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Pumping-Induced Drawdown and Stream Depletion
in a Leaky Aquifer System
by James J. Butler Jr.1, Xiaoyong Zhan2, and Vitaly A. Zlotnik3

Abstract
The impact of ground water pumping on nearby streams is often estimated using analytic models of the inter-

connected stream-aquifer system. A common assumption of these models is that the pumped aquifer is underlain
by an impermeable formation. A new semianalytic solution for drawdown and stream depletion has been devel-
oped that does not require this assumption. This solution shows that pumping-induced flow (leakage) through an
underlying aquitard can be an important recharge mechanism in many stream-aquifer systems. The relative impor-
tance of this source of recharge increases with the distance between the pumping well and the stream. The dis-
tance at which leakage becomes the primary component of the pumping-induced recharge depends on the specific
properties of the aquifer, aquitard, and streambed. Even when the aquitard is orders of magnitude less transmissive
than the aquifer, leakage can be an important recharge mechanism because of the large surface area over which it
occurs. Failure to consider aquitard leakage can lead to large overestimations of both the drawdown produced by
pumping and the contribution of stream depletion to the pumping-induced recharge. The ramifications for water
resources management and water rights adjudication can be significant. A hypothetical example helps illustrate
these points and demonstrates that more attention should be given to estimating the properties of aquitards under-
lying stream-aquifer systems. The solution presented here should serve as a relatively simple but versatile tool for
practical assessments of pumping-induced stream-aquifer interactions. However, this solution should not be used
for such assessments without site-specific data that indicate pumping has induced leakage through the aquitard.

Introduction
A large body of work has shown that pumping from

wells in shallow aquifers can affect flow in nearby streams
in interconnected stream-aquifer systems (Theis 1941;
Glover and Balmer 1954; Hantush 1965; Hunt 1999; Butler
et al. 2001). The degree to which streamflow is impacted
by pumping is an important consideration for applications
ranging from water resources management to water rights

adjudication to ecosystem assessments. Estimates of this
impact are often obtained using analytic models of the
stream-aquifer system. Although such models are greatly
simplified representations of reality, they can provide
important insights into system behavior when the major
features of the system are represented. Over the past 60
years, a number of analytic models have been developed
based on different conceptualizations of the stream-aquifer
system (see Zlotnik 2004 for a brief review). A common
assumption of these models is that the aquifer is underlain
by a unit of relatively low permeability that acts as an im-
permeable barrier to flow. Recently, Zlotnik (2004), follow-
ing up on work of Hantush (1955, 1964), has questioned
the universality of that assumption and shown that pump-
ing-induced flow (leakage) through an underlying unit of
low permeability (aquitard) can have a significant impact
on stream depletion calculations. That work, however,
focused only on stream depletion in a simplified stream-
aquifer system. An extension to consider both drawdown
and stream depletion in more realistic configurations is
clearly needed. That is the purpose of this paper.
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The primary objectives of this paper are to develop
a new semianalytic solution for assessing drawdown and
stream depletion in more realistic stream-aquifer systems
than those previously considered and to explore the
contribution of aquitard leakage to pumping-induced
recharge in those systems. The paper begins with the
development of a general solution for drawdown and
stream depletion in a stream-leaky aquifer system based
on the partially penetrating stream model of Butler et al.
(2001) and the Hantush (1960) model of flow in a com-
pressible aquitard. This solution is then used to assess the
impact of pumping-induced leakage on drawdown and
stream depletion. A hypothetical example motivated by
recent field work of the Kansas Geological Survey (KGS)
demonstrates the major points of the theoretical assess-
ment. This example also illustrates how uncertainty in
aquitard properties influences estimates of pumping im-
pacts in interconnected stream-aquifer systems. The paper
concludes with a discussion of the ramifications of aqui-
tard leakage for management of stream-aquifer systems
undergoing ground water development.

Problem Statement
This paper addresses the issue of the drawdown and

stream depletion produced by pumping from a fully
penetrating well in the leaky aquifer system of Figure 1.
Following the approach of Butler et al. (2001), flow prop-
erties are assumed uniform within each zone of the upper
aquifer, and vertical flow within that aquifer is neglected
(Dupuit assumptions). The stream and upper aquifer are
separated by a thin zone of relatively low hydraulic
conductivity, which is represented mathematically as an
incompressible layer (Hantush 1965). Portions of the
upper aquifer underneath the stream are confined but can
be confined or unconfined elsewhere. Flow in the aquitard
is incorporated using the model of Hantush (1960), which
includes aquitard storage but neglects lateral flow. Similar
to Hantush (1955, 1964), the underlying (lower) aquifer
is assumed to be a unit of relatively high permeability so
that heads within that aquifer are unaffected by pumping
in the upper aquifer. Note that the conceptualization con-
sidered here is markedly different from the semiconfined
system of Hunt (2003). In that case, a low-permeability
unit is overlying a shallow aquifer with an impermeable
base. Although pumping in the shallow aquifer induces
dewatering of the overlying aquitard, all recharge is ulti-
mately provided by the stream. In the model described
here, both the stream and the lower aquifer serve as sour-
ces of recharge. Further details concerning the mathemat-
ical representations used in this and related models can be
found in Butler et al. (2001), Zlotnik (2004), and Zhan
and Butler (2005).

Governing Equations
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Initial Conditions

siðx; y; 0Þ ¼ 0; 2xlb � x � xrb; 2N,y,N;

i ¼ 1; 2; 3
ð5Þ

scðx; y; z; 0Þ ¼ 0; 2xlb � x � xrb; 2N,y,N;

0 � z � bc
ð6Þ

Boundary Conditions
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Figure 1. Schematic (a) cross-sectional and (b) areal views
of the stream-aquifer system considered in this paper (nota-
tion explained in text; stream depletion in this configuration
consists of vertical leakage across the low-permeability
streambed; after Butler et al. [2001]).
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siðx;6N; tÞ ¼ 0; 2xlb � x � xrb; t > 0; i ¼ 1; 2; 3 ð8Þ

s1ð2w; y; tÞ ¼ s2ð2w; y; tÞ; 2N,y,N; t > 0 ð9Þ
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siðx; y; tÞ ¼ scðx; y; 0; tÞ; 2xlb � x � xrb;

2N,y,N; t > 0
ð13Þ

scðx;y;bc; tÞ¼0;2xlb� x� xrb;2N,y,N; t>0 ð14Þ

In the previous expressions, x, y, and z are Cartesian
coordinates; i is zone number (i ¼ 1, 2, 3); si(x, y, t) is
drawdown in the upper aquifer in zone i; Ti is trans-
missivity of the upper aquifer in zone i; Si is specific yield
or storativity of the upper aquifer in zone i; k9 is hydraulic
conductivity of streambed; b9 is streambed thickness;
sc(x, y, z, t) is drawdown in the aquitard; kc is hydraulic
conductivity of aquitard; Q is pumping rate from a well
fully penetrating the upper aquifer and located at x ¼ a,
y ¼ 0; xlb, xrb are distances from right boundary of stream
to left and right lateral boundary of the aquifer, respec-
tively; w is stream width; SSc is specific storage of the
aquitard; and bc is aquitard thickness. A constant rate of
pumping is assumed for this development, but a variable
rate of pumping or a cyclic pumping pattern can be
readily incorporated using standard convolution ap-
proaches (Jenkins 1968; Wallace et al. 1990).

The rate of stream depletion (�q) is defined as the
total volumetric discharge across the incompressible stream-
bed at any given time (Figure 1):

�qðtÞ ¼ k9

b0

Z N

2N

Z 0

2w

s2 dx dy; t > 0 ð15Þ

Equation 15 is written in terms of drawdown, not head,
so, as can be shown through superposition (e.g., Bear
1979), the calculated rate of stream depletion encom-
passes depletion produced by direct loss from the stream
channel as well as that produced by interception of flow
to the stream (the case of a water table sloping toward the
stream). Although Equation 15 is written for a stream-
aquifer system of infinite length parallel to the stream,
Butler and Tsou (2003) have proven that �q estimates
obtained using the infinite-stream formulation of Equa-
tion 15 are also applicable to finite-length stream systems
truncated by impermeable boundaries (e.g., dam or bed-
rock high).

The mathematical model defined by Equations 1
through 15 was solved using the same approach as out-
lined in Butler et al. (2001). Transform space expressions
for both drawdown and the rate of stream depletion are
given in Appendix 1. The form of the solution is the same
as that of Butler et al. (2001) except that the ki parameter
has been redefined to incorporate leakage through the
underlying aquitard. Further details are provided in Zhan
and Butler (2005).

This new solution reduces to existing solutions for
special cases. The expressions for drawdown and the
stream depletion rate reduce to those of Butler et al. (2001)
when the aquitard is considered an impermeable unit
(kc/0), while the expression for drawdown reduces to that
of Hantush (1960) for the case of a uniform aquifer (Ti ¼ T
and Si ¼ S) and an impermeable streambed (k9/0). If the
incompressible aquitard conceptualization of Hantush and
Jacob (1955) is adopted (SSc/0), the stream is assumed to
penetrate through the entire upper aquifer and to be in
direct hydraulic connection with that aquifer (k9/N or
b9/0), and the upper aquifer is assumed uniform, the
expression for�q reduces to that of Hantush (1955, 1964).

The solution was also compared to a series of MOD-
FLOW (Harbaugh and McDonald 1996) simulations
(Table 1). Comparisons were performed for both draw-
down and stream depletion. In all cases, the results of the
solution and MODFLOW were in close agreement. Two
example comparisons will be presented in later figures.

Given the preceding discussion, the proposed solu-
tion appears to be a reasonable representation of pump-
ing-induced interactions in the interconnected stream-
leaky aquifer system of Figure 1. Therefore, for the
remainder of this paper, the solution is used to assess the
impact of aquitard leakage on drawdown and stream
depletion. Dimensionless parameters are used to increase
the generality of the presentation. The major dimension-
less parameters used in this work are defined in Table 2.

Impact of Aquitard Leakage

Drawdown
Pumping in the shallow aquifer of Figure 1 will

induce movement of water upward from the lower aqui-
fer. This upward flux (leakage) can have a considerable
impact on drawdown. The magnitude of that impact
depends on the distance of the pumping well from the
stream and the contrast between aquifer, aquitard, and
streambed properties. The influence of the distance be-
tween the pumping well and the stream, and the contrast
between aquifer and aquitard properties, is incorporated
in the aquitard leakage parameter (Bdc). As shown in
Figure 2, a range of drawdown responses can be gener-
ated by varying this parameter (if all other quantities are
held constant, each increment in Bdc on Figure 2 repre-
sents an order of magnitude change in the hydraulic con-
ductivity of the aquitard). If the pumping well is close to
the stream, drawdown responses equal to those calculated
assuming an impermeable base (Bdc ¼ N) can be
obtained with a relatively large value for the hydraulic
conductivity of the aquitard. Thus, aquitard leakage
should have a very limited impact when pumping wells
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are close to streams. However, if the pumping well is at
a much larger distance from the stream (e.g., 2 orders of
magnitude further away), a much smaller value (4 orders
of magnitude less) for the hydraulic conductivity of the
aquitard is required to replicate drawdown responses ob-
tained assuming an impermeable base and aquitard leak-
age can potentially have a large impact on drawdown
(Figure 2). The areal contour plots of Figure 3 demon-
strate that aquitard leakage will impact both the extent
and symmetry of the cone of depression. For a given set
of aquifer and streambed properties, the areal extent of
the cone of depression decreases and the symmetry in-
creases with increases in the hydraulic conductivity of the
aquitard. In both cases shown in Figure 3, the drawdown
has stabilized (note the smaller drawdown for the case of
aquitard leakage consistent with Figure 2). However, the
primary mechanism producing that stabilization differs
between the two cases. As discussed in the following

section, failure to recognize that difference can lead to
a misidentification of the major source of the pumping-
induced recharge. The differences in the symmetry of the
cone of depression shown in Figure 3 indicate that a com-
parison of drawdown from an observation well located
midway between the stream and the pumping well with
that observed at a well a similar distance from the pump-
ing well but in the opposite direction may provide some
insight into the recharge source.

Stream Depletion
All of the analytic models currently used to assess

the impact of ground water development on streamflow
are based on the assumption that the shallow aquifer is

Table 1
Grid Details for MODFLOW Model

Size of model—252 columns (x), 249 rows (y), and 3 layers (z).
Spacing in x direction—from center of grid (cell with pumping well) to right boundary, spacing is as follows (all distances in
meters, number of columns at a particular spacing given in parentheses): �x ¼ 1.0 m (101—includes cell with well),
�x ¼ 1.5 m (1), �x ¼ 2.0 m (1), �x ¼ 3.0 m (1), �x ¼ 4.5 m (1), �x ¼ 6.0 m (1), �x ¼ 9.0 m (1), �x ¼ 13j m (1),
�x ¼ 20j m (1), �x ¼ 30j m (1), �x ¼ 45j m (1), �x ¼ 60j m (1), and �x ¼ 90j m (1), where j ¼ 10i, i ¼ 0, 1, 2.
Same spacing from center of grid to left boundary except that three additional columns are used to refine grid in the
vicinity of stream (location 1000 to 1010 m to the left of pumping well for results presented in Figures 2 and 4).

Spacing in y direction—from center of grid (cell with pumping well) to top boundary, spacing is as follows (all distances
in meters, number of rows at a particular spacing given in parentheses): �y ¼ 1.0 m (101—includes cell with well),
�y ¼ 1.5 m (1), �y ¼ 2.0 m (1), �y ¼ 3.0 m (1), �y ¼ 4.5 m (1), �y ¼ 6.0 m (1), �y ¼ 9.0 m (1), �y ¼ 13j m (1),
�y ¼ 20j m (1), �y ¼ 30j m (1), �y ¼ 45j m (1), �y ¼ 60j m (1), and �y ¼ 90j m (1), where j ¼ 10i, i ¼ 0, 1, 2.
Same spacing from center of grid to bottom boundary.

Equal spacing in z direction: �z ¼ 10.0 m.
Boundary conditions—no-flow boundaries are defined on all sides of grid (x,y,z). Boundaries in x and y directions are sufficiently
far from the pumping well that they have negligible impact on the simulation results. Head kept constant in bottom
layer of model.

Table 2
Definition of Major Dimensionless Parameters

Parameter Notation Expression1

Drawdown Fi siT/Q
Stream depletion rate �Q �q/Q
Time s (Tt)/(a2S)
Stream leakage Bdsa (b9T/k9a2)1/2

Aquitard leakage Bdc (bcT/kca2)1/2

Storage ratio Sd (bcSSc)/S
Coordinate—direction
perpendicular to stream

n x/a

Coordinate—direction
parallel to stream

g y/a

Width of stream x w/a
Distance to the left
aquifer boundary

XLB xlb/a

Distance to the right
aquifer boundary

XRB xrb/a

1Variations in transmissivity and storativity of upper aquifer ignored in this
study (i.e., Ti ¼ T and Si ¼ S).

Figure 2. Dimensionless drawdown (s3T/Q) vs. dimension-
less time (Tt/a2S) plots as a function of the aquitard leakage
parameter (Bdc = [Tbc/kca2]1/2; drawdown at n = x/a = 0.95,
g = y/a = 0; Bdsa = [Tb9/k9a2]1/2 = 0.01; x = w/a = 0.01; Sd =
(bcSSc)/S = 1; XLB = xlb/a = 2N; XRB = xrb/a = N; Bdc = N is
for upper aquifer with an impermeable base (kc = 0, same as
solution of Butler et al. [2001]); MODFLOW results gener-
ated using model grid described in Table 1).
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underlain by an impermeable unit. In that conceptualiza-
tion, stream depletion must ultimately serve as the source
of all of the discharged water (normalized stream deple-
tion rate [�q/Q] goes to one with continued pumping).
However, as shown by Zlotnik (2004) and others, the ulti-
mate source of the discharged water may not necessarily
be stream depletion when the underlying unit is an aqui-
tard (i.e., normalized stream depletion rate may stabilize
at a value less than one with continued pumping).
Figure 4 illustrates how stream depletion depends on the
distance of the pumping well from the stream, and the
contrast in aquifer and aquitard properties. Although
stream depletion is the major source of the pumping-
induced recharge when the well is in the immediate vicin-
ity of the stream, aquitard leakage becomes an important
component of that recharge for pumping wells located at
greater distances from the stream. Even when the hydrau-
lic conductivity of the aquitard is orders of magnitude
less than that of the aquifer, aquitard leakage cannot be

ignored because of the very large surface area through
which that leakage occurs. Clearly, assessments of pump-
ing-induced impacts on streamflow should consider the
contribution of leakage through the underlying intervals
of low permeability if the pumping well is not in the
immediate vicinity of the stream.

The model defined by Equations 1 through 15
incorporates aquitard storage following the approach of
Hantush (1960). The assumption of negligible aquitard stor-
age (Hantush and Jacob 1955), however, is often invoked
for field investigations. Figure 5 demonstrates that the
ramifications of this mathematically convenient assump-
tion are of little practical importance. Only when the stor-
ativity of the aquitard (bcSSc) is greater than that of the
shallow aquifer (S) will this assumption introduce signifi-
cant error into the stream depletion calculations. That is a
relatively rare condition because the shallow aquifer will
often be unconfined and thus will have a specific yield that
is considerably larger than the storativity of the aquitard.

Example Application
A hypothetical example based on field investigations

of the KGS can be used to illustrate some of the practical
ramifications of the preceding discussion. In the summer
of 2001, the KGS established a research site along the
Arkansas River near the city of Larned in south-central
Kansas. The hydrostratigraphy at the site as determined
by electrical conductivity profiling (Schulmeister et al.
2003) is illustrated in Figure 6. Information about the
hydraulic properties of the two aquifers and the interven-
ing aquitard was obtained from two multiday pumping
tests performed by the KGS (Butler et al. 2004). This
information can be used to assess the potential impact of
aquitard leakage on drawdown and stream depletion in
such a setting.
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Figure 3. Contour plots of dimensionless drawdown (s = 10;
Bdsa = 0.01; x = 0.01; Sd = 1; XLB = 2N; XRB = N; stream
location marked by two parallel lines at n = 20.01 and 0;
contour interval is 0.05 unless labeled otherwise): (a) no
leakage (Bdc = N) and (b) leakage through underlying aqui-
tard (Bdc = 0.316).

Figure 4. Normalized stream depletion rate (Dq/Q) vs.
dimensionless time plots as a function of the aquitard leak-
age parameter (Bdsa = 0.01; x = 0.01; Sd = 1; XLB = 2N;
XRB = N; MODFLOW results generated using model grid
described in Table 1).
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Figure 7a presents the calculated drawdown after 7 d
of pumping a hypothetical well in the Arkansas River
alluvial aquifer located 250 m from the river. Parameters
for the alluvial aquifer and underlying aquitard used to
generate this and subsequent figures are listed in Table 3.
In this case, the assumption of an impermeable base (kc ¼ 0)
appears to have little impact on the drawdown calcu-
lations as the drawdown calculated assuming an imper-
meable base to the upper aquifer is essentially the same as
that of Figure 7a.

In practice, there is often considerable information
about aquifer properties but little knowledge of the aqui-
tard beyond its lithology. Based on tabulated ranges for the
hydraulic conductivity of materials that comprise uncon-
solidated aquitards (Freeze and Cherry 1979), 3 to 4 orders
of magnitude would be a reasonable uncertainty range for a

lithology-based estimate of the hydraulic conductivity of an
aquitard. Figure 7b illustrates how a 2 order of magnitude
increase in aquitard conductivity (kc ¼ 2.4 3 1026 m/s)
would impact drawdown estimates at the Larned site. As
expected, an underprediction in aquitard conductivity re-
sults in an overprediction of drawdown.

Similar calculations can be performed for stream
depletion at the Larned site. Figure 8 shows the normal-
ized stream depletion rate induced by hypothetical pump-
ing wells located at two distances (50 and 250 m) from
the river calculated using the parameters of Table 3. The
rate of stream depletion computed assuming an imperme-
able base to the alluvial aquifer (kc ¼ 0) is also plotted for
reference purposes. The rate during the recovery period is
calculated using superposition (Jenkins 1968; Wallace
et al. 1990). The area under each of the normalized
stream depletion rate curves of Figure 8 is equal to the
total volume of stream depletion normalized by the pump-
ing rate; the relative contributions of stream depletion and
aquitard leakage to the total volume of pumping-induced
recharge can therefore be readily assessed by computing
that area. In this case, upward flow through the underly-
ing aquitard appears to be of relatively little importance
for pumping wells near the river as aquitard leakage con-
tributes only 7% of the total volume of recharge for
a pumping well located 50 m from the river (i.e., the vol-
ume of stream depletion computed from the 50-m curve
of Figure 8 is equal to 93% of the total volume pumped).

Figure 5. Normalized stream depletion rate vs. dimension-
less time plots as a function of the storage parameter ratio
(Bdc = 3.16; Bdsa = 0.1; x = 0.1; XLB = 2N; XRB =N).

Figure 6. Generalized hydrostratigraphy of the Larned
Research Site determined from direct-push electrical con-
ductivity profiling (after Butler et al. 2004).

Figure 7. Contour plots of drawdown calculated for a hypo-
thetical pumping well located 250 m from the river at the
Larned Research Site (t = 6.05 3 105 s; river marked by two
parallel lines at x = 210 and 0 m; contour interval is 0.05 m
[drawdown < 0.30 m] and 0.10 m [drawdown > 0.30 m]):
(a) parameters of Table 3 and (b) aquitard conductivity 2
orders of magnitude greater than that of Table 3 (note the
change in the areal extent of the cone of depression between
the two plots).
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However, the relative importance of aquitard leakage in-
creases with distance from the river; leakage contributes
24% of the total volume of recharge for a pumping well
250 m from the river. At large distances from the river,
aquitard leakage is the major contributor to recharge
(65% of the total volume of recharge for a pumping well
located 1000 m from the river; not included on Figure 8).
As shown in this example, stream depletion is not limited
to the actual period of pumping. In many cases, the
majority, if not all, of the stream depletion may occur in
the recovery period (Jenkins 1968; Wallace et al. 1990).

Figure 9 illustrates how uncertainty in aquitard con-
ductivity would impact estimates of the rate of stream

depletion at the Larned site. Similar to drawdown, the
contribution of aquitard leakage to total recharge is highly
dependent on the hydraulic conductivity of the aquitard.
If kc is 1 order of magnitude greater than that of Table 3
(kc ¼ 2.4 3 1027 m/s), the aquitard leakage would con-
tribute approximately 21% and 59% of the total volume
of recharge for pumping wells located 50 and 250 m from
the river, respectively. If kc is 2 orders of magnitude
greater than that of Table 3 (kc ¼ 2.4 3 1026 m/s), the
aquitard leakage would contribute 53% and 94% of the
total volume of recharge for these same wells, respec-
tively. If the pumping well is 1000 m from the river, leak-
age contributes almost all of the total volume of recharge
for both cases (97% and >> 99% for kc 1 and 2 orders of
magnitude greater than that of Table 3, respectively).

The impact of aquitard conductivity lower than that
of Table 3 will not be visually apparent in the plotting for-
mat of Figure 9. However, that impact cannot be ignored,
particularly when the pumping well is located at a rela-
tively large distance from the river. For example, if kc is
an order of magnitude lower than that of Table 3 (kc ¼
2.4 3 1029 m/s), aquitard leakage will contribute 15% to
the total volume of recharge induced by a pumping well
located 1000 m from the river. A 2 order of magnitude
smaller kc (2.4 3 10210 m/s) will result in a 7% contribu-
tion for this same configuration. In both cases, the contri-
bution of aquitard leakage is vastly different from the 65%
contribution calculated for the parameters of Table 3.

This hypothetical example demonstrates the impact
of aquitard leakage on drawdown and stream depletion in
a setting commonly faced in the field. For pumping wells
not located in the immediate vicinity of the stream, the
potential significance of this impact on stream depletion
calculations cannot be overstated. Virtually all of the
discharged water may ultimately originate from aquitard
leakage and not stream depletion as commonly assumed.

Table 3
Parameter Values for Example Application

Parameter Value

Transmissivity1 4.1 3 1023 m2/s
Specific yield1 0.2
Aquifer thickness1 4.5 m
Stream width 10 m
Streambed hydraulic conductivity 1.2 3 1025 m/s
Streambed thickness 0.3 m
Aquitard hydraulic conductivity1 2.4 3 1028 m/s
Aquitard storage coefficient 1.0 3 1025

Aquitard thickness1 5.2 m
Pumping rate 0.00452 m3/s
Duration of pumping1 604,800 s
Distance to the left aquifer boundary 2N
Distance to the right aquifer boundary N

1Parameter values determined from pumping tests described in Butler et al.
(2004). Absence of flow in river during these tests prevented estimation of
streambed parameters from the drawdown data. Streambed parameters were
therefore assigned using physically reasonable values for this setting.

Figure 8. Normalized stream depletion rate vs. time plots
for hypothetical pumping wells located 50 and 250 m from
the river at the Larned Research Site (kc = 0 is for alluvial
aquifer with impermeable base; note that plotting format
causes apparent differences between curves to be less than
actual).

Figure 9. Normalized stream depletion rate vs. time plots as
a function of the hydraulic conductivity of the aquitard for
hypothetical pumping wells located 50 and 250 m from the
river at the Larned Research Site (solid line same as in
Figure 8; note that plotting format causes apparent differ-
ences between curves to be less than actual).
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Clearly, failure to consider this mechanism can have seri-
ous ramifications for management of water resources in
interconnected stream-aquifer systems.

Conclusions
A new semianalytic solution has been presented for

drawdown and stream depletion in an interconnected
stream-aquifer system. This solution is based on a model
of the stream-aquifer system that is more realistic than
that employed in the most commonly used methods for
estimation of the impacts of pumping on nearby streams.
In particular, following the approach of Hantush (1955,
1964), the base of the aquifer is no longer considered
to be an impermeable barrier to flow. Thus, pumping-
induced leakage through an underlying aquitard, a rarely
considered but undoubtedly not uncommon recharge
mechanism, is incorporated into drawdown and stream
depletion calculations. The major findings of this study
are described in the following paragraphs.

Aquitard leakage can be an important source of
pumping-induced recharge in interconnected stream-aqui-
fer systems. The importance of this recharge mechanism
increases as the distance between the pumping well and
the stream increases. In contrast to the conditions pre-
dicted by the commonly used analytic methods, there will
be a distance beyond which drawdown may stabilize but
virtually none of the pumping-induced recharge will orig-
inate from stream depletion. The distance at which aqui-
tard leakage becomes the dominant recharge mechanism
depends on the specifics of the system under consider-
ation. However, even when there is a very large contrast
between the hydraulic conductivity of the aquitard and
that of the aquifer, aquitard leakage can be the dominant
recharge mechanism because of the large surface area
over which that leakage occurs.

The ramifications of uncertainty in the estimate of
the hydraulic conductivity of the aquitard depend most
strongly on the distance between the pumping well and
the stream. As this distance increases, the importance of
aquitard leakage increases and, therefore, the impact of
uncertainty in aquitard conductivity increases. This is in
marked contrast to the case of streambed properties,
where the relative impact of the uncertainty in streambed
properties decreases as the distance between the pumping
well and the stream increases (Butler et al. 2001). Thus,
knowledge of streambed properties is not required to
assess impacts of pumping wells located at large distan-
ces from a stream. Ignoring the hydraulic conductivity of
the aquitard for those same wells, however, can poten-
tially lead to large errors in assessments of pumping
impacts in interconnected stream-leaky aquifer systems.

The preceding findings indicate that considerably
more attention should be given to estimating the hydrau-
lic properties of aquitards underlying stream-aquifer sys-
tems. Van der Kamp (2001) summarizes the major
methods for obtaining hydraulic conductivity estimates in
aquitards. Large-scale pumping tests can provide useful
estimates of aquitard conductivity, but logistical issues
may often limit their use. Slug tests, particularly when
configured for use in direct-push equipment (Butler et al.

2002), may be the most convenient means of acquiring
information about the hydraulic conductivity of an aqui-
tard for investigations of stream-aquifer systems. How-
ever, slug tests only provide information about a limited
portion of the aquitard, so the resulting conductivity esti-
mates may not be representative of the bulk average.
Clearly, further work is needed on the development of
practical methods for obtaining estimates of aquitard con-
ductivity for stream-aquifer assessments.

This work clearly shows that aquitard leakage can po-
tentially be an important recharge mechanism in stream-
aquifer systems, regardless of the location of the pumping
well with respect to the stream. Failure to consider this
mechanism can lead to large overestimations of the contri-
bution of stream depletion to the pumping-induced recharge.
The ramifications for decisions regarding water resources
management and water rights adjudication in interconnected
stream-aquifer systems can be significant. The solution pre-
sented here provides a convenient tool for assessing the rela-
tive contributions of aquitard leakage and stream depletion
to the total pumping-induced recharge, thereby shoring up
the technical basis of regulatory decisions.

Finally, we should emphasize that this new solution
and the insights derived from it must be considered
within the light of the major assumptions upon which the
solution is based. These assumptions and their ramifica-
tions have been discussed in detail by Butler et al. (2001)
and Zlotnik (2004). However, two points are worthy of
further emphasis. First, as a result of the constant-head
condition of Equation 14, the lower aquifer is assumed to
be able to provide an unlimited amount of water without
significant changes in head. An observation well is there-
fore needed in the lower aquifer to verify that large head
changes, which would greatly diminish the upward flux,
are not induced by pumping in the overlying unconfined
aquifer. The viability of the constant-head condition may
deteriorate as the duration of pumping increases. Batu
(1998) summarizes past work on the dependence of this
assumption on pumping duration for leaky aquifer sys-
tems in the absence of a stream. That previous work
should be equally appropriate for the stream-aquifer sys-
tems considered here.

Second, prior to invoking aquitard leakage as an
important recharge mechanism, one must demonstrate the
existence of the assumed pumping-induced head gradient
within the aquitard. The solution presented here should
not be used for practical assessments of pumping impacts
on nearby streams without site-specific data indicating
both relatively stable heads in the lower aquifer and
a pumping-induced gradient within the aquitard.
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Appendix 1
In this section, the transform space form of the solu-

tion to the mathematical model defined by Equations 1
through 15 is presented. A general derivation and
a description of the approach to invert the transform space
expressions are given in Zhan and Butler (2005).

A solution for drawdown can be obtained from Equa-
tions 1 through 14 using integral transforms (Robinson
1968).ALaplace transform in time followedbyanexponen-
tial Fourier transform in the y direction produces Fourier-
Laplace space analogues to Equations 1 through 3. The
solution to these equations in Fourier-Laplace space can
be written as:

s1ðx;xf ; pÞ ¼ k1
�
e2k1xlb1k1x 1 e2k1x

�
ðA:1Þ

s2ðx;xf ; pÞ ¼ k1
�
a1e

k2x 1 b1e
2k2x

�
ðA:2Þ

s3ðx;xf ; pÞ ¼ k1
�
c1e

k3x 1 d1e
2k3x

�
; 0 � x,a ðA:3aÞ

s3ðx; xf ; pÞ ¼
�
k1 f1
g1

��
ek3x 1 e2k3xrb2k3x

�
; a,x� xrb

ðA:3bÞ

where si is the Fourier-Laplace transform of si;
p is the Laplace transform variable; xf is the
Fourier transform variable; k1 ¼ ðx2

f 1 G1 1 P1pÞ1=2;
k2 ¼ ðx2

f 1 G2 1 L 1 P2pÞ1=2; k3 ¼ ðx2
f 1 G3 1 P3pÞ1=2;

Pi ¼ Si/Ti; L ¼ k9/(b9T2); Gi ¼ ðkcSScpÞ1=2=Ti;
a1 ¼ 1

2 ðe2k1xlb2k1w1k2w 1 eðk11k2ÞwÞ 1 k1
2c1k2

ðe2k1xlb2k1w1k2w

2 eðk11k2ÞwÞ; b1 ¼ 1
2 ðe2k1xlb2k1w2k2w 1 eðk12k2ÞwÞ

2 k1
2c1k2

ðe2k1xlb2k1w2k2w 2 eðk12k2ÞwÞ;

c1 ¼ 1
2

h
a1 1 b1

i
1 k2

2c2k3

h
a1 2 b1

i
;

d1 ¼ 1
2

h
a1 1 b1

i
2 k2

2c2k3

h
a1 2 b1

i
;

e1 ¼ 2 Q=ðT3k3p
ffiffiffiffiffiffi
2p

p
Þ; f1 ¼ c1e

k3a 1 d1e
2k3a;

g1 ¼ ek3a 1 e2k3xrb2k3a; h1 ¼ c1e
k3a 2 d1e

2k3a;

j1 ¼ ek3a 2 e2k3xrb2k3a; k1 ¼ e1g1=½ f1j1 2 h1g1�; c1 ¼ T2/T1;

and c2 ¼ T3/T2.

The Laplace-space expression for the rate of stream
depletion in a laterally bounded leaky aquifer is:

�qðpÞ ¼ k1
k�2

h
a1

�
1 2 e2k�2w

�
2 b1

�
1 2 ek

�
2w
�i

ðA:4Þ

where �q is the Laplace transform of �q and
k�2 ¼ ðG21L1P2pÞ1=2.
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