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3.1  INTRODUCTION

Drought is a normal, recurring feature of climate in most parts of the world (Wilhite, 
2000) that adversely affects vegetation conditions and can have significant impacts on 
agriculture, ecosystems, food security, human health, water resources, and the economy. 
For example, in the United States, 14 billion-dollar drought events occurred between 
1980 and 2009 (NCDC, 2010), with a large proportion of the losses coming from the 
agricultural sector in the form of crop yield reductions and degraded hay/pasture condi-
tions. During the 2002 drought, Hayes et al. (2004) found that many individual states 
across the United States experienced more than $1 billion in agriculture losses associ-
ated with both crops and livestock. The impact of drought on vegetation can have seri-
ous water resource implications as the use of finite surface and groundwater supplies 
to support agricultural crop production competes against other sectoral water interests 
(e.g., environmental, commercial, municipal, and recreation). Drought-related vegeta-
tion stress can also have various ecological impacts. Prime examples include widespread 
piñon pine tree die-off in the southwest United States due to protracted severe drought 
stress and associated bark beetle infestations (Breshears et al., 2005) and the geographic 
shift of a forest-woodland ecotone in this region in response to severe drought in the 
mid-1950s (Allen and Breshears, 1998). Tree mortality in response to extended drought 
periods has also been observed in other parts of the western United States (Guarin and 
Taylor, 2005), as well as in boreal (Kasischke and Turetsky, 2006), temperate (Fensham 
and Holman, 1999), and tropical (Williamson et al., 2000) forests. Droughts have also 
served as a catalyst for changes in wildfire activity (Swetnam and Betancourt, 1998; 
Westerling et al., 2006) and invasive plant species establishment (Everard et al., 2010).

Monitoring drought stress of vegetation is a critical component of proactive 
drought planning designed to mitigate the impact of this natural hazard. Approaches 
that characterize the spatial extent, intensity, and duration of drought-related veg-
etation stress provide essential information for a wide range of management and 
planning decisions. For example, such information could be used by agricultural 
producers and water resource managers to adjust crop irrigation schedules and by 
ranchers to determine stocking rates and grazing rotations for cattle. In addition, this 
knowledge allows natural resource managers to implement best management prac-
tices under drought conditions and other decision makers to better target assistance 
and response activities (e.g., release of Conservation Reserve Program grasslands for 
emergency grazing or early detection of hot spots for wildfires) in a timely manner.

For more than 20 years, satellite-based remote sensing has been widely used for 
many large-area vegetation characterization applications (e.g., land cover classifica-
tion, biophysical estimates, and phenology) including drought monitoring. Satellite-
based observations from global imagers such as the Advanced Very High Resolution 
Radiometer (AVHRR) and the more recent Medium Resolution Imaging Spectrometer 
(MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS), and SPOT 
(Satellite Pour l’Observation de la Terre) Vegetation instruments have provided a near-
daily, global coverage of spatially continuous spectral measurements to complement 
point-based weather station observations that have been used to generate traditional, 
climate-based drought indices such as the Palmer Drought Severity Index (PDSI) 
(Palmer, 1965) and the Standardized Precipitation Index (SPI) (McKee et al., 1995). 
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Over this period, a number of remote sensing-based vegetation indices (VIs) have been 
developed from various spectral band combinations to monitor vegetation health.

The Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974) has 
been the most widely used VI for large-area vegetation monitoring (e.g., Tucker 
et al., 1985; Townshend et al., 1987; Reed et al., 1996; Jakubauskas et al., 2002). 
NDVI is a simple, two-band mathematical transformation that capitalizes on the 
differential response of chlorophyll absorption and internal spongy mesophyll layer 
reflectance from plant leaves in the visible red and near infrared (NIR) spectral 
regions, respectively. A large body of research has found that NDVI fluctuations 
over time are strongly correlated with climate variations (Peters et al., 1991; Yang 
et al., 1998; McVicar and Bierwirth, 2001; Ji and Peters, 2003), indicating that this 
index is an effective measure of climate-related vegetation changes. Over the past 
two decades, several operational AVHRR-derived NDVI products have been devel-
oped for large-area vegetation monitoring, including the Global Inventory Modeling 
and Mapping Studies (GIMMS) global NDVI data set (Tucker et al., 2005), the 
Famine and Early Warning System Network (FEWS NET) regional NDVI data sets 
(e.g., Africa, Afghanistan, and Latin America), and national NDVI products over 
Australia and United States (Eidenshink, 2006) produced by the Australian Bureau 
of Meteorology and U.S. Geological Survey (USGS), respectively.

The Vegetation Health Index (VHI) (Kogan, 1995), which incorporates both 
NDVI and brightness temperature (BT) data collected by AVHRR, is another index 
that has been applied to assess national- to continental-scale drought conditions (Liu 
and Kogan, 1996; Kogan, 1997; Seiler et al., 1998; Unganai and Kogan, 1998; Kogan, 
2002). The VHI concept assumes an inverse relationship between NDVI and BT 
because higher land surface temperatures (LSTs) tend to negatively impact vegeta-
tion vigor (and decrease NDVI), which can be indicative of a drought stress signal 
because of reduced evapotranspiration (ET). However, Karnieli et al. (2006, 2010) 
found VHI had limited utility in “energy limited” environments (e.g., high latitude 
or elevation locations) where LST and NDVI exhibit a positive relationship and was 
most useful for locations where water was the primary limiting factor of vegetation 
growth. Several other methods of integrating NDVI and LST data from AVHRR and 
MODIS have also been tested for drought monitoring that include simple division 
(McVicar and Bierwirth, 2001), two-dimensional geometric expressions (Karnieli 
and Dall’Olmo, 2003), and ratios (Wan et al., 2004) between these two variables.

The launch of MODIS, with an increased number of land-related spectral bands and 
expanded spectral coverage into the shortwave-infrared region (SWIR), led to the devel-
opment of several new VIs incorporating SWIR observations. MODIS has two SWIR 
bands that are sensitive to changes in plant (Band 6: 1628–1652 nm) and soil (Band 
7: 2105–2155 nm) water content, respectively. Gao (1996) developed the Normalized 
Difference Water Index (NDWI), which capitalizes on the differential response of the 
NIR (i.e., high reflectance by intercellular spaces) and the SWIR (i.e., high absorption 
by plant water content) reflectances in healthy vegetation. In a study over grasslands, 
Gu et al. (2007) found NDWI to be slightly more sensitive than NDVI to the onset of 
drought stress. Gu et al. (2008) extended both the NDVI and NDWI concepts by inte-
grating both into an index called the Normalized Difference Drought Index (NDDI). 
Wang et al. (2007) built upon the original NDWI concept by developing a three-band 
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index called the Normalized Multi-band Drought Index (NMDI), which incorporates 
data from both of MODIS’ SWIR bands, as well as the NIR band. The NMDI utilizes 
the difference between the two SWIR bands, which are sensitive to soil and plant water 
content, respectively. The relative difference between these two SWIR bands changes 
according to fluctuation in both the soil and plant water content.

Collectively, this body of work illustrates the value of satellite-based VI obser-
vations for assessing vegetation conditions and the considerable emphasis that has 
been placed on developing new VIs in support of drought monitoring. However, 
two major challenges exist among all these satellite-based VIs in terms of apply-
ing them for drought monitoring. The first challenge is establishing the appropriate 
threshold(s) that discriminates between drought and nondrought conditions, as well 
as varying levels of drought stress (e.g., moderate, severe, and extreme). Typically, a 
relative VI value or a departure of a VI value from a baseline (e.g., low percentage 
of the average historical VI value) is used as an indicator of drought stress instead 
of classifying specific levels of drought severity. Selection of thresholds to classify 
drought conditions using VI information is difficult because they can vary by land 
cover type, geographic location, and season. The second challenge is the ability to 
discriminate drought-impacted areas from other locations experiencing vegetation 
stress due to other causes solely from remotely sensed VI information. A number 
of environmental factors (e.g., fire, flooding, hail, pests, plant disease, and human-
induced land cover/use changes) can produce negative VI anomalies (Peters et al., 
2000; Domenikiotis et al., 2003; Wang et al., 2003; Goetz et al., 2006; Franke and 
Menz, 2007) that mimic a drought stress signal. Ancillary information such as cli-
mate data or ground observations (e.g., field reports of crop conditions) is needed to 
better define these negative VI anomalies within a drought context.

This chapter presents a new hybrid index called the Vegetation Drought Response 
Index (VegDRI) that integrates traditional remote sensing–based VI observations 
and climate-based drought index data with several general biophysical characteris-
tics of the environment to characterize “drought-related” vegetation stress (Brown 
et al., 2008). VegDRI was designed to capitalize on the valuable spatiotemporal veg-
etation condition information contained in multitemporal NDVI data while focus-
ing on the drought component of these conditions through the addition of climate 
and biophysical data. VegDRI overcomes the interpretation difficulties encountered 
using traditional remote sensing–based VIs and classifies vegetation drought severity 
using an objective, quantitative classification scheme. A review of VegDRI’s specific 
data inputs, classification scheme, and modeling approach is presented in this chap-
ter along with case examples of VegDRI results from 2009 across the United States 
to illustrate the performance and utility of this new drought VI.

3.2  VegDRI DATA INPUTS AND METHODOLOGY

3.2.1  Overview of the VegDRI Concept

VegDRI targets the effects of drought on vegetation by collectively analyzing 
general vegetation conditions as observed in satellite-derived VI data and the 
level of dryness expressed in climate-based drought indices for a specific location. 
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Additional biophysical/environmental characteristics such as ecoregion, eleva-
tion, land use/land cover (LULC) type, and soil type are also considered because 
they can influence climate-vegetation interactions. This integrated approach 
was developed to capitalize on the strengths of both satellite- and climate-based 
indices that have been traditionally used for drought monitoring. The set of data 
inputs used to calculate VegDRI can be categorized into three components: 
satellite, climate, and biophysical. The satellite component provides spatially 
detailed information about the distribution and general health of vegetation from 
1 km AVHRR NDVI data. The climate component consists of two commonly 
used drought indices, the PSDI and SPI, which provide a measure of dryness. 
Specifically, the PDSI is used to train the empirically-based VegDRI models, pro-
viding an eight-category drought severity classification system widely recognized 
by the drought community that ranges from extremely moist to extreme drought 
conditions. The biophysical component comprises several biophysical variables 
that reflect different terrestrial characteristics that can influence the response 
of vegetation to drought. Table 3.1 lists the specific VegDRI input variables, 
which will be further described in this section along with a detailed description 
of the VegDRI methodology. This methodology consists of four primary steps: 
(1)  creation of a historical database of input variables for model development, 
(2) generation of biweekly, empirically based VegDRI models, (3) generation of 
near-real-time gridded data inputs, and (4) application of model to gridded inputs 
to produce 1 km VegDRI maps (Figure 3.1).

TABLE 3.1
Input Variables for the Biophysical, Climate, and Satellite 
Components of VegDRI

Data Set Source Format
Temporal 

Resolution

Climate component variables

SPI ACIS/NADSS ASCII (at sites) Biweekly

PDSI—self-calibrated ACIS/NADSS ASCII (at sites) Biweekly

Satellite component variables

PASG AVHRR NDVI 1 km raster Biweekly

SOSA AVHRR NDVI 1 km raster Annual

Biophysical component variables

NLCD National Land 
Cover Database

1 km raster Static

Soil AWC STATSGO 1 km raster Static

IrrAg USGS MIrAD 1 km raster Static

Ecological regions (ECO) EPA ecoregions 1 km raster Static

Elevation (DEM) 1 km raster Static
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3.2.2  VegDRI Classification Scheme

VegDRI has eight vegetation condition classes (Table 3.2) based on a modified version 
of the PDSI classification system (Palmer, 1965). There are three classes of drought 
severity (moderate, severe, and extreme), as well as a predrought class that represents 
the dry side of near-normal class value range. The predrought class was included to 
highlight areas that may be nearing initial drought conditions. VegDRI also has four 
nondrought classes (normal, unusually, very, and extremely moist) that characterize 

TABLE 3.2
VegDRI Classification Scheme and Class 
Value Ranges

VegDRI Class Names Value Range

Extreme drought <−4

Severe drought −4 to −3

Moderate drought −3 to −2

Predrought −2 to −1

Near normal −1 to +2

Unusually moist +2 to +3

Very moist +3 to +4

Extremely moist >+4

Satellite data

+ +

Climate data Biophysical data
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nd

 in
pu
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ar

ia
bl

es

PASG
SOSA
Out of season

36-week SPI 
Self-calibrated PDSI 

Land use/land cover type
Irrigation
Soil available water capacity
Elevation
Ecoregion

Step 1
Step 2

Step 3

Step 4

Operational biweekly VegDRI
map production

Training data
Historical database

development of
satellite, climate, and

biophysical data
extracted for specific

weather station
locations

Regression tree
analysis to develop
bi-weekly VegDRI

models (rules)

Gridded image generation
of near real-time

data inputs

Application of bi-weekly
model to near real-time

gridded inputs for
VegDRI map generation

FIGURE 3.1  Overview of the data inputs and methodology of VegDRI.
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locations with normal to better than normal vegetation conditions, as well as areas of 
excessively wet conditions that could result in poor vegetation conditions due to flood-
ing or water logging. An “out of season” (OS) class is also included to identify time 
periods for a given location when the vegetation is dormant (e.g., winter months) and 
VegDRI values are not calculated. OS is objectively defined through the historical 
analysis of time-series AVHRR NDVI data, which is discussed later in this section.

3.2.3  Data Inputs

3.2.3.1  Satellite Variables
A 20 year time series of biweekly, composited 1 km AVHRR NDVI data (Eidenshink, 
2006) is used to calculate three vegetation-related metrics used in the VegDRI 
model, which include Percent Annual Seasonal Greenness (PASG), Start of Season 
Anomaly (SOSA), and OS. Prior to the calculation of these metrics, the NDVI time 
series is smoothed using a weighted least squares regression technique (Swets et al., 
1999) to minimize noise and other artifacts (e.g., residual clouds) commonly found 
in the AVHRR data (Los et al., 1994) while maintaining the major multitemporal 
features of the original NDVI data.

3.2.3.1.1  Percent Annual Seasonal Greenness
The PASG provides a measure of how vegetation conditions for a specific biweekly 
period in a given year compare to the historical average conditions for the same 
period over the 20 year record of AVHRR NDVI observations. In order to calculate 
the PASG for each period, a historical median growing season window for each 
1 km pixel in the AVHRR imagery is determined by identifying the Start and End 
Of Season Time (SOST and EOST) day of year (DOY) from annual AVHRR NDVI 
time series data using a moving-window averaging technique (Reed et al., 1994). 
A seasonal greenness (SG) metric, which represents the accumulated NDVI above a 
background NDVI baseline (i.e., nongrowing season or “latent” NDVI contributed 
from the soil background and/or atmospheric effects that has little to no biophysical 
meaning related to vegetation) across each 14 day period, is then calculated starting 
from the historical SOST DOY for each year in the historical record. SG is calcu-
lated sequentially for each period across the year until the EOST DOY, and the SG 
value for a specific period (SGPnYn, the SG for biweekly period n(Pn) in year n(Yn)) 
represents the sum of the SG for the current and all preceding biweekly periods in 
the growing season. For each biweekly period, a historical mean SG (μSGPn) is cal-
culated from the 20 yearly SG values. The 20 year record of PASG values for each 
period-year combination is then produced using the following equation:

	
PASG

SG
SG

P Y
P Y

P
n n

n n

n

=






×
µ 0

100.
	

(3.1)

Brown et al. (2008) provide additional details regarding the PASG calculations. 
A low PASG value (e.g., <50%) for a specific biweekly period indicates below-
normal (stressed) vegetation conditions compared to the historical conditions for 
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that period, while high PASG values greater than 100% reflect above-average (or 
nonstressed) vegetation conditions.

3.2.3.1.2  Start of Season Anomaly
The SOSA represents the departure in the SOST for a specific year (SOSTn) from 
the median historical SOST (SOSTmed) for a given pixel. For each year in the 20 year 
time series, the pixel-level SOSA (SOSAn) expressed in number of days is calculated 
using the following equation:

	 SOSA SOST SOSTn n med= − . 	 (3.2)

The SOSA is included in the VegDRI model to distinguish areas that have a normal 
start of season and are experiencing low PASG because of interannual climatic vari-
ations (e.g., drought or cold early-season temperatures) from areas that experience 
an unusually late SOST because of nonclimate-related factors (e.g., LULC change 
or changes in management practices) that might result in a comparably low PASG.

3.2.3.1.3  Out of Season
The OS metric represents the nongrowing season period when vegetation is dormant. 
A historical median OS period is determined for each pixel using the SOST and 
EOST DOYs calculated for the PASG. The OS is defined as the period from EOST 
DOY (e.g., DOY 305 or November 1) to the SOST DOY of the next year (e.g., DOY 
90 or March 31). During the OS for a given pixel, historical data are excluded from 
VegDRI model development, and no VegDRI values are calculated in the maps for 
biweekly periods within this temporal window. Excluding VegDRI calculations dur-
ing the OS was implemented to avoid “false positive” drought signals from being 
depicted in the maps during periods of the year when the vegetation is not photosyn-
thetically active, resulting from fluctuations in the NDVI (and resultant PASG) asso-
ciated with nonvegetation-related factors (e.g., soil background and angular effects).

3.2.3.2  Climate Variables
The self-calibrated PDSI and the SPI were incorporated into VegDRI as indicators of 
climatic dryness. Historical data for both indices from 2417 weather station locations 
across the United States (3.2) were acquired from the Applied Climate Information 
System (ACIS) (http://www.rcc-acis.org/) (Hubbard et al., 2004). To ensure that 
high-quality historical time-series data are incorporated into VegDRI model devel-
opment, only data from stations with a minimum 30 year data record and less than 
10% missing observations are used. For each station, a 20 year time series of self-
calibrated PDSI and SPI was calculated on a biweekly time step consistent with 
PASG calculations.

3.2.3.2.1  Standardized Precipitation Index
The SPI was designed to quantify precipitation anomalies over multiple time inter-
vals (e.g., 1–12 month periods) based on fitting a long-term precipitation record at 
a given location over a specified interval to a probability distribution, which is then 
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transformed into a gamma distribution so that the mean SPI value for that location 
and time period is 0 (McKee et al., 1995). SPI values are positive if the precipitation 
over a specific time period is higher than the historical average precipitation over 
that same period and negative if precipitation is less than the historical mean. The 
strength of the SPI is its temporal flexibility to assess conditions over short, interme-
diate, and long time intervals. A 36 week SPI was selected for VegDRI after exhaus-
tive statistical testing of all SPI time intervals spanning from 1 to 52 weeks for the 
2417 stations. Selection was based on the SPI that had a consistently high correlation 
coefficient value across all growing season periods.

3.2.3.2.2  Palmer Drought Severity Index
The PDSI is a prominent drought index that has been widely used to assess agri-
cultural drought in the United States (Keyantash and Dracup, 2002). The PDSI is 
calculated from a simple supply-and-demand model of water balance that integrates 
precipitation and temperature information, as well as the available water holding 
capacity of the soil at a given location (Palmer, 1965). A new self-calibrated PDSI 
(Wells et al., 2004) is used in VegDRI, which calibrates the constants and dura-
tion factors in the PDSI computations to the local environmental characteristics of 
a specific location while still retaining the objectives of the original PDSI. These 
local adjustments improve the spatial comparability of PDSI values and calibrate the 
index so that extreme dry and wet events have a comparable rate of occurrence at 
any location (Guttman et al., 1992), providing a more consistent national PDSI data 
input for the VegDRI models.

3.2.3.3  Biophysical Variables
3.2.3.3.1  Land Use/Land Cover
The LULC variable was incorporated into VegDRI to reflect the variety of seasonal 
cycles and climate-vegetation responses exhibited by different LULC types. A 1 km 
LULC map was developed from the USGS 30 m National Land Cover Dataset 
(NLCD) circa 2001 (Homer et al., 2004). For each 1 km pixel in the AVHRR grid 
over the conterminous United States (CONUS), the majority LULC class among the 
30 m NLCD data was determined and assigned to that 1 km pixel. Some thematic 
classes in the original NLCD classification scheme were merged (e.g., emergent her-
baceous and woody wetland classes assigned to a single wetland class) to create more 
general LULC classes for model development.

3.2.3.3.2  Irrigated Agriculture
An irrigated agriculture (IrrAg) variable was integrated into VegDRI to differentiate 
irrigated locations, which are less susceptible to drought stress because of targeted 
water applications, from rainfed agricultural areas. A 1 km map depicting the spa-
tial distribution of IrrAg was generated from a 250 m MODIS Irrigated Agriculture 
Dataset (MIrAD) developed from a combination of MODIS NDVI data, USDA 
county irrigation statistics, and LULC information (Brown et al., 2009). The 1 km 
IrrAg map represents the percentage of irrigated 250 m MIrAD pixels contained 
within each 1 km pixel footprint.
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3.2.3.3.3  Soil Available Water Capacity
The available water capacity (AWC) variable is used to reflect the potential of the 
soil to hold moisture that is available to plants, which influences the susceptibility 
of vegetation to drought stress. A 1 km AWC map was developed by extracting the 
AWC values for the total soil column from the State Soil Geographic (STATSGO) 
database for each soil map unit (USDA, 1994) and converting the map unit polygons 
to a 1 km raster grid.

3.2.3.3.4  Ecoregion
The ecoregion variable provides a geographic framework to account for the con-
siderable variability in environmental conditions encountered across the CONUS 
that can influence the level of drought stress experienced at a given location. For 
example, two locations (e.g., High Plains versus Flint Hills) may be assigned to same 
general grassland class by the LULC variable but may have differing responses to 
drought because they represent different general grassland types (e.g., shortgrass 
versus tallgrass prairie) with different dominant species compositions (e.g., cool- 
versus warm-season grasses) that have acclimated to the collective environmental 
conditions of the area (e.g., climate, soils, and topography). A 1 km ecoregion grid 
was created from Omernik Level III ecoregion vector data (Omernik, 1987), which 
divides the CONUS into a series of geographic regions with similar ecosystems and 
environmental resources defined using both abiotic (e.g., physiography) and biotic 
(e.g., plant species) criteria.

3.2.3.3.5  Elevation
A digital elevation model (DEM) consisting of a 1 km raster grid of evenly spaced 
elevation values derived from the USGS 30 m DEM is included to account for influ-
ences of elevation on vegetation types and their sensitivity to drought.

3.2.4  VegDRI Training Database Development

A training database of all climate, satellite, and biophysical data discussed earlier 
was extracted and assembled for the 2417 weather station locations in Figure 3.2. 
Historical, point-based PDSI and SPI data were calculated for each station and 
sequentially ordered by biweekly period for each year in the database. Data were 
also extracted from the gridded satellite and biophysical data sets at the location of 
each weather station. A 3 × 3 pixel window centered on each station location was 
used to calculate the average value across all pixels in the window for continuous 
variables (e.g., PASG) and the majority value for categorical variables (e.g., LULC). 
Pixels within the window classified as urban or water in the LULC grid or flagged to 
be OS for a specific biweekly period were excluded from the mean or majority zonal 
calculations for that period. Data values associated with both urban and water loca-
tions were excluded because both LULC types are representative of primarily non-
vegetated areas that are not the monitoring target for VegDRI. Pixels flagged to be 
OS for a specific biweekly period were also removed or excluded from the window 
average for that period because of the nonvegetated spectral signal detected from 
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the pixel at that time. A 20 year historical time series of biweekly PASG and OS 
values was calculated for each station using this approach and sequentially ordered 
in the same manner as the climate data. For each year in the time series, a SOSA 
value was calculated for each station location and held constant for all “in-season” 
biweekly periods for that year. The biophysical variable values calculated for each 
station were held static across the 20 year period. Historical records of all stations 
in the database were then temporally subset into 26 biweekly periods (e.g., biweekly 
period 1: January 1–14) across the calendar year to develop a series of separate, 
biweekly VegDRI models.

3.2.5  VegDRI Model Development

For each biweekly period, a commercial Classification and Regression Tree (CART) 
algorithm called Cubist (Quinlan, 1993) was used to analyze the historical data in 
the training database for that specific period and generate a rule-based, piecewise 
linear regression VegDRI model. Each model incorporates historical data for the 
“dynamic” climate and satellite-based variables while holding the biophysical vari-
ables constant over a four-biweek window that includes the current biweekly period 
(e.g., biweek 10) plus the three prior biweekly periods (e.g., biweeks 7, 8, and 9) 
in the calendar year. As discussed earlier, the self-calibrated PDSI serves as the 
dependent variable in these empirical-based models, providing a well-established 
classification system for VegDRI to categorize varying levels of drought severity 
on vegetation based on the analysis of the other biophysical, climate, and satellite 
variables. Twenty-six period-specific VegDRI models were developed. The Cubist-
derived models consist of an unordered set of rules, with each rule having the syntax 
“if x conditions are met then use the associated linear regression model” to calculate 

FIGURE 3.2  Geographic location of the 2417 weather station locations used to develop the 
empirical VegDRI models.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b11863-5&iName=master.img-001.jpg&w=263&h=166
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the VegDRI value. The following is an example of one of many rules generated for 
a specific biweekly period:

Rule 1:
  If land cover in {Grassland, Pasture/Hay, Row Crops}
    Ecoregion in {western High Plains, central Great Plains}
    36 week SPI ≤ −1.4
    AWC ≤ 4.5
    PASG ≤ 50
then VegDRI = −3.5 + 0.6 PASG + 1.48 SPI − 0.14 AWC + 0.25 percent irrigated.

In other words, if the data associated with a case (i.e., pixel) meet the threshold crite-
ria for the three continuous variables and are represented by one of the three land cover 
types and either ecoregion, then the following linear regression equation is used to calcu-
late a VegDRI value. Most period-specific VegDRI models comprise 30–40 rules. If two 
or more rules apply to a case, then all linear regression equations are used to calculate a 
series of values that are averaged to determine the final VegDRI value. It should be noted 
that some rules and/or associated linear regression equations may not use all the indepen-
dent variables. For example, in the rule shown earlier, elevation and SOSA are not used. 
However, each independent variable is incorporated into a subset of the multiple rules 
and regression equations that are collectively utilized to calculate the final VegDRI value.

3.2.6  VegDRI Model Implementation and Mapping

The rules from a biweekly VegDRI model are then applied to the set of gridded image 
data inputs (listed in Table 3.1) for the corresponding period using MapCubist software 
developed at the USGS Earth Resources Observation and Science (EROS) Center to 
produce a 1 km VegDRI map. For the SPI variable, which is acquired as a point-based 
index value from weather station data, a 1 km raster image is generated using an 
inverse distance weighting (IDW) interpolation method. During model implementa-
tion to the gridded image data, the values of all the input variables associated with 
each pixel are considered to determine the specific rule(s) and corresponding linear 
regression equation(s) to be applied at the pixel level. This process is repeated until all 
1 km pixels in the image domain have been assigned a VegDRI value.

The VegDRI map is the result of inverting the empirically based regression models, 
which describe the historical relationship between PDSI and the other climate, environ-
mental, and satellite input variables for known locations (i.e., weather station locations). 
Although the models are applied at the pixel level during the mapping phase, collec-
tively the integration of these variables results in landscape-level drought depictions 
across the image domain. In VegDRI’s conceptual design, the remote sensing inputs 
provide high spatial resolution inputs of vegetation patterns and conditions across the 
landscape, which add structure to 1 km VegDRI maps when combined with the coarser 
precipitation patterns represented in the interpolated SPI grid. The spatial patterns rep-
resented by the other static environmental variables in the image domain also add spa-
tial structure to maps by providing geographic stratification of the relationship between 
the remote sensing inputs (i.e., PASG and SOSA) and SPI to estimate PDSI values 
across the CONUS in the 1 km VegDRI map generated in this final mapping step.
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3.3  �RESULTS AND DISCUSSION

3.3.1  �Statistical Analysis of Historical VegDRI Model 
Performance across the United States

Assessment of the statistical accuracy of the national-level, biweekly VegDRI models 
over the CONUS for a 20 year study period (1989–2008) is presented in Figure 3.3. 
This analysis was conducted to determine how well the VegDRI model was able 
to reproduce self-calibrated PDSI classifications at weather station locations across 
the CONUS. An x-fold cross-validation technique (Kohavi, 1995) using “hold out” 
years was used to assess VegDRI’s historical performance across the growing season 
for the 2417 weather station locations in Figure 3.2. For each biweekly period, 20 
validation iterations (or folds) were performed by using 19 years of historical data 
to train a model (e.g., 1990–2008) and one independent “hold out” year (e.g., 1989) 
to determine VegDRI’s predictive accuracy across all stations. A different hold-out 
year was selected for each iteration, allowing every year in the 20 year record to be 
withheld for testing. Correlation coefficient results for the primary growing season 
periods over the CONUS are presented for each biweekly period in Figure 3.3. The 
Pearson correlation coefficient (r) values for each date represent the mean correlation 
between the predicted and observed VegDRI values across the 20 year period for all 
station locations.

The correlation results show that the VegDRI models had a relatively high pre-
dictive accuracy across the growing season with r values greater than 0.75 for all 
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biweekly periods. The predictive accuracy gradually increased from May 7 (r = 0.77) 
to October 8 (r = 0.90). An increase in predictive accuracy early in the growing sea-
son might be expected given the inherent interannual variations in the emergence 
and initial growth rates of vegetation because of varying climatic conditions (e.g., air 
and soil temperature). Subtle variations in early growing season conditions when the 
vegetation has relatively low green biomass can result in dramatic changes in PASG 
values (due to small dynamic range of NDVI values at that time) compared to later in 
the growing season when the vegetation has much higher biomass and the PASG are 
less influenced by the same level of variation (due to larger dynamic range of NDVI 
values). As a result, small changes in vegetation conditions earlier in the year can 
result in larger PASG changes and thus increased VegDRI error compared to later 
dates as the growing season progresses when the PASG and resulting VegDRI values 
are less sensitive to such variations. The period-specific VegDRI models were also 
found to have a stable predictive accuracy across the 20 year period with relatively 
low interannual variability among the annual r values for each biweekly period. 
This is reflected by the small range of the average ±1 standard deviation (σ) values 
(1σ = ∼0.01) that bounded the mean r values for all biweekly periods in Figure 3.3. 
These results indicate that the performance of VegDRI was reasonably robust over 
the CONUS across the growing season and relatively uninfluenced by interannual 
climate variability over two decades.

Because this testing used in situ meteorological observations at each station loca-
tion to calculate the PDSI validation data sets, these results should be viewed as 
a “best case” accuracy of VegDRI because calculations in the VegDRI maps for 
locations between stations are based on spatially interpolated PDSI values (rather 
than from observed station data). As a result, correlation values in the map lacking 
in situ observations will likely be lower than those reported here, with the accu-
racy being highly dependent on the accuracy of the spatial interpolation technique 
and density of weather station locations in close proximity to that specific location. 
Further testing is needed to fully assess the overall accuracy of VegDRI for locations 
lacking in situ–based PDSI data. This could be accomplished by assessing spatially 
interpolated PDSI grids generated from the station data used in this study or using 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) or radar-
based observed precipitation data from the National Weather Service (NWS) to cal-
culate PDSI values for nonstation locations to compare with the VegDRI results.

3.3.2  National-Level VegDRI: An Example from 2009

Figure 3.4a and b compares the national VegDRI map for July 13, 2009, with the 
U.S. Drought Monitor (USDM) map for July 14, 2009, to illustrate the national-level 
drought patterns and improved spatial resolution of information provided by this 
index. The USDM (http://drought.unl.edu/dm/monitor.html) represents an appro-
priate benchmark to compare the performance of VegDRI because it is the cur-
rent state-of-the-art drought monitoring tool for the United States. The USDM map 
represents a broad-scale depiction of national agricultural and hydrological drought 
conditions based on the collective analysis of an array of climate-, hydrologic-, and 
satellite-based indicators, as well as input from climate and water experts across the 
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FIGURE 3.4  (See color insert.) VegDRI map (a) for July 13, 2009, and USDM maps for 
July 14 (b) and July 28 (c), 2009, over the continental United States. The black circle high-
lights an area of central Ohio that was classified as predrought stress in the VegDRI map but 
lagged by 2 weeks in the USDM maps, which did not show abnormally dry conditions until 
late July. The red boxes on the VegDRI map delineate the geographic extent of the local case 
study areas presented later in Section 3.4.
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on the VegDRI map delineate the geographic extent of the local case study areas presented 
later in Section 3.4.
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country (Svoboda et al., 2002). Lower resolution PDSI is one variable commonly 
used in the construction of the USDM.

VegDRI and the USDM depicted similar drought patterns across the United States 
for this mid-July 2009 date. Major drought areas such as the severe to extreme condi-
tions in south Texas and moderate to severe conditions in the Oklahoma Panhandle, 
eastern Minnesota and northern Wisconsin, northwest Montana, and California and 
western Nevada are seen in both maps. A predrought signal appeared in VegDRI over 
north Georgia and the Carolinas that was consistent with the abnormally dry areas 
depicted in the USDM. Small areas of predrought and moderate drought appeared 
in VegDRI in central Ohio that were absent from the USDM map. However, by late 
July, similar drought conditions were expressed in the USDM (Figure 3.4c), sug-
gesting that VegDRI may have provided an early indicator of dryness that was not 
represented in the USDM. Clearly the use of remote sensing information in VegDRI 
provides higher spatial resolution drought information than that currently conveyed 
in the USDM. The hope is that indices that incorporate satellite-based observations 
such as VegDRI will allow the USDM to improve the spatial precision of the drought 
patterns represented in their maps in the future. The ability of VegDRI to character-
ize substate to county-level drought patterns over a range of climate regimes and land 
cover types is further illustrated by the case examples presented in the next section.

3.3.3  �Local-Scale VegDRI Information: Examples 
from across the United States in 2009

3.3.3.1  South Texas
In 2009, south Texas suffered from severe to extreme drought conditions, with many 
locations, particularly along the Gulf Coast, experiencing their driest year in the mod-
ern climatic data record. Figure 3.5a shows the extreme drought conditions detected 
by VegDRI over a three-county area centered on Corpus Christi in Nueces County. As 
the national VegDRI map in Figure 3.4a shows, most of south Texas experienced very 
severe to extreme drought conditions, but the focal point of the most intense drought 
signal in VegDRI emerged in the local area of Kleberg, Nueces, and San Patricio 
counties along the Gulf of Mexico. Precipitation records for several weather stations 
in these counties (Corpus Christi, Kingsville, Mathis, and Robstown) revealed the 
magnitude of the 2009 drought, with each station recording its driest year in more 
than 50 years of precipitation observations. Precipitation deficits were significant, 
with each station receiving less than 15% of mean annual rainfall. On average, these 
humid tropical locations receive more than 54 in. of rain annually, but in 2009, they 
received between 5 and 10 in. of precipitation. Agricultural production was devas-
tated with a near-complete failure of two primary crops: cotton and sorghum. For 
example, USDA (2010a) reported that ∼29% of 168,000 planted acres of sorghum 
were harvested in Nueces County with an average yield of 40 bushels per acre, which 
ranked as the third lowest production total since 1962. In addition, local media 
reports collected by the Drought Impact Reporter (http://droughtreporter.unl.edu/) 
stated that more than 90% of the cotton and sorghum crops in these counties were 
destroyed by drought, and the harvestable crop was of poor quality.



67Vegetation Drought Response Index

3.3.3.2  Arizona
The severe to extreme drought conditions that were prevalent across Arizona 
throughout the second half of 2009 are shown in the VegDRI map for November 2 
(Figure 3.5b). Drought conditions in Arizona rapidly intensified during the summer 
and fall because of a lack of rainfall during the monsoon season (July–September), 
which traditionally accounts for most of the state’s annual precipitation in an otherwise 
arid climate. In 2009, the state of Arizona experienced its third driest June–August 
period in more than a century (USDA, 2010b). By late October, most of Arizona had 
received less than 50% of average precipitation for the year, with the exception of far 
eastern Arizona, where near-average precipitation was received. VegDRI character-
ized this rapid progression in drought intensity from predominately near-normal to 
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predrought conditions on July 13 (Figure 3.4a) to the severe to extreme drought condi-
tions on November 2 (Figure 3.5b) across most of the state. At the substate level, some 
of the driest conditions occurred in central Arizona in Coconino, Navajo, and Gila 
counties, where many locations received <25% of average annual precipitation. In 
Figure 3.5b, severe to extreme drought conditions over these counties were reflected 
in VegDRI. In addition, the more favorable conditions in eastern Arizona in Apache 
and Greenlee counties are classified in the predrought to moderate drought categories.

The pronounced drought conditions across the state were reflected by the numer-
ous reports of crop losses, degraded rangeland conditions, and negative impacts on 
forest health. USDA assigned a natural disaster declaration to 13 of 15 counties in 
Arizona because of substantial agricultural production losses. La Paz and Yuma coun-
ties in southwest Arizona were not assigned a disaster declaration because their pro-
duction losses were not as substantial. The reduced drought severity in this area was 
depicted by VegDRI in Figure 3.5b, with the majority of Yuma County and much 
of La Paz County experiencing moderate drought. A time series of VegDRI maps 
from September through December 2009 (complete VegDRI time series available at 
http://drought.unl.edu/vegdri/VegDRI_archive.htm) revealed that any severe drought 
conditions in either county were short lived, and a weaker, moderate drought signal per-
sisted over this period compared to the other western and central counties in Arizona.

3.3.3.3  Minnesota and Wisconsin
A snapshot of the moderate to severe drought conditions that persisted over east-
central Minnesota and northwest Wisconsin throughout the 2009 growing sea-
son is presented in the VegDRI map for August 10 (Figure 3.5c). A band of dry 
conditions spanning an area from Minneapolis, Minnesota, northeastward to Lake 
Superior (near Mellen, Wisconsin) began to emerge by early June and continued 
to intensify to moderate to severe drought conditions by midsummer (mid-July to 
early August). This example illustrates the local-scale variations in drought pat-
terns depicted by VegDRI, which were consistent with ground observations and 
impacts reported for this area. The percent average growing season precipitation 
received by selected weather stations in Figure 3.5c shows that the spatial varia-
tions in drought conditions depicted for VegDRI agreed with the rainfall deficit 
patterns recorded at weather stations across this area. For example, the transition 
from severe drought conditions in Wisconsin surrounding Cumberland to moderate 
drought near Eau Claire to near-normal conditions at Sparta classified by VegDRI 
reflects the localized precipitation gradient recorded during the 2009 growing 
season between these locations. During the 3 months before August 10, the per-
cent of average precipitation received during that period (typically between 11 and 
12 in.) increased along this drought severity gradient from 44% to 60% to 108% for 
these three locations, respectively. In addition, the core area of moderate to severe 
drought delineated by VegDRI from Minneapolis to Mellen was consistent with the 
weather station observations over this area, which typically recorded less than 50% 
of average rainfall.

The majority of the drought-stricken area classified as moderate to severe drought 
in Figure 3.5c is densely forested, and the impact of these dry conditions on veg-
etation was reflected by an increased number of burn bans and wildfires reported 
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in 2009. Foresters in northern Wisconsin reported an increased rate of mortality 
among several tree species (e.g., oak and maple) primarily attributed to the increased 
susceptibility of drought-weakened trees to many native insects and pathogens 
(Schwingle, 2009). Only a small area of extensive cropland between Cumberland, 
Eau Claire, and Minneapolis was located within the core drought area defined by 
VegDRI. However, USDA county officials within this area reported dry soil mois-
ture conditions and stressed crops and grasslands by early July that eventually 
lead to a USDA drought declaration for most counties in east-central Minnesota 
and northern Wisconsin. Locations classified by VegDRI to have near-normal 
vegetation conditions south of the core drought area (near stations such as Beaver 
Dam, Harmony, and Sparta) were not assigned a drought declaration by USDA. This 
was consistent with USDA National Agricultural Statistics Service (NASS) Crop 
Progress reports for Wisconsin, which reported adequate rainfall to support agricul-
tural production for this area.

3.4  ENHANCING VegDRI WITH MODIS SATELLITE DATA

Work is ongoing to transition the satellite inputs for VegDRI from AVHRR-based 
NDVI data to a MODIS-based expedited NDVI data stream produced by the USGS 
eMODIS system (Jenkerson et al., 2010), which has the flexibility to accommodate 
the production schedule of a specific application (e.g., daily, weekly, or biweekly). 
The current biweekly AVHRR NDVI composite production schedule is rigid; com-
posites are updated at a 2 week interval on Tuesdays, which restricts the opera-
tional production of new VegDRI maps to the middle of the week (i.e., Tuesday or 
Wednesday) once every 2 weeks. In contrast, the USGS eMODIS system provides a 
near-real-time, rolling 7 day NDVI composite for the CONUS that allows VegDRI 
to be updated weekly on Mondays to accommodate the schedule of users such as the 
USDM authors. In addition, the satellite observations from MODIS used to gener-
ate the NDVI data are expected to provide higher-quality information for VegDRI 
because of improved instrument calibration and higher geolocational accuracy, as 
well as the rigorous atmospheric and radiometric corrections applied to the spec-
tral data. The eMODIS-based VegDRI will use empirical models incorporating the 
SOSA and PASG calculated from historical AVHRR NDVI observations that are 
translated to a “MODIS-like” NDVI time series in order to be consistent with eMO-
DIS NDVI images to which the models are applied for map generation. Development 
of an AVHRR-to-MODIS NDVI translation algorithm and application within a 
phenological-based geographic framework (Gu et al., 2010) is nearing completion. 
eMODIS VegDRI is currently produced at USGS EROS and available via a web map 
interface (http://vegdri.cr.usgs.gov/viewer/viewer.htm). The transition to operational 
eMODIS VegDRI production for the CONUS is scheduled for 2011.

3.5  CONCLUSIONS AND FUTURE WORK

VegDRI represents a new “hybrid” index for operational vegetation drought moni-
toring in the United States, incorporating traditional satellite-based VI observations 
and climate-based drought index data with general biophysical information about the 
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environment to produce 1 km resolution national maps that depict “drought-related” 
vegetation stress. VegDRI is designed to characterize county to subcounty level 
drought patterns, which is an appropriate spatial scale to support a wide range of 
local-scale decision-making activities. Historical testing of the VegDRI models for a 
20 year period across the CONUS showed that this index maintained a high predic-
tive accuracy when compared with station-based, self-calibrated PDSI across both 
the growing season and diverse environmental conditions. Case examples from 2009 
over Arizona, south Texas, and northern Minnesota and Wisconsin further illus-
trated the ability of VegDRI to characterize local-scale variations in drought condi-
tions across a wide range of climatic regimes (i.e., arid to humid) and different land 
cover types (shrubs, grass, crops, and forest). In addition, model performance was 
relatively unaffected by interannual climate variations over the two-decade study 
period. From a national perspective, the major drought patterns classified by VegDRI 
were consistent with those mapped by the nation’s state-of-the-art drought monitor-
ing tool, the USDM, as shown in Figure 3.4a and b. The improved spatial resolution 
of the 1 km VegDRI map compared to the USDM map is evident, suggesting that 
higher resolution inputs such as VegDRI could be used to enhance the spatial preci-
sion of the drought patterns depicted in the USDM.

Currently, VegDRI is only operationally produced across the CONUS, but the 
potential exists to expand this hybrid-based index method to other parts of the world. 
Satellite-based NDVI observations comparable to those used for VegDRI in the United 
States are globally available from AVHRR, MERIS, MODIS, and SPOT Vegetation. 
However, the specific variables used in the biophysical and climate components of 
VegDRI would be unique for each country or region and depend on the specific data 
sets that are available. A strength of the VegDRI approach is its flexibility to be cus-
tomized to the data resources of a given location and its ability to integrate new data 
inputs as they become available. For example, a temperature component is currently 
lacking from the VegDRI approach presented in this chapter. However, the potential 
exists to develop a historical time series of AVHRR thermal observations (or derived 
ET estimates) that can be integrated into VegDRI to better represent the influence 
of LST on vegetation conditions. In addition to geographic expansion of VegDRI 
beyond the United States, the development of a higher spatial resolution VegDRI 
using MODIS 250 m NDVI observations is an area of future work to accommodate 
the needs of local-scale decision makers, who require more detailed landscape-level 
information that is not contained in the current 1 km VegDRI products.

Continued validation of VegDRI using multiple information sources (e.g., soil 
moisture observations, biophysical vegetation measurements, crop/grass produc-
tion data, and impact reports) is also needed to better characterize index perfor-
mance over an extended period of time for locations with different environment 
conditions. Efforts are currently underway to evaluate VegDRI’s spatiotemporal 
performance across the CONUS over two decades (1989–2009) using statistical 
cross-validation. This work will assess the historical accuracy and variability of 
VegDRI and investigate the index’s performance for major land cover types and 
different ecological regions of the United States. Comparisons between VegDRI 
and other drought-related indices and indicators such as the Evaporative Stress 
Index (ESI) (Anderson et al., 2007, 2010) and the USDM are also being conducted 



71Vegetation Drought Response Index

to better understand the complementary drought information that VegDRI can 
provide. Quantitative validation of VegDRI trends with in situ–based biophysical 
measures of vegetation (e.g., biomass) is also planned, but such long-term data sets 
are sparse and typically limited to a few long-term ecological reserve sites and 
research plots maintained by organizations such as USDA’s Agricultural Research 
Service. As a result, VegDRI validation work will utilize a “convergence of evi-
dence” approach that incorporates a range of qualitative and quantitative assess-
ments applied to the broad range of information sources that have been discussed 
in this chapter to establish the relative strengths and weaknesses of this hybrid 
drought index.
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