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Static-electric-field behavior in negative ion 
detachment by an intense, high-frequency laser field 

M. V. Frolov,1 N. L. Manakov,1 B. Borca,2 and  
A. F. Starace 2 

1 Department of Physics, Voronezh State University, Voronezh 
394693, Russia 

2 Department of Physics and Astronomy, University of Nebraska–
Lincoln, Lincoln, NE 68588-0111, USA 

Abstract 
Based upon the exact numerical solution of the complex quasienergy 
problem for a 3-dimensional short-range potential as well as upon 
analytical evaluations, we demonstrate for any finite frequency 
ω that the action of an ultra-intense laser field (with electric vector 
F(ωt)) on a weakly bound atomic system may be described by the 
cycle-averaging of results for an instantaneous static electric field of 
strength |F(ωt)|. 

The accurate description of the intensity dependence of the decay rate of a bound 
level over a broad interval of laser frequencies is one of the challenging problems of 
strong field laser-atom physics. Existing qualitative results obtained from nonpertur-
bative (in the intensity) analyses of atomic decay rates in a laser field depend signifi-
cantly on the relation between the laser frequency ω and ω0 =|E0|/ħ (where E0 is the 
binding energy), as well as that between the laser amplitude F (see (2) below) and the 
characteristic internal atomic field strength, F0 = (2m|E0|3/|e|ħ )½. (Below we use 
the following scaled units: energies, ω and F are measured in units |E0|, ω0, and F0, 
respectively.) For small frequencies, ω  1, and for field strengths F ≥ ω (or equiv-
alently for γK < 1, where γK = ω/F is the well- known Keldysh parameter), the tun-
neling mechanism for the decay is realized, which is valid only for weak (although 
nonperturbative) fields, F  1 (see [1] and the improved analyses in [2]). The tun-
neling mechanism for the decay has been confirmed by many experiments for fre-
quencies up to ω ~ (0.1–0.2), particularly for the rare gases [3]. For the case of ground 
state atomic hydrogen, H(1s), Pont et al. [4, 5] performed a low-frequency analysis of 
the decay rate Γ beyond the Keldysh approach (up to F ≤ 0.2) using the ω2 expansion 
of the complex quasienergy using the basis of quasistationary states of the hydrogen 
atom in a static electric field (whose magnitude equals that of the instantaneous la-
ser field, see below). For ω = 0.134 (λ = 616 nm), a comparison of the F dependence of 
these “static-field-based” results with the exact ones shows a reasonable agreement 
(which becomes better for stronger F ) except for the structure seen in the exact Γ(F) 
which is due to Rydberg levels shifting in and out of resonance as the intensity varies. 
With increasing F (e.g. for F ≥ 0.2 in the case of H(1s)), over-barrier ionization becomes 
important. Recently, the over-barrier decay rate Γ in the low-frequency limit, ω  1, 
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has been obtained by Popov [6] using an adiabatic cycle-averaging of the Stark width 
Γstat for a strong static electric field. It demonstrates a surprisingly linear dependence 
of Γ on F (the “intermediate” asymptotic regime [6]), 

Γ ≈ k (F – Fcr)                                                                                              (1) 

where the fitting parameters k and Fcr do not depend on F over a wide fitting interval 
(e.g. 0.6 < F < 2 for H(1s)) and are smooth functions of the laser ellipticity. For above-
threshold frequencies, ω > 1, and in the strongly nonperturbative regime, the concept 
of quasistationary stabilization of atomic decay rates is conventionally understood to 
be applicable, in which case Γ(F) has a decreasing trend with increasing F (see reviews 
[7, 8] on the recent status of this problem). However, for a Coulomb potential the ex-
istence of a stabilization regime for decay rates in the ultra-strong field limit is still an 
open question. 

The analysis of Γ(F, ω) is simplified for the case of negative ion detachment, for 
which simple analytic, short-range binding potentials can be utilized. One of them is 
the 3-dimensional zero-range potential (ZRP) that has been widely used for the de-
scription of a weakly bound electron, as for example in the H— negative ion. The use 
of a quasistationary quasienergy state (QQES) approach [9] for the ZRP model essen-
tially permits exact predictions of Γ(F, ω) (which is determined by the imaginary part 
of the complex quasienergy,  = Re  – iΓ/2) for laser intensities extending from the 
perturbative to the ultrahigh intensity regime and for frequencies extending from the 
tunneling to the multiphoton regimes. In particular, recently we have demonstrated 
[10] that, for the ZRP model, the stabilization-like behavior of Γ(F) in a high-frequency 
field only exists for a limited interval of F, up to the closing of the direct photoioniza-
tion channel caused by the ponderomotive shift. Moreover, for the particular case of 
circular polarization, the strong field behavior of Γ(F) was found to be similar to that 
for a strong static electric field, both for ω < 1 as well as for the post-stabilization re-
gime at ω > 1. 

In this letter we present a global analysis of the dependence of Γ (for the ZRP 
model) on F, ω, and on the polarization state of a laser field described by the electric 
vector 

 (2) 

(Instead of the ellipticity, η, it is more convenient in what follows to use the related 
degree of linear polarization, l = (1 – η2)/(1 + η2).) For details concerning the exact nu-
merical calculations of the complex quasienergy  for the ZRP in the nonperturbative 
regime, see [10, 11]. The method we employ gives results that are in agreement with 
those of other authors who employ the ZRP, e.g. [12]. Results of exact numerical cal-
culations for Γ(F) are presented in Figure 1 for four different values of l and for ω = 
1.5, which corresponds to the case of H— irradiated by a Nd:YAG laser. (These results 
cover a much greater range of F and l than in [10].) One observes that as F increases, 
the perturbative regime, in which Γ ~ F2, evolves smoothly into a stabilization-like be-
havior, which breaks up at the closure of the one-photon ionization channel, i.e. at F 
= Fth

(1). Note that the finite value of Γ at F = Fth
(1) results from the contributions of par-

tial rates Γ (n) for n-photon (above-threshold) detachment with n = 2, 3, 4,..., whose F-
dependence (for n > 2) is essentially perturbative for F ~ Fth

(1). It is also seen that the 
threshold structure of Γ(F) at higher thresholds is significantly different from that for 
n = 1 and depends sensitively on the laser polarization. The frequency dependence 
of Γ in the interval 0.15 < ω < 2 is presented in Figure 2 for l = 0.72 for four different 
values of F. For weak F, Γ(ω) exhibits the typical perturbative behavior, i.e. the step-
like increase as ω increases that results from the sequential contributions of the partial 
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rates, Γ (n) ~ F 2n , with n becoming smaller as ω increases. As F increases, the stair-step 
behavior gradually disappears as Γ(ω) nearly becomes insensitive to ω for essentially 
nonperturbative values of F. This unusual behaviour of Γ(ω) at high F allows us to as-
sume that in the strong field limit the decay mechanism itself becomes essentially in-
dependent of the frequency, even in the ω > 1 domain. 

To analyze the strong field regime in more detail, instead of the conventional rep-
resentation for a quasienergy state, Y(r, t) = Φ(r, t)exp(–it), we use the following 
one: 

 (3)
 

where Y(r, t) is the solution of the Schrödinger equation for a Hamiltonian H(r, t) = 
Hat(r) + V(r, t), where Hat(r) describes the atom and V(r, t) = r · F (ωt). The periodic 
functions χ(r, t) and  (t) satisfy the following equation 

 (4) 

One may easily verify that the quasienergy  is the cycle-average of  (t), 

 (5) 

Figure 1. F-dependence of the total detachment rate Γ for ω = 1.5. Full 
curve, QQES results for four different values of l, as indicated in the fig-
ure; open circles, the lowest-order perturbation theory (PT) result for Γ (1) 
~ F 2; full circles, PT result for Γ (1) + Γ (2) (including terms up to the order 
of F 4) for l = 0.72. 
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Equations (3)–(5) are very general and were used by Langhoff et al. [13] in their analy-
ses of so-called “secular terms” in higher orders of perturbation theory (in V ), and by 
Pont et al. [5] in the low-frequency analysis of the ionization of H(1s). In [5] the formal 
development of a perturbation theory in W = –iω∂/∂τ, where τ = ωt, is presented for 
calculations of χ(r, t) and  (t) based on the instantaneous state of an atom in a static 
electric field of strength  =|F (ωt)|, χ (0)(r, t), with energy  (0)(t). In what follows, 
we employ such an approach to analyze the frequency dependence of  for the ZRP 
model in the strong field limit. Since we do not assume that ω is small compared to 
the binding energy |E0|, the key issue is to calculate the next order correction,  (2)(t) 
~ ω2, to  (0)(t) in order to estimate the accuracy of the expansion of  in a power series 
in ω2, which is generally an asymptotic expansion [5]. 

The general result for  (2)(t) is [5], 
 

 (6) 

where  ′ (0)(t)(r, r′ ) is the reduced Green function of an atom in a static electric field 
and χ̃ (0)(r, t) is the “dual” function, χ̃ (0)(r, t) = χ (0)*(r, –t), which is necessary to provide 
a proper normalization of the quasistationary (resonance) state χ (0)(r, t) [5, 14]. In the 
ZRP model (see the review [14] for details),  (0)(t) at any fixed t can be obtained as the 
root of the transcendental equation: 

1 + π 1/3 J(ξ ) = 0                                                                                      (7) 

where ξ  = – (0)(t)  –2/3,  ≡ |F(ωt)| = F [(1 + l cos 2ωt)/2]½, and J(ξ ) is a combination 
of regular (Ai) and irregular (Bi) Airy functions and their derivatives: 

Figure 2. ω-dependence of the total detachment rate Γ for four values of 
F, as indicated in the figure, and for l =0.72. 
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Using the explicit forms of χ0(r, t) and  ′ (0)(t)(r, r′ ), the matrix element in (6) is calcu-
lated analytically (some details regarding the calculation of the integrals that occur 
can be found in [14]): 

(8) 
where 

The function f(τ) is connected with the derivative of  (0)(t), which is calculated with 
the use of (7): 

The result (8) simplifies for the case of a circularly polarized laser field. In this case, 

Thus, (t) is time-independent and the correction (2) is 
 

 (9) 

This result coincides with that obtained by an alternative approach in [10], in which 
the calculations are carried out in a coordinate frame rotating with frequency ω (see 
also the similar calculations for H(1s) in [4]). In [10] an analytical result for the asymp-
totic behavior of circ in ultra-strong fields, F  1, has been obtained. In the weak field 
limit (F  1), neglecting exponentially small (tunneling) terms, we obtain the follow-
ing result for  =  (0) +  (2): 

(10) 

Note that the Stark-shift in this equation coincides exactly with the first two terms 
of the . expansion for the known dynamic polarizability and hyperpolarizability of a 
weakly bound particle in the ZRP model [15]. Thus, for weak fields, the “zero approx-
imation,”    (0), is valid for ω  1 and is equivalent to the standard adiabatic ap-
proach. To establish the accuracy of the term  (0) for the strong field regime, in Fig-
ure 3 we present numerical results for real and imaginary parts of the ratio of  (2) to 
 (0) for a number of values of l at fixed ω = 1.5. One observes that with increasing F the 
two-term approximation,  (0) +  (2) (which we call the AA result), is applicable over a 
wide interval of ω including the above-threshold region, ω > 1. 

To check both the relation between the AA results and exact numerical results for 
 and also the applicability of the ZRP model for real negative ions in a strong laser 
field, in Table 1 we compare our numerical (QQES) and approximate (AA) results for 
the detachment of H— by linearly polarized CO2 laser radiation (for which ω = 0.155, 
and the scaled unit of intensity for H— is 1.494 ×1012 W cm–2) with existing theoreti-
cal predictions in [16–19]. The comparison shows the excellent agreement of the exact 
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ZRP results with more refined (and time consuming) calculations and also the high 
accuracy of the AA results for nonperturbative intensities I ≥ 5 × 1010 W cm–2, when F 
≥ ω (in scaled units). 

Comparisons of QQES and AA as functions of F are presented in Figure 4 for ω < 
1 and in Figure 5 for ω > 1. The AA and QQES results for l = 0 and ω < 1 are almost in-
distinguishable: for ω = 0.36 and F > 0.3, the difference between QQES and AA is less 
than 3%; for ω = 0.56 and F > 0.4, it is less than 2%; and for ω = 0.77 and F > 0.5, the 
difference is less than 4%. Generally, the AA results accurately describe the trends of 
the position and the width of a quasistationary level but fail to describe the threshold 
related peculiarities, which are lost by using the ω2 expansion for the iterative solu-
tion of equation (4). These peculiarities are most pronounced for the case of linear po-
larization and they are exhibited at the points of non-analyticity of the function (F), 
which correspond to the closure of partial detachment channels with increasing F (at 
F = Fth

(n)). These points are branch points of the type ( + Up+ nω)k+1/2 (where Up is 
the ponderomotive shift, Up = F 2/(2ω2)) and as F increases (and Im  becomes impor-

Figure 3. F and l dependences of the real (a) and imaginary (b) parts of 
the ratio  (2)/ (0)  for ω = 1.5. Full curve, l = 0; long-dashed curve, l = 0.5; 
chain curve, l = 0.7; short-dashed curve, l = 0.9. 
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Table 1. Detachment rates for H— in the field of a CO2 laser having linear polarization ((n) 
≡ 10n). 

                                                               Detachment rates (au) 
Intensity 
(W cm–2)     [16]                             [17]               [18]                 [19]              AA                QQES 

1.0(10)	 (1.04 ± 0.12)(–9) 	 0.97(–9) 	 0.91(–9) 		  0.32(–9) 	 0.97(–9) 
1.12(10)	 (2.04 ± 0.11)(–9) 			   2.7(–9)a	 0.73(–9) 	 2.28(–9) 
				    2.1(–9)b 
2.52(10)	 (1.12 ± 0.08)(–7) 			   1.4(–7)a	 0.88(–7) 	 1.14(–7) 
				    1.0(–7)b 
5.0(10)	 (1.81 ± 0.06)(–6) 	 1.67(–6) 	 1.76(–6) 		  1.64(–6) 	 1.79(–6) 
1.0(11)	 (1.68 ± 0.03)(–5) 	 1.61(–5) 	 1.61(–5) 		  1.62(–5) 	 1.66(–5) 
1.6(11)	 (5.91 ± 0.02)(–5) 				    5.74(–5) 	 6.12(–5) 
2.0(11)	 (9.97 ± 0.01)(–5) 				    9.75(–5) 	 9.87(–5) 

a Floquet calculations with a parametrized one-electron potential. 
b Faisal–Reiss formulas with a Hylleraas ground state wavefunction. 

Figure 4. F-dependence of the real (a) and imaginary (b) parts of the 
complex quasienergy ( = Re  – iΓ/2) for ω = 0.36 and l = 1. Full curve, 
the exact QQES result; dashed curve, the AA result. 

Figure 5. F-dependence of Γ for ω = 1.5, and l = 0 (a) and l = 1 (b). Full 
curve, the exact QQES result; dashed curve, the AA result. 
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tant) they are shifted to the complex F plane. Thus, in strong fields the peculiarities of 
(F) on the real F axis become smoother. As Figures 4 and 5 demonstrate, in the strong 
field limit, the behavior of the exact results for (F) (when averaged over the thresh-
old peculiarities) show surprisingly close coincidence with the AA results, even in 
the high-frequency domain, ω > 1. Moreover, over a wide interval of nonperturba-
tive values of F the F-dependence of Γ (averaged over threshold peculiarities) is close 
to linear, which is similar to the “intermediate” asymptotic (1) found for the hydrogen 
atom in the low-frequency limit. For instance, at ω = ωCO2 (see Table 1), the parame-
ters for this linear dependence are Fcr = 0.86 and k = 0.12 for l = 1, and results obtained 
from formula (1) are in reasonable agreement with the exact ones beginning from F > 
1.5 (or for I > 2.25 × 1012 W cm–2 for H—). Unlike the adiabatic case (ω  1), for a finite 
frequency the interval of the applicability of the asymptotic (1) depends on ω: as ω in-
creases, the result (1) becomes applicable at stronger fields. Namely, for ω = 1.5 (when 
the parameters k and Fcr in (1) are Fcr = 0.84, k = 0.13 for l = 0, and Fcr = 0.89, k = 0.1165 
for l = 1) the linear in F regime is realized with an accuracy of about 5% over the inter-
val 2.5 < F < 10. 

In conclusion, the results presented in this letter justify our key conceptual state-
ment, namely, that the decay of a weakly bound atomic system in a strong laser field 
F(ωt) with any frequency and polarization state may be described by cycle-averaging 
the results for an instantaneous static electric field of strength |F(ωt)|. 

Acknowledgments
This work was supported by RFBR Grant number 00-02-17843, by Grant number E00-

3.2-515 of the Russian Ministry of Education and by NSF Grant number PHY-0070980. 

References
 
[1] 	 Keldysh L V 1964 Zh. Exp. Teor. Fiz. 47 1945 (Engl. transl. 1964 Sov. Phys.–JETP 20 1307) 
[2] 	 Nikishov A I and Ritus V I 1966 Zh. Exp. Teor. Fiz. 50 255 (Engl. transl. 1966 Sov Phys.–JETP 23 168)   

Perelomov A M, Popov V S and Terent’ev M V 1966 Zh. Exp. Teor. Fiz. 50 1393 (Engl. transl. 1966 
Sov Phys.–JETP 23 1924) 

[3] 	 Delone N B and Krainov V P 1994 Multiphoton Processes in Atoms (Berlin: Springer) 
[4] 	 Pont M, Shakeshaft R, and Potvliege R M 1990 Phys. Rev. A 42 6969 
[5] 	 Pont M, Potvliege R M, Shakeshaft R, and Teng Z-J 1992 Phys. Rev. A 45 8235 
[6] 	 Popov V S 2000 Zh. Exp. Teor. Fiz. 118 56 (Engl. transl. 2000 Sov Phys.–JETP 91 48) 
[7] 	 Gavrila M 2000 8th Int. Conf. on Multiphoton Processes (AIP Conf. Proceedings 525) ed L F Di-

Mauro, R R Freeman, and K C Kulander (New York: Melveille) p. 103 
[8] 	 Fedorov M V 1999 Laser Phys. 9 209 
[9] 	 Manakov N L, Ovsiannikov V D, and Rapoport L P 1986 Phys. Rep. 141 319    

Manakov N L and Fainstein A G 1980 Zh. Exp. Teor. Fiz. 79 751 (Engl. transl. 1980 Sov Phys.–JETP 
52 382) 

[10] Manakov N L, Frolov M V, Borca B, and Starace A F 2000 Pis’ma ZhETF 72 294 (Engl. transl.  
2000 JETP Lett. 72 426)    
Manakov N L, Frolov M V, Borca B, and Starace A F 2001 Super-Intense Laser-Atom Physics (NATO 
Sci. Ser. II: Math., Phys. and Chemistry, vol 12) ed. P Piraux and K Rzążewski (Dordrecht:  
Kluwer) p. 295 

[11] Manakov N L, Frolov M V, Borca B, and Starace A F 2001 to be published 
[12] Krstić D S, Milošević D B, and Janev R C 1991 Phys. Rev. A 44 3089 
[13] Langhoff P W, Epstein S T, and Karplus M 1972 Rev. Mod. Phys. 44 602 
[14] Manakov N L, Frolov M V, Starace A F, and Fabrikant I I 2000 J. Phys. B: At. Mol. Opt. Phys. 33 

R141 
[15] Manakov N L, Preobrazhenskii M A, Rapoport L P, and Fainshtein A G 1978 Zh. Eksp. Teor. Fiz. 75 

1243 (Engl. transl. 1978 Sov. Phys.–JETP 48 626) 
[16] Haritos C, Mercouris Th, and Nicolaides C A 2001 Phys. Rev. A 63 013410 
[17] Telnov D A and Chu S I 1994 Phys. Rev. A 50 4099 
[18] Gribakin G F and Kuchiev M Yu 1997 Phys. Rev. A 55 3760 
[19] Dörr M, Potvliege R, Proulx D, and Shakeshaft R 1990 Phys. Rev. A 42 4138 


	Static-electric-field behavior in negative ion detachment by an intense, high-frequency laser field
	

	tmp.1219343120.pdf.kFV76

