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9 Microwave Remote 
Sensing of Soil Moisture
Science and Applications

Son V. Nghiem, Brian D. Wardlow, 
David Allured, Mark D. Svoboda, 
Doug LeComte, Matthew Rosencrans, 
Steven K. Chan, and Gregory Neumann

9.1  INTRODUCTION

Soil moisture is a fundamental link between global water and carbon cycles and 
has major applications in predicting natural hazards such as droughts and floods 
(National Research Council, 2007). From precipitation data, soil wetness can be 
estimated by hydrological land-surface models. In the United States, preliminary 
precipitation data are based on measurements gathered from many active stations 
nationwide each month, and it takes 3–4 months to assemble final, quality-con-
trolled data. In the western United States, some climate divisions may have no sta-
tions reporting in a particular month or may lack first- or second-order stations, and 
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significant blockages by mountains limit the capability of precipitation measurement 
by surface rain radars (Maddox et al., 2002).

Soil moisture can also be measured directly, using data from networks like the 
Oklahoma Mesonet System (Illston et al., 2004) and the Soil Climate Analysis 
Network (SCAN) (USDA, 2009a). However, measurements from such networks are 
generally too sparse for most applications and are of varying accuracy. Soil moisture 
observations have been added to the SNOTEL network (USDA, 2009b), but fully 
calibrated data are not yet available routinely. Given the limited number of stations 
collecting point-based, in situ data, this information may not be representative of 
regional soil moisture conditions.

Soil moisture measurements over a large spatial extent (areal data rather than 
point data) with few or no missing gaps are crucial for characterizing the land sur-
face water distribution from regional to continental scales. Recognizing the impor-
tance of soil moisture as a key variable for drought monitoring, satellite microwave 
remote sensing soil moisture retrievals using both passive and active sensors hold the 
potential to begin to fill this informational void in the United States and elsewhere.

Passive microwave radiometers, such as the Scanning Multichannel Microwave 
Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), Tropical Rainfall 
Measuring Mission (TRMM) Microwave Imager (TMI), Advanced Microwave 
Scanning Radiometer on the Earth Observing System (AMSR-E), and Soil Moisture 
and Ocean Salinity sensor (SMOS), measure the natural emission of microwave energy 
from the land surface, which is used to derive soil moisture using various algorithms 
(Wang, 1985; Owe et al., 1988; Kerr and Njoku, 1990; Teng et al., 1993; van de Griend 
and Owe, 1994; Engman, 1995; Jackson, 1997; Kerr et al., 2001; Njoku et al., 2003). 
These passive radiometers operate at microwave frequencies from L to Ka bands with 
additional higher frequencies for other applications.

In contrast, active sensors, including synthetic aperture radar (SAR) and scat-
terometers, transmit signals to a targeted surface area and measure the scatter-
ing return. Many approaches have been used to estimate soil moisture from data 
sets acquired by SARs including Seasat, Spaceborne Imaging Radar-C (SIR-C), 
European Remote Sensing (ERS), RADARSAT, Environmental Satellite (Envisat), 
and Advanced Land Observing Satellite (ALOS) (Blanchard and Chang, 1983; 
Cognard et al., 1995; Dubois et al., 1995; Loew et al., 2006; Shrivastava et al., 2009; 
Takada et al., 2009), and by scatterometers such as ERS and QuikSCAT (QSCAT) 
(Wagner et al., 1999; Nghiem et al., 2000; Wagner and Scipal, 2000). In this chapter, 
we review the science principle of active and passive remote sensing of soil moisture 
and then illustrate results from AMSR-E and QSCAT for drought applications.

9.2  MICROWAVE REMOTE SENSING SCIENCE

The principle of microwave remote sensing of soil moisture is based on the sensitiv-
ity of soil permittivity to the amount of liquid water. The permittivity of a medium, 
like moist soil, characterizes electromagnetic wave propagation and attenuation in the 
medium. Both brightness temperature (BT) (measured by a radiometer) and backscat-
ter (measured by a radar) are dependent on the soil permittivity. Empirical models have 
been developed in order to relate volumetric content (mv) for different soil types to the 
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dielectric constant (the permittivity of a medium relative to that of free space) at micro-
wave frequencies between 1.4 and 18 GHz (Dobson et al., 1985; Hallikainen et al., 1985).

Although in situ measurements of soil dielectric constant can be made with a 
probe (Jackson, 1990), satellite remote sensors do not directly provide soil dielectric 
measurements. Instead, these sensors acquire BT or backscatter signatures, which 
are dependent on soil dielectric properties and thus soil moisture. Such a relation-
ship enables the inversion of soil moisture from BT or backscatter data, but it can 
be complicated by vegetation cover, surface roughness, rainfall, and anthropogenic 
effects (e.g., radio frequency interference [RFI]), which have different impacts on the 
accuracy of soil moisture retrieval at different microwave frequencies.

9.2.1  Passive Remote Sensing

The retrieval of soil moisture from BT has been studied by many researchers 
(see summary by Njoku et al., 2003) and is reviewed briefly here. For an isothermal veg-
etated soil surface with physical temperature Ts, BT ( )bT p  can be expressed as follows:

	
T T e rbp s c p c c= − + − − −[ ] + − { }sp spexp( ) ( ) exp( ) exp( )τ ω τ τ1 1 1 	 (9.1)

where the soil emissivity is e rsp sp= −1  for soil reflectivity rsp, which is influenced by soil 
moisture through the effect of moisture on the soil dielectric constant. In Equation 9.1, 
τc and ωp are the vegetation opacity and the vegetation single scattering albedo, respec-
tively. Multiple scattering in the vegetation layer is neglected, and a quasi-specular soil 
surface and no reflection at the air–vegetation boundary are assumed in Equation 9.1. 
Vegetation opacity and multiple scattering have less effect at lower microwave frequen-
cies. The effective emitting depth is controlled by the near-surface moisture profile and 
is smaller for higher microwave frequencies and for wetter soils. Although microwaves 
can only sense soil moisture in the top soil layer (in millimeters to decimeters, depend-
ing on frequencies), there is a correlation to soil moisture in deeper soil at night when 
the soil moisture and temperature profiles are more uniform.

For a fixed viewing angle, an empirical formulation has been found useful for 
relating the reflectivity of a rough soil surface, rsp, to that of the equivalent smooth 
surface, roq (Wang and Choudhury, 1981; Wang, 1983), which is expressed as follows:

	
r Q r Qr hsp op oq= − +  −( ) exp( )1 	 (9.2)

where
p and q represent either of the orthogonal polarization states (vertical, v, or hori-

zontal, h)
Q and h are roughness parameters

Q may be approximated as zero at low frequencies (e.g., L and C bands). The separa-
tion of soil moisture and roughness effects through Equation 9.2 is not precise, and the 
parameter h has a residual moisture dependence (Li et al., 2000; Wigneron et al., 2001).
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To normalize the surface temperature (Ts) dependence in Equation 9.1, the polar-
ization ratio (PR) is obtained by

	
PR

T T

T T
bv bh

bv bh

= −
+ 	

(9.3)

which is suitable for multichannel data taken at the same incidence angle (Kerr and 
Njoku, 1990). At large incidence angles (e.g., >50°), the difference between the verti-
cally and horizontally polarized BTs for bare soils is large, giving rise to a significant 
PR signal. However, the observation path length through the vegetation becomes 
longer at large incidence angles, increasing vegetation attenuation and thus decreas-
ing sensitivity to soil moisture.

While Equations 9.1 through 9.3 form a general theoretical basis for soil moisture 
retrieval from passive microwave data, several approaches have been developed for 
different satellite data sets using different methods to correct for effects of soil type, 
roughness, vegetation, and surface temperature (Njoku et al., 2003). Nevertheless, 
further advances are needed for various nonisothermal conditions and multiple inter-
actions between the soil surface and vegetation cover at different growth stages. For 
data from the AMSR-E on the EOS Aqua satellite, the soil moisture retrieval utilizes 
primarily the frequency channels of 10.7 and 18.7 GHz to consider effects of atmo-
spheric and vegetative attenuation and to minimize the requirement for ancillary 
data inputs. The TMI has 10.7 and 19.3 GHz channels, which can be used to obtain 
PR for soil moisture applications with a better consistency at the lower frequency 
(Njoku et al., 2003). Further details of the retrieval can be found in the literature 
(Njoku and Li, 1999; Njoku et al., 2003; Njoku, 2004).

9.2.2  Active Remote Sensing

In active remote sensing, soil moisture can be derived from backscatter measured 
by an SAR at a high spatial resolution with a limited spatial and infrequent repeat 
coverage and by a scatterometer at a low spatial resolution with a large areal and 
frequent coverage. Many theoretical models have been developed to characterize 
backscatter signatures of vegetated soil. Here, a scattering model based on the ana-
lytic vector wave theory (Nghiem et al., 1993a) together with a practical formulation 
is reviewed.

Backscatter σ0 from moist soil with vegetation cover is determined from an 
ensemble average of the correlation of scattered field components E as follows:

	

E r E r k d d p dr dr Cs s f f f , f

V

jklm0 0 0
4

1 1
0

1 1

1

( )⋅ ( ) = ( )∫ ∫ ∫* ψ ψ
π π

ξ

0 0

2

φ φ r ,, ,

,

r

r r

1
0

01 1 1 1 01

1

; ψ f f

Vi, j,k,l,m

x,y,z

ij kG r F G

φ( )

× ( ) ( )  ⋅

∫∑
iil mFr r r,

*
1
0

1 1
0( ) ( )





		
		

(9.4)
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where subscript 0 represents the air space above the vegetation, and subscript 1 indi-
cates the vegetation cover occupying volume V1 over the soil surface. The dyadic 
Green’s function G and the mean field F are obtained as described by Nghiem 
et al. (1990). The correlation function C characterizes the vegetation scatterers hav-
ing different size, shape, and orientation angle ψf in elevation and ϕf in azimuth. 
For the vegetation canopy, the effective permittivity is calculated under the strong 
permittivity fluctuation theory, which accounts for wave attenuation including scat-
tering and absorption loss (Nghiem et al., 1993a). The analytic vector wave theory 
accounts for fully polarimetric scattering, preserves the phase information, and 
includes multiple reflection and transmission interactions of upgoing and downgo-
ing electromagnetic waves with the soil surface. The solution conveys soil moisture 
information, because soil transmissivity and reflectivity are controlled by the soil 
dielectric constant as a function of volumetric soil moisture.

Rough surface scattering can be included in the contribution to the total back-
scatter. The small-scale roughness of the soil surface is described with a standard 
deviation height and a slope. When a large-scale roughness also exists, the overall 
roughness is accounted for by a joint probability density function for both roughness 
scales (Nghiem et al., 1995). The vegetation volume scattering and soil surface scatter-
ing are assumed to be uncorrelated because of independent statistical representations 
of vegetation scatterers (e.g., leaves, twigs, and branches) and soil surface roughness. 
As a result, the total backscatter is a sum of the vegetation volume backscatter and soil 
surface backscatter. In the layer scattering configuration, such as a vegetation layer 
over a rough soil surface, contributions from the rough surface scattering are consid-
ered with wave interactions, differential propagation delay, and wave attenuation in 
the vegetation layer (Nghiem et al., 1995), which can be effectively anisotropic when 
vegetation scatters have a preferential directional structure (e.g., planophile, plagio-
phile, erectophile, or extremophile orientation distribution) (Nghiem et al., 1993b).

The backscatter from a rough soil surface depends strongly on the soil dielectric 
constant and the transmissivity and reflectivity because of wave interactions with 
the soil boundary. Thus, the surface scattering also contains a soil moisture signa-
ture in addition to the soil moisture information in the interactive volume scattering 
components. However, a dense vegetation canopy can have a large imaginary part in 
its effective permittivity, which attenuates both the soil surface scattering and soil 
interactions in the volume scattering, and consequently masks the soil moisture sig-
nature. Specific mathematical details of the volume and surface scattering in layered 
media can be found in earlier publications by Nghiem et al. (1990, 1993a,b, 1995).

Although the formulation mentioned earlier provides physical insights and a theo-
retical basis for active remote sensing of soil moisture, in practice, it is not possible 
to set up a soil moisture inversion method strictly based on theoretical modeling of 
electromagnetic scattering because of the complexities of natural environments in 
different climate regimes. The alternative is a simple empirical linear equation that 
relates backscatter σ0 to volumetric soil moisture mv as

	 σ0 = +am bv 	 (9.5)
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where coefficients a and b are dependent on incidence angle, polarization, vegeta-
tion conditions, soil type, surface variation, and climate regime (Mo et al., 1984, 
Prevot et al., 1993, Shrivastava et al., 1997; Shoshany et al., 2000; Hutchinson, 2003). 
Particularly for Ku-band backscatter data from the SeaWinds scatterometer aboard 
the QSCAT satellite, the bias term b in Equation 9.5 contains a signature of seasonal 
vegetation change, while changes in volumetric soil moisture mv from rainwater are 
detectable in backscatter variations in a timescale consistent with the initial impulse 
increase in wetness from the precipitation input throughout the subsequent drying 
process (Nghiem et al., 2005). Thus, soil moisture change (SMC) can be directly 
inferred from Equation 9.5 using the temporal backscatter-change method, which 
removes most of the background bias.

9.2.3  Passive and Active Blending

As presented in Sections 9.2.1 and 9.2.2, passive and active sensors measure differ-
ent parameters: passive BT and active radar backscatter, each of which has different 
sensitivities to soil moisture and vegetation cover. This section explains how blend-
ing of passive and active can better represent the overall state of soil moisture on land 
surface compared to the separate use of each data type.

In the ideal theoretical case of smooth bare soil (τc = 0), Equation 9.1 dictates 
that the BT is directly proportional to the emissivity esp, which is determined by 
soil dielectric constant and is thereby most sensitive to soil moisture. In compari-
son, there is no active radar backscatter because there is no vegetation (V1 = 0 in 
Equation 9.4 without vegetation) and no rough surface; hence, the soil moisture is 
not measurable by a radar for bare soil without any roughness. For real surfaces, 
surface roughness and/or vegetation cover will exist and will affect the sensitivity to 
soil moisture differently in passive (Njoku et al., 2003) versus active data (Nghiem 
et al., 1993a) until the vegetation cover becomes sufficiently dense to start masking 
the soil effects.

As an illustration of passive and active blending, a correlation analysis was con-
ducted comparing satellite-based remote sensing signatures to in situ soil moisture 
and vegetation measurements at a U.S. Department of Agriculture (USDA) Natural 
Resources Conservation Service (NRCS) SCAN site in Lonoke, Arkansas (91.867°W 
and 34.833°N) (USDA, 2009a). The vegetation cover in the Lonoke area is primarily 
agricultural crops, including soybeans, rice, and wheat (Njoku et al., 2003). More 
than 1 year (1999–2000) of TMI passive microwave data at 10.7 and 19.3 GHz were 
analyzed, centered within 25 km of the Lonoke SCAN site. Results showed a wide 
range of sensitivity in the response of instantaneous PR (obtained at each local over-
pass time) and the transient SMC after rain events. The variance between measure-
ments and linear fit values of daily PR (10.7 GHz) versus the contemporaneous daily 
mv became so large at larger soil moisture values that PR varied by a factor of 3 
at mv = 34%, while a transient soil moisture can change 6%–34% for the same PR 
value around 0.017. This is consistent with the findings by Njoku et al. (2003), which 
indicate that transient soil moisture events are not effectively captured by TMI data.

In contrast, seasonal trends in TMI PR (90 day running average) are well cor-
related with seasonal soil moisture (90 day running average) measured at a depth 
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of 5 cm at the Lonoke SCAN site (Table 9.1). Plots of seasonal data for contem-
poraneous SCAN mv and TMI PR at both frequencies reveal a hysteresis behavior 
(Figure 9.1). Theoretically, Equation 9.1 suggests that the hysteresis is caused by 
attenuation effects on the passive microwave signatures under different vegetation 
conditions during different seasons. In Figure 9.1, the linear fit for all data in the 
entire year is used as a reference for each frequency. The PR generally lies above 
the annual linear fit during the fall and winter seasons of 1999 with vegetation cover 
decreasing in early fall, reaching a minimum in winter, and then increasing toward 
the spring equinox in 2000. In contrast, PR is mostly below the annual linear fit dur-
ing spring and summer as the vegetation cover increases to a peak in summer and 
then slightly decreases toward the fall equinox. Vegetation attenuation effects cause 
the hysteresis in seasonal PR versus mv observed at both frequencies with less severe 
impacts at the lower frequency evidenced by the smaller spread at 10.7 GHz around 
the best-fit line in Figure 9.1.

For the active microwave analysis, time-series QSCAT data were extracted 
within 25 km around the same SCAN site in the same manner as for the TMI 
data. In contrast to the passive microwave case, daily QSCAT backscatter change 
correlates well with contemporaneous SMC from rainwater. Daily QSCAT data 
capture 91% of the rain events recorded at the Lonoke SCAN site in 1999–2000. 
To illustrate the high correlation of QSCAT backscatter to transient soil moisture, 
a regression analysis using daily observations was performed for the period of 
October 4 to November 19, 1999, when two major rain events occurred over the 
SCAN site. With the linear formulation in the inverted form of Equation 9.5 such 
that mv = a′·σ0 + b′ for backscatter σ0 in dB, mv in percent, and a′ = 8.9%/dB 
and b′ = 111.1%, a high correlation coefficient of 0.91 and a small standard devia-
tion of 3.7% were found for backscatter at the horizontal polarization (σ0HH). This 
indicates that both the initial impulse of soil moisture increase from rain and the 
subsequent soil moisture decrease in the ensuing drying process were well rep-
resented. For backscatter at the vertical polarization (σ0VV), the result is similar, 
with SMC of 8.4% for a dB change in σ0VV, and thus the backscatter at the vertical 
polarization is slightly less sensitive than the horizontal polarization to transient 
soil moisture. This is consistent with Equation 9.4, where the dyadic Green’s func-
tion includes soil reflection, which is stronger at the horizontal polarization than 

TABLE 9.1
Correlation Results between Seasonal TMI PR and Seasonal SCAN 
Volumetric Soil Moisture mv at 5 cm Depth from Linear Regression 
Analysis in the Form of PR = α · mv + β with a Correlation Coefficient ρ

10.7 GHz 19.3 GHz

α β ρ α β ρ

Fall–winter 0.00109 0.00766 0.977 0.000931 0.00587 0.953

Spring–summer 0.00131 −0.00108 0.988 0.000960 −0.000908 0.946

All year 0.00124 0.00235 0.936 0.000894 0.00320 0.792
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the vertical polarization. Also, the incidence angle at 54° for σ0VV is larger than 46° 
for σ0HH, which means that σ0VV suffers from higher attenuation effects because of 
the longer path length in the vegetation cover. Nevertheless, QSCAT data can iden-
tify sufficiently heavy rainfall events even at peak vegetation conditions when the 
backscatter increases above the seasonal level of the background backscatter. As 
a result, QSCAT has the capability to identify transient SMC. This illustrates the 
complementary information that can be estimated from the combination of active 
and passive microwave data, together capturing both transient and seasonal trends 
in soil moisture content.
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FIGURE 9.1  Seasonal TMI PR at (a) 10.7 GHz and (b) 19.3 GHz versus seasonal SCAN soil 
moisture at 5 cm depth in an agricultural area at Lonoke, Arkansas. All data are contempora-
neous (collocated in time) and are 90 day running averages.
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Seasonal trends in active backscatter data primarily convey information about 
vegetation. To demonstrate this, Normalized Difference Vegetation Index (NDVI) 
data representing seasonal vegetation change (Justice et al. 1985; Verdin et al., 1999; 
Zhang et al., 2010) were compared with seasonal QSCAT backscatter data (90 day 
running average). Advanced Very High Resolution Radiometer (AVHRR) NDVI data 
from the National Oceanic and Atmospheric Administration (NOAA) AVHRR were 
averaged within 25 km around the SCAN site so that the spatial scale of AVHRR 
NDVI data was compatible with the QSCAT data. A high correlation coefficient of 
0.946 was found between the NDVI and linear σ0VV and a slightly lower correlation 
coefficient of 0.864 between the NDVI and linear σ0HH. Therefore, seasonal QSCAT 
backscatter can be used to characterize seasonal vegetation change regardless of 
cloud cover, which is transparent to QSCAT at the Ku-band frequency of 13.4 GHz. 
This is consistent with earlier results on the relation of Ku-band backscatter with 
NDVI (Moran et al., 1997), green leaf area index (Moran et al., 1998), and above
ground biomass (Nghiem, 2001).

Seasonal running averaged QSCAT σ0VV (more sensitive to seasonal vegetation 
change compared to σ0HH) and TMI PR at 10.7 GHz (more sensitive to seasonal SMC 
compared to 19.3 GHz data) were compared over the fall–winter season and spring–
summer season. The hysteresis behavior is clearly observed in the curve of σ0VV 
versus PR (Figure 9.2). In fall and winter, PR is below the annual linear fit, cor-
responding to less vegetation cover as compared to spring–summer PR above the 
linear fit with more vegetation cover. The lower vegetation cover indicated by lower 
backscatter in fall and winter supports the fact that PR is above the annual linear fit 
in the PR-mv hysteresis (Figure 9.1) for less vegetation attenuation effects on PR, and 
vice versa for spring and summer. We observe that the vegetation peak seen in σ0VV 
occurs in summer after the seasonal soil moisture reaches the maximum seen in PR 
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FIGURE 9.2  Seasonal QSCAT backscatter σ0VV versus seasonal TMI PR at 10.7 GHz in an 
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in spring. This analysis shows that independent information on seasonal vegetation 
change in active backscatter data can explain vegetation cover effects on passive 
microwave signatures.

9.3  DROUGHT APPLICATIONS

9.3.1  Drought Monitoring Issues

For hydrological and agricultural drought assessment and monitoring, water on the 
land surface and in the soil are both relevant, and thus soil moisture data must play 
a key role. Nevertheless, the current in-situ station network is inadequate, and soil 
moisture measurements are too sparse for effective use or are nonexistent in many 
areas (NIDIS, 2007).

For county-level monitoring, which is an important goal of the National 
Integrated Drought Information System (NIDIS) (Western Governors’ Association, 
2004; NIDIS 2006, 2007), the National Weather Service (NWS) has determined 
that an effective Cooperative Observer Network would require a minimum spatial 
density of one observing site per 1000 km2 across the country or a separation of 
about 24–32 km (NIDIS, 2007). The location of each in-situ sensor must be carefully 
selected such that the measured soil moisture is representative of the surrounding 
area. Furthermore, consistency and persistency in data collections are important in 
terms of data quality and data availability across different agencies and across dif-
ferent states.

9.3.2  Uses of Satellite Data

In view of the aforementioned issues in drought monitoring, recent efforts have 
enabled certain uses of soil moisture measurements derived from satellite remote 
sensing data for enhancing drought monitoring systems (Nghiem et al., 2010). 
Several specific results are presented in this section to illustrate various uses of sat-
ellite data with different temporal and spatial scales.

9.3.2.1  Temporal Data at Local Scale
Temporal QSCAT observations combined with in-situ station measurements are 
used to illustrate how satellite data can help to enhance drought monitoring capabili-
ties. Figure 9.3 presents results at the NCDC Global Summary of the Day (GSOD) 
(NCDC, 2010a) Station 727760 in Great Falls, Montana (47.467°N, 111.383°W). Time 
series of QSCAT data together with in situ measurements around this station are con-
structed with the Special Satellite-Station Processor (SSSP) (Nghiem et al., 2003). 
Daily QSCAT data at horizontal polarization (more sensitive to soil moisture than 
vertical polarization) were selected with centroids located within 25 km around 
Station 727760 and from ascending orbits (∼6 a.m. local overpass) that are better 
correlated with soil moisture than data from descending orbits.

QSCAT σ0HH data around Great Falls (top panel in Figure 9.3) clearly identify rain 
events before and after the dry period between July 9 and September 5, 2000, when 
very little rain fell. In August 2000, the long-term Palmer Drought Index for the 
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region around Great Falls was −4 or below, indicating long-term, extreme drought 
conditions. USDA issued Natural Disaster Determinations for drought for the entire 
state of Montana in 2000, when severe and persistent drought caused significant 
losses to agriculture and other sectors (Resource Management Services, 2004). The 
summer drought period observed by QSCAT is validated by the lack of rain in in 
situ precipitation data (right panel in Figure 9.3) for the same period, when several 
heat waves occurred. Both before and after this midsummer drought period, QSCAT 
detected a number of significant rain events that increased backscatter by about 3 dB, 
which is equivalent to a 26.8% increase in volumetric soil moisture (per the Lonoke 
rating value of a′ = 8.921%/dB). Thus, water from these rain events reached the land 
surface and significantly increased the moisture in soil. In contrast, rain gauge pre-
cipitation (RGP) data corresponding to these significant rain events inconsistently 
and disparately ranged across one order of magnitude from low values (<0.2 cm) to 
high values (>2.0 cm).

9.3.2.2  Spatial Data at Regional Scale
Satellite microwave remote sensing data, such as AMSR-E or QSCAT, can be used 
to monitor drought and water resources at regional to global scales. Both have swath 
widths of 1400 km or larger (Tsai et al., 2000; Njoku et al., 2003), which allow a 
near-daily global coverage and as many as two data acquisitions per day at high lati-
tudes. Several attributes related to water can be obtained from microwave satellite 
data for drought monitoring. Examples of these information products derived from 
AMSR-E and QSCAT data are provided for 2009 over the state of Texas, when much 
of the state was afflicted by drought (Texas Water Development Board, 2007).

A relevant attribute for water resource and drought assessments is precipitation 
frequency, which quantifies the recurrence of rain events in a given period (González 
and Valdés, 2004). Instead of apparent precipitation frequency (APF), derived from 
in situ rain gauge data or surface rain radar data, a different measure of effective 
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precipitation frequency (EPF) can be derived from satellite scatterometer data. EPF 
accounts for rainwater that effectively reaches the land surface and increases soil 
moisture, as opposed to APF, which may have problems with apparent precipita-
tion, virga, or inconsistency in gauge data collection. For applications to QSCAT 
data, EPF = 100(NW/NC) is defined as the percentage of the number of wet days (NW) 
when the soil moisture increase is ≥5% in the topsoil layer (5 cm) such that the cor-
responding backscatter increase is ≥0.56 dB for σ0HH or ≥0.60 dB for σ0VV above the 
background level, over the total number of satellite coverage days (NC) excluding 
days when satellite data were missing in a given period.

EPF was retrieved from QSCAT data across Texas from June 1 to August 31, 
2009 (left panel in Figure 9.4). In summer 2009, exceptional drought occurred over 
much of south-central Texas, as shown in the U.S. Drought Monitor (USDM) maps 
from June to August 2009 (right panels in Figure 9.4). By August 2009, extreme 
and exceptional drought conditions (D3 and D4, respectively) remained persistent 
across south-central Texas, where the topsoil conditions were very dry and river 
levels were near historic lows (NCDC, 2009). Consistent with these drought con-
ditions, QSCAT EPF showed few to no rain events across most of southern Texas 
(black to magenta areas, left panel of Figure 9.4). In contrast, soil in part of the 
Texas Panhandle was shown to be wetted by several rain events during this time 
period (light blue to green and yellow areas, left panel of Figure 9.4), which is 
reflected by the change of conditions in the USDM maps, which showed most of 
the area classified as abnormally dry (D0) in June had improved to no drought by 
late August 2009.

Although EPF carries information on wet precipitation frequency or how often 
the land surface becomes wet because of rainwater, daily SMC from QSCAT data 
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FIGURE 9.4  (See color insert.) Effective precipitation frequency (%) measured by QSCAT 
for the period June–August 2009 (left panel) and drought levels from D0–D4 from the USDM 
for weeks ending on the marked dates in 2009 (right panels). The USDM drought levels 
include D0 for abnormally dry, D1 for moderate drought, D2 for severe drought, D3 for 
extreme drought, and D4 for exceptional drought. (Ref. Svoboda et al. 2002.)
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represents the quantitative change in soil moisture or the amount (intensity) of rain-
water that accumulates on land surface each day. Therefore, SMC is an attribute 
relevant to monitoring hydrological drought because it is related to water on land 
rather than raindrops in the atmosphere (a meteorological parameter). Hydrological 
drought is associated with shortfalls on surface or subsurface water supply whereas 
meteorological drought is related to deficiencies of precipitation (Wilhite and Glantz, 
1985). SMC is also appropriate for early warning of agricultural drought (drought 
that has agricultural impacts) because SMC represents the source of rainwater that 
can infiltrate into the root zone after a rain event.

Figure 9.5 presents maps of selected daily SMC compared to the semimonthly 
average over Texas from early September to early October 2009. Intense SMC 
(in yellow), which reflects large increases in soil moisture, occurred across large 
areas of central Texas on September 10, 11, 13, and 14 and October 4. The SMC 
results on these days are consistent with torrential rainfall events reported across 
central and south Texas (up to 20 in. of total rainfall recorded in some locations) in 
September 2009, causing flash flooding (NWS, 2009). With this new water input, 
drought conditions in central and south Texas significantly improved by early 
October 2009 (as shown in the USDM map for October 6 in Figure 9.6).

Complementary to the transient change observed in the QSCAT daily SMC, 
AMSR-E passive microwave data provide good measurements of seasonal soil 
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FIGURE 9.5  (See color insert.) SMC measured by QSCAT with the vertical polarization 
along ascending orbits in September to early October 2009. The color scale represents back-
scatter change in dB and volumetric SMC in % with the Lonoke rating.
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moisture (as discussed in Section 9.2.3). Figure 9.6 (left panel) shows the differ-
ence in seasonal soil moisture between the June–July and September–October 
periods in 2009. AMSR-E seasonal soil moisture results reveal a large region of 
increased soil moisture in south-central Texas (blue areas). This corresponds to 
the marked improvement in drought conditions in September compared to those 
in July 2009 as depicted on the USDM drought maps (right panels in Figure 9.6). 
In contrast, an area in western Texas had a substantial reduction in soil moisture 
by the September–October period (red–brown areas in the left panel of Figure 9.6) 
compared to more moist conditions in the June–July period. This area had a larger 
EPF observed by QSCAT in the earlier months, as seen in the left panel of Figure 
9.4 for June–August 2009.

The independent attributes derived from different remote sensing data sets 
(QSCAT and AMSR-E) are consistent with the changes in true drought conditions that 
occurred over Texas in 2009 and provide complementary perspectives for drought 
assessments. The improvement in drought conditions classified in the USDM map on 
October 6, 2009, (lower right panel in Figure 9.6) reflects the recent transient wetting 
events observed in daily SMC from QSCAT (e.g., SMC map for October 4, 2009, in 
Figure 9.5) and the seasonal SMC observed by AMSR-E (Figure 9.6). These results 
demonstrate the capability and consistency of different microwave-based parameters 
to depict the state of soil moisture, as well as its transient and seasonal changes from 
local to regional scales.

9.3.2.3  Spatial Data at Continental Scale
A major advantage of satellite data is its large spatial coverage at continental to 
global scales compared to local, surface in situ measurements from station networks. 
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FIGURE 9.6  (See color insert.) Difference of AMSR-E monthly averaged soil moisture in 
% of mv (September 7 to October 6, 2009) and mv (June 29 to July 28, 2009) showing seasonal 
SMC (left panel), and drought condition change between USDM drought maps in July and in 
September 2009 (right panels).
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Here, the pattern of SMC as observed by QSCAT and AMSR-E satellites is exam-
ined across the contiguous United States (CONUS) and compared to rainfall pat-
terns from the regional multisensor precipitation analysis assembled into national 
maps of Stage-4 daily precipitation (SDP) available from the National Mosaic and 
Multi-Sensor Quantitative Precipitation Estimation algorithm (NMQ, 2009). This 
comparison is to identify the similarities as well as the differences between pre-
cipitation data and soil moisture data, which are relevant for monitoring different 
drought types (SDP for meteorological drought versus SMC for early warning of 
agricultural drought).

The large swaths of measurements by QSCAT and AMSR-E provide near-
daily coverage over the CONUS. However, data gaps exist, and a full coverage 
of the entire CONUS is not possible every day, especially when ascending- and 
descending-orbit data are used separately. Figure 9.7 shows daily SMC maps in May 
2009 from QSCAT ascending-orbit data (Figure 9.7a) at about 6 a.m. local overpass 
time and from AMSR-E descending-orbit data (Figure 9.7b) at about 1:30 a.m. local 
overpass time.

Overall, the patterns of daily SMC from QSCAT and AMSR-E are similar. Both 
reveal precipitation water on land surface in the Midwest and the Great Lakes states 
extending toward the northeastern United States, whereas most of the western United 
States was dry. An extensive wet region is observed across Kansas and Nebraska 
in both SMC maps (marked by the circles in Figure 9.7a and b). Interestingly, a 
well-defined dry area is detected by both QSCAT and AMSR-E just south of Lake 
Michigan along the Illinois–Indiana border. However, some discrepancies exist 
between the AMSR-E and QSCAT SMC results. First, the volumetric SMC observed 
by QSCAT can be more than 10% in various areas (yellow areas in Figure 9.7a), 
where AMSR-E SMC barely exceeds 5% (blue areas, Figure 9.7b). For example, 
the region east of Lake Ontario in New York had a large positive SMC (wet) in the 
QSCAT map while the AMSR-E SMC showed a slightly negative value (dry). These 
differences are not surprising given the better sensitivity of QSCAT data to transient 
SMC, as discussed earlier in Section 9.2.3.

In the case of the discrepancy between QSCAT and AMSR-E SMC in New 
York, it could be hypothesized that the difference was due to the different observa-
tion times of the two instruments (6 a.m. for QSCAT and 1:30 a.m. for AMSR-E). 
However, SDP maps indicate significant rainfall on May 27 continuing to May 28, 
2009, in New York (Figure 9.7c and d). The lower sensitivity in AMSR-E data to 
transient SMC is likely the cause of the differences in the SMC results. The SDP 
map on May 28 (Figure 9.7c) also shows a large-scale overall pattern similar to 
the SMC observed by QSCAT and by AMSR-E (to a lesser degree) with band of 
heavier rainfall across the upper Midwest and Great Lakes region extending into the 
northeastern states. However, the SDP map on May 28 indicates no precipitation in 
Kansas and Nebraska where both QSCAT and AMSR-E detected rainwater on land 
surface resulting from the intense rainfall on the previous day (see the region marked 
by circles in Figure 9.7). This case illustrates that SMC can represent the rainwater 
accumulated from preceding strong precipitation events with the water still remain-
ing in the top soil for some period of time after the rain events. As such, SMC is 
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also an indicator of the intensity or amount of rainwater on land surface (vis-à-vis 
rainwater as raindrops in the atmosphere) in terms of the SMC duration.

There are other discrepancies between SMC and SDP. For example, in New 
Mexico, SDP observed extensive precipitation across the state while SMC from 
both QSCAT and AMSR-E found wetness only in some areas of the state (such as 
in northeastern New Mexico). This difference suggests either the rainwater did not 
fully reach the land surface (virga problem) or SDP has uncertainties in surface radar 
data (AP problem). Similarly, the SDP pattern was much more widespread compared 
to the SMC pattern (Figure 9.7) in adjoining Texas, where AP problems can cause 
significant difficulties in precipitation mapping (Story, 2009). These observations 
suggest that SMC, pertaining to land surface conditions, is more relevant to hydro-
logical and agricultural drought monitoring, while SDP as a parameter for precipita-
tion rate is useful for meteorological drought monitoring. In the case of light rains, 
the small amount of rainwater that may reach the land surface can be evaporated 
before the next orbit pass, and thus SMC may not capture the wetness from light 
rains evaporated in a short time.

9.3.2.4  Soil Moisture Products for Drought Monitoring and Forecasting
In an operational environment, science results need to be transitioned into data and 
image products with appropriate formats and protocols that can be rapidly and easily 
used by drought experts, such as the USDM authors. Here, examples of various SMC 
products produced for the USDM are presented and compared with other traditional 
drought products to identify their advantages and limitations.

Three SMC attributes, including daily SMC, weekly maximum SMC, and weekly 
mean SMC, are produced and a USDM-defined color palette applied to classify the 
various levels of change. Because the USDM is an operational tool, the SMC data are 
updated weekly on Monday to be in sync with other updated products and analyses 
used to create the weekly USDM on Tuesday. The overall SMC processing system 
allows the flexibility in making SMC products with different time periods for vari-
ous purposes, including the Monday-updated SMC for USDM operational assess-
ment and 5–8 day SMC products for comparison and benchmarking with different 
NOAA precipitation maps.

Figure 9.8 presents an example of 8 day mean and 8 day maximum SMC maps, 
which are compared with the RGP product, representative of precipitation from 
October 14, 2008, and the ensuing 7 days. The RGP product is produced by NOAA’s 
Climate Prediction Center (CPC) from several quality-controlled surface weather 
measurement data sources, including the Automated Surface Observing Systems 
(ASOS) and cooperative observers. Approximately 7000 daily in situ rain gauge 
observations are included in the making of the RGP product (Higgins et al., 2000). 
RGP maps are made with different time periods from 5 to 8 days for drought assess-
ment. In this example, the full 8 day RGP product is compared with the corre-
sponding 8 day SMC mean and maximum SMC maps (Figure 9.8a and b). In the 
maps, yellow to brown represent drier conditions and green to blue represent wetter 
conditions, which are shown with the corresponding USDM D-level contour lines 
for October 14, 2008.
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The mean SMC map (Figure 9.8a) reveals a significant soil moisture increase 
(light blue area) extending in western Kansas, as well as a noticeable increase in 
soil moisture (green areas) in the Texas Panhandle, southeastern Texas, central 
Oklahoma, eastern New Mexico, and eastern Montana. Significant drying also 
appears across several states in the upper Midwest (Minnesota, Nebraska, and North 
and South Dakota). In comparison, the maximum SMC map (Figure 9.9b) indicates 
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FIGURE 9.8  (See color insert.) Comparison of QSCAT SMC with RGP for the period of 
October 14, 2008, and the ensuing 7 days: (a) mean SMC, (b) max SMC, and
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a much more intensive soil moisture increase over extensive regions (blue to magenta 
areas) because it represents the peak soil moisture increase detected at any time in 
the 8 day period. The maximum SMC corresponds to the largest value of rainwater 
detectable on the land surface on any given day of the period including the remnant 
rainwater from previous days. In the maximum SMC map, a caveat is that low SMC 
values (gray and light green) are noisy because of spatial variability and limited 
accuracy in satellite data.

While the maximum SMC corresponds to the peak water accumulation on land 
surface, the mean SMC provides an assessment of the persistence of rainwater in 
soil, because the greater the number of days when a significant amount of soil mois-
ture increase occurs, the larger the mean SMC value for that given time period. 
Therefore, it is possible to have a large peak SMC due to an intensive single-day rain 
event over an area (e.g., blue area between Indiana and Ohio in Figure 9.8b) where 
the maximum SMC value is high but the mean SMC is low because no rainwater 
accumulated on the other days during the 8 day period. Since the persistence of 
SMC (i.e., how long rainwater accumulates and remains in soil) depends on factors 
such as soil type, infiltration rate, and runoff processes, the mean SMC carries infor-
mation that is relevant for hydrological and agricultural drought monitoring. The 
mean and the maximum SMC carry different information, and both can contribute 
to drought assessments.

For benchmarking, the traditional RGP product used in USDM is included in 
Figure 9.8c to compare with the mean and maximum SMC products. A compari-
son of the RGP and SMC maps clearly points to the different characteristics of 
these measurements: RGP consists of point data at separate rain gauge station loca-
tions, while the SMC maps are composed of 25 km pixels that provide continuous 
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FIGURE 9.8 (continued)  (See color insert.) (c) RGP used in making USDM maps.
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FIGURE 9.9  (See color insert.) Weekly QSCAT mean SMC maps (a) and USDM maps (b) for the growing season in June–October 2009 (skipping 
a map once every other week).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a 

at
 L

in
co

ln
] 

at
 0

9:
48

 1
3 

Ja
nu

ar
y 

20
17

 



217
M

icro
w

ave R
em

o
te Sen

sin
g o

f So
il M

o
istu

re

Jul 16 Jul 14Jun 30

Sep 08
(b)

Sep 22

Aug 11 Aug 25

Oct 06

Jul 28

FIGURE 9.9 (continued)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a 

at
 L

in
co

ln
] 

at
 0

9:
48

 1
3 

Ja
nu

ar
y 

20
17

 



218 Remote Sensing of Drought: Innovative Monitoring Approaches

spatial coverage of measurements across the CONUS. The vastly improved spatial 
coverage at an appropriate resolution of the satellite observations is important for 
resolving the county-level drought condition, which is currently lacking for most 
inputs into the USDM and is a goal of NIDIS. The average county size for the 
CONUS is approximately 50 km in linear scale (∼2500 km2 in area) as estimated 
from census data (U.S. Census Bureau, 2005). Thus, to resolve information at the 
50 km county scale, a spatial scale of 25 km is required according the Nyquist 
sampling theorem, which is satisfied by the SMC data. However, RGP can provide 
more frequent hourly data, whereas the SMC is only available two times per day at 
most. Although the SMC temporal scale is suitable for the weekly USDM, better 
temporal coverage can improve the overall result, especially in the tropics, where 
current satellite data gaps are the largest because of the divergence of satellite 
swaths at lower latitudes.

Although the spatial patterns in both RGP and maximum SMC maps (Figure 9.8b 
and c) agree in general over the areas of extensive precipitation discussed earlier, a 
large area of discrepancy exists over Montana, Wyoming, and part of North Dakota. 
This discrepancy is primarily due to the SMC having a memory of any precipitation 
water as long as it remains on land surface at the time of the satellite measurement 
(as in the cases presented in Figure 9.7 with a comparison of SMC to precipitation 
data) as opposed to the instantaneous and temporally discrete rain gauge measure-
ments at specific station location. These results point out a key advantage of SMC 
in “memorizing” the rainwater staying on land surface integrated up to the time of 
measurement, allowing less frequent SMC measurements to capture the state of soil 
moisture. In contrast, satellite precipitation measurements need to be very frequent 
to capture the amount of rainwater falling through the atmosphere at the exact dis-
crete time of each precipitation event.

Regarding the mean SMC (Figure 9.8a), a high value requires sufficient rain-
water to accumulate on land surface over a significant duration during the period 
under consideration. The mean SMC represents both the quantity and persistence 
of new precipitation water in soil, which is more relevant to drought monitoring 
than both maximum SMC and RGP. For example, maximum SMC and RGP iden-
tify a precipitation pattern in eastern Nebraska and Iowa; however, the same region 
appears dry in the mean SMC. This indicates that the transient rainwater may not 
have been sufficient to sustain the presence of soil moisture over a significant frac-
tion of the 8 day period to have an overall impact on soil moisture condition over 
the given period.

For the 2009 growing season (i.e., June to early October), Figure 9.9 presents 
a comparison of QSCAT SMC and USDM results across the CONUS. There is 
an overall consistency between the two sets of results on a regional scale. This is 
observed as a monitoring process in detecting the frequency, intensity, and extent 
of SMC rather than an isolated examination of the spatial pattern in each map at 
a given time. For example, throughout the 2009 growing season, not much water 
from precipitation was detected on land surface, as seen in the SMC maps in the 
West and the Southwest, where USDM maps consistently show either no improve-
ment (e.g., California) or worsening drought conditions (e.g., Arizona). For south 
Texas, no significant wet events occurred in the first part of the growing season, 
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which is reflected by the severe to extreme drought conditions in the USDM, 
while the rainfall events in August and September that improved the drought 
conditions (as shown in the USDM maps in September and early October) are 
represented by the positive SMC in September.

In the Midwest, Figure 9.9 reveals extensive SMC in South Dakota, southern 
Minnesota, eastern Nebraska, and western Iowa in June and July 2009. During this 
same time period, USDM results consistently indicate some improvement in South 
Dakota, Nebraska, and Iowa (primarily change from D0 to no drought classifica-
tion), and USDM maps suggest drought levels in Minnesota remained the same 
or became slightly worse. In early June 2009, SDP results showed an extensive 
rain pattern over the Midwest, including Minnesota, which suggests that rainwa-
ter was still present on the land surface as detected in the SMC (top left panel in 
Figure 9.9). Since the mean SMC represents a persistent amount of rainwater on 
land, SMC inherently reflects information about temperature, wind, insolation, and 
other parameters that affect soil wetness. Therefore, SMC may supplement infor-
mation in synergy with other parameters currently used in the USDM to enhance 
the results.

SMC as measured by satellite can benefit not only drought monitoring but also 
drought forecasting. Skillful forecasts of drought or soil moisture would have 
significant uses for agriculture and hydrology (water planning). Recognizing the 
importance of seasonal forecasts of drought, NOAA CPC has been issuing such 
forecasts since March 2000. These forecasts are designed to indicate whether exist-
ing droughts will persist or improve and whether a new drought will form. An 
important first step in creating an improved forecast would be better knowledge 
of existing conditions. The SMC, as shown in Figures 9.8 and 9.9, is an appropri-
ate parameter to contribute to a more accurate depiction of near-surface moisture 
supplies.

9.4  SUMMARY AND CONCLUDING REMARKS

Soil moisture derived from active and passive microwave remote sensing data can 
be used to enhance drought monitoring capabilities as summarized in the following:

	 1.	SMC from active scatterometer data can characterize transient changes 
including the intensity, frequency, and extent of rainwater that actually 
reaches and accumulates on land surface, whereas passive radiometer data are 
for seasonal soil moisture. Together, soil moisture measurements from active 
and passive satellite data represent the state of dryness or wetness pertaining 
to land surface and are thus relevant to both hydrological and agricultural 
drought, as opposed to precipitation data (such as the specific precipitation 
index), which is more relevant to meteorological drought (WMO, 2009).

	 2.	Satellite soil moisture measurements from scatterometer and radiometer 
data have continuous coverage across large geographic areas, whereas in 
situ RGP data or soil moisture networks such as SCAN consist of a rela-
tively sparse spatial distribution of point data from networks with varying 
station densities and different data quality standards. Also, in the weekly 
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time scale for drought monitoring by the USDM and NIDIS, both QSCAT 
and AMSR-E data have a full coverage of the CONUS.

	 3.	Satellite areal data represent the condition over the whole pixel size as 
opposed to a single local site at each in situ station. Moreover, QSCAT 
data with a 25 km resolution satisfy the Nyquist requirement to resolve the 
county-level drought condition, which is currently lacking for most inputs 
into the USDM and is an important goal of NIDIS.

Nevertheless, satellite measurements also have limitations, which necessitate using 
them in combination with in situ observations to more fully characterize soil mois-
ture conditions. For example, in situ measurements can be obtained many times in 
a day (e.g., hourly measurements), whereas a satellite sensor typically collects data 
one or two times per day depending on the latitude. In addition, many in situ sta-
tions have a longer observational time series compared to satellite data. In particular, 
AMSR-E data have been collected since 2002 (starting in October 2011, the AMSR-E 
instrument was no longer operational), and QSCAT data were obtained over a decade 
(1999–2009), while many rain gauge stations were established several decades ago. 
Furthermore, there are differences in the characteristics of attributes measured by in 
situ gauges and by satellite sensors as presented in the benchmark study in the previ-
ous section, which should be combined to better represent various drought conditions.

For in situ data to be more useful, in situ measurements should characterize the 
conditions as far as possible beyond the local site. Here, satellite data can assist in 
the assessment of the extent beyond which local measurements are valid. For exam-
ple, soil moisture data from SCAN can be compared or correlated in time (across 
months, seasons, or years) to satellite soil moisture signatures collected over areas 
with different radii away from the in situ station, to determine whether and how far the 
different measurements are correlated. The larger the radius at which satellite data and 
in situ measurements are well correlated, the larger the extent to which in situ data are 
representative. This is valuable in the selection of station locations for long-term main-
tenance so that the surface data are valid over the largest area as possible (not just in a 
close proximity of each station), thereby minimizing the number of stations required to 
monitor a certain region such as a county (in view of the county-scale goal of NIDIS).

Assimilation systems (Mitchell et al., 2004; Kumar et al., 2008) can be used to 
integrate various ground measurements and satellite observations within an ensem-
ble framework of community land-surface models. This modeling approach allows 
data with various time scales and spatial coverage to be incorporated in a systematic 
manner. Because in situ networks are changing and improving and new satellite 
data and products are being developed, land data assimilation systems need to con-
tinuously evolve to provide enhanced products for drought monitoring. Furthermore, 
new measurements can allow better cross-verifications and validations among dif-
ferent models used in the land data assimilation systems in an effort to produce 
accurate, high-quality products.

Drought is a common climatic phenomenon throughout the world and a global prob-
lem requiring international efforts for drought assessment, forecasting, and mitigation. 
In this regard, satellite data from different nations can contribute to this overall goal. 
The QSCAT antenna ceased to spin in November 2009 after its continuous operation 
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since July 1999. Meanwhile, the Indian Space Agency successfully launched another 
scatterometer similar to QSCAT aboard the Oceansat-2 Satellite (OSCAT) (Jayaraman 
et al., 1999) in September 2009. These satellite events, together with a scatterometer 
data agreement signed among the different nations, highlight the importance of inter-
national collaborations in improving global satellite coverage for drought monitoring.

As of December 2011, QSCAT is still measuring valid backscatter data along 
narrow tracks at a fixed azimuth, which are valuable for validating OSCAT mea-
surements. Once verified with QSCAT, OSCAT can continue the QSCAT time 
series of SMC. A long-term SMC record is important for assessing drought con-
ditions within the climatic historical perspective. In August 2011, China launched 
the Haiyan-2 (HY-2) satellite carrying another scatterometer (Dong et al., 2004). In 
addition, the development of another advanced satellite scatterometer is being stud-
ied in the United States, stemming from the recommendation of the NRC Decadal 
Survey (National Research Council, 2007). The current European SMOS mission 
(Kerr et al., 2010) and the proposed NASA Soil Moisture Active and Passive (SMAP) 
mission (Entekhabi et al., 2010) could potentially provide global soil moisture mea-
surements critical for drought monitoring. Collectively, these successive satellite 
missions would provide multidecadal data important for addressing the nonstation-
arity issue in climate change. Moreover, long-term data are necessary for developing 
a probabilistic standardized index approach with multiple time scales of soil mois-
ture variability that could be used for drought monitoring.

Experiences in using microwave satellite data to enhance the USDM will be valuable 
in improving international drought monitoring systems, such as the North American 
Drought Monitor (NADM) covering Canada, Mexico, and the United States (NCDC, 
2010b). In developing countries that lack in situ or surface measurement networks, the 
role of satellite data for drought monitoring becomes increasingly important because 
products such as AMSR-E soil moisture and QSCAT SMC can be retrieved globally 
and fill informational gaps that are currently pervasive. Such products can enhance 
global drought monitoring, for which the Global Earth Observation System of Systems 
(GEOSS) (Lautenbacher, 2006) will be crucial as an overall integrator.

Long-term satellite-based moisture records are also important for developing cli-
matologies used in forecasting drought conditions. Given the limited skill of seasonal 
forecasts of temperature and precipitation, drought forecasters place considerable 
weight on projecting current conditions forward based on what has happened in the 
past. In this regard, careful attention should be paid to the issue of nonstationarity due 
to significant changes in regional climatic trends in recent years. Improved knowledge 
of short-term moisture trends can contribute positively to drought forecasts. Although 
there is no guarantee that short-term trends will persist, forecasters need to know 
whether and how fast moisture conditions are deteriorating. Such trends serve to flag 
situations that require additional analysis. Once the SMC products are obtained for 
a suitable number of years to capture contemporary changes, forecasters may gain 
new knowledge of the probabilities that soil moisture conditions will likely improve 
or deteriorate during the following season. One of the goals of drought forecasting 
is to formulate the forecasts in terms of probabilities to provide a more accurate por-
trayal of confidence levels, and the statistics of historical soil moisture conditions can 
contribute to this effort. In short, improved knowledge of initial moisture conditions, 
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short-term trends, and climatology have the potential to enhance the skill of current 
and future drought forecasts globally as well as in the United States.
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FIGURE 9.4  Effective precipitation frequency (%) measured by QSCAT for the period 
June–August 2009 (left panel) and drought levels from D0–D4 from the USDM for weeks 
ending on the marked dates in 2009 (right panels). The USDM drought levels include D0 for 
abnormally dry, D1 for moderate drought, D2 for severe drought, D3 for extreme drought, and 
D4 for exceptional drought. (Ref. Svoboda et al. 2002.)
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FIGURE 9.5  SMC measured by QSCAT with the vertical polarization along ascending 
orbits in September to early October 2009. The color scale represents backscatter change in 
dB and volumetric SMC in % with the Lonoke rating.
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FIGURE 9.6  Difference of AMSR-E monthly averaged soil moisture in % of mv (September 7 
to October 6, 2009) and mv (June 29 to July 28, 2009) showing seasonal SMC (left panel), 
and drought condition change between USDM drought maps in July and in September 2009 
(right panels).
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FIGURE 9.7  SMC on May 28, 2009, compared to the 2-week average between May 14 
and 28, 2009, observed by (a) QSCAT SMC represented by backscatter change in dB and by 
volumetric moisture change in % from the Lonoke rating, and (b) AMSR-E by volumetric 
moisture change in % with yellow brown for drier and cyan blue for wetter conditions. The 
SMC maps are compared with Stage-4 24 h precipitation measurements (NMQ, 2009) at 
12:00 UTC in inches for (c) May 28, 2009, and (d) and May 27, 2009.
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FIGURE 9.9  Weekly QSCAT mean SMC maps (a) and USDM maps (b) for the growing season 
in June–October 2009 (skipping a map once every other week).
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FIGURE 10.4  Snapshots of four major drought events from June soil moisture percentiles 
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