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Low-temperature measurements of the magnetocrystalline anisotropy energy K in (Fe1–xCox)2B

alloys are reported, and the origin of this anisotropy is elucidated using a first-principles electronic

structure analysis. The calculated concentration dependence K(x) with a maximum near x¼ 0.3 and

a minimum near x¼ 0.8 is in excellent agreement with experiment. This dependence is traced

down to spin-orbital selection rules and the filling of electronic bands with increasing electronic

concentration. At the optimal Co concentration, K depends strongly on the tetragonality and dou-

bles under a modest 3% increase of the c/a ratio, suggesting that the magnetocrystalline anisotropy

can be further enhanced using epitaxial or chemical strain. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908056]

Magnetocrystalline anisotropy (MCA) of a magnetic

material is one of its key properties for practical applications,

large easy-axis anisotropy being favorable for permanent

magnets.1 Intelligent search for new materials requires

understanding of the underlying mechanisms of MCA. This

can be particularly fruitful for substitutional alloys whose

properties can be tuned by varying the concentrations of their

components. The analysis is often relatively simple in insula-

tors, where MCA is dominated by single-ion terms which

can be deduced from crystal-field splittings and spin-orbital

(SO) matrix elements. In contrast, in typical metallic alloys,

the band width sets the largest energy scale, and MCA

depends on the details of the electronic structure.

The (Fe1–xCox)2B solid solution2–6 (space group

I4=mcm7) is a remarkable case in point. Fe2B has a fairly

strong easy-plane MCA, and Co2B, at low temperatures, a

small easy-axis MCA. However, the alloy has a substantial

easy-axis MCA around x¼ 0.3,2 making it a potentially use-

ful rare-earth-free8 permanent magnet. At x� 0.5, the MCA

again turns easy-plane, peaks at x¼ 0.8, and then turns easy-

axis close to x¼ 1. These three spin reorientation transitions

must be related to the continuous evolution of the electronic

structure with concentration. The goal of this letter is to eluci-

date the origin of this rare phenomenon.

First, we report the results of experimental measure-

ments at low temperatures. Single crystals of (Fe1–xCox)2B

were grown from solution growth out of an excess of

(Fe,Co) which was decanted in a centrifuge.9 The single

crystals were grown as tetragonal rods which were cut using

a wire saw to give them the shape of a rectangular prism.

The demagnetization factor was calculated using Ref. 10.

Field-dependent magnetization measurements were per-

formed in a Quantum Design Magnetic Property Management

System (MPMS) at 2 K in fields up to 5.5 T. The MCA energy

K was determined as the area between the two magnetization

curves, with the field parallel and perpendicular to the c axis,

taken at the same temperature.6 The results shown in Fig. 1

(blue stars) measured at 2 K confirm the nonmonotonic con-

centration dependence, in good agreement with the measure-

ments at 77 K from Ref. 2.

Density-functional calculations using several different

methods show that the choice of the exchange-correlation

potential and other computational details strongly affect the

calculated MCA in Fe2B and Co2B. We have ascertained

that this sensitivity is largely due to the variation of the

exchange splitting, which controls the position of the Fermi

level relative to the minority-spin bands. The systematic var-

iation of MCA with x is also controlled by the Fermi level

shift. This continuous variation is, therefore, reliably pre-

dicted as long as the end points are correctly fixed using ex-

perimental input.

The results reported below were obtained using the

Green’s function-based formulation of the tight-binding lin-

ear muffin-tin orbital (GF-LMTO) method.11 Substitutional

disorder was treated using our implementation of the coher-

ent potential approximation (CPA),12 with the SO coupling

FIG. 1. Calculated (black circles) and experimental (blue stars) MCA energy

K in (Fe1–xCox)2B alloys. Gray curve: KSO. The other lines show the spin

decomposition Krr0 .
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included perturbatively as described in the supplementary

material.13

The lattice constants and the internal coordinates are lin-

early interpolated between the experimental data for the end

compounds extrapolated to zero temperature:2 a¼ 5.109 and

4.997 Å, c¼ 4.249 and 4.213 Å, and u¼ 0.166 and 0.168 for

Fe2B and Co2B, respectively. The exchange and correlation

are treated within the generalized gradient approximation

(GGA).14

The correct exchange splitting at the end points can be

enforced by using the experimental data2–6 for the magnet-

ization M: 1.9 lB/Fe in Fe2B and 0.76 lB/Co in Co2B. In

Fe2B, it is only slightly overestimated, but in Co2B, it is

much too large at about 1.1 lB/Co in all density-functional

calculations. The relatively small spin moment of Co indi-

cates a pronounced itinerant character of magnetism in

Co2B, which tends to be sensitive to quantum spin fluctua-

tions. Therefore, we introduced a scaling factor for the local

part of the effective magnetic field in the GGA functional for

the Co atoms and adjusted it to match the experimental mag-

netization. The resulting scaling factor of 0.80 was then used

for Co atoms at all concentrations. The spin moments on dif-

ferent atoms and the total spin magnetization obtained in this

way are shown in Fig. 2. While the Fe spin moment is almost

constant, the Co spin moment declines with x. Moreover,

this decline accelerates at x � 0.6, which is in excellent

agreement with experimental data.3

The MCA energy K was obtained by calculating the

single-particle energy difference for in-plane and out-of-

plane orientations of the magnetization while keeping the

LMTO charges fixed at their self-consistent values found

without SO coupling. A uniform mesh of 303 points in the

full Brillouin zone provided sufficient accuracy for the k

integration. We have verified that the values of K for pure

Fe2B and Co2B agree very well with Hamiltonian LMTO

results. The concentration dependence of K is shown in

Fig. 1. The agreement with low-temperature experimental

data is remarkably good, suggesting that the electronic

mechanisms of MCA are correctly captured in the

calculations.

In 3d systems, the SO band shifts are usually well

described by second-order perturbation theory, except per-

haps in small regions of the Brillouin zone. Consequently,

when MCA appears in second order in SO coupling (as in the

tetragonal system under consideration), the anisotropy of the

expectation value of the SO operator DESO ¼ hVSOix
�hVSOiz is approximately equal to 2K.13 (Here, x or z
shows the orientation of the magnetization axis.) We there-

fore denote KSO ¼ DESO=2 and use the expression 2hSLi
¼ hLz0 i"" � hLz0 i## þ hLþi#" þ hL�i"# to separate the contri-

butions to K by pairs of spin channels. Here, we use Lz0 to

denote the component of L parallel to the magnetization axis,

to avoid confusion with the crystallographic z axis; L6 are

the usual linear combinations of the other two (primed) com-

ponents of L. The contributions Krr0 to KSO are accumulated

as energy integrals taking into account the energy dependence

of the SO coupling parameters. The results for KSO and Krr0

are shown in Fig. 1. First, we see that KSO is close to K, con-

firming the validity of this analysis. Second, the nonmono-

tonic concentration dependence of K is almost entirely due to

K## for x � 0.7. While K"" is sizeable, it depends weakly on

x in this region. Additional discussion about the spin decom-

position of MCA is provided in the supplementary material.13

Let us now analyze the electronic structure and the

details of SO coupling-induced mixing for the minority-spin

electrons. To resolve the minority-spin contribution to K by

wave vector k, we calculated the minority-spin spectral func-

tion in the presence of SO coupling and found its first energy

moment at each k. Fig. 3 shows the difference of these inte-

grals for magnetization along the x and z axes at three key

concentrations: pure Fe2B (x¼ 0), the maximum of K
(x¼ 0.3), and its minimum (x¼ 0.8). We have checked that

the Brillouin zone integral of the k-resolved MCA energy

(summed up over both spins) agrees almost exactly with the

value of K calculated in the usual way.

Fig. 3 shows that the MCA energy accumulates over a

fairly large part of the Brillouin zone. At x¼ 0, negative con-

tributions to K dominate over most of the Brillouin zone. At

x¼ 0.3, both positive and negative contributions are small.

At x¼ 0.8, there are regions with large positive and large

negative contributions. Overall, it appears that the most im-

portant contributions come from the vicinity of the CXM

(kz¼ 0) plane and from the vicinity of the CH (kx¼ ky¼ 0)

line.

The partial minority-spin spectral functions for the

transition-metal site are displayed in Fig. 4 (panels (a)–(c))

along the important high-symmetry directions for the same

three concentrations. The coloring in this figure resolves the

contributions from different 3d orbitals. At x¼ 0, the spectral

function resolves the conventional electronic bands of pure

Fe2B (an imaginary part of 0.004 eV is added to the energy

to acquire them). At x¼ 0.3 and x¼ 0.8, substitutional disor-

der broadens the bands by a few tenths of an electronvolt,

but their identity is in most cases preserved. Thus, we will

discuss the SO-induced band mixing in the alloy, bearing in

mind that band broadening should reduce the values of MCA

at intermediate x.

As we have learned above, the dominant concentration

dependence of K comes from the hLz0 i## term, where z0 is the

magnetization axis. The electronic states on the whole CXM

plane can be classified as even or odd under reflection

z!�z. Even (odd) states have m¼ 0,62 (m¼61) character

and appear red and green (blue) in Fig. 4. States of different

parity do not intermix on this plane in the absence of SO

coupling, as is clearly seen in Fig. 4(a). The selection rules
FIG. 2. Spin moments on different atoms and the total spin magnetization M
per transition-metal atom.
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for SO coupling of the minority-spin states follow from the

definite parity of the components of L̂ under reflection. L̂z

(even; relevant for M k z) only mixes states of the same par-

ity on the CXM plane, or more generally orbitals of the same

m. Coupling between states of the m¼62 character (red) is

stronger compared to states of the m¼61 character (blue).

In contrast, L̂x (odd; relevant for M k x) couples states of the

opposite parity on the CXM plane, or more generally, orbi-

tals m and m 6 1. All these couplings contribute to K only

when the Fermi level lies between the two states that are

being coupled. Whenever L̂z or L̂x couples such states, there

is a negative contribution to the energy of the system with

the corresponding direction of M.

With the help of Fig. 4, we can now deduce which cou-

plings contribute to K at different concentrations. At x¼ 0,

the Fermi level lies between the filled even states (bands

1–2) and empty odd states (bands 3–4) near C. Coupling of

these states by L̂x contributes to negative K. Filling of the

hole pocket at C (bands 3–4) with increasing x suppresses

this contribution. At x¼ 0.3, the odd bands 3–4 are filled

(Fig. 4(b)), and the minority-spin contribution to K is small

(Fig. 3(b)). These two cases are sketched in Fig. 4(d).

At still larger x the odd band 5 gets gradually filled, acti-

vating the negative contribution to K from the mixing of

band 5 with empty even bands 6–7. This trend continues till

about x¼ 0.8, where an even pair of bands 6–7 (degenerate

at C) begins to fill (Fig. 4(c)). Mixing of these bands by L̂z

leads to an intense positive contribution to K near the C point

(clearly seen in Fig. 3(c)), and the trend reverses again.

Thus, the nonmonotonic dependence of K in the whole

concentration range is explained. Note that if the exchange-

correlation field on the Co atoms is not scaled down to bring

the magnetization in agreement with experiment, the

exchange splitting remains too large, and bands 6–7 remain

empty up to x¼ 1. As a result, without this correction, the

uninterrupted negative trend brings K to large negative val-

ues in disagreement with experiment.

To assess the effect of atomic relaxations on K, we opti-

mized all inequivalent structures with two formula units per

unit cell using the VASP code15 and the GGA. The volumes

were fixed at the same values as in the CPA studies at the

same x, while the cell shape and internal coordinates were

relaxed. Since all these supercells preserve the rz reflection

plane, the displacements of Fe and Co atoms are confined to

the xy plane. All displacements were less than 0.025 Å. One

of the two structures at x¼ 0.5 breaks the C4 symmetry. For

this structure, we took the average of the energies for M k x
and M k y as the in-plane value in the calculation of K,

which corresponds to the averaging over different orienta-

tions of the same local ordering.

The changes in the absolute value of K due to the relaxa-

tion and its values (meV/f.u.) in the relaxed structures were

found to be �26% and �0.11 in Fe2B, �6% and 0.25 in

Fe1.5Co0.5B, �13% and 0.15 in the FeCoB [100] superlattice,

6% and 0.12 in the FeCoB [110] superlattice, �11% and

�0.31 in Fe0.5Co1.5B, and �19% and �0.04 in Co2B. While

MCA tends to be larger for ordered structures, the concentra-

tion trend in supercell calculations agrees well with the CPA

results for disordered alloys. Although this set of unit cells is

limited, the results suggest that local relaxations do not

FIG. 3. Brillouin zone map of the k-resolved minority-spin contribution to K at: (a) x¼ 0, (b) x¼ 0.3, (c) x¼ 0.8. Half of the Brillouin zone is shown; the top

face of the plot is kz¼ 0. Points H (same as M) and X are shown in panel (b). The color intensity indicates the magnitude of negative (blue) and positive (red)

values.

FIG. 4. (a)–(c) Minority-spin partial spectral functions for the transition-metal site in the absence of SO coupling at (a) x¼ 0, (b) x¼ 0.3, and (c) x¼ 0.8.

Energy is in eV. (d) Level diagram and SO selection rules at the C point (bands 1–4). Color encodes the orbital character of the states. The intensities of the

red, blue, and green color channels are proportional to the sum of xy and x2–y2 (m¼62), sum of xz and yz (m¼61), and z2 (m¼ 0) character, respectively.
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qualitatively change the concentration dependence shown in

Fig. 1.

Larger positive values of K are favorable for permanent

magnet applications. Our electronic structure analysis shows

that the maximum near x� 0.3 corresponds to the optimal

band filling. Further raising of K requires favorable changes

in the band structure, which could be induced by epitaxial or

chemical strain. We therefore considered the dependence of

K at x¼ 0.3 on the volume-conserving tetragonal distortion.

The results plotted in Fig. 5 show a very strong effect: K is

doubled under a modest 3% increase in c/a due to the sharply

increasing spin-flip contributions. A more detailed analysis

shows that the latter is largely due to the increase in the c pa-

rameter. On the other hand, the minority-spin contribution

increases with decrease in volume. Thus, increasing c and

decreasing a both have a positive effect on MCA. This

enhancement could be achieved through epitaxial multilayer

engineering. The search for a suitable alloying element to

enhance the c/a ratio is an interesting subject for further

investigation.

In conclusion, we have explained how the spin reorien-

tation transitions in (Fe1–xCox)2B alloys originate in the SO

selection rules and the consecutive filling of minority-spin

electronic bands of particular orbital character. Near the opti-

mal 30% concentration of Co, the MCA energy is predicted

to increase quickly with the c/a ratio, which could be imple-

mented by epitaxial strain or a suitable chemical doping.
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