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Summary
In one of neuroimaging’s key papers, Worsley et al.
(1992) introduced the concept of a resolution element
(resel) as an intuitive parametrisation of the roughness-
adjusted search volume underlying random field the-
ory’s expression for corrected p-values. In another key
development, Worsley and Friston (1995) showed that
temporal correlation in a linear model reduced the ef-
fective degrees of freedom (eDF). Here, we illustrate a
surprising connection between these quantities, which
may have application to multiple comparison correc-
tion on data with elaborate statistical dependence that
can make RFT over-conservative.

Theory
Resolution elements (resels)
An estimate of the (stationary) resels-per-voxel (RPV)
is computed from the covariance of the spatial gradi-
ent of the normalised random fields, following Kiebel
et al. (1999). In D dimensions, this can be expressed
in units of full-width half-maximum (FWHM) as:

FWHM = RPV−1/D. (1)

Effective degrees of freedom (eDF or νe)
The sum of squares of ν independent standard normal
variates defines the Chi-square distribution on ν de-
grees of freedom (DF); its mean and variance are ν
and 2ν. Now consider n-vector e ∼ N(0,V), where
covariance V has eigenvalues di; e′e is a di-weighted
sum of unit Chi-square variates. The result is not Chi-
square distributed, but its mean and variance are easily
computed:

E[e′e] =

n∑
i=1

di E[ χ2(1)] =

n∑
i=1

di = trV (2)

V[e′e] =

n∑
i=1

d2
i V[ χ2(1)] = 2

n∑
i=1

d2
i = 2 trV2, (3)

Matching these moments with a Chi-square on νe DF
scaled by s, whose moments are sνe and 2s2νe, yields

νe =
tr2V
trV2. (4)

Simulations
Considering a simple 1-dimensional random process,
we simulate 5000 realisations of a standard normal
vector, each of which is smoothed with a 12 voxel
FWHM Gaussian kernel and cropped to 100 elements
to avoid edge-effects.

Results
Figure 1: Comparison of the covariance matrix esti-
mated from smoothed data to the sampled theoretical
Gaussian covariance function.
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Figure 2: Eigenvectors of the theoretical covariance
matrix corresponding to the four largest eigenvalues.
They can be seen to resemble sinusoidal basis func-
tions, so their eigenvalues should relate to the Fourier
transform of the covariance function, which, according
to the Wiener-Khinchin theorem, is the power spectral
density.
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Figure 3: (a) The eigenvalues and spectral samples,
showing reasonable agreement. The eDF is very close
to the true resel count, and the equivalent from the
spectrum is only slightly lower. (b) The continuous
spectrum and its square; the ratio of the squared area
to the area under the squared spectrum analytically
yields eDF proportional to the expected number of re-
sels, with scale factor near 94%.
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(a) Eigenvalues and sampled spectrum

 

 

Effective DF from V
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(b) eDF from areas under continuous spectra

 

 

eDF from ratio of areas = 7.83 
 = 2 * sqrt(log(2) / pi) * (N / f

a
)

 ≈ 0.939 * Resels

Spectrum

Squared Spectrum

The theoretical resel count is simply the product of the
number of voxels and the RPV, or the number of vox-
els divided by the FWHM = 100 / 12 = 8.33; the esti-
mated resel count (Kiebel et al., 1999) is in very close
agreement: 8.29.

In the field of genomics, Gao et al. (2008) also pro-
posed an estimator of the effective number of indepen-
dent tests, defining Meff such that the first Meff summed
eigenvalues of the correlation matrix amount to 99.5%
of the total. Here, this results in an over-estimate of
eDF as 14 (whether from theoretical or estimated cor-
relation or covariance matrices).

Figure 4: Properties of the effective DF computed
from the theoretical covariance matrix, over varying
applied smoothness (FWHM).
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Figure 5: Properties of the estimators from empirical
data over varying numbers of realisations, showing the
break-down in the accuracy of the effective DF as the
covariance matrix becomes less precisely estimated.
Here, the applied FWHM was set to 10, the vector
length remained at 100, and the number of realisations
varied from 1 to 100,000 logarithmically.
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Discussion
In data with complicated covariance structure, such as
source reconstructed EEG or MEG, it will typically
not be possible to estimate the full covariance accu-
rately. Random field theory resolves this by focus-
ing on the (possibly nonstationary) local smoothness,
which is known to be valid but conservative in the pres-
ence of longer range correlations (Taylor and Worsley,
2007). The link between RFT and eDF shown here
thus motivates considering eDF as a potentially less
conservative estimate of the equivalent number of in-
dependent tests. Further research will investigate the
performance of this measure in Bonferroni and related
correction procedures.
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