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Acoustic analog to quantum mechanical level splitting
Shawn A. Hilberta� and Herman Batelaan
Department of Physics and Astronomy, University of Nebraska-Lincoln, 116 Brace Laboratory, Lincoln,
Nebraska 68588-0111

�Received 26 May 2006; accepted 14 July 2007�

A simple physical system is discussed that mirrors the quantum mechanical infinite square well with
a central delta well potential. The physical realization consists of a continuous sound wave traveling
in a pair of tubes separated by an adjustable diaphragm. The equivalence between the quantum
system and the acoustic system is explored. The analytic solution to the quantum system exhibits
level splitting as does the acoustic system. © 2007 American Association of Physics Teachers.

�DOI: 10.1119/1.2772278�

I. INTRODUCTION

A common system of interest in quantum mechanics is the
infinite square well. A typical exercise in introductory quan-
tum mechanics courses is finding the energy eigenvalues and
eigenfunctions for such a system.1–3 In more advanced
courses, the infinite square well is used as a starting point for
perturbation theory.4,5 One such perturbation is the introduc-
tion of a delta function potential at the midpoint of the well.4

In this paper we discuss an acoustic analog of an infinite
square well with an adjustable central delta function poten-
tial well. The acoustic system is comprised of two connected
tubes of length a �Fig. 1�. This system forms one long,
closed tube of length L=2a supporting integer numbered
resonances. Quantum mechanically, this system can be
thought of as an infinite potential well supporting a discrete
set of stationary states. In the center of the acoustic system,
we place a thin aluminum disk with an adjustable hole.
Quantum mechanically, this disk can be represented by a
delta function potential. As the hole in the disk becomes
smaller �the strength of the delta function potential in-
creases,� the odd order resonant frequencies �energy eigen-
values� shift, while the even order resonant frequencies re-
main the same. When the connecting disk becomes solid �the
delta function potential has infinite strength�, the odd order
resonant frequencies merge with the even orders. These ei-
genvalues coincide with that of a tube of length a, half that
of the original tube. The system in this limiting case consists
of two uncoupled tubes �infinite potential wells� of half the
length. �This phenomenon is level merging. Starting with the
degenerate levels and increasing the hole size gives level
splitting.�

This experiment can be used to compare acoustic reso-
nances and quantum mechanical energy eigenvalues and to
explore perturbation theory and level splitting. The simplic-
ity of the experiment makes this system suitable for labora-
tory courses and lecture demonstrations.

II. THEORY

A. Formal equivalence

It is useful to first explore the general connection between
wave propagation in quantum mechanics and sound. The
equation for the propagation of sound in the acoustic limit
�small displacement amplitude� in liquids and gases is given
by6,7

�2� =
1

vs
2

�2

�t2� , �1�

where � is the displacement, and the speed of sound vs is
dependent on the impedance and density of the medium. If
we assume sinusoidal temporal behavior for the displace-
ment, the time and spatial variables can be separated. This
assumption and the acoustic dispersion relation k=� /v re-
sults in the time-independent differential equation

�2� + k2� = 0. �2�

The time-independent Schrödinger equation may be written
as

�2� +
2m

�2 �E − V�� = 0, �3�

where a time-independent potential and scalar wave function
are assumed. If we substitute k=�2m�E−V� /�2 in Eq. �3�,
we obtain an equation that is formally identical to Eq. �2�.

Equation �3� is also identical to the Helmholtz equation,
which yields analogies between sound, quantum mechanics,
and optics. An optical element can be specified by its spa-
tially varying index of refraction. In quantum mechanics,
different physical systems can be modeled by an appropriate
choice of the spatially varying potential. For sound waves,
physical systems can be defined by spatially varying
impedances.8 For example, just as a shaped piece of glass
can be a lens for light, a focused laser can be a lens for
matter waves,9 and a carbon dioxide-filled balloon acts like a
lens for sound waves.10

B. Quantum eigenenergies and sound resonances

We compare the acoustic resonances in a closed tube and
the quantum mechanical eigenfrequencies of an infinite
square well. The corresponding differential equation is

d2

dx2� +
2mE

�2 � = 0. �4�

For a potential well of length L=2a, the solutions are kn
=n� /L, where n is an integer. The relation of k to the energy
gives the energy eigenvalues

En =
n2�2�2

2mL2 =
n2�2�2

8ma2 , where n = 1,2,3, . . . �5�

The relation of k to the frequency gives the resonance fre-
quencies,
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fn = nv/�2L� = nv/�4a� . �6�

The normalized eigenfunctions are given by

�n�x� =�2

L
sin�n�x

L
� =�1

a
sin�n�x

2a
� . �7�

The wave functions, �n, for the odd �even� order states are
symmetric �antisymmetric� with respect to the center of the
well �x=a�.

The acoustic resonances of a closed tube also follow Eq.
�6�. The acoustic displacement standing wave is

��x� = �max sin�n�x

2a
� , �8�

for the nth resonance. Equation �8� is the same shape as the
quantum mechanical wave function. The pressure wave
�which is actually measured by a microphone� is propor-
tional to the derivative of the displacement wave and has the
form

p�x� = pmax cos�n�x

2a
� . �9�

C. Reflection from a finite barrier

The perturbation for the infinite potential well is a variable
strength delta function potential well. For the acoustic sys-
tem the perturbation is a disk with a variable diameter hole.
To establish the analogy in more detail, a connection can be
made between the descriptions of a disk with a finite width
hole and the infinitesimally thin delta function potential. For
a sound wave the reflection from a disk with a thin hole can
be found by considering three adjacent regions of different
impedances. Quantum mechanically, wave reflection from a
delta function potential is a textbook problem.4

For a sound wave, the reflection coefficient of a boundary
between two regions is given by

rij =
Zi − Zj

Zi + Zj
, �10�

where Zi is the impedance of region i.11 If a second boundary
follows this first boundary, as is the case for a thin disk, then
the reflection coefficient changes. Assuming the outer re-
gions are the same, the reflection caused by the combination
of boundaries is11

r121 =
r12�1 − e2ikb�
1 − r12

2 e2ikb , �11�

where r12 is the reflection coefficient of the first boundary
alone, k is the wave vector of the sound wave in the central
region, and b is the width of the central region. �Note that
Eqs. �10� and �11� are similar to the results for the Fresnel
equations, where impedances are substituted by indexes of
refraction.12�

The acoustic system has three regions as well: The two
outer regions have a cross sectional diameter equal to the
tube diameter, and the region inside the disk has a cross
sectional diameter of the size of the hole. The impedance
inside a tube is given by

Zi = �vs/��di

2
�2

, �12�

where di is the open diameter of region i, and � is the equi-
librium density of the medium. If we assume that the me-
dium in which the sound travels is the same throughout the
tube, Eq. �10� may be rewritten as

r12 �
dhole

2 − dtube
2

dhole
2 + dtube

2 . �13�

For the quantum case, a particle is incident on a delta well
V=−���x� ��	0� located at x=0. The delta function poten-
tial well can be approached by a square potential well of
depth V0 and width b=1/V0, in the limit b→0. The continu-
ity of the wave function and its derivative at the boundaries
leads to the result

r =

k1 − k2

k1 + k2
�1 − e2ik2b�

1 − � k1 − k2

k1 + k2
�2

e2ik2b

, �14�

where k1 is the wave vector in the regions where V=0, and k2
is the wave vector in the region within the well. The reflec-
tion of a potential step �the first boundary of the potential� is
given by13

rij =
ki − kj

ki + kj
. �15�

The substitution of Eq. �15� into Eq. �14� gives the total
reflection of the well

r =
r12�1 − e2ik2b�
1 − r12

2 e2ik2b , �16�

which matches Eq. �11�, the reflection for sound.
For the quantum case, Eq. �16� can be simplified by taking

the limit b goes to zero. This limit yields the exact reflection
coefficient of a delta well �see the appendix�:

r = −
m�

ik�2 + m�
, �17�

where k2=�2m�E−V� /�2=�k2+2m� /b�2. Equation �17�
gives the quantum reflectivity

R � 	r	2 =
m2�2

k2�4 + m2�2 . �18�

Fig. 1. The displacement wave and resonances are investigated for an acous-
tic system consisting of two tubes separated by an adjustable diaphragm.
The displacement wave and resonances are analogous to the wave functions
and eigenenergies of an infinite potential well with an adjustable delta func-
tion potential well perturbation.
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To complete the connection between the quantum and
acoustic systems, an expression for the wave vector inside
the disk is needed. A heuristic expression �motivated by the
quantum mechanical expression for the wave vector� that
gives excellent agreement is

keff =�ks
2 + 


dtube
2 − dhole

2

dtube
2 , �19�

where ks is the source wave vector, and 
 is a fitting param-
eter. A formal derivation of Eq. �19� would require the dy-
namical description of a three-dimensional diaphragm and its
effect on the sound wave propagation in one dimension.
Such a derivation is beyond the scope of this paper. A single
fitting parameter of 
=200 yields good agreement between
the quantum eigenfrequencies and the acoustic resonant fre-
quencies for all hole sizes and orders. We replace k by keff in
Eq. �11� and express the acoustic reflectivity as

R = 	r121	2 =
2r12

2 �1 − cos�2keffb��
1 − 2r12

2 cos�2keffb� + r12
2 . �20�

D. Perturbative and analytic solutions

The wave functions and eigenenergies can be found per-
turbatively or analytically. The delta function potential per-
turbation is

W = − ���x −
L

2
� , �21�

where � is the strength of the delta well. The perturbation
shifts the energy eigenvalues by14

�En = 
�n
0	W	�n

0� , �22�

where �n
0 corresponds to the nth unperturbed energy level.

Thus, the change in energy for the nth energy eigenvalue is

�En = −
2�

L
� sin2�n�x

L
���x −

L

2
�dx = −

�

a
sin2�n�

2
� .

�23�

The perturbation has no effect on the even energy levels
because the sine function is zero for even n. The odd energy
levels decrease by � /a.

These solutions can be compared to the exact solutions.
The time-independent Schrödinger equation is

−
�2

2m
�2� − ���x −

L

2
�� = E�, �0 � x � L� . �24�

Equation �24� can be solved by matching the boundary con-
ditions for the trial solutions. The infinite potential well is
broken into two regions �region I to the left and region II to
the right of the delta function�. Two boundary conditions
come from the requirement that the wave function be zero at
the boundaries �x=0 and x=L� of the infinite potential well.
The continuity of the wave function and the behavior of its
derivative at the delta function provide the other boundary
conditions. Integration of the Schrödinger equation over a
small distance around the delta function leads to the bound-
ary condition

d

dx
��L

2

+� −
d

dx
��L

2

−� = −
2m�

�2 ��L

2
� . �25�

Thus, the four boundary conditions for this system are
�I�0�=0, �II�L�=0, �I�L /2�=�II�L /2�, and

d

dx
�II�L

2
� −

d

dx
�I�L

2
� = −

2m�

�2 ��L

2
� . �26�

Imposing the boundary conditions on the usual exponential
trial solutions yields

k�2

m�
= tan�ka� . �27�

Examples of solutions to Eq. �27� are found graphically in
Fig. 2 and give the energy eigenvalues E=�2k2 /2m.

There is another set of solutions to consider. If the wave
function at the delta function is zero, Eq. �26� becomes

d

dx
�I�L

2
� =

d

dx
�II�L

2
� . �28�

If we change the boundary conditions of the system by sub-
stituting Eq. �28� for Eq. �26�, we obtain the solutions

sin�kL� = 0. �29�

This set of solutions is independent of the perturbation. This
independence agrees with the perturbative approach; only
half the eigenenergies shift, while the other half remain the
same with changes in the delta function strength.

An approximate solution to Eq. �27� can be found by using
a series expansion. The result is15

E 

n2�2�2

8ma2 −
�

a
, �30�

which matches the shift in the energy eigenvalues found
from the perturbative approach.

The limit � goes to zero describes an infinite potential
well of width 2a. This limit for Eqs. �27� and �29� gives the
solutions kn= �n+ 1

2
�� /a and kn=n� /a, respectively. These

solutions combine to form kn=n� / �2a�, which are the solu-
tions for an infinite potential well of width 2a. If the value of

Fig. 2. The analytic solutions for the wave number in an infinite potential
well with a central delta function potential are found from Eq. �27�. Solu-
tions corresponding to the first three eigenenergies given by En

=�2k2 / �2m� are indicated with dots. Plotted are tan�ka /2� �black line� and
k�2 / �m�� with barrier strengths �=50�2 /m �solid gray� and �=10�2 /m
�dashed�.
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� is taken to go to infinity, both Eqs. �27� and �29� give the
solutions kn=n� /a. These solutions match those for an infi-
nite potential well of width a.

The normalized wave functions corresponding to the exact
solutions from Eq. �27� are

�I�x� =� 2k

kL − sin�kL�
sin�kx�

=� 2k

2ka − sin�2ka�
sin�kx� , �31�

�II�x� = −� 2k

kL − sin�kL�
sin�k�x − L��

= −� 2k

2ka − sin�2ka�
sin�k�x − 2a�� . �32�

For the limit � goes to zero, the wave functions are �I,n�x�
=�2/L sin�n�x /L� and �II,n�x�=−�2/L sin�n��x /L−1��,
matching the wave functions for an infinite potential well
of width 2a. In the limit � goes to infinity, the wave func-
tions become �I,n�x�=�1/a sin�n�x /a� and �II,n�x�
=−�1/a sin�n��x /a−1��, which is similar to the wave func-
tion for an infinite potential well with length a. In between
the two limiting cases, the wave function develops a kink at
the delta function potential well �see Fig. 3�.

III. EXPERIMENT

A. Apparatus

The acoustic system is created by linking PVC tube sec-
tions with length a=23 cm and diameter of 2 in. Both ends
of the tubular array are closed with a thin, solid aluminum
disk. A microphone �Horn, 252-EM4530-44� and speaker
�Kobitone, 253-5151� are mounted within the tube. The mea-
sured pressure wave amplitude depends on the positions of
the speaker and microphone; resonances cannot be detected
when the microphone is placed at a node of a standing wave.
A function generator is used to send a sinusoidal wave to the
speaker. The microphone picks up the pressure wave in the
tube. The microphone signal is amplified �a simple stereo

amplifier or an SRS �SR560� high-pass/low-pass voltage am-
plifier�, rectified, and time averaged with an RC filter. The
resulting signal is processed by a data acquisition board and
recorded. Based on the parameters of the system and assum-
ing a sound velocity of 345 m/s, the resonance frequencies
are expected at integer multiples of 750 Hz.

Our system uses two tube sections. A thin aluminum disk
of the same diameter as the tube may be placed between
these tube sections. The disk has an adjustable central hole.
The size of the hole in the connecting disk controls the cou-
pling between cavities. Using a solid disk effectively de-
couples the cavities. If no disk is placed between the two
tube sections, the system becomes one tube of twice the
length. A disk with a hole provides partial coupling between
the cavities. We will present data using disks with 8, 13, 17,
21, 24, 31, 37, and 41 mm diameter holes.

To find the sound amplitude in the cavity array as a func-
tion of wave frequency, a voltage ramp is sent to the voltage
controlled frequency input of a function generator. The func-
tion generator signal drives a speaker. As the speaker chirps,
the wave pressure amplitude is recorded. �Alternatively, a
white noise spectrum combined with a Fourier transform can
be used.�

The spatial dependence of the sound wave is measured
with a microphone attached to a movable, long, thin rod.
This rod enters the cavity array through a small hole cut into
a disk that closes one end of the tubular array. The position
of the microphone can be changed by pushing the rod further
into the cavity. This arrangement allows the amplitude to be
measured at multiple positions within the tubes, and gives a
representation of the standing wave for the acoustic system.

B. Results

1. Acoustic spectra

The frequency spectra are measured for two coupled tubes
with lengths of 23 cm each. The tubes are coupled by a disk
with an adjustable hole diameter. In Fig. 4 frequency spectra
for different hole diameters are shifted vertically to avoid

Fig. 3. The normalized wave functions are found for the fourth through
seventh �a�–�d� eigenenergies of an infinite potential well of 46 cm long.
The solid lines indicate the wave function of the unperturbed system. The
dashed lines are the wave functions when a delta function potential pertur-
bation of strength �=50��2 / �2m� is introduced. Kinks develop for the odd
eigenfunctions �b� and �d� as their eigenenergies shift.

Fig. 4. Measured frequency spectra are shown for two cavities of length a
=23 cm coupled by a central disk with holes of different diameters: �a� open
disk, �b� 24 mm, �c� 17 mm, �d� 13 mm, �e� solid disk. When there is no
central disk, the resonances are equally spaced, in accord with the reso-
nances of one cavity of length 2a. Introducing a disk with a hole causes the
resonances associated with odd eigenfunctions to shift. As the size of the
hole becomes smaller, these resonances move to lower frequencies. Once
the disk is solid, the shifting resonances merge with the resonances associ-
ated with uncoupled cavities of length a.
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overlap. The frequency spectra are displayed over a limited
range. At lower frequencies the interpretation of the spectra
is complicated by the nonlinearity of the microphone’s re-
sponse curve. At higher frequencies the presence of other
resonances, such as transverse modes, complicates the ob-
served spectrum.

In the absence of a central disk, equally spaced resonances
are observed. The frequency spacing between two adjacent
resonances is about 375 Hz �
v /2L�. Resonances associated
with odd eigenfunctions shift. For decreasing hole size the
resonances shift to lower frequencies. The dashed lines in
Fig. 4 provide a guide to the eye. For a solid disk the shifting
resonances merge at frequencies that match the resonances of
an uncoupled tube of length a. A double peak is still visible
for the solid disk because the reflectivity for this disk is not
unity. Each of the peak widths can be increased by lowering
the reflectivity of the ends of the tubes.

2. Level splitting

To compare the quantum mechanical and acoustic sys-
tems, the eigenfrequencies and resonant frequencies need to
be expressed in terms of reflectivity. Acoustically, the reso-
nant frequencies are measured for each of the hole sizes.
From Eq. �20� the hole size can be related to the reflectivity.
As in Eq. �6�, we relate the quantum mechanical eigenfre-
quencies to the wave numbers through the dispersion rela-
tion, f =vk /2�. The wave numbers are found as a function of
the delta function barrier strength in Eq. �27�. The delta func-
tion barrier strength is expressed in terms of the reflectivity
in Eq. �18�.

The graph is shown in Fig. 5 along with the eigenfrequen-
cies found from the perturbative approach. Figure 5 shows
that for both the quantum and acoustic systems, level split-
ting is present. As the reflectivity increases, the odd orders
shift to lower frequencies. Once the reflectivity reaches unity,
the odd orders merge with the lower even orders. The good
agreement between the analytic results and the measure-
ments show that a mapping exists. The perturbative calcula-
tion agrees well with the analytic solution at weak perturba-
tions, but deviates at stronger perturbations.

3. Wave function and standing wave

The spatial dependence of the acoustic standing waves can
be compared to the quantum mechanical wave functions. The
rectified microphone signal is proportional to the absolute
value of the acoustic pressure. The gradient of the displace-
ment wave is proportional to the pressure wave. Because the
acoustic displacement wave is analogous to the quantum me-
chanical wave, we compare the measured signal to the abso-
lute value of the gradient of the quantum mechanical wave
function �see Fig. 6�.

The top graph of Fig. 6 depicts the waveform for the fifth
harmonic of the 2a long tube without an interior disk �or, in
the quantum case, no delta well.� The bottom graph depicts
the same harmonic, but with a 24 mm holed disk placed in
the center of the tube. As in the quantum system, the pertur-
bation causes a kink in the waveform at the perturbation.
From our level splitting measurement it is expected that the
sound frequency decreases when a disk with a hole is intro-
duced. The observed increase in wavelength �for the bottom
graph as compared to the top graph� confirms this behavior.

IV. PEDAGOGICAL NOTES

Our experiment has been built in stages by undergraduate
students in an advanced laboratory course. The motivation of
the first stage was to find resonant frequencies in a single
tube. Other approaches included resonances in rectangular
plexiglass boxes, aluminum tubes, and steel honeycomb
structures. Time-dependent sound pulses were also propa-
gated through the tube as an analogy to slow light propaga-
tion, ringdown cavities, and time-dependent quantum me-
chanical problems. The second stage consisted of exploring
the systematics of the resonances and automating the data
taking procedure. In particular, pouring liquid nitrogen over
the tubes shifts the resonances; filling the tube with He gas
gave inconclusive results. The automation was done using
Basic and LabView. The third stage involved combining
multiple cavities, which lead to level splitting. Multiple ap-
proaches for reflection were used. Thin membranes without
holes were less successful. More cavities were added. For
each additional cavity an additional resonance peak forms.
For six coupled cavities the resonances merge into groups
similar to band structure. Currently, students are exploring

Fig. 5. The measured resonant frequencies �circles� of the acoustic system,
and the analytic eigenfrequencies �solid line� are compared as a function of
reflectivity. The perturbative eigenenergies �dashed line� are also given. For
the resonances, the reflectivity is related to the hole size; for the eigenfre-
quencies, the reflectivity is related to the delta function potential strength.
The three results display level splitting.

Fig. 6. The absolute value of the pressure wave is measured and compared
with the quantum mechanical result as a function of position. Experimental
data is given by squares, and the solid line represents the quantum mechani-
cal result �see text�. The top graph depicts the fifth harmonic of the long tube
with no central disk. The bottom graph is the fifth harmonic when a disk
with a 24 mm hole is introduced to the system.
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ways to change the direction the resonances shift, much like
the effect of using a delta potential barrier instead of a delta
potential well causes the eigenenergies to shift in the oppo-
site direction. The current idea is to replace the smaller di-
ameter holed disks with thin tubes of diameters greater than
the tube sections. These tubes will connect the longer tube
sections like the holed disks.

All of the previously mentioned system changes were
originally posed as a problem for student exploration.
The stepwise development and broad range of possible ex-
ploration makes this experiment ideally suited for advanced
laboratories.
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APPENDIX: THE REFLECTION COEFFICIENT OF
A DELTA POTENTIAL WELL

A single delta function well is described by

V = − ���x� , �A1�

where �	0. The trial solutions for this single delta function
well are

�I�x� = A exp�ikx� + B exp�− ikx�

and

�II�x� = C exp�ikx� , �A2�

where region I is to the left and region II is to the right of the
delta function. To find the reflectivity, we assume that no
particle can travel toward the delta well from the right, so the
term exp�−ikx� is absent in region II. The boundary condi-
tions at the delta function are

�I�x0� = �II�x0� , �A3�

d

dx
�II�x0� −

d

dx
�I�x0� = −

2m�

�2 ��x0� . �A4�

Matching these boundary conditions yields

B = −
m�

ik�2 + m�
A , �A5�

which gives the reflection coefficient

r �
B

A
= −

m�

ik�2 + m�
. �A6�
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