 0.1023 0.1324 0.1461 

Coefficient of Skewness 
25 12.17 9.48 7.74 4.88 7.47 7.24 
30 10.28 7.41 5.82 4.64 6.15 5.52 
35 7.77 5.46 4.32 4.45 4.84 4.16 
40 5.70 4.03 3.26 4.03 3.74 3.18 
45 4.17 2.98 2.50 3.38 2.84 2.45 

Coefficient of Kurtosis 
25 165.99 106.91 76.52 49.26 78.08 69.89 
30 122.68 68.83 46.31 42.80 53.88 43.09 
35 71.70 38.79 26.67 34.77 33.26 25.39 
40 39.42 21.94 16.08 25.50 20.06 15.55 
45 21.87 12.83 10.21 17.03 12.18 9.96 
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Table 7 (contd.) 
Term (Temporary) Insurance for 20,30, and 40 Years 

Using An MA(1) Model with al = 0.5 and 6 = 7% 
(T = 0.05 (T = 0.07 

Age 20 yrs 30 yrs 40 yrs 20 yrs 30 yrs 40 yrs 
Net Single Premium 

25 0.2585 0.1369 0.0801 0.2663 0.1429 0.0844 
30 0.2600 0.1414 0.0890 0.2678 0.1474 0.0934 
35 0.2638 0.1504 0.1045 0.2715 0.1565 0.1093 
40 0.2710 0.1662 0.1291 0.2787 0.1724 0.1343 
45 0.2835 0.1912 0.1647 0.2912 0.1976 0.1703 

Standard Deviation 
25 0.0762 0.0691 0.0715 0.0722 0.0819 0.0870 
30 0.0784 0.0759 0.0820 0.0846 0.0978 0.1023 
35 0.0852 0.0907 0.1006 0.1083 0.1230 0.1241 
40 0.0976 0.1125 0.1249 0.1414 0.1541 0.1484 
45 0.1157 0.1390 0.1515 0.1809 0.1863 0.1719 

Coefficient of Skewness 
25 2.28 5.26 6.43 1.62 3.64 5.42 
30 2.29 4.64 5.04 1.64 3.43 4.45 
35 2.49 4.01 3.92 1.75 3.22 3.61 
40 2.62 3.32 3.05 1.89 2.87 2.90 
45 2.52 2.63 2.37 1.92 2.40 2.29 

Coefficient of Kurtosis 
25 16.28 48.08 59.24 8.51 27.25 46.18 
30 15.59 36.63 37.90 8.46 23.16 31.52 
35 15.59 25.85 23.32 8.84 18.89 20.76 
40 14.55 17.26 14.70 9.04 14.24 13.69 
45 11.91 11.17 9.57 8.39 10.00 9.16 
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Table 8 
Whole Life Insurance 

Using An MA(l) Model with al = 0.5 and 8 = 7% 
Age (J" = 0.0 (J" = 0.03 (J" = 0.05 (J" = 0.07 

Net Single Premium 
25 0.0469 0.0479 0.0496 0.0524 
30 0.0630 0.0641 0.0663 0.0697 
35 0.0856 0.0870 0.0896 0.0936 
40 0.1161 0.1178 0.1208 0.1256 
45 0.1556 0.1576 0.1611 0.1665 

Standard Deviation 
25 0.0739 0.0753 0.0781 0.0827 
30 0.0837 0.0856 0.0890 0.0948 
35 0.1006 0.1028 0.1069 0.1138 
40 0.1221 0.1246 0.1294 0.1372 
45 0.1459 0.1487 0.1540 0.1627 

Coefficient of Skewness 
25 6.24 6.10 5.86 5.53 
30 4.81 4.70 4.53 4.31 
35 3.77 3.70 3.58 3.43 
40 3.01 2.96 2.87 2.78 
45 2.40 2.36 2.30 2.23 

Coefficient of Kurtosis 
25 55.44 53.50 50.16 45.54 
30 34.98 33.74 31.69 29.08 
35 22.08 21.41 20.32 19.01 
40 14.50 14.13 13.54 12.87 
45 9.77 9.55 9.22 8.88 
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Thus, for the MA(q) model it is straightforward to show that f).k 

follows a normal distribution with mean 0 and variance O"J where 

2 2(1 2 2) O"q = 0" + al + ... + aq , (33) 

which is greater than 0"2. So the variance inMA(q) is higher than for the 
equivalent N(o, 0"2).We then note that increasing q leads to an increase 
in the variance of f).k. 

4 Concluding Comments 

As noted by Frees (1990) and Dufresne (1992), moving average pro­
cesses often lead to tractable results. They are simpler to manipulate 
than the full ARMA processes, but still incorporate dependence over 
time because of the relatively simple form of the covariance structure. 

In this paper, we demonstrate the tractability and convenience in the 
case of standard present value calculations in a life insurance context. 
There is a duality between the standard AR and MA models that often 
makes it difficult to distinguish the two models when fitting models to 
observational data (Frees, 1990). Any lack of fit with actual data from 
MA(q) models may be offset by the simplifications arising from their 
use. 
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Modeling Corporate Bond Default Risk: A Multiple 
Time Series Approach 

Wai-Sum Chan* 

Abstractt 

A multiple time series approach is used to forecast the short-term u.s. 
corporate bond default level. These time series have two auxiliary economic 
variables: U.S. price inflation and U.S. GNP growth rate. Actual U.S. data from 
the turn of the century to the present are used to estimate the parameters of 
multivariate time series model. Diagnostic checks are performed to examine 
adequacy of the model. The model's forecast for the aggregate U.S. bond de­
fault level in 2000-2001 are 0.42% and 0.56%, respectively, while the forecast 
for the speculative-grade default rate in 2000 is 3.6%, which is more pessimistic 
than some other forecasts available in the market. 

Key words and phrases: autoregressive, moving average, stationary, forecast­
ing, high-yield bonds, vector time series 

1 Introduction 

A bond is said to be in default when the bond issuer has missed a 
payment of interest, filed for bankruptcy, or announced a distressed­
creditor restructuring. The default rate is measured on an initial pop­
ulation of bonds for a finite period of time, such as one year. l 
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versity of Hong Kong. Dr. Chan has a B.BA (Honours) in accounting from the Chinese 
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Dr. Chan's address is: Department of Statistics & Actuarial SCience, The University 
of Hong Kong, Pokfulam Road, HONG KONG. Internet address: chanws@hku.hk 
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IFor example, Caouette et al., (1998, p. 195) computed the annual default rates for 
all domestic corporate U.S. bonds from 1971 to 1997. 
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The incidence of default by u.s. corporate bond issuers is spread 
unevenly over this century, with high rates of default in the 1910s, the 
Great Depression of the 1930s, and again in the late 1980s and early 
1990s. Figure 1 shows the aggregate default rate for all U.s. corporate 
domestic bond issuers as an annual time series from 1900 to 1999 and 
is derived using data in Vanderhoof et al., (1989), Altman and Kishore 
(1998), and Altman et al., (2000). Notice how aggregate corporate de­
fault risk has ebbed and flowed since 1900. Though the risk of asset 
default has not been a real threat to life insurance companies over the 
last 50 years, this can easily change. As most life insurance companies 
in U.S. hold a Significant portion of corporate bonds2 in their invest­
ment portfolios, it is important for actuaries to watch for movements 
of bond default levels. 

This paper investigates the possibility of using a multiple (vector) 
time series model to provide short-term forecasts of the future level 
of aggregate bond defaults. In addition to the bond default rate, two 
other economic variables are incorporated into the vector model: the 
U.s. price inflation rate and the U.s. gross national product (GNP) growth 
rate. The inflation rate is the most important driving force of some com­
monly used actuarial stochastic models (Wilkie, 1995). On the other 
hand, the GNP growth rate is an important leading indicator of eco­
nomic stability (Vanderhoof et al., 1989). The price inflation time se­
ries and the GNP growth rate time series are shown in Figures 2 and 3, 
respectively. 

The procedure suggested by Tiao and Box (1981) is used to build a 
multivariate stochastic model for the three variables. This procedure 
has the advantage of being more direct and transparent, as compared 
with alternatives due to Granger and Newbold (1977) and Sims (1980). 
The sequential and iterative steps of tentative speCification, estimation, 
and diagnostic checking parallel those of the well-known Box-Jenkins 
method in the univariate time series case. The model is completely 
determined by the data. Actuarial applications of the Tiao and Box 
approach can be found in Frees et al., (1997). Unfortunately, detailed 
model building information was not given in Frees' paper. 

The main objectives of this paper are: 

• To introduce actuaries to some of the advanced multiple time se­
ries analysis techniques used in building vector stochastic models; 

2See, Vanderhoof et al. (1989, p.S47). 
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Figure 1 
Aggregate Default Rate for u.s. Corporate Domestic Bonds (Bt ) 
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Data Sources: Vanderhoof et al.. (1989). Altman and Kishore (1998). and Altman et al.. 
(2000). 

• To illustrate the Tiao and Box mUltiple time series model building 
procedure in a step-by-step manner so that actuaries who are not 
expert in this area can still follow the procedure; 

• To provide actuaries with a tool for determining whether or not 
a block of business of an entire company has enough surplus to 
withstand a possible catastrophic event (Zurcher, 1993); 

• To provide actuaries with a tool for determining whether or not 
a leading economic indicator may serve an an alarm signal for 
future possible jumps in the bond default levels. 

The paper is organized as follows. Section 2 provides a review of 
the multiple time series modeling approach due to Tiao and Box (1981). 
Discussion is restricted to points necessary for describing the applica­
tions in this paper. Further details can be found in Tiao and Box (1981), 
Uitkepohl (1993), and Reinsel (1997). Section 3 describes the data while 
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Figure 2 
U.S. Price Inflation (It) 
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Data Sources: Liesner (1989), ftp://ftp.bls.gov/pub/special.requests/cpi!cpiaLtxt 
and http://www.bea.doc.gov jbea/ ARTICLES/NATIONAL/NIP A!1998/0898nip3.pdf 

Section 4 deals with the process of fitting the model. Section 5 provides 
an analysis of high-yield bonds. Section 6 concludes the paper. 

2 Multiple Time Series Analysis 

Consider an m-element stationary column vector time series Y t with 
mean 11 for t = ... ,-1,0,1, .... Y t follows a vector autoregressive 
moving-average (ARMA) process of order p and q if 

cI»(B)Yt = c + 0(B)Et (1) 

where B is the backward shift operator such that BYt = Yt-l, cI»(B) and 
0(B) are are m x m matrix polynomials in B of finite degrees p and q 
respectively, 
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Figure 3 
U.S. Gross National Product (GNP) Growth Rate (G t ) 
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Data Sources: Liesner (1989), ftp://ftp.bls.gov/pub/special.requests/cpi/cpiaLtxt 
and http://www.bea.doc.gov /bea/ ARTICLES/NATIONAL!NIPA!1998/0898nip3.pdf 

<!l(B) = 1- <PIB - ... - <ppBP 

e(B) = 1- (hB - ... - OqBq 

c is a m-dimensional constant column vector. and {Et = (Elt •... • Emt )'} 

is a sequence of independent and identically distributed Gaussian ran­
dom column vectors with mean zero and positive-definite variance­
covariance matrix ~ = {O"ij}. The zeros of the determinantal polynomi­
als 1<!l(B) I and le(B) I are all assumed to be on or outside the unit circle. 
It implies that the vector process is both stationary and invertible. 

The cross-covariance matrix of order k. f(k). is given by 

f(k) = E[(Yt - Jl)(Yt-k - Jl)'] 

= {;Yij(k)}, i.j=l ..... m (2) 

for all integers k. Also. 
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Yij(k) 
p(k) = {Pij(k)} = -­

(Tij 

is defined as the corresponding cross-correlation matrix (CCM). Tiao 
and Box (1981) define the partial autoregression matrix (PAM) at lag k, 
denoted by I1(k), to be the last matrix coefficient when the data are 
fitted to a vector autoregressive process of order k. This is a direct 
extension of the Box and Jenkins (1976, page 64) definition of the partial 
autocorrelation function for univariate time series. 

When p = 0, that is, Yt is a vector MA(q) process, f(k) and p(k) are 
zero for k > q. On the other hand, the partial autoregression matrices 
I1(k) of a vector AR(p) process are zero for k > p. These cut off proper­
ties provide useful information for identifying the order of pure vector 
AR or MA models. However, both CCM and PAM are not useful when 
dealing with mixed vector ARMA processes (Le., both p > 0 and q > 0). 
They do not exhibit cut off patterns. Simple inspection of the matrices 
p(k) and I1(k) would not, in general, give clear values of p and q for 
mixed models. 

Tiao and Tsay (1983) proposed the extended cross-correlation ma­
trix (ECCM) based on the concept of iterated least-squares regression. 
The asymptotic pattern of the ECCM for a vector ARMA(p, q) model is 
given in Table 1. There is a remarkable zero-triangle in the table and 
its vertex is in (p, q) position. Hence, the ECCM can be a useful tool in 
model specification, particularly for a mixed vector ARMA process. 

Tiao and Box (1981) suggested an iterative modeling approach con­
sisting of tentative speCification, estimation, and diagnostic checking. 
For tentative specification the sample cross-correlation matrix (SCCM), 
denoted by p (k) = {Pij (k)} is used. These statistics are particularly 
useful in spotting low order moving average models. If the series Et 

is a white noise, the standard error of each element of the SCCM is 
approximately 1/ -/ii. These statistics, however, provide a crude signal­
to-noise ratio guide and are not meant to give formal significant tests. 

Estimates of I1(k) and their standard errors can be obtained by fit­
ting autoregressive models of successively higher order by least squares. 
Tiao and Box (1981) recommended using the likelihood ratio statistic 
to test the null hypothesis <Pk = 0 against the alternative <Pk -1= 0 if an 
AR(k) process is fitted. To conduct such a test, Bartlett's (1938) statistic, 
M(k), is used. M(k) is asymptotically X2 djstributed with m 2 degrees 
of freedom if the null hypothesis is true. 

Sample ECCM can be computed using iterated least-squares regres­
sions. One can construct a two-way table from the sample matrices. 
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Table 1 
The Asymptotic Pattern of the Extended 

Cross-Correlation Matrix for a Vector ARMA(p, q) Model 
MA order 

AR order q-l q q+l 

X X X X X X 

p-l X X X X X X 

P X X 0 0 0 0 
p+l X X X 0 0 0 
p + 2 X X X X 0 0 

X X X X X 0 
Note: X represents nonzero matrix and 0 represents zero matrix. 

The identification is carried out by visual searching the vertex of the 
zero-triangle inside the sample ECCM table. It is particularly useful in 
specifying the order of a mixed vector ARMA process. 

After the order of the vector ARMA model is tentatively selected, 
asymptotically efficient estimates of the parameters can be determined 
using the maximum likelihood approach. Approximate standard errors 
of the estimates of the elements of 'Pi for i = 1,2, ... ,p and OJ for 
j = 1,2, ... ,q can also be obtained and used to test for the significance 
of the parameters. Further gains in the efficiency of the estimates may 
be achieved by eliminating parameters that are found to be statistically 
inSignificant. Interested readers may refer to Reinsel (1997, Chapter 
5) for a detailed discussion of the maximum likelihood estimation for 
vector ARMA models. 

The maximization of the likelihood function can be conducted by a 
conditional likelihood method or an exact likelihood method. The con­
ditionallikelihood method is computationally convenient, but may be 
inadequate if the sample size is not sufficiently large. Thus, in this pa­
per we estimate the parameters initially using the conditional likelihood 
approach and eliminate parameters that are small relative to their stan­
dard error. The model is then re-estimated using the exact likelihood 
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method. To guard against incorrectly specifying the model, a detailed 
diagnostic analysis of the residuals is required. This includes an exami­
nation of the plots of standardized residuals and the ECCM table of the 
residuals. 

3 Preliminary Data Analysis 

3.1 Data Transformation 

The vector time series data consist of three key variables: the u.s. 
corporate bond default rate (B t ), the u.s. inflation rate (It), and the u.s. 
GNP growth rate (Cd. The data are available from 1900 to 1999. Sum­
mary statistics for the observed time series are given in Table 2. 

The aggregate bond default rate, on the average over the past 100 
years, is less than 1%. On the other hand, the average inflation rate 
and growth rate are around 3%. From Table 2, we also observe that the 
distributions of Bt and It are positively skewed while the distribution 
of C t is negatively skewed. Furthermore, all the observed distributions 
are leptokurtosis (fat tail), with the default rate distribution having the 
thickest tail.3 

This suggests that a transformation of the default rate might be 
called for, so the square-root transformation (a special case in the class 
of power transformations introduced by Box and Cox, 1964) of the de­
fault rate is used, Le., 

Dt = .JEt. 
The square-root transformation not only stabilizes the variance and 
the kurtosis of the default rate, but also prevents the default rate from 
being negative. 

The summary statistics for the transformed variable, Dt, are also 
given in Table 2. The coefficients of skewness and kurtosis of D t are 
Significantly improved (in the sense of being closer to a Gaussian dis­
tribution). It is not unexpected that (Dt,Id and (Dt, Ct ) are negatively 
correlated, while (It, Cd is positively correlated. A view of the possi­
ble interrelationships of the economic variables using scatter-plot dia­
grams is given in Figures 4 through 7. These figures show some strong 
contemporaneous relationships among series. It justifies the use of 
multiple time series model for the variables. 

3 An observed distribution is called leptokurtosis if its sample coefficient of excess 
kurtosis is greater than zero. 
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Table 2 
Summary Statistics in Percent (%) 

Bt Dt It Gt 

Sample Size 100 100 100 100 
Mean 0.9173 0.7587 2.9955 3.3198 
Median 0.3795 0.6159 2.6635 3.2705 
Standard Deviation 1.2679 0.5875 4.7830 5.2751 
Minimum 0.0000 0.0000 -11.0930 -14.3160 
Maximum 7.1840 2.6803 16.5250 17.1430 
Skewness 2.2613 0.8702 0.1943 -0.3606 
Kurtosis 6.0373 0.2410 1.6398 1.5019 

Correlation Matrix 
Dt 1.00 -0.25 -0.20 

-0.25 
-0.20 

Note: Bt, It and Gt are expressed in percent. 

1.00 
0.18 

0.18 
1.00 

219 

For comparison purposes we fit univariate time series models to the 
economic variables following the orthodox Box and Jenkins (1976) ap­
proach. Table 3 gives the sample autocorrelation function (SACF) and 
the sample partial autocorrelation function (SPACF) of each individual 
variable up to order 8. The sample autocorrelation coefficients of D t 
are exponentially decaying. On the other hand, the sample partial au­
tocorrelations are cut off after lag one. It indicates an AR(1) model for 
the bond default series. Both the SACF and SPACF for the inflation se­
ries are decaying after lag one. It is likely that the underlying process 
for It is an ARMA(1,l). As both lag-1 and lag-4 autocorrelations are 
significant for the Gt series, an AR(4) model is appropriate. 

3.2 Checks for Outliers 

Time series observations are often influenced by interruptive events 
such as strikes, outbreaks of wars, sudden political or economic crises, 
or even unnoticed errors of typing and recording. The consequences 
of these interruptive events create spurious observations, which are 
inconsistent with the rest of the series. Such observations are usually 
referred to as outliers. 
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Figure 4 
Scatter Plot of the Variables It and Gt 
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Figure 5 
Scatter Plot of the Variables Bt and Gt 
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Figure 6 
Scatter Plot of the Variables It and Gt 
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Figure 7 
3D Scatter Plot of the Variables Bt. It and Gt 
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Table 3 
Autocorrelation Coefficients 

And Partial Autocorrelation Coefficients 
Lag Order 

1 2 3 4 5 6 7 8 
(a) Autocorrelation Coefficients 

Dt 0.79 0.67 0.59 0.55 0.49 0.45 0.41 0.35 
(0.10) (0.15) (0.18) (0.20) (0.21) (0.23) (0.23) (0.24) 

It 0.62 0.26 0.14 .08 0.15 .17 0.10 0.01 
(0.10) (0.13) (0.14) (0.14) (0.14) (0.14) (0.14) (0.15) 

Gt 0.28 0.03 -0.09 -0.23 -0.16 0.05 .09 -0.02 
(0.10) (0.11) (0.11) (0.11) (0.11) (0.12) (0.12) (0.12) 

(b) Partial Autocorrelation Coefficients 

Dt 0.79 0.11 0.07 0.12 -0.01 0.02 0.02 -0.06 
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) 

It 0.62 -0.21 0.12 -0.04 0.19 -0.04 -0.00 -0.08 
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) 

Gt 0.28 -0.05 -0.09 -0.20 -0.05 0.11 0.03 -0.13 
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) 

Note: Standard errors of autocorrelations are given in parentheses. 

As retaining outliers can lead to erroneous model specification and 
biased predictions (Chan, 1998), an outlier analysis is performed on 
the specified models for the time series Dt, It, and Gt . No outliers were 
found for the Dt and Gt series; a switch outlier4 was detected in It at 
t = 1921. The magnitude of the outlier is estimated as 9.00. See de Jong 
and Penzer (1998) for more on time series outlier detection and switch 
outliers. The analysis in this paper is based on the outlier-adjusted 
series. Finally, the fitted univariate time series models for each series 
are summarized in Table 4. 

4 A switch outlier occurs where there are consecutive extreme values on either side 
of the current level of the series. 



Table 4 
Univariate Time Series Models for Dt, It and Gt 

Variable Model Equation {;-2 

Bond Default AR(l) D t = 0.16 + 0.80 D t-l + Et 0.13 
~~ 
(0.06) (0.06) 

Inflation ARMA(l,I) It = 1.56 + 0.52 It-I + 0.49 Et-l + Et 8.55 
~~ ~ 

(0.55) (0.11) (0.11) 

GNP Growth AR(4) G t = 3.06 + 0.27 G t-l - 0.21 G t-4 + Et 24.38 
~~ ~ 

(0.68) (0.10) (0.10) 

Notes: Standard errors of estimates are given in parentheses; {j2 denotes the estimates of residual 
variance; and Q12 is the Box-Pierce portmanteau statistic of the residuals with lag order up to 12. 
Note that Q12 is asymptotically distributed as a X2 with degrees of freedom equal to 15 minus 
the number of parameters estimated. None of the Q12 statistics reported is significant at the 5% 
level. 
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3.3 Check for Cointegration 

Cointegration analysis has attracted considerable research interest 
in recent years. Engle and Granger (1991) and Rao (1994) have described 
large growth in the business and economic applications of this area. A 
vector time series is said to be cointegrated if each of the series taken 
individually is nonstationary with a unit root, while some linear combi­
nation of the series is stationary. Cointegration of two (or more) time 
series suggests that there is a long-run, or equilibrium, relationship be­
tween them. The error correction mechanism (ECM) developed by Engle 
and Granger (1987) can reconcile the short-run behavior of an economic 
variable with its long-run behavior. 

It should be noted that if the vector (Dt, It, Gd I process is cointe­
grated, then it is not correct to fit a vector ARMA model to the differ­
enced data. Therefore, it is important to check for cointegration us­
ing the observed series. The first requirement for cointegration is that 
Dt,It, and Gt are each individually nonstationary with a unit root. We 
employ the augmented Dickey-Fuller (ADF) test to examine each series. 
For a stochastic variable Yt , Dickey and Fuller (1981) considered the 
following regression model: 

(1 - B)Yt = ()(o + ()(I t + <5Yt-l + I J)j{ (1 - B)Yt-j} + Ct· 
J=1 

The null hypothesis is that <5 = 0; that is, a unit root exists in Y (Le., 
Y is is nonstationary with a unit root). The ADF test is applied to the 
three observed series with m = 2, the results are given in Table 5. The 
ADF tests indicate that not all the series are nonstationary with a unit 
root, and hence the vector process (Dt, It, Gd' is not cointegrated. 

4 The Fitted Model 

The multiple time series modeling procedures mentioned in Section 
2 of this paper can be effiCiently performed using matrix-based com­
puter languages such as S-Plus, GAUSS, MATLAB, and SCA. The compu­
tations performed in this section are carried out using the SCA system 
(Uu and Hudak, 1994). 

Model Specification: The sample cross-correlation matrix (SCCM) 
and the partial autoregression matrix (PAM) are first examined. Tiao 
and Box (1981) suggested summarizing the SCCM and PAM using indi­
cator symbols +, -, and " where + denotes a value greater than twice 
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Dt 

It 
Ct 

Table 5 
Augmented Dickey-Fuller (ADF) Tests 

ADF Test Critical 
Statistic Value (at 5%) 

-2.71 -3.45 
-3.99 -3.45 
-5.61 -3.45 

Conclusion 
Nonstationary with unit root 

Stationary 
Stationary 

Notes: The ADF test statistic is simply the t-ratio for 0 = 0 and the critical 
values are obtained from MacKinnon (1991, Chapter 13). 
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the estimated standard error, - denotes a value less than twice the es­
timated standard error, and . denotes an insignificant value based on 
the above criteria. The resulting indicator matrices for SCCM and PAM 
are given in Table 6. 

Both SCCM and PAM do not provide a cut off pattern. This suggests 
that the underlying process could be a mixed process. Therefore, the 
sample ECCM table is computed. The results are presented using in­
dicator symbols in Table 7. We find a zero-triangle in the table and 
its vertex is in (1,1) position. Hence, we tentatively specify a vector 
ARMA(l,I) model for the data. 

Model Estimation: The specified ARMA(l,I) model is first estimated 
using conditional likelihood method. All parameters in the model are 
computed. We call this model a "full model" in Table 8. Imposing zero 
restrictions on the coefficients that are insignificant, we re-estimate the 
model by exact likelihood method. The final model is given in Table 8. 

It should be noted that only stationary and invertible vector time 
series models were considered for the process (Dt,It, Cd. That is, it 
was assumed that the zeros of the determinantal polynomials I<I>(B) I 
and 10(B) I are all on or outside the unit circle. It is important to 
check these assumptions for the final fitted model in Table 8. For 
the vector ARMA(I,I) model, the stationarity and invertiblity condi­
tions are equivalent to restricting all the eigenvalues of <PI and 01 
inside the unit circle (Wei, 1990, p. 345). The eigenvalues of CPl and 
01 are (0.8602,0.3688,0.4810) and (0.3660, -0.5240,0.0000), respec­
tively, which suggests that the final fitted model in Table 8 satisfies the 
basic assumptions. 



Table 6 
Indicator Matrices for SCCM and PAM 

lag (k) 

1 2 3 4 5 
(a) Sample Cross-Correlation Matrix (SCCM) 

(+ - -) (+ - .) (+ - .) (+ - .) (+ - .) · + + . +. ... ... .. . 
· . + ... ... .. - .. . 

(b) Partial Autoregression Matrix (PAM) 

(
+ . .) (. . .) (. . .) (...) (...) · +. . -. .. + ... . .. 
· . + ... ... ... . .. 

M(k) 193.34 25.04 10.71 15.06 7.53 

Notes: Critical values for M(k): 16.9 for 5% level; 21.7 for 1% level. 
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The full estimated model can be re-written as follows: 

D t = 0.126 + 0.853 Dt-I - 0.012 It-I + 0.007 G t - I + ED,t 

- 0.358 ED,t-1 + 0.019 EJ,t-1 - 0.024 EC,t-1 (3) 

it = 1.789 + 0.716 Dt-I + 0.519 It-I - 0.266 G t - I + EJ,t 

- 0.887 ED,t-1 + 0.480 EJ,t-1 + 0.336 EC,t-1 (4) 

G t = 1.367 + 1.825 Dt-I + 0.003 It-I + 0.160 Gt-I + EC,t 

- 0.790 ED,t-1 - 0.148 EJ,t-1 + 0.158 EC,t-l. (5) 

The final estimated model can be re-written as follows: 

Dt = 0.124 + 0.898 Dt-I - 0.014 Gt-I + ED,t - 0.366 ED,t-1 (6) 

it = 1.569 + 0.481 It-I + EJ,t + 0.524 EJ,t-1 + 0.110 EC,t-1 (7) 

Gt = 1.141 + 1.429 Dt-I + 0.331 Gt-I + EC,t (8) 

with 

( 

0.123 -0.280 -0.844) 
i: = -0.280 8.096 4.455 . 

-0.844 4.455 25.045 
(9) 

Diagnostic Checking: The indicator matrices of the residual ECCM 
are given in Table 9. The zero-triangle is pointing at the (0,0) position. 
It indicates that there is no significant serial correlation information 
left in the residuals. The portmanteau test of McLeod and Li (1983) is 
based on the squared residuals of a time series model and is a test for 
homoscedasticity of the residuals. The test statistics for the residuals 
from the fitted models (6) to (8) are 1.4799, 1.2413, and 1.6902, respec­
tively. They should be compared with a xi variate (critical value at the 
5% level is 3.841). We conclude that the residuals are homoscedastic 
and the fitted model is adequate for the series. 
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Table 8 Q 
Estimation Results ~ 

c <PI 81 i: 0 ..., 
~ 

(a) Full Model (ti 

0.126 1 ( 0.853 -0.012 0.007 1 ( 0.358 -0.019 0.024 1 ( 0.120 -0.298 -0.8471 
OJ 
0 

(0.077) (0.068) (0.009) (0.018) (0.121) (0.016) (0.021) 
::s 
~ 

CJ 

1.789 I I 0.716 0.519 -0.266 1 I 0.887 -0.480 -0.3 36 1 1-0
.
298 7.884 4.480 I (\) 

SJ' 
(1.222) (1.070) (0.127) (0.213) (1.197) (0.117) (0.188) ~ .... 

;;>;) 

1.367 ) \ 1.825 0.003 0.160 ) \ 0.790 0.148 -0.158 I \-0.847 4.480 25.094 I i;;' 

"'" (1.373) (1.227) (0.139) (0.241) (1.624) (0.182) (0.232) 
(b) Final Model 

0.124 0.898 0 -0.014 0.366 0 0 \ / 0.123 -0.280 -0.844 
(0.045) (0.046) (0.006) (0.109) 

1.569 0 0.481 0 0 -0.524 -0.1101 1-0.280 8.096 4.455 
(0.541) (0.098) (0.103) (0.050) 

1.429 0 0.331 0 0 0 I 1-0.844 4.455 25.045 
(0.797) (0.089) 

Notes: Standard errors of estimates are given in parentheses. 
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5 An Extension 

From 1900 through 1945 significant increases in the default rate 
were typically preceded by weakness in the overall economy as reflected 
in the GNP growth. Since 1945, it has more often been the case that 
increases in the default rate occur in advance of a weakening in the 
general economy. For example, in the worst episode of the post-war 
era, the default rate began to rise in 1985 rising from 0.315% to its 
peak of 2.715% in 1990. The GNP growth, on the other hand, peaked 
in 1984 but did not fall below the zero mark until the year of 1991. 
The results in equations (6) to (9) are able to describe such lead-lag re­
lationship among the variables explicitly. Furthermore, the final model 
also captures the correlation momentum among innovations (residuals) 
implicitly through :t. 

The U.S. high-yield bond market has been developing rapidly since 
1980. Many investment managers now consider high-yield bonds a sep­
arate and distinct asset class. By the end of 1996, it was estimated that 
insurance companies and pension funds owned more than 40% of the 
high-yield debt market. It is important to study the historical default 
rate on high-yield bonds. Unfortunately, the history of high-yield mar­
ket is short. Only 40 quarterly default figures on high-yield bonds are 
available from 1990 to 1999 (Altman et al., 2000). 

The quarterly high-yield default rate, QDt. as well as its correspond­
ing quarterly GNP growth rate, QGt , are plotted in Figure 8. Using the 
multiple time series modeling approach as described in Section 2 yields 
the follOwing model for the series: 

with 

~Qi5t = 1.156 + .279 ~QDt_l - 0.846 QGt-l 

+ EV,t - 0.732 EC,t-l 

Qct = 1.197 - 0.624 ~QD t-l + EC,t 

:t = (0.082 -0.045) 
-0.045 0.204 . 

(10) 

(11) 

(12) 

The final model shows a strong first-order contemporary lead-lag re­
lationship between the quarterly high-yield default level and the quar­
terly growth rate. 
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Figure 8 
Quarterly High-Yield Default Rates 
and GNP Growth Rates, 1990-1999 
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Legend 
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Data Sources: Liesner (1989), ftp://ftp.bls.goy/pub/special.requests/cpi!cpiaLtxt 
and http://www.bea.doc.goy /heal ARTICLES/NATIONAL/NIPA/1998/0898nip3.pdf 

6 Closing Comments 

The aggregate bond default rates were below average in 1998 and 
1999. Based on the fitted equations (3) to (6), the forecast of the de­
fault rates for 2000, 2001, and 2002 are 0.341%, 0.417%, and 0.562% 
respectively. 

Based on the equations (7) to (9), the model's forecast for quarterly 
high-yield default rates for 2000 are 0.896%, 0.928%, 0.899%, and 0.908% 
respectively. These figures imply an annual forecast of 3.6% high-yield 
default rate in 2000, which is somewhat more pessimistic than the fore­
cast of 2.8% produced by Altman et al. (2000). 

In this paper we have illustrated multiple time series modeling tech­
niques through the analysis of u.s. corporate bond default data. This 
method has the advantage of being simple 'to use. The iterative cycles 
of tentative specification, estimation, and diagnostic checking parallel 
those of the well-known Box-Jenkins (1976) method. The methodology 
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has been implemented by some time series computer packages, such 
as SCA (Liu and Hudak, 1994). Vector time series models might be 
useful to other actuarial applications, say, stochastic asset modeling 
(Wilkie, 1995), pension simulation (Knox, 1993), and solvency assess­
ment (Hardy, 1993). Research in some of these topics is in process. 

There are many books and research papers related to other aspects 
of default risk or credit risk. Interested readers may refer to Duffie 
and Huang (1996), Duffie and Singleton (1998), Jarrow (1998), Altman 
(1999), and Jarrow and Turnbull (2000). 
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Independent Claim Report Lags and Bias in 
Forecasts Using Age-to-Age Factor Methodology 
Stewart Gleason* 

Abstract 

This paper finds that when report lags are assumed to be independent, the 
age-to-age factor method produces biased estimates when applied to claim 
count development data. Two distributions are considered as models for the 
ultimate number of claims for an accident period: (0 a Poisson distribution, 
and (ii) a negative binomial distribution. In the Poisson case, the assumption 
of independent report lags implies the independence of the total number of 
claims reported in any two periods. In the negative binomial case, however, 
assuming that report lags are independent does not imply that increments 
are independent, and a somewhat different argument is required. Finally, it is 
proved that weighted average forecasts exhibit a smaller bias than do straight 
average estimates. 

Key words and phrases: loss development, Poisson, negative binomial, report 
lag 

1 Introduction 

Stanard (1985) observes an apparent bias in forecasts of ultimate 
claims when commonly used reserving methods are applied to simu­
lated data. His approach is to specify a stochastic model of the emer­
gence of claims over time and use it to generate data to be used as input 
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to various reserving methods. One of the methods he selects is the fa­
miliar age-to-age factor method-he finds that the method produces 
overstated forecasts of ultimate claims in certain cases. 

Stanard's simulation model assumes that the report lag of each claim 
is independent. This assumption has been presented in other work, 
particularly that of Weissner (1978, 1981). As I will prove, however, 
when report lags are assumed to be independent, the age-to-age factor 
method is biased when applied to claim count development data. Two 
models are considered for the ultimate number of claims in an acci­
dent period: (i) the Poisson distribution and (ii) the negative binomial 
distribution. 

In the Poisson model, the assumption of independent report lags 
implies the independence of the total number of claims reported in any 
two periods and provides an example of an emergence process with 
independent increments. A general argument may be made to show 
that the age-to-age factor methodology gives biased results when the 
underlying process is known to have independent development incre­
ments. In the negative binomial model, which is the model specified 
by Stanard, assuming that report lags are independent does not imply 
that increments are independent, and a somewhat different argument 
is required. 

The arguments presented here will use Jensen's inequality. Stanard 
notes in Appendix A of his paper that the observed bias is likely due to 
the fact that the expected value of the ratio of two non-constant random 
variables is not necessarily equal to the ratio of their expected values, 
Le., in general 

Jensen's inequality may be used to show that, under certain conditions, 

[
X] E[X] 

E Y > E[Y]' 

These ratios will arise as the usual claims development or age-to-age 
factors. 

Finally, I will prove that weighted average forecasts exhibit a smaller 
bias than straight average estimates. 
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2 Preliminaries 

2.1 Notation and Assumptions 

For simplicity, the claims activity is divided into n consecutive and 
disjoint time periods of equal length, such as weeks, months, quarters, 
years, etc. For i,j = 1,2, ... , let Xi,j denote the number of incidents 
occurring in period i that are reported as claims in period i + j - 1 (Le., 
with lag j - 1). The incremental development triangle at the end of the 
nth period is displayed in Table 1. 

Table 1 
Number of Accident Period i Claims Reported with Lag j - 1 

j 
i 1 2 n-i + 1 n-1 n 
1 Xl,l Xl,2 Xl,n-i+l Xl,n-l Xl,n 

2 X2,1 X2,2 X2,n-i+l X2,n-l 

i Xi,! Xi,n-i+l 

n -1 Xn-l,l X n -l,2 

n Xn,l 

These data are more commonly summarized as a cumulative devel­
opment triangle (as shown in Table 2), where 

j 

S· . = '\' Xk. t,) L t, 

k=l 

The assumptions, however, will be stated in terms of the Xi,jS. 

The baSic problem for data given in this format is to estimate the 
total number of claims arising from each accident period from the num­
ber reported through the end of period n and from the claim reporting 
pattern. It is sufficient for our purposes to consider only the problem 
of forecasting the next reporting increment. 
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then it follows that 

Oi,n-i+2 > E[Xi,n-i+2 I Si,n-i+l > 0] == E[Xi,n-i+2]. 

Proof: Observe that, due to the independence of accident periods, 

[ 

,i-l X i-I ] L.k=l k,n-i+2 
Oi,n-i+2 = E Si,n-i+l i-I I L Sk,n-i+l > 0, Si,n-i+l > 0 

Lk=l Sk,n-i+l k=l 

[ 

i-I ] 
= E Si,n-i+l I L Sk,n-i+l > 0, Si,n-i+l > 0 

k=l 

[ 

,i-l X i-I ] L.k=l k,n-i+2 
X E i-I I L Sk,n-i+l > 0, Si,n-i+l > 0 

Lk=l Sk,n-i+l k=l 

= E [Si,n-i+l I Si,n-i+l > 0] 

E L.k=l Xk,n-i+2 I '" S . > 0 
[ 

,i-l i-I ] 

X i-I L k,n-Hl . 
Lk=l Sk,n-i+l k=l 

Because of the independence of increments, it is also true that 

E L.ti Xk,n-i+2 I L Sk,n-i+l > 0 
[

,i-l i-I ] 

Lk=l Sk,n-i+l k=l 

(4) 

= (i - 1)E[Xk,n-i+2] E [ i_II 
Lk=l Sk,n-i+l 

I iI" Sk,n-i+l > 0]. (5) 
k=l 

Using Jensen's inequality, withg(x) = Xl + ... +Xi-l. one deduces that 

E [ . 1 1 I iI" Sk,n-i+l > 0] 
L1:-:'l Sk,n-i+l k=l 

1 

> E [Lt,\ Sk,n-i+l I Lt,\ Sk,n-i+l > 0] 
and this inequality may be strengthened by noting that 
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Thus 

E [i£ Sk,n-i+l I I Sk,n-i+l > 0] 
k=l k=l 

[

i-l ] 
::; E L Sk,n-i+l I Sk,n-i+l > 0, k = 1,2, ... ,i - 1 

k=l 

= (i - I)E [Si,n-i+l I Si,n-i+l > 0] . 

I i£ Sk,n-i+l > 0] 
k=l 

1 
> (i - l)E [Si,n-i+l I Si,n-i+l > 0]' 

Substituting equations (5) and (6) into (4) completes the proof. 

243 

(6) 

o 

Readers will observe at this point that Theorem 1 is a statement of 
fact regarding ratios of independent random variables; it does not rely 
on the specific distribution of the underlying process. This should not 
be surprising because the age-to-age factor methodology also does not 
rely on the specific distribution of the underlying process. Intuition 
is the main guide in the construction of forecasts relying on identical 
distributions by lag. The conclusion is not that the age-to-age factor 
method is biased absolutely, but that it is not compatible with a claims 
process assumed to have independent increments. 

3.2 Independent Increments from Independent Claims Lags: 
The Poisson Case 

I will now prove that when the report lags are independent and the 
distribution of ultimate accident period claims is Poisson with constant 
mean i\ then assumption (2) holds. The proof relies on two well-known 
properties of Poisson processes: the number of claims reported with 
lag j - 1 is Poisson with mean i\p j, 1 where p j is the probability that a 
claim from accident period i is reported in period i + j - 1. In addition, 
the number of claims reported with lag j - 1 and with lag k - 1 are also 
independent.2 Formally, this may be stated as: 

lSee, for example, Karlin and Taylor (1994, Chapter 5, Theorem 5.2, page 243). 
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In either case, the mean of Mis, 

0( 

E[M] = 73. (9) 

Proposition 5. When N (the distribution of ultimate claims) is negative 
binomial with parameters 0( > 0 and 13 > 0 and the report lags are 
independent, then Nj (the number of claims reported with lag j - 1) is 
negative binomial with parameters 0( and 13 j where 13 j = 13 / p j. 

Proof: Again, [Nj = kiN = n] has a binomial distribution when the 
report lags are independent and n ;;:: k. 

00 

Pr[Nj = k] = I Pr[Nj = kiN = n]Pr[N = n] 
n=O 

~ n! k n_kf(O(+n) ( 13 )lX( 1 )n 
= n~k k!(n - k)!Pj(l- Pj) n!f(O() 1 + 13 1 + 13 

Changing the summation variable to r = n - k produces 

Pr[N.=k]= (pj)k (_f3_)lX(_I_)k f f(O(+k+r) (l_ pj )r 
J k!f(O() 1+13 1+13 r=O r! 1+13 

0(+ ~ -~ f( k) 
( 

13 
)

lX ( )k ( 1 )-(lX+k) 
= k!f( O() 1 + 13 1 + 13 1 - 1 + 13 

xIf(O(+k+r) I-pj 1_I-Pj 00 ()r ( ) lX+k 

r=O r!f(O( + k) 1 + 13 1 + 13 

0(+ ~ -~ f( k)( 13 
)

lX( )k( 1 )-(lX+k) 
= k!f(O() 1 + 13 1 + 13 1 - 1 + 13 

( )
lX( )k f(0( + k) 13 Pj 

= k!f(O() Pj + 13 Pj + 13 

and the proposition is proved. o 

Proposition 6. When the distribution of ultimate claims, N, is negative 
binomial with parameters 0( > 0 and 13 > 0 and the report lags are 
independent, [Nj I Nk = 5] has a negative binomial with parameters 
O(jk = 0( + 5 and f3jk = (13 + Pk)/Pj provided Pj > O. In particular, 
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E[N-I N] = (cX.+Nk)Pj. 
J k /3 + Pk 

Proof: Again, [Nj = kiN = n] is binomial when the report lags are 
independent and n ~ k. 

[ _ _ I -] _ Pr[Nj = r, Nk = 5] 
Pr NJ - r Nk - 5 - Pr[Nk = 5] 

2:~=o Pr[Nj = r, Nk = 5 IN = n] Pr[N = n] 

2:~=o Pr[Nk = 5 I N = n] Pr[N = n] 

Again, [Nj = r, Nk = siN = n] is multinomial, so the numerator may 
be rewritten as 

00 

L Pr[Nj = r, Nk = 5 IN = n] Pr[N = n] 
n=O 

_ " n. prps (1 _ P __ Pk)n-r-s 00 [ I 

- n~+s r!5!(n-r-5)! j k J 

[(a + n) ( /3 )IX ( 1 )nJ 
x n![(a) 1 + /3 1 + /3 

and the denominator may be rewritten as 

00 

L Pr[Nk = 5 I N = n] Pr[N = n] 
n=O 

~ n! S( )n_s[(a+n) ( /3 )IX( 1 )n 
= ';:'s5!(n-5)!Pk 1-Pk n![(a) 1+/3 1+/3 

The numerator and denominator can be summed separately and re­
duced to give 

Pr[N- =r INk =5] = [(ajk+ r ) ( /3jk )IX ( 1 )r 
J r![(ajk) 1 + /3jk 1 + /3jk 

thus proving the proposition. o 

One implication of Proposition 3 is that the increments are no longer 
independent. The following fact is also required: 
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Proposition 7. When the distribution of ultimate claims, N, is negative 
binomial with parameters lX > 0 and {3 > 0 and the report lags are 
independent, then for p j > 0 and Pk > 0, 

lXPj 1- ~ 

( 
( {3 )lX+IJ 

E[N,I Nk > 0] = T 1- (p: Pk)"' (10) 

Proof: Proceeding in a now familiar fashion but using the convenient, 
alternative form of the negative binomial probabilities, one sees that: 

Pr [Nj = riNk> 0] 

I;'=l I~=o Pr [Nj = r, Nk = siN = nJ Pr [N = n] 

Pr [Nk > 0] 

The denominator on the right side of this equation is 

Pr [Nk > 0] = 1 - ({3: pJ lX 

The numerator on the right side of this equation is 
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It follows that 

Pr [Nj = riNk> 0] 

f(lX+r) r{ II} 
f ( ) I P j ( ) £x+r - ( ) £x+r 

lX r. {3+Pj {3+Pj+Pk 

It is straightforward to sum this expression to obtain the result: 
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00 

E [Nj I Nk > 0] = L r Pr [Nj = riNk> 0] 
r=l 

which is a difference of two negative binomial forms. This may be sim­
plified as 

and the proposition is proved. o 

The key task may now be addressed, that is a theorem without the 
restrictions of Assumption 2. 

Theorem 2. When Assumption 1 holds and the distribution of ultimate 
claims is negative binomial, the expected value of the weighted average 
forecast is always greater than the expected value of the actual change, 
i.e., 
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Oi,n-i+2 > E[Xi,n-i+2 I Si,n-i+1 > 0] 

where Oi,n-i+2 is defined in equation (3). 

Proof: As in the proof of Theorem 1, 

Oi,n-i+2 = E [Si,n-i+1 I Si,n-i+1 > 0] 

X E L.k=1 k,n-i+2 I '" S . 0 
[ 

"i-I X i-I ] 

i-I L k,n-HI > 
Lk=1 Sk,n-i+1 k=1 

251 

due to the independence of accident periods. In the proof of Theorem 
1, it was possible to separate the expectation operator containing the 
ratio. As has been shown, however, independence of increments does 
not hold here-some other mechanism must be employed. To this end, 
one fixes the Sk,n-i+1 and computes the expectation in successive steps. 
But 

E L.~:i Xk,n-i+2 I L Sk,n-i+1 > 0 
[

"i-I i-I ] 

Lk=1 Sk,n-i+1 k=1 

_ E [E[Lk-:,11 Xk,n-i+2 I SI,n-i+I, ... ,Si-I,n-i+d I i~ S . 0] 
- i-I L k,n-HI > 

Lk=1 Sk,n-i+1 k=1 

= E [Lk-:,II E[Xk,n-i+2 I Sk,n-i+d I i~ S . 0] 
i-I L k,n-HI > . 

Lk=1 Sk,n-·i+1 k=1 

Proposition 3 implies that this expression is equal to 

Pn-i+2 E L.k=\_t,n-i+1 + ()( I L Sk,n-i+1 > 0 
[ 

"i-I (S ) i-I ] 

f3 + TTn-i+1 Lk=1 Sk,n-i+1 k=1 

= f3 Pn-i+~ (1 + (i - 1)()(E [ i_III I Sk,n-i+1 > 0]) 
+ TTn-HI Lk=1 Sk,n-i+1 k=1 

where TTk = PI + ... Pk for k = 1,2, .... Jensen's inequality implies that 
in turn 
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Pn-i+2 (1 + (i -l)aE [ i_Ill I Sk,n-i+l > 0]) 
f3 + 7Tn-i+l Ik=1 Sk,n-i+l k=1 

Pn-i+2 (1 (i - l)a ) 
>f3 + ['1 '1 ] + 7Tn -i+l E It;~1 Sk,n-i+l I Ik-:'1 Sk,n-i+l > 0 

Pn-i+2 (1 a ) 
;::: f3 + [ . 1 . 1 ] . + 7Tn -i+l E Ik-:'1 Sk,n-i+l I Ik-:'l Sk,n-i+l > 0 

From Proposition 2, one can see that 

[ 

i-I i-I ] 
E L Sk,n-i+l I L Sk,n-i+l > 0 ::; (i - l)E [Sk,n-i+l I Sk,n-i+l > 0] 

k=l k=1 

(i -l)a7Tn-i+l 

Substituting these results into the expression for Oi,n-i+2 yields 

o apn-i+2 ((f3 + 7Tn _i+dc<+1 - f3C<+I) 
i,n-i+2> f3(f3 + 7Tn -i+d (f3 + 7Tn -i+l)C< - f3c< 

= E [Xk,n-i+2 I Sk,n-i+1 > 0] 

from equation (10) of Proposition 4. The theorem is thus proved. 0 

5 Average Factors: Straight versus Weighted 

There has been much discussion in actuarial circles regarding the 
merits of weighted average development factors as opposed to straight 
(unweighted) average development factors. In this section, it will be 
demonstrated that the straight average estimator, 

i-I 
- 1 ""' Xk,n-i+2 

Xi,n-i+2 = -. -1 L Si,n-i+1 S ' 
1. - k=1 k,n-i+1 
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cannot reduce or eliminate the bias seen in the weighted average esti­
mator. For brevity, attention is restricted to the case of independent 
increments. 

Before stating and proving the final theorem, one more proposition 
is needed: 

Proposition 8. For any set of positive m numbers {YI, Y2, ... , Ym}, 

m 1 m 2 

L-~ m . 
k=1 Yk Lk=1 Yk 

Proof: Let Y denote the discrete random variable such that 

1 
Pr[Y = ykl = -, for k = 1, ... ,m. 

m 
Applying Jensen's inequality yields 

[IJ 1 m 11m 
E y = m k~1 Yk ~ E[y] = Lr:IYk 

and the proposition is proved. D 

Theorem 3. When both expectations are defined, the expected value of 
the straight average prediction is greater than the expected value of the 
weighted average prediction. That is, 

E[Xi,n-i+2 I Sk,n-i+1 > 0, k = 1, ... , iJ 
~ E[Xi,n-i+2 I Sk,n-i+1 > 0, k = 1, ... ,iJ. (11) 

Proof: Again making use of the independence and symmetry between 
the periods, proving equation (11) is equivalent to proving the following 
inequalities: 

1 i~ [Xk,n-i+2 ] 
-(' _ 1) L..... E Si,n-i+1 S . I Sk,n-i+1 > ° 

t k=l· k,n-HI 

[ 

"i-I X ] L.k=1 k,n-i+2 
~ E Si,n-i+1 i-I I SI,n-i+1 > 0, ... ,Si-l,n-i+1 > ° 

Lk=1 Sk,n-i+1 
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or 

[
i-I [ 1 ]] 

E L S . I Sk,n-i+1 > ° 
k=1 k,n-t+1 

2::U-1)2E[ i_II ISI,n-i+1 >O, ... ,Si-l,n-i+1 >0] 
.Lk=1 Sk,n-i+1 

or 

[

i-II (i-1)2 ] 
E L . - i-I I SI,n-i+1 > 0, ... , Si-l,n-i+1 > ° 2:: 0. 

k=1 Sk,n-t+1 .Lk=1 Sk,n-i+1 

But as Sk,n-i+1 > 0, k = 1, ... , i-I, 

from Proposition 5 and, therefore, is the expectation of this quantity. 
This proves the theorem. 0 

6 Beyond Claim Counts: Possible Extensions of 
the Results 

To this point, only claim count development data have been con­
sidered. As actuaries are concerned also with the development of the 
amounts of paid and reported claims, it is natural to ask whether these 
results can be generalized to include the analysis of claim amounts. 

The general case based on the assumption of independent incre­
ments may be adapted to include specific examples of paid claim de­
velopment. Medical malpractice indemnity payments exhibit special 
behavior to which the work presented above may be applied. Such a 
claim typically is closed either with no payment or with a single pay­
ment of a final award or settlement. By defining the variable Xi,) to be 
the total amount paid for claims closing in period j (not the number 
of claims reported in a given period), assumptions 1 and 2 of Section 3 
will be met in this simplest of situations. 
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One requires that the closure lags of claims are independent and 
that, once determined, the amount of a claim cannot change in sub­
sequent periods. In reality, there are subtle problems with this. One 
must tabulate amounts for incidents rather than claims: a medical in­
cident may generate several claims whose closure lags are not only in­
terdependent, they are the same. Settlements could be paid as periodic 
payments which means that the amounts are actually paid over many 
periods violating the independence assumption. In practice, annuities 
may be purchased at the time of closure to fund the payments and limit 
the payment to a single period. 

Allocated loss adjustment expense (ALAE) payments for the same 
medical malpractice business do not exhibit these properties although 
they are often combined with indemnity for the purposes of develop­
ment analysis. Payments of ALAE are made incrementally from the time 
of the claim report to the time of its closure. Partial payments related 
to the same claim or incident will appear in different periods. Hence, 
the increments Xi,} cannot be expected to be independent when ALAE 
is included. 

Although a bias argument similar to the negative binomial case might 
be constructed, the interdependence of the payment increments is more 
complicated than the claim count increments. An essential part of the 
negative binomial example is being able to specify the nature of the in­
terdependence. For ALAE payments, it is not clear what the nature of 
this interdependence would be. 

For reported loss amounts, a similar problem arises. In this case, the 
value of the claim may include not only numerous partial payments but 
also changing estimates of the unpaid portion of the claim. The case 
reserve estimates are included in order to stabilize the development 
and bring the initial value of the claim as close as possible to its final 
value. This introduces the possibility of negative increments and serves 
only to complicate their interdependence. 

Extending the results to development of claim amounts is difficult. 
Perhaps the most promising approach would be to consider particu­
lar models presented by Stanard in his original paper where the claim 
amount structure is specified. 

7 Closing Comments 

It is not the purpose of this paper to advocate one set of assump­
tions regarding the independence of report lags over another. If one be­
lieves that expected development increments are directly proportional 
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to the accumulated total claims at a given point in time, then one might 
conclude that methods based on independent increment assumptions 
produce understated results. 

It is, however, apparent that Stanard's simulation test of the de­
velopment method produces the correct observation. If one believes 
that individual report lags are independent, then the loss development 
methods will produce overstated results. One thing that the analyti­
cal work presented here does not show is the magnitude of the bias. 
Stanard's work produced measures of that in specific cases. The key 
point is that there is a fundamental incompatibility between loss devel­
opment techniques and methods relying on independent report lags. 
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