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Fast strain wave induced magnetization changes in long cobalt bars:
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A high frequency (88 MHz) traveling strain wave on a piezoelectric substrate is shown to change

the magnetization direction in 40 lm wide Co bars with an aspect ratio of 103. The rapidly

alternating strain wave rotates the magnetization away from the long axis into the short axis

direction, via magnetoelastic coupling. Strain-induced magnetization changes have previously been

demonstrated in ferroelectric/ferromagnetic heterostructures, with excellent fidelity between the

ferromagnet and the ferroelectric domains, but these experiments were limited to essentially dc fre-

quencies. Both magneto-optical Kerr effect and polarized neutron reflectivity confirm that the trav-

eling strain wave does rotate the magnetization away from the long axis direction and both yield

quantitatively similar values for the rotated magnetization. An investigation of the behavior of short

axis magnetization with increasing strain wave amplitude on a series of samples with variable edge

roughness suggests that the magnetization reorientation that is seen proceeds solely via coherent

rotation. Polarized neutron reflectivity data provide direct experimental evidence for this model.

This is consistent with expectations that domain wall motion cannot track the rapidly varying

strain. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907580]

I. INTRODUCTION

The fastest times for magnetization reversal in nanoscale

ferromagnets are limited by the time scales for angular mo-

mentum and energy exchange.1,2 Experiments using fast

light pulses,3 short magnetic field pulses,4 and heat as the ini-

tial trigger have established that the fastest reversal of mag-

netization occurs over time scales of the order of 100 ps. The

mode of excitation and the properties of the ferromagnet (the

saturation magnetization, the shape, and magneto-crystalline

anisotropies) dictate the fastest switching times for a particu-

lar system.1,2

Strain has been shown to be an attractive and successful

route to control of magnetization, albeit on slow (dc) time

scales. The canonical heterostructure of ferroelectric (FE)

BaTiO3 and ferromagnetic (FM) CoFe shows almost perfect

domain pattern transfer between the FE and FM. Electric

field induced changes in the underlying FE domains result in

imprinting of the FM domains,5 due to the elastic coupling

between the FE and FM. The resulting strains within the FM

material alter the magnetic anisotropy axes (as confirmed by

element specific x-ray scattering experiments6) and hence

the domain patterns.

Our experiments extend strain-induced magnetization

control to short (�10 ns) timescales, using high frequency

surface acoustic waves to produce a periodic strain wave.

Excitation of the magnetization via phonons (as compared to

photons) has often been restricted to heat pulses, which nec-

essarily involve a wide range of frequencies with a spectral

distribution that is difficult to control. In contrast, surface

acoustic wave (SAW) driven phonon excitation is controlled

for both frequency and amplitude using high frequency,

monochromatic strain waves that exploit the coupling

between strain and magnetization to trigger changes in the

direction of magnetization. Earlier experiments investigating

the interactions of SAW with ferromagnetic thin films7–10

measured changes in the SAW propagation amplitude result-

ing from changes in the magnetization direction. A recent

more sophisticated analysis of the changes in the transmitted

SAW amplitude and phase11,12 across a Ni thin film indicates

that the SAW excites ferromagnetic resonance (FMR) modes

in the film. Ultra-short pulsed longitudinal acoustic excita-

tions13 triggered in glass substrates via femtosecond laser

pulses, have been shown to result in rapid precession of the

magnetization of a thin Ni film on the glass substrate, driven

by the short strain pulse in the glass.

Our experiments at a driving SAW frequency of 88

MHz differ from previous SAW driven magnetization

experiments in two ways. First, our experiments14 directly
measure the magnetization rotation of a lithographically

defined array of 10 nm thick rectangular Co bars (10 lm

� 40 lm) from the long axis into the short axis direction.

Moreover, in these experiments, the SAW frequency of 88

MHz is well below the calculated precession frequency

(>2 GHz), the damping times (�1 ns) of the bars are well

below the time period of 11 ns, and hence we assume that the

magnetization switches instantaneously on the time scale of

the SAW wave. Fast SAWs, with frequencies on the order of
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100 MHz, provide sufficient strain to overcome the shape an-

isotropy, and the magnetization switches between the long

and short axes at the frequency of the SAW. These experi-

ments14 indicate that there exists a threshold strain below

which the magnetization does not rotate and that this thresh-

old strain depends on external magnetic field and exchange

bias in a manner that is consistent with a free energy model

that assumes coherent rotation of the magnetization. In addi-

tion, measurements with increasing and decreasing strain

indicate no hysteresis, consistent with the coherent rotation

model. From these preliminary experiments, we conclude

that SAW present a novel and realistic route for the investi-

gation of fast magnetization dynamics, because SAW at the

frequency of interest (�10 GHz) are readily available.

II. EXPERIMENTAL METHODS

A. Sample growth

Each sample consists of a pair of interdigitated trans-

ducers (IDTs) on Z cut LiNbO3 wafers. The IDTs are 2 cm

long, with 10 lm wide fingers, spaced 10 lm apart, resulting

in a 40 lm wavelength for the propagating wave (see Figure

1(a)). The IDT pattern is repeated 100 times to ensure a

sharp resonance and sizeable strain wave amplitude. The

propagation axis of the resulting SAW is the crystalline y-

axis of the LiNbO3, resulting in a resonance frequency of

88.2 MHz and a quality factor Q¼ f0/Df¼ 136, where f0 and

Df are the resonance frequency and the FWHM of the reso-

nance, respectively. An array of 30 nm thick Co bars 12 lm

wide, 2 cm long and spaced at 20 lm (at half the wavelength

of the SAW), is patterned between the two IDTs, resulting in

a fractional Co coverage of 1/1.65, as confirmed by atomic

force microscopy (AFM) measurements (Figure 2). Both the

IDT’s and the bars are patterned using photolithography and

magnetron sputter deposition. The sample set consisted of

five samples that differed only in the edge roughness of the

Co bars, a roughness that is controlled by systematic under/

over development of the photolithographic patterns. The

edge roughness is obtained from AFM measurements of the

Co bars, using Gwyddion a free modular software package

available for SPM analysis (http://gwyddion.net). We fit a

straight line to the edge and obtain the rms deviation from

this straight line, resulting in edge roughnesses ranging from

1.8 nm to 7.4 nm. The sample used for the PNR measure-

ments has an rms edge roughness of 2.3 nm.

B. Polarized neutron reflectivity

Polarized neutron reflectivity (PNR) allows for the

determination of the absolute magnetization along and per-

pendicular to the neutron spin polarization direction with

excellent sensitivity as a function of depth.28 In the present

experiment, it quantifies the extent to which domain pinning

and/or coherent rotation dominates the strain-driven reorien-

tation process. PNR measurements were performed at the

NIST Center for Neutron Research on the NG1 and AND/R

reflectometers to fully characterize the uniformity of the Co

FIG. 1. (a) Geometry of the SAW transducer and the magnetic bars. The

spatial periodicity of the bars is k/2 and the arrows indicate the magnetiza-

tion direction at a particular instant of time when the SAW is driven at the

resonant frequency. For the PNR measurements, the sample was oriented

with the neutron polarization direction parallel to the short axis of the bars

and the scattering vector perpendicular to the film plane. (b) Easy and hard

axes MOKE hysteresis loops of the sample used for PNR, with an edge

roughness of 2.3 nm.

FIG. 2. Optical (a) and AFM (b)–(d) images of the 12 lm wide Co bars in

successive samples with increasing roughness.

063904-2 Davis et al. J. Appl. Phys. 117, 063904 (2015)
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magnetization during the switching process. In general, PNR

is sensitive to the nanoscale depth-dependence of the vector

magnetization, as well as to the chemical composition, aver-

aged across the sample plane. The magnetization extracted

from the PNR data is quantitative and does not require nor-

malization by sample mass or volume, in contrast to magneto

optical Kerr effect (MOKE). In addition, the neutron reflec-

tivity is not dependent upon changes in the optical refractive

index of the electro-optically active LiNbO3. For these meas-

urements, incident and scattered neutrons with wavelength

of 0.475 nm (or 0.5 nm) were polarized parallel to the guide

field using Fe-Si supermirrors, as described elsewhere.29

Using Al-coil flippers before and after the sample, all four

polarization cross sections were measured for each sample

condition. The two non-spin flip (NSF) cross sections, Rþþ

and R– –, are sensitive to the nuclear composition, and their

difference is related to the projection of the magnetization

parallel to the field (0.001 T or 0.1 T). The spin-flip (SF)

cross sections, Rþ� and R�þ, are sensitive only to the pro-

jection of the magnetization that is perpendicular to the

applied guide field. (Note that the experimental configuration

is shown schematically in Figure 1.) To enable straightfor-

ward data interpretation, the sample was oriented with the

long stripes parallel to the beam direction. The scattering

from the bare LiNbO3 substrate and the Co stripes average

incoherently in this configuration since the resolution per-

pendicular to the scattering plane is broad. The raw data

were corrected29 for instrumental effects including polariza-

tion efficiency (>97%), background, and beam footprint.

The reduced data were then fit to models based on the Parratt

formalism using REFL1D26 reflectivity software in order to

extract depth-dependent profiles for the nuclear scattering

length density and vector magnetization.

C. Magneto optical Kerr effect measurements

The MOKE technique has been extensively discussed30

and has distinct advantages in the measurements of thin fer-

romagnetic films, among them high sensitivity and the abil-

ity to measure a particular component of magnetization.

MOKE measurements are obtained with a setup similar to

that in Ref. 30 using a photo-elastic modulator (PEM) and a

fast photodiode. The photodetector signal is fed to a lock-in

operating at the frequency of the PEM. We measure only the

time-averaged component of the magnetization16 rather than

the fast magnetization component at the resonant frequency,

for reasons that are briefly discussed below. (A more exten-

sive discussion may be found in Ref. 14.) All the MOKE

data shown here were obtained with a 3 s time constant but

data obtained at different time constants show similar behav-

ior albeit with increased scatter.

Because MOKE measures only relative changes in mag-

netization, it is necessary to normalize every data set to the

saturation magnetization of the sample so as to obtain quan-
titative information on magnetization changes with applied

strain. Before each run, the sample is saturated along the

long, easy axis of the bars at a field of 0.2 T, well above the

saturation field observed in easy axis MOKE loops (see

Figure 1). After the field is turned off, the samples are

rotated by 90� so that the short axis is parallel with both the

MOKE scattering plane and the field direction. This align-

ment is facilitated by the diffraction pattern obtained from

light scattering off this periodic structure. The squareness of

the long easy axis hysteresis loop (MR/MS> 0.9) ensures

that the magnetization remains saturated along the long axis

direction, an assumption that is confirmed by PNR measure-

ments. In this orientation, the MOKE is sensitive only to the

magnetization component along the short axis direction. The

MOKE signal is measured on a lock-in amplifier as a func-

tion of increasing and decreasing voltage applied to the inter-

digital transducers at the resonance frequency of 88.2 MHz.

III. RESULTS AND DISCUSSION

The present work is motivated by the desire to investi-

gate the limits of the coherent rotation model and to investi-

gate the strain-driven formation of domains. As the aspect

ratios and associated shape anisotropy of the Co structures

increase, the threshold strain for coherent rotation of magnet-

ization will increase, as will the likelihood of rotation within

isolated domains. The latter is dependent on both the

increased shape anisotropy, which makes coherent rotation

into the short axis direction energetically less favorable, as

well as on the increasing number of defects that result during

the photolithographic production of longer bars that may

provide nucleation sites for domain formation. A schematic

of the samples is shown in Figure 1(a) indicating the SAW

transducer, the long Co bars (10 lm � 25 mm) and the rela-

tive orientation of the strain and the neutron spin direction.

Because it is difficult to quantify and control the presence or

absence of nucleation and pinning sites, we fabricated a set

of samples, each with Co bars of identical dimensions that

differ only in the edge roughness, thereby providing an exter-

nal “knob” with which to dial up the density of such sites.

An optical microscopy image and AFM images are shown in

Figure 2, clearly showing the increasing edge roughness.

Our data indicate that even in these long samples, where

domain formation must play a significant role, coherent rota-

tion is the major contributor to magnetization reorientation

at these high frequencies. Specifically, the fast SAW waves

drive a substantial fraction of the bars into the short axis

direction via coherent rotation, but increasing edge rough-

ness results in an increasing fraction of the sample being

pinned along the long axis direction, impervious to rotation

via fast SAW generated magnetostriction.

We report on measurements of the SAW triggered mag-

netization rotation using both PNR and MOKE. MOKE hys-

teresis loops along the long axis and short axis for one of the

samples (the sample on which PNR measurements were per-

formed at NIST) are shown in Figure 1(b). From the slope of

the hard axis loop, we obtain a shape anisotropy of 2.17

� 103 J/m3, which is comparable to the calculated value of

1.95 � 103 J/m3 for these high aspect ratio Co rectangles.

Although our data indicate otherwise, we start with a

simple coherent rotation model in order to obtain insight into

the process of strain driven reorientation. The free energy of

the Co bars may be written as

063904-3 Davis et al. J. Appl. Phys. 117, 063904 (2015)
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E ¼ �l0MSHcosh� KS cos2ðhÞ þ B1e33 sin2 ðhÞ; (1)

where the three terms are the Zeeman energy, the shape ani-

sotropy energy, and the strain energy, respectively. The

strain energy is the product of B1, the magneto-elastic coeffi-

cient for Co, and the strain, e33, along the short y-axis and h
is the angle between the magnetization vector and long axis.

In this convention, a negative value of B1e33 lowers the

energy along the short axis direction. Since B1 for bulk Co is

positive (6� 106N=m2), only compressive strain will lead to

rotation of the magnetization. Minimization of the free

energy with respect to h leads to the minimum compressive

strain at which the magnetization will move away from the

long axis direction, given by

je33j >
l0MsH þ 2Ks

2B1

� �
: (2)

Because LiNbO3 is electro-optically active with a large

electro-optical coefficient,14,15 detection at the excitation fre-

quency will result in changes in the MOKE signal that are in-

dependent of the magnetization. DC MOKE, averaged over

multiple cycles, eliminates this effect, because the electro-

optic effect is linear with electric field.15 In zero field, only

two stable states exist with M pointing either along the long

or short axis direction. Hence, in the coherent rotation

model, the time dependent magnetization response of a sin-
gle Co element to a sinusoidal driven IDT will be a square

wave, with the magnetization pointing along the short axis

direction once the threshold strain is reached and remaining

in that direction for a time Dt, until the strain drops to below

the threshold value. For a single Co element, the net dc com-

ponent16 of M along the short axis direction corresponds to

the average signal MsDt/T, where Ms is the saturation mag-

netization, Dt is the time interval over which the magnetiza-

tion remains along the short axis and T is the period of the

strain excitation

The array of Co bars are alternately stretched and com-

pressed along the short axis upon application of the SAW.

Because they are spaced at k/2, with sufficient applied com-

pressive strain, we expect the magnetization of every other

bar to be rotated along the short axis direction, with the

remaining bars magnetized along the long easy axis, result-

ing in the magnetization pattern indicated in Figure 3.

The maximum dc MOKE signal we will measure in the

limit of very large strain wave amplitude is related to the

time integral of the magnetization as the strain wave propa-

gates. In this limit, the threshold strain is much less than the

strain wave amplitude, resulting in magnetization rotation at

very small fractional amplitude of the strain wave. We con-

sider two cases, one in which the bars act as single domain

particles (as was the case in Ref. 14) and another in which

the bar is large enough to break up into multiple domains, a

more likely scenario for the long bars of the present sample.

In the single domain case, the bars will switch into the short

axis direction if the net strain integrated over the width of a

single bar is compressive and above the threshold strain. At

large strain amplitude, every other bar will be magnetized

along the short axis for a half cycle of the strain wave. Over

the next half cycle, the alternate set of bars is magnetized

along the short axis direction. Averaged over the time period

of the strain excitation, this will result in a net magnetization

of Ms/2 along the short axis direction. If, however, the bar is

larger than a single domain, magnetization rotation will only

occur if every portion of the bar is subject to compressive

strain above the threshold value. For large strain amplitudes,

every other bar will be magnetized along the short axis direc-

tion for a quarter cycle of the strain wave. We illustrate this

in Figure 3 where the magnetization direction of the bars as

a function of time is shown for one period of the strain wave.

Between t¼T/4 and t¼T/2 (where T is the period of the

wave), the magnetization of the 1st, 3rd, and 5th bars rotate

towards the short axis direction. The alternate set of bars

(2nd and 4th) rotate into the short axis direction between

t¼ 3 T/4 and t¼T. In the intervening time (i.e., for

0< t<T/4 and T/2< t< 3 T/4), the bars may be fully mag-

netized along the long axis, resulting in a net dc short axis

magnetization of MS/4 or local strain may drive individual

domains into the short axis direction resulting in a net dc

magnetization >MS/4. In this scenario, the maximum dc

magnetization measured can only be <MS/4 if regions

within the Co remain pinned along the long axis direction,

impervious to rotation via magnetostriction.

Hence, the characteristic signature of dc MOKE meas-

urements of the array along the short axis direction as a func-

tion of driving voltage are (i) a threshold voltage, e0¼ e1,

below which there is no component of magnetization along

the in-plane short axis direction, followed by (ii) a subse-

quent increase in the dc MOKE signal with increased driving

voltage, resulting from the increase in Dt/T (the fraction of

FIG. 3. Strain wave and the resulting magnetization rotation as a function of

position and time. White arrows indicate the rotation of magnetization into

the short axis direction. The time integral of the short axis magnetization for

the scenario shown above will be MS/4, where MS is the saturation magnet-

ization of the array.

063904-4 Davis et al. J. Appl. Phys. 117, 063904 (2015)
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the time period spent in the short axis direction) and asymp-

totically approaching a value of nMS, where Ms is the satura-

tion magnetization and where n< 1 depends on the

magnetization rotation process. The MOKE measurements

described below are obtained after saturating the sample

along the long easy axis, turning off the magnetic field, and

then measuring the component of magnetization along the

short axis as a function of increasing and decreasing strain.

After the strain measurements are completed, the magnetiza-

tion signal along the short axis is measured in a large applied

magnetic field of 0.35 T, well above the saturation field,

allowing us to normalize our results to the saturation magnet-

ization. Each run is normalized independently because,

although the average domain structure of the entire sample

remains the same from run to run, the “local” domain struc-

ture as measured by our beam spot can change due to pinning

to local defects during saturation, and probe position change.

IV. MEASUREMENTS

In contrast to the coherent rotation observed in the

40 lm � 10 lm bars, experiments on these longer bars with

aspect ratios of �103 indicate a clear irreversibility. In

Figure 4, we show the behavior of the short axis MOKE sig-

nal as a function of increasing and decreasing applied volt-

age (which is proportional to strain) on one sample, the

sample measured at NIST, with an r.m.s. edge roughness of

2.3 nm. There is clear indication of irreversibility in the

decreasing strain signal, showing that even after the strain

has decreased to zero, a small fraction of the magnetization

remains pinned along the short axis direction. Moreover, as

the strain increases and the short axis magnetization signal

saturates, the maximum magnetization signal lies below the

expected value of 0.25MS, saturating at 0.225MS. The entire

sample set shows qualitatively similar behavior, showing a

sharp turn-on of the short axis magnetization, followed by an

increase and an asymptotic approach to a maximum magnet-

ization fraction at voltages well below the maximum applied

voltage of 1.5 V. These behaviors (the threshold voltage, the

asymptotic approach to saturation, and the dependence of the

short axis magnetization on applied strain) provide support-

ing evidence for a simple coherent rotation model in which

increasing strain above the threshold value has the effect of

increasing the fraction of time that the magnetization is

aligned along the short axis direction. However, the values

of the threshold voltage with increasing and decreasing volt-

age amplitude, VON and VOFF, respectively, the pinned mag-

netization ((M/MS)PIN) and the maximum magnetization

((M/MS)MAX) vary. In particular, (M/MS)MAX remains below

0.25MS, ranging from 0.24MS to 0.16MS with increasing

edge roughness.

We plot these quantities, together with the coercive field

obtained from MOKE hysteresis loops as a function of edge

roughness in Figure 5. The maximum value(s) of short axis

magnetization, obtained at an applied r.f. voltage of 1.5 V,

shows a monotonic decrease with increasing roughness,

implying that increasing roughness results in a substantial

fraction of the sample being pinned along the long axis

direction, impervious to rotation via fast SAW generated

magnetostriction. In contrast, the magnetization fraction that

remains pinned along the short axis direction after the strain

is reduced to zero, (M/MS)PIN, is fairly constant at about

0.06Ms. These results provide indirect evidence that the

strain induced magnetization changes do result in multiple

domains, along and perpendicular to the long axis in these

very long bars. For the samples with the largest edge rough-

ness, the fraction of domains that remain aligned along the

long axis direction impervious to rotation is as high as 36%

(obtained by taking the difference between the expected

value of (M/Ms)MAX¼ 0.25 and the actual measured value

of (M/Ms)MAX¼ 0.16) for the highest edge roughness. The

fraction that remained pinned along the short axis direction

when the strain is turned off is much smaller (�6% of the

saturation magnetization) and shows no correlation with

edge roughness.

The threshold voltage VON, ranging from 11–15 mV is

related to the minimum strain eo, required to initiate rotation

of the magnetization into the short axis direction and is given

FIG. 4. MOKE signal for magnetization along the short axis direction as a

function of SAW driving voltage for increasing and decreasing voltage on

sample 2, the sample measured by PNR. (a) The entire voltage range and the

maximum DC value of magnetization obtained by strain (M/MS)MAX. The

expanded horizontal scale of (b) indicates the threshold voltages for increas-

ing and decreasing voltage sweeps (VON and VOFF) and the pinned magnet-

ization (MPIN).

063904-5 Davis et al. J. Appl. Phys. 117, 063904 (2015)
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by B1je33j>Ks. Because the strain amplitude of the SAW,

e33, and the magneto-elastic coefficient B1 are highly de-

pendent on the geometry of the IDT and the thickness of the

film, respectively, the magnetization rotates into the short

axis direction only when the product of the two exceeds Ks.

Both threshold voltages, Von and Voff, for increasing and

decreasing voltage, respectively, are shown as a function of

edge roughness. Ideally, for purely coherent rotation, the two

should be identical, which is clearly not the case. However,

the differences between them are small from which we can

assume that most of the magnetization rotation seen is domi-

nated by non-hysteretic processes. VON and VOFF, and the dif-

ference between the two are independent of edge roughness,

unlike the coercive fields, which show a monotonic increase

with increasing roughness. This behavior of the coercive field

is consistent with measurements on permalloy nanostruc-

tures,17 which indicate that coercivity increases with increas-

ing edge roughness, but, in general, experimental studies of

the effects of edge roughness in ferromagnetic nanostructures

are scarce. Micromagnetic simulations of the effects of peri-

odic18 edge roughness in Ni bars indicate that the coercive

field decreases with roughness, whereas random edge rough-

ness19 is shown to increase the coercive field in FeNi bars.

The former effect is ascribed to the nucleation sites provided

by rough edges that enhance magnetization reversal, whereas

the latter is attributed to the wide range of stable domain pat-

terns that result from edge roughness. Because the threshold

voltage VON corresponds to the minimum strain necessary to

rotate the magnetization away from the long axis, one would

expect its behavior to parallel that of the long axis coercive

field and it is possible that these differing behaviors could

imply that the driving mechanisms for domain unpinning

and/or rotation are quite distinct for strain vs. magnetic field.

Below, we offer an alternative explanation.

If we assume that the effects of dc strains are compara-

ble to the effects of our 88 MHz SAW driven strain with a

period of 11 ns, we can compare our data to experiments on

dc strain driven magnetization rotation and/or domain forma-

tion. Strain driven magnetization reversal of a macroscopic

Ni disc on a piezoelectric actuator indicate that the mecha-

nisms for strain driven and field driven magnetization rever-

sal are similar,20 with short axis magnetization reversal

dominated by coherent rotation and easy axis reversal show-

ing domain formation close to the switching strain. In con-

trast, strain-driven magnetization reorientation in highly

magnetostrictive microstructures of thin film FeGa (Ref. 21)

proceeds solely via movement of domain walls. Simulations

of magnetic thin films22 indicate the mechanism for strain-

driven switching is size dependent, with single domain

coherent rotation for small lateral structures and domain for-

mation for larger structures. Because the time period of the

strain wave at 88 MHz is well above intrinsic time scales for

magnetization reversals (which are �100 ps) our assumption

of equivalence between dc and fast strain may be true for

coherent rotation mechanisms, but is unlikely to be so for do-

main wall motion. Domain wall velocities in Co wires peak

at about 50 m/s,23,24 although velocities as high as 500 m/s

have been obtained in specialized geometries.25 At these

velocities, the time for domain walls to move across the

12 lm Co bar, 240 ns, is much longer than the period of the

strain excitation, the SAW will not drive domain wall motion

to any appreciable extent and the majority of the magnetiza-

tion changes are due to the fraction of the bar that undergoes

coherent rotation. We emphasize that this is not an issue of

measurement—we measure the net total magnetization in the

short axis direction—rather that strain waves at this fre-

quency do not move domain walls. In contrast, the magnetic

field (which is swept very slowly) results in both domain

FIG. 5. Top: Threshold voltage for increasing (VON) and decreasing (VOFF)

voltages as a function of edge roughness. There does appear to be a slight

increase of the average value with increasing roughness, but there is no de-

pendence on roughness for the difference between the two. The turn on volt-

age corresponds to the minimum strain necessary to rotate the magnetization

into the short axis direction. Middle: Maximum magnetization fraction (M/

MS)MAX (red) along the short axis direction that is strain driven and fraction

of magnetization (blue) pinned along the short axis when strain is turned off,

(M/MS)PIN, both as a function of edge roughness. Bottom: Coercive field

along the long axis (blue) and short axis (red) as a function of edge rough-

ness, showing a monotonic increase in the coercive field.
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wall motion and coherent rotation. Under this scenario, the

monotonic decrease in (M/MS)MAX with increasing edge

roughness may be ascribed to the increasing importance of

domain wall processes in samples with rough edges. Hence,

the fast SAW waves drive a substantial fraction of the bars

into the short axis direction via coherent rotation processes,

and this fraction decreases with increasing edge roughness,

as the fraction of domains impervious to fast magnetostric-

tion increase.

Because MOKE measurements measure only a single

component of magnetization, the aim of the PNR experi-

ments was to isolate the magnetization component that

rotates perpendicular to the original applied field when the

SAW is turned on. All PNR measurements were made on the

sample with an rms edge roughness of 2.3 nm. To maximize

the sensitivity to the rotated magnetization, the magnetiza-

tion of the sample was first aligned in a field of 0.1 T applied

parallel to the long axis of the bars. For the PNR measure-

ment, the sample was then oriented in near remanence with

the short axis of the bars parallel to the small guide field of

1 mT such that the magnetic scattering appears only in the

spin flip (SF) channel, as shown in Figure 1(a). The results

of this SAW off PNR measurement, along with the fit using

REFL1D,26 are shown in Figure 6(a). In the absence of

strain, the magnetization points predominantly along the

long axis direction, perpendicular to the neutron spin, giving

rise to a large SF signal. The non-spin flip (NSF) channel

shows little to no difference in the intensity of spin-up and

spin-down reflectivity. The spin asymmetry (SA),

SA ¼ Rþþ � R��

Rþþ þ R��
(3)

is a direct measure of the magnetization along the direction

of spin polarization, i.e., along the short axis of the stripe.

The spin asymmetry for the SAW off state (Figure 7(a)) is

relatively flat, within error, indicating that the magnetization

along the spin polarization direction perpendicular to the

stripe edges is nearly zero, as expected.

PNR measurements taken with the SAW on (Figure

6(b)) indicate that the effect of the strain wave is, as

expected, to rotate a fraction of the sample magnetization

into the short axis direction. Qualitatively, this effect can be

seen in the spin asymmetry shown in Figure 7(a). The

increase in the magnitude of the spin asymmetry with the

SAW on relative to SAW off (e.g., near Q¼ 0.03 and

FIG. 6. Polarized neutron reflectivity data and corresponding fits made using

REFL1D (solid lines) for all four cross sections, Rþþ(blue), Rþ�(green),

R�þ (pink) and R��(red). (a) SAW off, with magnetization along the long

stripe axis, perpendicular to the guide field (b) SAW on with magnetization

components in both in-plane directions and (c) magnetization saturated

along the short axis direction, parallel to the guide field. Insets in (a) and (b)

highlight one of the Q regions in which the SAW off and SAW on reflectiv-

ities differ. The SAW driving voltage is 1.5 V.

FIG. 7. The spin asymmetry, a measure of the magnetization component

along the short axis of the rectangular Co bars. (a) With SAW off, the mag-

netization lies along the long axis of the bars. With the SAW on, the magnet-

ization component along the short axis direction increases. (b) The maximum

spin asymmetry for magnetization saturated along the short axis. Note the dif-

ferent vertical scales in (a) and (b). The SAW driving voltage is 1.5 V.
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0.04 A�1) is indicative of an increase in the magnetization

along the short axis direction. For comparison, the maximum

spin asymmetry is obtained for the case of a 0.1 T field

applied along the short axis (Figure 7(b)), corresponding to

alignment of the magnetization parallel to the applied field.

Features (i.e., dips and peaks) in the spin asymmetry for the

short-axis saturation and SAW on cases appear at similar

values of Q (approximately 0.022 Å�1, 0.033 Å�1, and

0.051 Å�1), though the sign is opposite and the magnitudes

are smaller. This behavior suggests that the fraction of the

magnetization that rotates is reduced relative to the satura-

tion magnetization, and the magnetization rotates in a direc-

tion opposite that of the applied field, as discussed below.

A similar trend is seen in the spin flip data (Figure 8),

which is also consistent with rotation of the remanent mag-

netization away from the long axis when the SAW is turned

on. In the SAW off state, the large Co magnetization perpen-

dicular to the guide field (along the stripe edge) gives rise to

pronounced spin flip scattering (Figure 6(a)) at the expense

of non-spin flip scattering. When the SAW is turned on, the

spin flip scattering decreases (and the total non-spin flip scat-

tering correspondingly increases) just above and well below

the critical angle near Q¼ 0.015 Å�1 in the region nominally

corresponding to total internal reflection. This reduction indi-

cates that the projection of the net magnetization parallel to

the stripe edge has decreased. The spin flip intensity

(Figure 8) also shows a change in shape well above the criti-

cal angle with a slight decrease in intensity of the SAW on

relative to SAW off near Q¼ 0.04 Å�1. In a saturating 0.1 T

field applied along the short axis (Figure 6(c)), the spin flip

scattering below the critical angle is absent and the non spin

flip reflectivity equals one (i.e., total internal reflection), as

expected, since the magnetization is aligned parallel to the

applied field.

Quantitative fitting of the PNR data is complicated by

the mixture of coherent and incoherent sums that accounts

for the incomplete coverage of the Co on the LiNbO3

substrate and for the possible presence of magnetic domains

of varying size. Specifically, we assume that the scattering

from the Co-covered regions adds incoherently to that from

the bare substrate. Using the REFL1D software,26 we per-

formed simultaneous fits of the SAW off, SAW on, and short

axis saturation data (solid lines in Figure 6) and determined

the ratio of the covered to uncovered fraction of the sample

to be 1:1.65. This ratio corresponds to 38% Co coverage

(1/2.65), which is consistent with AFM measurements for

this sample. Since models with a single, uniform Co layer

were unable to reproduce the beating pattern in the data, the

nominal Co layer was divided into four sub-layers of vari-

able thickness to allow for depth-dependent variations in the

nuclear composition and magnetic structure. The nuclear

scattering length profile for the Co-covered region, deter-

mined from simultaneous fits of all three data sets (Figure 6),

with the structural parameters constrained to match is shown

in Figure 9(a)). The Co layer is capped with a rough 5 nm

layer with a reduced scattering length density that may origi-

nate from the formation of a porous oxide, though the scat-

tering length density is somewhat smaller than that of bulk

CoO. The remainder of the Co layer is structurally uniform,

and the interface between the Co and LiNbO3 has a full-

width of approximately 0.7 nm.

The best fits to the data in all three conditions (Figure 6)

reveal a complex, depth-dependent spin structure that does

FIG. 8. Spin flip reflectivity (multiplied by Q4), a measure of the magnetiza-

tion along the long axis of the Co bars. The open and closed symbols are

R�þ and Rþ�, respectively. The solid lines are the fits to the data (see text)

After saturation along the long axis (see text) and with the SAW off, the

spin flip reflectivity is sizable, decreasing when the SAW is turned on

because some fraction of the magnetization rotates into the short axis direc-

tion. Magnetic saturation along the short axis direction substantially reduces

the spin flip reflectivity. The SAW driving voltage is 1.5 V.

FIG. 9. Depth dependence of (a) the nonmagnetic scattering length density

(SLD), (b) the total magnetization, and (c) the angle of magnetization for

SAW off, SAW on, and magnetic saturation as obtained from fits to the

PNR data. The fits are constrained to the same SLD for all three. Note that

the magnetization of the Co layer varies across the thickness, but that the net

magnetization is nearly constant for SAW off, SAW on, and magnetic satu-

ration as expected. The angle of magnetization changes considerably with

SAW on, and the Co layers closer to the LiNbO3 rotate further than those

farther away.
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not track the nuclear structure of the Co layer, as shown in

Figure 9. As an example, the short axis saturation data

(Figure 6(c)) are best described by a model that includes a

complete suppression of the in-plane magnetization in the

bottom section (thickness of 4.60 nm) of the Co layer adja-

cent to the substrate. The origin of this magnetically inactive

region is unknown though it is possible that the Co structure

or strain leads to local regions with a higher anisotropy or

with perpendicular anisotropy that do not saturate in a 0.1 T

field. The magnetization in the remaining portion of the Co

layer is not uniform but rather obtains a maximum value of

1280 emu/cm3 in the center region (7.95 nm thick) and a

slightly larger value of 1310 emu/cm3 in the top 14.6 nm

region adjacent to the CoO cap. Note that the overall mag-

netization of the entire Co layer is reduced relative to the

bulk Co magnetization of 1420 emu/cm3. In addition, the Co

magnetization is not completely perpendicular to the stripe

edge but is canted at an angle of 7.4� relative to the applied

field in the center section and canted at a small angle of 1.8�

at the top (Figure 9(c)). The slight tipping of the center and

top magnetization is required to account for the residual spin

flip scattering above the critical angle (Figure 6(c)) and indi-

cates that the 0.1 T field is not sufficient to align fully the

magnetization along the short axis of the stripes.

The spin structure for the SAW off remanent state

(Figures 9(b) and 9(c)) is similar to that of the short axis satu-

ration state. As expected, the magnetization is aligned nearly

parallel to the stripe edge since the sample was first magne-

tized in a 0.1 T field applied parallel to the long axis of the

stripe. Specifically, the in-plane magnetization in the bottom

4.6 nm of the Co layer is again equal to zero. The center sec-

tion of the Co layer, which is 7.95 nm thick, has a magnetiza-

tion of 1220 emu/cm3 that is aligned at an angle of 90.3�

relative to the guide field (note that the stripe edge is at 90� by

this definition). The magnetization in the top section of the Co

layer (14.6 nm thick, just below the oxide cap) has a slightly

higher magnetization of 1310 emu/cm3 that is canted at an

angle of 89.1�. While the fits are not particularly sensitive to

the precise thickness of the regions with differing vector mag-

netizations, the data cannot be fit with a single Co layer with

uniform magnetization. Overall, the Co magnetization in the

SAW off state is aligned nearly parallel to the stripe edge with

a magnetization gradient through the film depth that is more

pronounced than the gradient obtained in saturation. Since the

magnetization at each depth represents the average across the

sample plane assuming coherent addition of the scattering, it

is possible that the reduced net magnetization in the central

depth originates from the formation of small (<100 lm) in-

plane (or out-of-plane) magnetic domains only in the portion

of the stripes closest to the substrate.

Quantitative analysis of the SAW on data is more chal-

lenging as the time-averaged reflectivity includes contribu-

tions from the moments in approximately half of the stripes

that are aligned parallel to the stripe edges at all times

(Figure 3) and from the moments in alternate stripes that

potentially form in-plane domains when they rotate away

from the edges. While the complete structure and magnetic

configuration of the sample cannot be obtained by a unique

inverse transform of the data (as is the case in almost all

scattering problems), we can apply realistic constraints to a

model based upon the expected magnetic configuration

(Figure 3) in which the magnetization in alternate Co stripes

rotates. It is assumed that the magnetization in every other

stripe is aligned nearly parallel to the edges at any given

time, with values of the depth-dependent magnetization and

canting angles that match those obtained from fitting the

SAW off PNR data in Figure 6(a). The depth-dependent

magnetization and canting angle in the remaining half of the

stripes are allowed to vary. The scattering from these two

regions are then added incoherently, since the transverse

neutron beam coherence has been demonstrated to be well

below 5 lm on this instrument.27

It is notable that the fit reproduces unique features in the

SAW on reflectivity near the critical angle and in other Q

regions (inset of Figure 6(a)) that differ from those in the

SAW off reflectivity. The best fit (solid line in Figure 6(b))

reveals that rotating stripes have a magnetization Mt in the

top region of the Co layer (tt¼ 14.6 nm thick) of 1310 emu/

cm3 (consistent with the SAW off value) at an angle of

113.6�, which is significantly rotated away from the stripe

edge at 90�. The middle section of the Co layer (tm¼ 7.95 nm

thick) has a magnetization Mm of 1230 emu/cm3 (again con-

sistent the corresponding SAW off value) at an even larger

angle of 136.3� (Figures 9(b) and 9(c)). In the SAW on state,

the moments in the top and middle regions of the Co layer

rotate relative to their SAW off positions by ht¼ 46.0� and

hm¼ 24.5�, respectively. The canting angles obtained from

the fits represent the average over time (i.e., time spent above

and below the threshold strain) and the average across the

sample plane, and locally the moments may rotate by as

much as 690� depending upon their proximity to pinning

sites. It is notable, however, that the magnitude of the Co

magnetization obtained from the fits matches that obtained

for the SAW off state (Figure 9(b)), indicating that the Co

magnetization rotates coherently and local domain formation

during rotation is quite limited. Based upon the fit, the frac-

tion of the SAW off magnetization that rotates is approxi-

mately 26%, as determined from the weighted ratio of the

rotated magnetization relative to the short axis saturation

magnetization

tmMm Sin hmð Þ þ ttMt Sin htð Þ
tmMSAT�m þ ttMSAT�t

; (4)

where MSAT-m¼ 1280 emu/cm3 and MSAT-t¼ 1310 emu/cm3

are the short axis saturation magnetizations of the middle

and top Co layers, respectively. The SAW on (and SAW off)

value of Mm (1230 emu/cm3) compared to the saturation

value of MSAT-m (1280 emu/cm3) may originate from in-

plane domain formation. The perpendicular magnetization

component thus corresponds to 1/4th of the short axis satura-

tion magnetization, in agreement with the MOKE results.

While the fit above is not unique as the exact nature and

size of in-plane domains is unknown, alternate approaches to

fitting the data consistently indicate that 22%–28% of the

magnetization rotates away from the stripe edge when the

SAW is turned on. Surprisingly, the magnetization preferen-

tially rotates antiparallel (rather than parallel) to the small
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applied field in the SAW on state. We assume that defects,

strain, or other structural non-uniformities somehow break

the two-fold symmetry of the stripe geometry. In addition,

the degree of rotation of the magnetization has a clear de-

pendence upon depth in the Co layer, with more pronounced

rotation nearest the Co/substrate interface. It is significant,

however, that the magnitude of the magnetization throughout

the depth of the Co layer (Figure 9(b)) is preserved in the

SAW on state relative to SAW off. The PNR data thus fully

support a model involving coherent rotation of the magnet-

ization as the formation of small, local domains during rota-

tion would give rise to a reduction in the magnitude of the

magnetization since it corresponds to the average across the

sample plane.

V. CONCLUSIONS

We have successfully used high frequency (88 MHz)

strain waves in piezoelectric LiNbO3 to rotate the magnetiza-

tion of long Co bars with aspect ratios >103 into the short

axis direction. With increasing edge roughness, the fraction

of magnetization rotates into the short axis direction

decreases. We attribute this to the short time period of the

high frequency SAW wave, resulting in domain walls that

are unresponsive to the rapidly alternating tensile and com-

pressive strains. The domains are effectively frozen into

place because the strain that acts as the driver for domain

wall motion oscillates over time scales much shorter than

those for domain wall motion. SAW waves at this high fre-

quency can rotate magnetization but cannot move domain

walls, setting a limit for the temporal response of strain

driven magnetization changes.

Both MOKE and polarized neutron reflectivity measure-

ments confirm this behavior, showing an increase in magnet-

ization along the short axis direction when the SAW is

turned on. In addition PNR measurements indicate that the

magnetization along the long axis decreases when the SAW

is on, but this decrease is clearly not the result of formation

of small, in-plane domains. The overall magnitude of the

rotated magnetization obtained from quantitative fits, using a

model in which alternating bars rotate into the short axis

direction, closely matches that obtained from MOKE.

The agreement between the MOKE and PNR measure-

ments is important because they are sensitive to different

aspects of the magnetization. MOKE measurements are quali-

tative, probe only one component of magnetization and are

also susceptible to changes in the refractive index of LiNbO3,

a highly electro-optically active material. PNR measurements

enable a measurement of both magnetization components

simultaneously, are quantitative, and are blind to the effects

of changing refractive indices. Combined with MOKE, the

PNR reveals that coherent rotation, rather than domain forma-

tion, is the dominant mechanism for fast strain driven mag-

netization switching even when the aspect ratio of the

ferromagnetic bars is extremely large; furthermore, the effect

is non-uniform across the thickness of even these very thin

magnetic elements, suggesting that total control of the strain

profile in devices will be critical to their performance.
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