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The growing expenses of power in data centers as compared to the operation costs has been a

concern for the past several decades. It has been predicted that without an intervention, the

energy cost will soon outgrow the infrastructure and operation cost. Therefore, it is of great

importance to make data center clusters more energy efficient which is critical for avoiding

system overheating and failures. In addition, energy inefficiency causes not only the loss of

capital but also environmental pollution. Various Power Management(PM) strategies have

been developed over the years to make system more energy efficient and to counteract the

sharply rising cost of electricity. However, it is still a challenge to make the system both

power efficient and computation efficient due to many underlying system constraints.

In this thesis, we investigate the Power Management technique in heterogeneous MapRe-

duce clusters while also maintaining the required system QoS (Quality of Service). For a

cluster that supports MapReduce jobs, it is necessary to develop a PM technique that also

considers the data availability. We develop our PM strategy by exploiting the fact that the

servers in the system are underutilized most of the time. Hence, we first develop a model of

our testbed and study how the server utilization levels affect the power consumption and the

system throughput. With the established models, we form and solve the power optimization

problem for heterogeneous MapReduce clusters where we control the server utilization levels

intelligently to minimize the total power consumption.

We have conducted simulations and shown the power savings achieved using our PM

technique. Then we validate some of our simulation results by running experiments in a real



testbed. Our simulation and experimental data have shown that our PM strategy works

well for heterogeneous MapReduce clusters which consists of different power efficient and

inefficient servers.
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Chapter 1

Introduction

With the decreasing cost of commodity hardware and increasing amount of data that exists

online, data centers are becoming larger than ever and growing at a pace faster than ever.

The increasing need for online services, e-commerce and big-data computing has further

increased the demand for the data centers to process them. Annually data centers consume

enormous amount of energy and spend a lot of money into managing and cooling systems.

According to a recent report by US Natural Resources Defense Council [1], US data centers

consumed an estimated 91 billion kilowatt-hours of electricity in 2013 alone and they project

this figure to grow up to 140 billion kilowatt-hours by 2020. The study also points out that

this will cost American businesses 13 billion USD annually for electricity expenses and cause

emission of nearly 150 metric tons of carbon pollution. This presents a major challenge for

sustainability of the data centers and its future scalability and also emphasizes upon the

need to move towards green computing for reducing carbon footprints.

Based on the trends from American Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE)[2], it has been estimated that by 2014 infrastructure and energy costs

would contribute about 75%, whereas IT would contribute just 25% to the overall cost

of operating a data center [3]. This statistic further highlights how the energy cost of
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data centers drive the expenses and the need for power efficiency which can significantly

decrease the operational cost and contribute to reduced environmental pollution. On the

other hand, inefficient power management can also lead to overheating and thus cluster node

failures. Overheating causes stress on the cooling system which in turn leads to more power

consumption in a data center. Therefore power management of cluster machines is also

important for operating cooling systems efficiently, avoiding failures and maintaining system

reliability.

The problem of power management in data centers has been a point of interest for

industries and is a subject of many research efforts over the past decade. Traditionally, power

management of a system involved improving cooling mechanism and packaging technologies

while recent ones involve circuit and microarchitectural approaches to reduce thermal stress

[4]. Currently many approaches exist to managing power consumption in a cluster and they

were suited for different objectives and requirements of the cluster system. Some approaches

focus on decreasing the power consumption while guaranteeing some level of Quality of

Service (QoS) of the system. Some techniques involve Dynamic Voltage/Frequency Scaling

(DVFS) where the frequency and voltage of the system are adjusted to reduce the total power

consumption as in [5, 6, 7, 8]. The servers running in lower frequency generate lower heat

and hence there will be lower cost for cooling systems too which in turn help to conserve energy

in the system. Another popular PM strategy involves designing algorithms for appropriately

turning on/off unused or underused servers. But the drawback of such strategies is that the

system performance and reliability can suffer adversely. Some approaches like [9, 10] address

the problem of data unavailability in such cases. Some existing Power Management solutions

seek to reduce the overall or average power consumption of the system, some concern with

only reducing the peak power, while others focus on power budgeting [11, 12, 13, 14]. These

policies were developed and were applicable to different types of systems. The PM technique

that can be adopted for a system depends upon the type of the system and sometimes also
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the size of the system. For instance, PM policies developed for homogeneous system may

not be applicable to heterogeneous systems [5]. The system load can also determine the

applicability and effectiveness of the Power Management policies. The power management

strategies differ greatly in clusters that serve only transactional processes like web services

versus clusters that serve batch processes like long running programs [4].

In many data centers, the power inefficiency can be attributed to their design. Therefore

the PM policy must examine and explore the cause for better power management. Many

data centers are designed to handle peak load and over-provisioning of resources is one of the

major causes of power inefficiency in data centers [15]. A recent study [16] by Anthesis Group

[17] discovered that 30% of servers in data centers are in comatose state where servers are

idle for at least 6 months. Therefore over-provisioning is one of the most conspicuous cause

for inefficiency in data centers. According to [18], the servers they investigated are rarely idle

nor maximally utilized, operating between 10-50% of their maximum utilization levels. As

a result, the cluster consumes large amount energy due to the over-provisioning. Thus PM

policies can exploit this system under-utilization for better power management and optimize

the system for energy consumption through proper resource scheduling. It is for this reason

that we were motivated to develop PM mechanism that is based on the system utilization.

The fact that the system is underutilized most of the time implies that the capacity of the

system is bigger than that needed by the workload. So, we target at such systems to improve

their power consumption.

In any under-utilized system it may seem intuitive to turn on/off servers [5, 11] according

to the workload demands. But since we use a Hadoop cluster where the files are stored

in different nodes, the turning on/off of idle and underutilized servers to reduce power

consumption is neither straightforward nor ideal. If all the servers that store a certain data

replica used in the job are turned off, this will result in data unavailability. In addition, the

turning on/off of servers is not instantaneous and during the state transition servers consume
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more power. Another problem with disabling nodes is that it affects cluster performance

adversely and may not be applicable for clusters where performance requirements are stringent.

QoS or SLA (Service Level Agreements) in a system is extremely important especially

in case of commercial systems offering services to users. According to [19], Amazon found

that 100ms of latency cost them 1% in sales while Google found that 500ms in search page

generation time reduced traffic by 20%. Therefore it is critical that power management

policies take into account the system’s QoS. Service providers define and measure their QoS

differently. Some of them can also be user defined. For example QoS metrics include mean

response time, fault tolerance, availability, throughput, reliability etc. Some systems can also

calculate QoS as a combination of different factors.

In this thesis, we focus on power management policy to decrease the overall power

consumption of a Heterogeneous MapReduce cluster while maintaining the system’s QoS. We

define the QoS of our system to be the throughput of the system and seek to guarantee QoS

by maintaining the throughput of the system to some desired level. We use MapReduce in

our system as it is very popular for data intensive computing. We deploy our cluster in a

Linux environment.

Our first step was to model our system appropriately. We target at maintaining the

system throughput which depends upon the capacity of the servers. We grouped the servers

in our system based on the number of cores in their cpu as the capacity of servers directly

depend upon the number of cores. We modeled the power consumption for all the servers

in our cluster using an approach similar to those in [11, 20]. Then we also developed the

throughput model of our system using their cpu utilization. After the analysis of these models

and how the cpu utilization level affected the system, we propose an optimization algorithm

to minimize the total power consumption in the system. Our algorithm follows a greedy

approach where we seek to utilize the power efficient servers more that the power inefficient

ones. Our algorithm works well for a heterogeneous system and its complexity does not
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depend upon the number of servers in the system, rather on the number of heterogeneous

groups in the system. We first test our algorithm by simulating clusters with workload arrival

rates lower than their capacities and calculating the amounts of power savings. Then we

generate a MapReduce workload and validate our algorithm and results in a real cluster.

The rest of the thesis is outlined in the following manner. In Chapter 2, we present the

background information about the system which includes Hadoop MapReduce and Linux

Control Groups, and related works. In Chapter 3, we introduce our models and formally

define our power management problem. In Chapter 4, we describe our optimization policy

following ordering of servers heuristics and the complete algorithm for achieving our goal

of reducing power consumption. Chapter 5 describes our experimental setup and Chapter

6 presents our simulation results and experimental results. We also present analysis and

comparison of results obtained by these methods. Finally we conclude in Chapter 7 and

provide some insights and details for possible future work in Chapter 8.
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Chapter 2

Background and Related Work

In this section we describe the system used in our cluster. We use Hadoop MapReduce in

our testbed and use cgroup monitor to enforce maximum cpu utilization bound. We use

Linux environment and have installed Scientific Linux 6.8 as the cgroup monitor is available

in Linux versions 6 and higher only.

2.1 Hadoop

Hadoop is an open source framework used for a large scale data processing in a distributed

environment. It is designed to scale up from single server to thousands of machines with each

offering local computation and storage [21]. It has the ability to process large data sets in

relatively shorter time and is used as such by wide variety of companies and organizations

for both research and production. It is used by companies like Google, Yahoo!, Facebook,

Twitter, Amazon for storing, processing and analyzing data.

The Hadoop project includes sub-projects such as Hadoop Common, Hadoop Distributed

File System (HDFS), Hadoop YARN and Hadoop MapReduce. Some of them are described

in the following sub-sections.
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2.1.1 Hadoop MapReduce

Hadoop MapReduce is computational model that splits the large input data-sets into in-

dependent blocks and processes them in parallel. The MapReduce processes jobs in two

steps, as the name suggests, map and reduce. First, the map tasks, or mappers, process the

blocks of input data according to the map function and output the tuples (key/value pairs).

Then these tuples are further processed by reduce tasks, or reducers, which combine them

as defined in the reduce function to give the required output. The map tasks are executed

before reduce tasks as the output of map tasks are fed as input to reduce tasks. However

after some map tasks are finished, the reduce can begin, making the execution of the two

stages overlap. Both the input and output of a job are stored in HDFS. The distributed

computing model of MapReduce framework allows it to scale data processing quickly over

multiple computing nodes. Each node can both process and store data. A MapReduce job

can be IO intensive, CPU intensive or Network Intensive depending upon the type of job.

The MapReduce framework follows a master-slave architecture. The master is responsible for

scheduling, executing and monitoring of tasks in slave nodes.

2.1.2 HDFS

HDFS, short for Hadoop Distributed File System, is a distributed file system used by Hadoop

applications. It can also be used as stand-alone general purpose distributed file system [22]. It

can store huge amount of data and has the ability to scale quickly. It is highly fault tolerant

and is simple in architecture. The replication of data in HDFS provides data redundancy

and enables it to overcome high failure rates and ensure data availability. It is designed to

span large clusters of commodity servers. HDFS stores data in blocks and the current default

block size is 128MB. If the file size is larger than the block size, then HDFS divides and

stores the file into multiple blocks [23]. The files smaller than the block size are still stored
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in a block and takes the entire block space. If there are a number of small files stored in the

HDFS, a lot of space will be wasted. Therefore, HDFS works best with very large files.

2.1.3 Hadoop YARN

Hadoop YARN is a framework for job scheduling and cluster resource management [21]. YARN

is short for Yet Another Resource Negotiator [24] and is a new MapReduce implementation

designed to addresses the scalability issues with the MapReduce1 (MRv1). In MRv1,

jobtracker is responsible for both job scheduling and task monitoring. But in MRv2, these

roles are separated using ResourceManager (RM) and ApplicationMaster (AM). RM is

responsible for managing resources of the whole cluster and as such manages and coordinates

resource allocation across the whole cluster. The resources are expressed in terms of containers

which are assigned specific amount of memory and cpu using configuration files. AM is

responsible for managing/monitoring the application and its tasks. Each application in YARN

has a dedicated AM that runs for the duration of application. It communicates with RM

for the resource allocation required for the application. MRv2 also has NodeManager(NM)

which runs in each node in the cluster and works with AM to make sure that the resource

allocation is followed by all tasks in the node.

Figure 2.1 shows how a MapReduce job is run using YARN. The YARN entities job

client, ResourceManager, NodeManager, ApplicationMaster and HDFS are involved and

work together to process a job. When the job is submitted to YARN, the job client checks

the output specification of the job and computes the input splits required for the job. It

then copies the job resources like JAR file, configuration and split information to HDFS.

Then the job is submitted. The ResourceManager assigns application ID to the submitted

job. Then the ResourceManager invokes scheduler to allocate a container and launches

the ApplicationMaster process in that container. In Figure 2.1, MRAppMaster is the
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Figure 2.1: Running MapReduce Job using YARN [24]

ApplicationMaster process. The ApplicationMaster is responsible for initializing the job and

retrieving the input splits from HDFS. The ApplicationMaster creates the map task and

reduce task objects. One map task object is created for each split, so the number of map task

objects is the same as the number of splits. For reduce task objects, the number depends upon

the mapreduce.job.reduces property in the configuration file. The ApplicationMaster then

requests the ResourceManager to allocate containers for all the map and reduce task objects.

In ResourceManager, the scheduler assigns containers for them. Then the ApplicationMaster

contacts the node manager in each node to launch the containers. Now inside each container,

the process YarnChild retrieves the data required for its assigned map or reduce task from

HDFS and executes the task. After the job is completed, the ApplicationMaster and the task

containers clean up their states and the job information is archived.



10

2.2 Linux Control Groups

Linux Control Groups, cgroups in short, are kernel features provided in Red Hat Enterprise

Linux 6 and higher versions. It is a framework for allocating and managing resources. They

can be used for resource allocation such as CPU time, system memory, network bandwidth or

combinations of these resources among user defined groups of tasks (processes) running on a

system [25]. They give administrators flexibility to allocate the required hardware resources

to users, groups and tasks. Cgroups can be used to both assign and deny different amount

of resources to different processes. It is a very useful tool for prioritizing tasks when the

resources are limited.

Cgroups are organized in a hierarchical structure just like processes. That is, the child

cgroups inherit certain attributes from their parents [25]. If the parent processes are assigned

some cgroups configuration then the child processes are also constrained under those configu-

rations. There can be more than one cgroups in the system. Therefore cgroups hierarchy

consists of one or more unconnected trees of processes. In cgroups, each of the resources

are represented by a subsystem. There are 10 subsystems available in Red Hat Enterprise

Linux 6. Some of them are cpu - for the CPU access, memory - for system memory allocation

and/or limitation, blkio - for input/output access of block devices and ns - for namespace

subsystem etc. In this project, only the cpu subsystem is used.

A cgroup hierarchy can have one or more subsystems attached to it. A subsystem can be

shared by two or more hierarchies as long as all of those hierarchies have only that subsystem

attached to it. That is, a subsystem cannot be shared among two hierarchies if there is

another subsystem attached to any one of those hierarchies. A task cannot be a member

of two different cgroups from same hierarchy but if the cgroups are located in two different

hierarchies, then it is possible. When a task is forked, the child task inherits all the cgroups

from its parent task but later on those cgroups can be removed and/or other cgroups can be
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assigned to this child task.

The cgroup implementation is provided in Libcgroup package. Libcgroup package consists

of different commands for defining and applying cgroups. The cgroups can also be defined in

/etc/cgconfig.conf file which remain persistent. Because of this, we use this method to define

and mount our cpu subsystem and assign the cpu usage constraints. The details of how

different cgroups are implemented can be found in [25]. After defining the cgroups, the tasks

should be moved to the cgroups by using the Cgred (Control group rules engine daemon)

service. The tasks will continue to use the default resource management of the system until

they are specifically moved to the defined cgroup. The Cgred service parameters or rules

are set in /etc/cgrules.conf file. Using these rules, we can move all the tasks to required

controller i.e. cpu subsystem.

We can use the cpu subsystem to schedule the CPU resources to cgroups. For real-time

scheduling tasks, Real-Time scheduler(RT) is used to schedule cpu time while for other tasks

Completely Fair Scheduler(CFS) is used. The CFS scheduler proportionately divides the CPU

time between tasks on the basis of their priority or shares in their cgroups. It is a relative

scheduler and as a result a task can get more than its share of CPU if there are idle CPU

cycles. But we are more interested in total CPU utilization rather than prioritizing tasks.

CFS also provides a way to define ceiling enforcement or a hard bound on cpu utilization via

two parameters: cpu.cfs period us and cpu.cfs quota us. We can use the first parameter to

define the period for CPU reallocation and the second parameter to specify the total amount

of time allocated to the tasks in the cgroup. Both time are defined in microseconds. In this

way, we can control the maximum cpu resource usage by the tasks. If there are more than 1

CPU in the system, then we need to adjust the amount of time defined in cpu.cfs quota us

as it is evenly distributed among the CPUs.
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2.3 Related Work

Extensive research and work has been conducted in the field of reducing power consumption.

Over years many techniques have been developed to reduce power consumption in servers.

Some of the techniques utilize scaling of CPU voltage or frequency or both. These are

known as Dynamic Voltage and Frequency Scaling (DVFS) or Dynamic Frequency Scaling

(DFS). Modern processors like Intel and AMD provide their own implementations. The power

consumption is related to clock frequency(f) and cpu voltage(V) as P = C ∗ V 2 ∗ f , where

C is the capacitance of the digital circuit. These techniques utilize this direct relation and

offer to conserve power by reducing server frequency and/or voltage but at the expense of

server performance [4, 26, 27]. Depending upon the type of workload, the mean response

time and the program speed can suffer negatively. Hence these techniques are generally used

only when the workload is not CPU bound [26]. There are significant power management

research efforts that use DVFS to save power. Research such as [7, 8] specifically explore

DVFS in a MapReduce environment. [8] considers only computation intensive workloads

while [7] investigates the effect of scaling cpu frequencies for managing power consumption in

Hadoop for different MapReduce jobs.

Another common technique explored is turning on/off of servers. As implemented in

[5, 28, 9], this technique calculates the number of servers required at a certain load to satisfy

QoS requirement and turns the servers on/off accordingly. This scheme can significantly

reduce total power consumption in a cluster as a server can consume more than 50% of the

power even at idle state [11, 18]. But turning servers on/off may give rise to another problem

- data unavailability, specially for MapReduce workload like ours where input data are stored

in the servers and they cannot be randomly turned off.

[9] offers solution to such problem by introducing the concept of “covering subset” mech-

anism. In this method, the servers are divided into 2 sets, covering and non-covering set.
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The covering set contains at least one replica of all data blocks. It allowed the system to

turn off at most all servers not in the covering subset. But this solution presents another

problem for us. In case of large workload data as in our case, a lot of disk space is wasted

storing more replicas of data block. Also this strategy heavily relies upon the replication

strategy of the HDFS code which was modified for replica placements. In this method, the

state transition from on to off and off to on is not instantaneous. The system consumes

more energy when turning on and if the state transition is frequent then it can negate the

whole effect of turning servers off to save power. Another challenge of this approach is that it

is difficult to design a strategy that won’t impact the performance adversely. GreenHDFS

[10] proposes another solution by logically separating HDFS into Hot and Cold zones. They

use energy aware placement of data by classifying their data. The highly accessed data was

placed into hot zone which contains more servers. The cold zone with very low utilization

was then transitioned into inactive power saving modes. The compute power of the Cold

zone servers was used only during the periods of peak utilization. In this case too, there is a

potential for performance degradation due to the state transitions.

Chen et al. [29] present a Berkeley Energy Efficient MapReduce (BEEMR) paradigm

for an energy efficient MapReduce system targeted for MapReduce with Interactive Analysis

workloads. They divide the cluster into disjoint interactive and batch zones. The interactive

zone contains a small pool of dedicated servers to serve interactive jobs while the batch zones

ran less time-sensitive jobs in a batch fashion. The interactive zone was always fully powered

where as the batch zone was put into a low power state to conserve power. [30] presents

a MapReduce framework to use green energy. They propose a framework GreenHadoop

which predicts the amount of solar energy that will be available in near future and schedules

MapReduce jobs accordingly. They use green, solar or wind, energy when they are available

and use brown, carbon-intensive, energy only to avoid time violations. This framework can

be used whenever green energy is available.
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One of the interesting work in Power Management problem is presented by Li et al. in

[31]. They present a thermal aware solution by exploring the relationship between CPU

frequency, temperature and power. It is one of DVFS techniques. They model the power

consumption of a system as a function of temperature and frequency. Their strategy is based

on the observation that servers consume more power at higher temperature even though

they have same frequency and voltage setting and same utilization. They compensate the

temperature differences between the servers in the system by decreasing total CPU frequency

when temperature increases and increasing it when temperature decreases. We use a similar

modeling approach but ours explores the relationship between CPU utilization, throughput

and power consumption.

Another related work is by Wang et al. [5]. The authors present a PM solution of turning

on/off servers by making design decisions on ordered servers list, server activation thresholds

and workload distribution. They present different ordering lists for servers to turn on and off.

One of the server ordering proposed is Typical Power-based policy where servers are ordered

according to their power consumption efficiency under typical workload. While we do not

turn on/off our servers, we follow similar approach to order our servers for utilization bound

distribution. In our work, the servers are assigned utilization bounds based on their power

efficiency at the typical utilization.

The PM strategy presented in [32] also turns off the servers to save overall power

consumption but only when there is no work. They propose All-In Strategy(AIS) where the

MapReduce job is run on all nodes in the system and the entire system is powered down after

the work is completed. But this policy might not work for workloads which arrive in some

steady rate that the nodes are always lowly utilized. If the workload arrives intermittently,

they put the jobs in queue and submit them in one batch after a certain threshold is reached.

This can cause significant delay for early arriving jobs which may not be acceptable. Also

the benefits of this policy might become overshadowed by the cost of state transitions.
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Yigitbasi et al. [33] present a solution for energy efficiency in MapReduce cluster by

proposing scheduling heuristics. They try to schedule the jobs in most energy efficient node

which has free slots. They consider the heterogeneity of the MapReduce cluster similar to

ours. They do not explore the energy efficiency of the cluster when the workload are arriving

at different rates. In our work we incorporate the workload arrival times as it applies to the

power management policy. We include all the nodes to run the MapReduce workload as in

[32] which are ordered in a fashion similar to [5].
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Chapter 3

Problem Description

3.1 Power model

The power consumption of a server can be broken down into the power consumed by its

components cpu, memory, hard drives, network cards etc. The amount of power consumed by

each component at peak depends upon the system type (small vs large), architecture(single-

core vs multi-core) and manufacturer. Figure 3.1 shows the power consumption for different

components in a Quadcore Intel Xeon server. In this case, the most power is consumed by

processor and memory.

In this research we focus on the power consumed due to CPU utilization and using it to

Figure 3.1: Power Consumption of components in a server [20]
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minimize the total power consumption.

The power consumption, P , is linearly related to its cpu utilization u and is approximated as

given in [11, 20].

P = (Pmax − Pmin) ∗ u+ Pmin (3.1)

Pmin also known as static power, is the power consumed when u = 0%. It is the power

consumed when the server is not in use. Pmax is the power consumed when the server is in

full use i.e. when u = 100%. In equation 3.1, the value of u is expressed in percentage and

ranges from 0% to 100%. This method can accurately approximate power consumption with

error margin of ±5% [20].

In general, the power consumption, Pi, of a server i can be expressed as a function of its cpu

utilization ui as,

Pi = αiui + βi (3.2)

where,

αi = Pimax − Pimin

βi = Pimin

ui = CPU utilization

We refer to αi and βi as power coefficients and their values depend upon each individual

server. As the equation shows, the server utilization and power are linearly related and

therefore consumes a higher power at a higher utilization. Apart from utilization, the amount

of power consumed is also dictated by their power coefficients. The servers with lower values

for power coefficients are considered more power efficient. As a result, to minimize the power

consumption of a cluster, our approach is to achieve higher utilization on power efficient

servers and lower utilization on less efficient ones. But it is also important to note that a

server consumes more than half of its full power even at its idle state. We want to investigate

whether or not this is an effective approach to save power.
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Figure 3.2: Power Consumption Model of 8 Servers in Our Testbed

Figure 3.2 shows the power equation models of 8 different servers used in our testbed.

Each server is measured for power consumption at different CPU utilization level and the

points are plotted in the graph. The points were then approximated for trend line which gave

us a linear model. The plots for different servers can be differentiated with different plot

point shapes. Our measurements show that the power approximation calculated on average

in this form for all servers is accurate within an error margin of just ±1%.

3.2 Throughput Model

The throughput of a server is directly affected by its CPU-utilization. Therefore, similar

to the power model, system throughput can be modeled using its CPU utilization. The

throughput(τi) of server i, is related to its utilization ui as τi = γiui, where γi is the throughput

coefficient. Our experiments have shown that this model fits our observed data well. The

value of γ may vary for different servers and the server with a higher value is considered more

efficient. Such a server can give a higher throughput for a given CPU utilization due to the

linear relationship. The server with a higher number of CPU cores can process workload at a

higher rate and thus has a higher value of γ and is more throughput efficient. For a system

consisting of many servers, its throughput can be assumed to be equivalent to the summation
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of τi of each server i in the system. That is, the total throughput of the system τ can be

calculated as:

τ =
N∑
i=1

τi =
N∑
i=1

γiui (3.3)

The maximum total throughput τmax is achieved when all servers in the cluster are running

in their full capacities i.e. ui = 100% for all servers i. But the level of utilization also depends

upon the incoming workload λ in the system. If the arrival rate of the current workload is

less than the maximum throughput capacity then the system should be able to process them

at a speed same as the arrival rate. The throughput of the system in such a case will be

equivalent to the arrival rate of the workload. For a system with a higher arrival rate than

the maximum capacity of the server, the system will be fully-utilized and its throughput will

be at its maximum level as jobs are placed in the queue waiting to be processed later.

3.2.1 Throughput Model for heterogeneous system

We define a homogeneous system to consist of servers with similar throughput capability and

a heterogeneous system to consist of dissimilar ones. In a homogeneous system, all the servers

will process data at the same rate because of their same or similar throughput capability. In

heterogeneous system, however, the rate at which different capacity server processes data

can vary significantly. The servers which can produce higher throughput will process data

at higher rates. In such a case, if we direct more workload towards higher capacity servers

then as a result the throughput of the system will also become higher. For a high workload,

it may not offer any discernible difference but for a light workload, the throughput can be

maximized.

We plan to operate different servers at different utilization levels. We can control the

CPU utilization by using cgroups. The cgroup containers can restrict the processes in the

containers to use up to a given quota of cpu resource and hence provide the cpu utilization
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ceiling cut off. Keeping this in mind, we group servers in the system by their throughput

capabilities. Different servers can have different values for throughput coefficient γ and no

two servers may have the exact same value. So we group servers with similar throughput

capability together in the same group instead of looking for the exact same value. From our

experiments we have observed that the value of γ is largely affected by the number of cores

in a server, with a higher core count leading to a higher throughput as there are more cores

to work on the tasks.

Figure 3.3: Grouping of servers into k different groups

Using this methodology, we group our servers into different groups. Figure 3.3 shows the

grouping of servers into different groups. We also extend the throughput model from section

3.2 to be the sum of throughput of different groups. Within each group, the throughput will

be the sum of the total throughput contribution of all the servers in the group. To make the

system power efficient, we want to vary the utilization level for each server in the group. But

in terms of throughput, we represent this group of server as if it were a single server with

utilization level equivalent to the sum of all the utilization of the servers within the group.

Let us assume that there are N servers in a system and they are grouped into k groups

according to their throughput capabilities. Let û[i] be the sum of CPU utilization of all the
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servers in group i, then we model the throughput of this system to be:

τ =
k∑

i=1

τ̂ [i] =
k∑

i=1

aiû[i] (3.4)

where ai is the representative throughput coefficient of group i. It is important to note that

each group may consist of different number of servers.

3.3 Problem Definition

As with many Power Management problem, our objective is to solve a PM problem following

the QoS requirement of the system. We define the QoS requirement on the throughput of

the system. The purpose is to minimize the total power consumption of the cluster without

significantly affecting the system throughput. We assume that the cluster has a light workload,

that is, the incoming workload does not overwhelm the servers and is always less than the

maximum operating capacity of the cluster. This is often the case for computing clusters

used in both academia and industry. We also assume the system to be heterogeneous. The

power and throughput are modeled as described in above sections and are directly related

to the CPU utilization. The main purpose of this thesis is to find the optimal maximum

utilization configuration for individual servers in a heterogeneous cluster so as to minimize

the total power consumption P , while maintaining the throughput τ .

In our problem, we assume that the cluster is not overloaded i.e. it is always the case that

λ ≤ 95% τmax, where τmax is the maximum attainable throughput of the system. The reason

for such an assumption is that for higher workload, the cluster may not be able to process

the jobs efficiently if cpu utilizations are kept at lower values. The system throughput will

suffer too much.

For a cluster of N servers, let us formally define our objective as follows
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minimize

P =
N∑
i=1

(αiui + βi)

subject to:

τ = min{95%τmax, λ}

30% ≤ ui ≤ 100%, i = 1, . . . , n.

(3.5)

where the cpu utilization ui is bounded between 30% to 100%. If a server’s utilization is

set to 0%, that server will not be used and will be excluded from the job computation. As

mentioned in previous sections, we are using Hadoop MapReduce jobs as our workload that

read input data from disks. We do not plan on turning off any of our servers as there should

be at least n replicas to turn off n − 1 servers to ensure data availability[9]. Therefore to

avoid servers from consuming static power without contributing to the overall computation,

we fix the value of minimum utilization umin to be 30%. According to our experiments and

collected data, we found that this value is appropriate and do not cause network congestion

while ensuring that all the servers are used in all cases. The highest possible utilization bound

umax of server is at 100%.

In the throughput model, the servers were grouped into k groups according to their

throughput coefficient. Similarly, we can represent total power to be the sum of the power

consumed by these groups, P = P1 +P2 + . . .+Pk. These groups correspond to the groups of

servers in the throughput model. If there are n1 servers in group1 and n2 servers in group2

and so on then the total power consumption can be given by, P (t) =
n1∑
i=1

(α1,i ∗ h1,i(û[1]) +

β1,i) +
n2∑
i=1

(α2,i ∗ h2,i(û[2]) + β2,i) + . . .+
nk∑
i=1

(αk,i ∗ hk,i(û[k] + βk,i) where h1,i(û[1]), h2,i(û[2])

and hk,i(û[k]) are utilization distribution functions in group1, group2 and groupk respectively.
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These distribution functions are described in detail in section 4.3. For light system where the

arrival rate λ is always less than 95% of the capacity of the system, it is sufficient to satisfy

τ ≈ λ.

Now our objective function becomes,

minimize

P (t) =
k∑

j=1

nj∑
i=1

(αj,i ∗ hj,i(û[j]) + βj,i)

subject to:
λ =

k∑
j=1

ajû[j]

nj ∗ 30% ≤ û[j] ≤ nj ∗ 100%, j = 1, 2, . . . , k

n1 + n2 + . . .+ nk = N

(3.6)

where the throughput constraint is updated with the throughput model equation. The

utilization constraints are also expressed in terms of group utilization. Since the utilization ui

of each server i is bounded as 30% ≤ ui ≤ 100%, the utilization of a group j with nj servers

will also be bounded as nj ∗ 30% ≤ û[j] ≤ nj ∗ 100%. Lastly the final constraint defines that

the sum of the number of servers in all groups should be equal to the total number of servers

in the system.
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Chapter 4

Optimization

This section describes the power optimization of the system. Both the power consumption

and the throughput of the cluster are dependent upon utilization level of servers in the cluster.

Both of them are maximized when the cluster is fully utilized. To minimize the total power

consumption, we want to control the maximum utilization of different servers. But, doing so

will also decrease the throughput of the cluster. Therefore, we need to consider the trade off

between power consumption and throughput of the system. Our strategy is to minimize the

utilization of the power inefficient nodes while keeping the throughput of the system to a

certain level.

The objective function as given by equation 3.6 depends upon the utilization constraint

of each server. Therefore the optimization tools such as MathProg or Simplex method cannot

be used to solve this problem as it will be exponential time with the number of servers.

Therefore we develop a heuristic algorithm to find the optimal assignment of utilization

bound for each server while also achieving certain throughput for the system. As servers are

grouped into different groups, the optimization problem can be divided into two steps. The

first step is to find the total utilization bound for each group and the second step is to find a
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way to distribute the group utilization bound within the group. But before describing the

optimization algorithm, let us first look at the ordering policy of servers.

4.1 Ordering Servers

The servers in different groups should be ordered in some way for distributing the utilization

bound in the group such that the overall power consumption is minimized. We want to

choose a policy such that the power efficient servers are assigned higher utilization bound

than the power inefficient servers in the same group.

Different servers with similar throughput capacity may have different power coefficients.

We know that power consumption of each server with respect to their cpu utilization is given

by Pi = αi ∗ui +βi. It is clear that smaller value of αi and βi yields lower power consumption

and the servers can be listed in the increasing order of these values. But for any two servers i

and j, if αi < αj and βi > βj, then their power consumption ordering is not fixed. In such

case we need to order them by some other criterion. We pick their power consumption at

a typical utilization for ordering the servers within a group, similar to the ordering policy

adopted in [5].

The lowest utilization is 30% and the highest is 100%. So we assume the mid-point

i.e. 65% to be our typical cpu utilization. Then we order our nodes based on their power

consumption at this utilization level (ut). This ordering is entirely static and depends upon

both αi and βi. It is fixed beforehand and is carried out separately for each group.
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4.2 Finding Group Utilization

Let us assume that the servers are divided into k groups according to their throughput

capacity. Each group can have variable number of servers. Within each group servers are

ordered by the non-decreasing order of their total power consumption at the typical utilization

level. The initial state of the system is as given in algorithm 1.

Algorithm 1 Group Utilization Bound Determination

1: Initialization:
2: λ = workload arrival rate
3: k = number of groups
4: n1, n2, . . . , nk : number of servers in each group
5: umin : minimum utilization of an individual server = 30%
6: umax : maximum utilization of an individual server = 100%
7: temp[i] : temporary utilization solution for group i

8: Pmin : initialized to be =
N∑
i=1

(αi ∗ 100% + βi)

9: Constraint:

10: λ =
k∑

i=1

aiû[i]

11: Output:
12: û[k] : group utilization bound for each group
13: for each group i do
14: ulow[i] = ni ∗ umin

15: uhigh[i] = ni ∗ umax

16: temp[i] = 0
17: end for
18: FindGroupUtilizationBound(k)

In linear optimization, the optimal value lies at one of the endpoints. Our optimization

algorithm is based on this property of the linear optimization. We set each individual server’s

utilization bound to a value from 30% to 100%. The value of total utilization bound in each

group is also bounded in a range as given by the constraint equations. This default range

is too large. Our algorithm tries to decrease this range by using the throughput constraint.

For any given throughput(or the arrival rate) λ, the new range of one group utilization can

be calculated using the default ranges of the other group utilization. Then, the utilization
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of other groups can be calculated using this new range and other default ranges. In every

step, one default range is replaced by the calculated range until new ranges for all groups are

calculated. For example, at the beginning the default utilization range for the last group k,

û[k] is:

nk ∗ 30% ≤ û[k] ≤ nk ∗ 100%

Using λ, the new range for the group utilization û[k] becomes:

(λ−
k−1∑
j=1

aj ∗ uhigh[j])/ak ≤ û[k] ≤ (λ−
k−1∑
j=1

aj ∗ ulow[j])/ak

Simplifying it we get,

max{nk ∗30% , (λ−
k−1∑
j=1

aj ∗uhigh[j])/ak} ≤ û[k] ≤ min{nk ∗100% , (λ−
k−1∑
j=1

aj ∗ulow[j])/ak}

where ulow[j] and uhigh[j] are default lower and higher endpoints for the jth group respectively.

As the optimal value always lies at one of the endpoints, we choose one of the endpoints as the

possible value for û[k], represented as temp[k], and calculate the new ranges for other groups

based on this value. From each endpoint, we will get a different solution. For the other groups

we use the new endpoint values if they have been computed otherwise we use the default

ones. Among these solutions, the one that leads to the lowest total power consumption is

picked as the optimal solution for the group utilization bound.

The function FindGroupUtilizationBound calculates the total group utilization bound for all

groups recursively as described above. The function hj,l(temp[j]), which is a linear function,

returns the utilization bound ul for the lth server in the jth group as given by algorithm 3.
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Algorithm 2 FindGroupUtilizationBound(i)

1: if i > 1 then find the new endpoints as:

2: ulow[i] = max{ni ∗ umin, (λ−
i−1∑
j=1

(aj ∗ uhigh[j])−
k∑

j=i+1

(aj ∗ temp[j]))/ai}

3: uhigh[i] = min{ni ∗ umax, (λ−
i−1∑
j=1

(aj ∗ ulow[j])−
k∑

j=i+1

(aj ∗ temp[j]))/ai}

4: for each b ∈ {ulow[i], uhigh[i]} do
5: temp[i] = b
6: FindGroupUtilization(i− 1)
7: end for
8: else

9: temp[i] = (λ−
k∑

j=2

(aj ∗ temp[j]))/ai

10: if temp[i] < ulow[i] or temp[i] > uhigh[i] then
11: not a feasible solution.
12: else

13: P =
k∑

j=1

nj∑
l=1

(αjl ∗ hjl(temp[j]) + βjl)

14: if P < Pmin then
15: Pmin = P
16: for each group j do
17: û[j] = temp[j]
18: end for
19: end if
20: end if
21: end if
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4.3 Utilization distribution in a group

After getting the utilization value for each group, they need to be distributed to the individual

servers in each group. The final output should be the utilization value ui for each server

i. This algorithm describes the distribution of group utilization bound û to each server

in the group. This distribution algorithm is based on the fact that power efficient servers

should be assigned higher utilization bounds whereas lower efficient ones should be assigned

lower bounds. Our target is to use power efficient nodes as much as possible. Therefore

our utilization bound distribution algorithm follows a greedy heuristics where the utilization

bound is distributed in order of the power efficiency. That is, the power efficient servers

are given as high utilization bound as possible while also ensuring at least the minimum

utilization bound of 30% to the power inefficient servers.

In such case, some servers (say m) are assigned 100% while all other servers are assigned at

least 30%. The next server m+ 1 will be assigned the remaining utilization.

The power consumption of a group with n servers is given by:

P =
n∑

i=1

(αi ∗ hi(û) + βi)

Then following the utilization bound distribution, it can be expanded as:

P =
m∑
i=1

(αi ∗ 100% + βi) + (αm+1 ∗ um+1 + βm+1) +
n∑

i=m+2

(αi ∗ 30% + βi)

where we ensure that um+1 = û−m ∗ 100%− (n−m− 1) ∗ 30% and um+1 ≥ 30%.

If the total utilization bound to be distributed is û, then we need to find the server m,

such that all servers that are as efficient are assigned maximum utilization bound i.e. 100%

and all servers that are less efficient than server m are assigned minimum utilization bound

i.e. 30%. Then the server m+ 1 will be assigned the utilization bound which can be found

out by calculating the remaining value.
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Algorithm 3 Utilization Bound Distribution in a Group

1: Initialize:
2: S =

⋃
i si, {i = 1, 2, . . . , n} includes all servers in a group, ordered in non-

increasing order of power efficiency
3: û = total utilization to be distributed
4: totalMin = n ∗ umin

5: totalMax = n ∗ umax

6: if û > totalMax then
7: Error value for û
8: else if û < totalMin then
9: ui = 30%, i = 1, 2, . . . , n
10: else
11: m = b(û− totalMin)/(umax − umin)c
12: for each node si ∈ S do
13: if i ≤ m then
14: ui = umax

15: else if i > m+ 1 then
16: ui = umin

17: else
18: ui = û−m ∗ umax − (n−m− 1) ∗ umin

19: end if
20: end for
21: end if
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Chapter 5

Experimental Setup

Our testbed consists of 9 server nodes with 1 masternode and 8 slave nodes placed in a single

rack. The Apache Hadoop Yarn [34] version 2.5.2 is installed in our cluster with operating

system environment Scientific Linux version 6.8. The nodes are heterogeneous considering

cpu core configuration.

The nodes are grouped into 2 groups according to their cpu-core configurations. Group1

consists of a single server node1 with an 8-core cpu while group2 consists of 7 nodes each with

a 4-core cpu. The group1 server has Quad-Core 2.2 GHz AMD Opteron(tm) Processor 2354

(64 bit) with 8GB RAM and all servers in group2 has Dual-Core 2.8 GHz AMD Opteron(tm)

Processor 2220 (64 bit) with 8GB RAM. They are all connected with 1Gbps Ethernet. The

head node also has the same configuration as the servers in group2. Head node is used

for submitting workloads but is not used to process MapReduce jobs. It is also used as a

logging node to log the cpu utilization and power consumption of all servers in the testbed.

In this chapter, we present modeling and setup of our testbed for conducting experiments

and simulations.



32

5.1 Power Modeling

We collected the power consumption data for each server and modeled their power equation

with respect to the cpu utilization accordingly. We used Server Tech power distribution unit

(PDU) to measure the power from the servers. We observed that the power consumption

had a linear relationship with the utilization. The power was measured using PDU by taking

power usage samples every 5 seconds for some duration and taking average of those power

measurements. These measured power data were plotted against the corresponding utilization

data as shown in Figure 3.2. The power model equations approximated using our measured

data are given in Table 5.1. From the table, we can observe that for node1 which has 8-core

cpu, the power equation is a little different from the others.

Table 5.1: Power Equation Models of Testbed Nodes

node α β Equation
1 129.56 165.26 P = 129.56*u + 165.26
2 70.08 194.93 P = 70.08*u + 194.93
3 71.58 192.84 P = 71.58*u + 192.84
4 77.48 196.99 P = 77.48*u + 196.99
5 84.09 249.17 P = 84.09*u + 249.17
6 70.47 200.6 P = 70.47*u + 200.60
7 75.39 198.79 P = 75.39*u + 198.79
8 70.3 194.05 P = 70.30*u + 194.05

We also validated the power data calculated from the above power equation against the

measured data. We found that the error is approximately ±2% in every case and less than

±%1 on average. The following tables show our measurement versus the approximated data

and the error percentage for every calculation.
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Table 5.2: node1 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 165.56 165.26 0.18
5 171.39 171.74 0.20

10 180.65 178.22 1.35
15 181.36 184.69 1.84
20 193.10 191.17 1.00
25 199.09 197.65 0.72
30 203.31 204.13 0.40
35 210.12 210.61 0.23
40 213.33 217.08 1.76
45 220.82 223.56 1.24
50 228.92 230.04 0.49
55 237.46 236.52 0.40
60 252.65 242.99 3.82
65 245.00 249.47 1.83
70 260.66 255.95 1.81
75 262.97 262.43 0.21
80 263.43 268.91 2.08
85 273.82 275.39 0.57
90 285.01 281.86 1.10
95 288.29 288.34 0.02

100 293.89 294.82 0.32

Table 5.3: node2 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 193.72 195.68 1.01
5 197.18 198.79 0.82

10 201.45 203.31 0.92
15 205.77 206.56 0.38
20 207.11 206.60 0.25
25 209.26 210.04 0.37
30 216.26 216.67 0.19
35 218.52 218.86 0.15
40 221.91 222.62 0.32
45 225.69 227.18 0.66
50 232.05 234.58 1.09
55 232.28 229.95 1.00
60 234.42 236.36 0.83
65 237.74 239.30 0.66
70 242.02 244.30 0.94
75 246.31 246.58 0.11
80 253.95 251.68 0.89
85 255.26 254.10 0.45
90 260.33 258.59 0.67
95 262.80 262.24 0.21

100 266.40 265.35 0.40

Table 5.4: node3 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 193.30 192.84 0.24
5 195.85 196.42 0.29

10 200.59 200.00 0.29
15 201.13 203.58 1.22
20 205.70 207.16 0.71
25 211.59 210.74 0.41
30 213.67 214.31 0.30
35 220.74 217.89 1.29
40 221.36 221.47 0.05
45 225.67 225.05 0.27
50 231.25 228.63 1.13
55 233.75 232.21 0.66
60 232.08 235.79 1.60
65 240.25 239.37 0.37
70 241.46 242.95 0.62
75 248.38 246.53 0.75
80 248.31 250.10 0.72
85 252.99 253.68 0.27
90 257.86 257.26 0.23
95 261.11 260.84 0.10

100 264.13 264.42 0.11

Table 5.5: node4 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 197.51 196.99 0.26
5 201.69 200.86 0.41

10 205.09 204.74 0.17
15 206.97 208.61 0.79
20 212.08 212.49 0.19
25 216.78 216.36 0.20
30 220.02 220.23 0.10
35 219.90 224.11 1.91
40 227.79 227.98 0.08
45 232.60 231.86 0.32
50 241.49 235.73 2.39
55 237.70 239.60 0.80
60 244.67 243.49 0.49
65 248.23 247.35 0.35
70 248.83 251.23 0.96
75 256.22 255.10 0.44
80 259.04 258.97 0.03
85 262.72 262.85 0.05
90 266.26 266.72 0.17
95 270.90 270.60 0.11

100 273.75 274.47 0.26
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Table 5.6: node5 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 250.62 249.17 0.58
5 254.81 253.37 0.56

10 259.70 257.58 0.82
15 261.01 261.78 0.30
20 261.86 265.99 1.58
25 272.81 270.19 0.96
30 275.56 274.40 0.42
35 278.55 278.60 0.02
40 283.31 282.81 0.18
45 286.77 287.01 0.08
50 290.64 291.22 0.20
55 293.73 295.42 0.58
60 297.66 299.62 0.66
65 306.58 303.83 0.90
70 307.68 308.03 0.11
75 311.61 312.24 0.20
80 318.26 316.44 0.57
85 322.22 320.65 0.49
90 325.85 324.85 0.31
95 330.65 329.06 0.48

100 333.47 333.26 0.06

Table 5.7: node6 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 199.75 200.60 0.43
5 202.64 204.12 0.73

10 206.39 207.65 0.61
15 211.87 211.17 0.33
20 215.31 214.69 0.29
25 226.13 218.22 3.50
30 220.47 221.74 0.57
35 225.03 225.26 0.10
40 227.63 228.79 0.51
45 233.01 232.31 0.30
50 237.00 235.84 0.49
55 234.98 239.36 1.87
60 243.48 242.88 0.24
65 243.92 246.41 1.02
70 249.02 249.93 0.36
75 253.22 253.45 0.09
80 256.63 256.98 0.13
85 260.08 260.50 0.16
90 265.96 264.02 0.73
95 268.14 267.55 0.22

100 271.91 271.07 0.31

Table 5.8: node7 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 200.75 198.79 0.98
5 204.79 202.56 1.09

10 208.25 206.33 0.92
15 209.99 210.10 0.05
20 211.14 213.87 1.29
25 206.85 217.64 5.21
30 223.95 221.41 1.13
35 226.67 225.18 0.66
40 229.83 228.95 0.38
45 232.54 232.72 0.07
50 238.09 236.49 0.68
55 240.02 240.25 0.10
60 242.42 244.02 0.66
65 251.87 247.79 1.62
70 251.25 251.56 0.12
75 257.03 255.33 0.66
80 258.34 259.10 0.29
85 262.06 262.87 0.31
90 264.68 266.64 0.74
95 271.30 270.41 0.33

100 274.37 274.18 0.07

Table 5.9: node8 Power Measurement

CPU Uti-
lization(%)

Measured
Power(W)

Calculated
Power(W)

Error (%)

0 195.41 194.05 0.69
5 198.72 197.57 0.58

10 203.91 201.08 1.39
15 205.43 204.59 0.41
20 211.90 208.11 1.79
25 205.76 211.63 2.85
30 212.66 215.14 1.17
35 217.38 218.66 0.59
40 221.26 222.17 0.41
45 224.17 225.69 0.67
50 227.12 229.20 0.91
55 231.22 232.72 0.65
60 240.98 236.23 1.97
65 238.43 239.75 0.55
70 241.00 243.26 0.94
75 248.86 246.78 0.84
80 250.72 250.29 0.17
85 254.37 253.81 0.22
90 254.92 257.32 0.94
95 263.62 260.84 1.06

100 265.45 264.35 0.42
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5.2 Throughput Modeling

We also model the throughput in relation to the cpu utilization. We define the throughput

of our system to be the number of bytes processed per second in the map stage and it is

measured in KB/s. Using the methodology described in section 3.2.1, we group our servers

into 2 groups. This is because our testbed consists of 7 nodes with 4-core cpu and 1 node

with 8-core cpu. We run our standard workload as given in Table 5.10 for different maximum

utilization bound settings. We use an arrival rate such that all servers are utilized at their cpu

utilization bounds during the map stage. We measure the throughput of the system during

the time period where the system is running at a steady state. This is because when the

workload is just submitted or when the system is at the ending stage of processing workload,

the cpu utilization is lower than the bound. Therefore we ignore those transient periods at

the starting and ending of the experiments.

We have logged the workload execution of our testbed with different utilization bound

configurations. We then calculated throughput for these different scenarios. We used a

modeling engine Eureqa [35] to model the relationship between the utilization bound and

the throughput. Eureqa uses given data and relationship to create accurate predictive models

using A.I. powered modeling engines.

Let ug1 be the total utilization of the whole 8-core cpu group i.e. group1 and ug2 be the

total utilization of the whole 4-core cpu group i.e. group2. Then from the data collected, the

total throughput τ was modeled to be a linear function given by:

τ = 55.26ug1 + 51.11ug2 (5.1)

Our model is of the form τ = a1ug1 + a2ug2 .
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5.3 Workload

In Hadoop YARN, the number of map tasks a job has depend upon both the input file

size and the block size. Since the default block size is 128MB, we generated large files and

uploaded them to HDFS. We distributed the file blocks uniformly in all our nodes. The

generated files are of different sizes so that we can have MapReduce jobs with different

number of map tasks. The replication factor used in our testbed is the default value of 3.

We created our workload similar to that used in [36, 37] to evaluate our power management

mechanism. This workload was generated from the distribution seen at Facebook over a week

in October 2009 whose input sizes reflect the number of map tasks per job at that time [36].

Table 5.10 shows the job distribution at Facebook and in our testbed. We did not use the

jobs with more than 200 map tasks because the total disk space in our small cluster restricted

us from using very large files. We also reduced the number of 100-map and 200-map jobs in

our workload for the same reason.

Table 5.10: Distribution of job sizes (in terms of number of map tasks at Facebook [36] and
in our testbed)

Bin #Maps in a Face-
book job

% Jobs in the
Facebook Trace

#Maps in a
Benchmark job

#Jobs in our
Benchmark

1 1 39% 1 38
2 2 16% 2 16
3 3-20 14% 10 14
4 21-60 9% 50 8
5 61-150 6% 100 3
6 151-300 6% 200 3
7 301-500 4% N/A 0
8 501-1500 4% N/A 0
9 ≥1500 3% N/A 0

We used MapReduce wordcount application jobs as our workload. All together our

workload contained 82 wordcount jobs with different number of map tasks. These jobs were

distributed in the submission schedule with different lengths of interarrival time to achieve
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different arrival rates as required by various experiments. We used the default FIFO scheduler

in our cluster so that the jobs were run in the order of their submission. If the arrival rate

was higher than that the cluster could process, jobs were placed in a queue and processed

later following the order of their arrival.

5.4 Running MapReduce in Cgroup Containers

The cgroup containers were configured for cpu subsystem so that we could allocate cpu

resources for our MapReduce tasks and control the maximum cpu utilized by them. To

control MapReduce jobs to use only allocated resources, we need to run them in cgroup

containers. First we need to create a cgroup hierarchy for cpu. We defined them in the

cgroup configuration file named cgconfig.conf . We can create the hierarchy by mounting

the cpu subsystem and then define the cgroups within this hierarchy. The resource allocation

amount can be controlled from this cgroup definition.

Figure 5.1: Example of cgconfig.conf file

Figure 5.1 shows a snippet of cgconfig.conf file. The first 3 lines show cpu subsystem

mounted in hierarchy named cpu. Then a cgroup named cgroup1 is created within which re-

source allocation is actually defined. This definition should be included in cgconfig.conf file in

every server in order for the whole cluster to use this cgroup1. For cpu subystem, as explained

in section 2.2, we set the values for 2 parameters cpu.cfs period us and cpu.cfs quota us.
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The period is the total amount of time in microseconds available for the allocation per cpu

core. We set this value to 1000000 i.e. 1 second. Since we have 4 core and 8 core cpus, to

assign 100% of cpu time to this cgroup container, we need to set cpu.cfs quota us to be

4000000 and 8000000 (period * number of cores) respectively. Similarly, we can set a different

utilization bound for the container by choosing a different value for cpu.cfs quota us. In

general, to assign x% to a container the quota value should be set to (period * number of

cores * x%). The maximum value that can be assigned is the period and the minimum value

is 1000 microseconds. Cgroup has the ability to tune the resource allocation in every server

separately. That is, we can allocate different amounts of cpu resources for different servers by

setting the quota to different values in different servers for the same cgroup.

We also need to define rules for Cgred service which moves the processes into cgroups [25].

We define that all processes belonging to the users in group hadoop use the resource allocation

for cpu as defined in the cgroup cgroup1. This rule is added to the Cgred configuration file

cgrules.conf in all servers as:

@hadoop cpu cgroup1

We can define the rule for only a user user1 by replacing @hadoop by user1. If we replace

it by ∗, then this rule is applied for all the users regardless of the group. The detailed

implementation of cgroup and how to use it to allocate resources can be found in [25].

Now to run our workload within this cgroup container, we need to launch the process

using cgexec command. The syntax is as given below:

cgexec -g subsystems : path-to-cgroup --sticky command arguments

Here cgexec is used to launch the command, the paramenter -g creates the process within

the cgroup, subsystems is the resource, path-to-cgroup is the relative path for cgroup and

command is the process command with arguments. The --sticky option before the task

keeps any child process, if spawned, within the cgroup. This way, we can guarantee that the

process does not use more cpu than the allocated amount. For instance the following command
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runs the process task withing the cgroup named cgroup1 that controls cpu allocation.

cgexec -g cpu : cgroup1 --sticky task

In default hadoop implementation, the hadoop daemons resourcemanager, namenode,

datanode and historyserver are started in the master node and nodemanager and datanode

in slave nodes. When a job is submitted, these daemons monitor and allocate resources to

the map and reduce tasks. To follow the cpu resource allocation as defined in our cgroup, we

start all these hadoop daemons in cgroup too. For example, to start resourcemanage we use

command:

cgexec -g cpu : cgroup1 --sticky sbin/hadoop-daemon.sh start resourcemanager

The initial part of the command “cgexec -g cpu : cgroup1 --sticky′′ is added before the

default command to run the daemon within our defined cgroup cgroup1 that controls cpu

resource allocation. Similarly, we need to submit our workload, the hadoop wordcount job,

within our defined cgroup too.

cgexec -g cpu : cgroup1 --sticky hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-

examples-2.5.2.jar wordcount input output

Here, the latter part of command is invoking hadoop to run jar file from path

share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.2.jar for wordcount job with

arguments input and output. When this job spawns maps and reduces in different servers,

these tasks will also be executed in cgroup1. That is because all servers of the cluster have

also defined this cgroup cgroup1. Depending upon the server a map or reduce task is run at,

cpu usage can vary as each server may have set their own value for cpu resource allocation.

Overall, the resource allocation amount is followed after these steps.
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Chapter 6

Simulations and Experiments

In this chapter, we present simulations of algorithms that we introduced in Chapter 4. We

also present results from our experiments and compare our simulation with our experimental

results that we carried out in our testbed.

6.1 Simulations

We conducted several simulations to show the power savings that could be achieved using

our PM technique. We also validated some of our simulation data in our real testbed using

the workload described in section 5.3. Table 6.1 shows simulated power savings that can

be obtained in our real testbed for different arrival rates (λ). The arrival rates that can

be used in our PM policy for reducing total power consumption are constrained by our

throughput model equation τ = 55.28ug1 + 51.1ug2. The lowest arrival rate is when all the

servers utilization level is at 30% and the highest is when all the servers are fully utilized

i.e. 100%. In addition to the throughput relation, the range of arrival rate that can be used

also depends upon the number of servers in the system. For our testbed we chose λ between

12390 KB/s and 41298 KB/s as they are the lowest and highest possible arrival rates that
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provided an opportunity for optimization.

Table 6.1: Simulation of power optimization in our testbed

Arrival Rate(KB/s) Default Power(W) Optimized Power(W) % power saved
13500 1806.78 1803.06 0.21
15000 1826.25 1823.82 0.13
20000 1904.13 1892.94 0.59
25000 1988.49 1961.76 1.34
28000 2033.92 2004.39 1.45
30000 2066.36 2035.38 1.50
35000 2144.24 2110.52 1.57
38000 2189.66 2163.84 1.18
40000 2222.11 2210.94 0.50

Figure 6.1: Comparison of total power consumption in our testbed for default vs optimized

case

Table 6.1 shows the power consumption for the whole cluster in Watts for the given arrival

rates with and without our PM optimization. For the default case, we assumed that all servers

are utilized uniformly. For each arrival rate, we calculated the total utilization and distributed

it uniformly among all servers. Then we calculated the total power consumption. For the

optimized case, we used our optimization algorithm to calculate the utilization distribution
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for a given arrival rate and then calculated the total power consumption. Figure 6.1 shows

the comparison of simulated default vs simulated optimized total power consumption for our

testbed.

Here the maximally achieved reduction in total power consumption is approximately

1.6%. The reason behind it might be the small size and relatively less heterogeneity of our

testbed. Therefore, we conducted further simulations using synthetic clusters. We considered

a heterogeneous cluster that is divided into two groups consisting of 10 servers in group1 and

70 servers in group2. We increased the number of servers in each group in the same ratio

i.e. by 10 times. We assumed that the cluster consisted of multiple servers equivalent of our

real testbed servers with same power equations as given by Table 5.1 and same throughput

models. With the increased size, we also adjusted the arrival rates for the cluster as larger

cluster can process more data. The maximum power consumption reduced is nearly 1.8%.

Table 6.2 shows the total power optimization that can be achieved in this environment.

Table 6.2: Simulation of power optimization for a cluster containing 10 servers in group1 and
70 servers in group2

Arrival Rate(KB/s) Default Power(W) Optimized Power(W) % power saved
150000 17400.10 17364.57 0.20
200000 18191.37 18080.10 0.61
250000 18982.64 18776.15 1.09
280000 19444.21 19188.25 1.32
300000 19773.91 19462.27 1.58
350000 20565.18 20212.10 1.72
380000 21092.69 20724.70 1.74
400000 21356.44 21267.70 0.42
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Figure 6.2: Graphical comparison of power optimization as given by Table 6.2

We further changed the testbed to contain the same number of servers in each group while

keeping the power equation and throughput equations same. In this case, our simulations

show that the power consumption reduction is increased. The total power consumption is

reduced by up to approximately 3%. Table 6.3 shows the total power optimization that can

be achieved in this setting for different arrival rates.

Table 6.3: Simulation of power optimization for a cluster containing 2 groups with 70 servers
each

Arrival Rate(KB/s) Default Power(W) Optimized Power(W) % power saved
250000 30548.72 30493.76 0.18
300000 31547.14 31183.37 1.15
350000 32545.56 31870.93 2.07
400000 33401.34 32606.11 2.38
450000 34399.76 33364.70 3.01
500000 35398.18 34370.67 2.90
550000 36253.96 35543.19 1.96
600000 37252.38 36714.41 1.44
650000 38250.80 37886.93 0.95
700000 39249.21 39058.16 0.49
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Figure 6.3: Graphical comparison of power optimization as given by Table 6.3

We also conducted simulations by changing the power relation in the servers. We used 70

servers in each group and assumed the throughput relation to be the same but changed the

power relation of some of the servers to make the server more power inefficient i.e. incremented

the value of α in the power relation given by Equation (3.2). From our simulations we could

observe that the more power efficient servers give more opportunities for power optimization.

The result of power optimization in this setting is as given in Table 6.4.

Table 6.4: Simulation of power optimization for a cluster with more power efficient servers
divided into 2 groups containing 70 servers each

Arrival Rate(KB/s) Default Power(W) Optimized Power(W) % power saved
250000 30091.19 29993.45 0.32
300000 31183.46 30683.59 1.60
350000 32275.73 31384.22 2.76
400000 33211.97 32093.99 3.37
450000 34304.24 32844.48 4.26
500000 35396.51 33906.80 4.21
550000 36332.75 35264.30 2.94
600000 37425.02 36620.30 2.15
650000 38517.29 37977.80 1.40
700000 39609.57 39333.80 0.70
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Figure 6.4: Graphical comparison of power optimization as given by Table 6.4

We also studied the effect of throughput on the power optimization of the cluster. We

changed the throughput of the cluster to analyze its effect on the utilization distribution and

hence total power consumption. We changed the throughput relation of the cluster to be

λ = 31.25ug1 + 53.05ug2. We assumed the servers to be divided into 2 groups with 70 servers

each. We also changed the power relation of the servers to contain more power efficient

servers. We observed that our optimization strategy works better in such cluster. In this

setting, the total power consumption can be reduced up to 8.5%. From this result we can say

that the power optimization is maximized when the power efficient servers also have more

throughput capacity. The optimization in such a setting for different arrival rates are given

in Table 6.5 below.
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Table 6.5: Simulation of power optimization for a cluster containing 2 groups with 70 servers
each with throughput = 31.25ug1 + 53.05ug2

Arrival Rate(KB/s) Default Power(W) Optimized Power(W) % power saved
250000 31491.34 30613.47 2.79
280000 32271.03 31019.24 3.88
300000 32738.85 31286.30 4.44
330000 33518.55 31684.02 5.47
350000 34142.30 31948.22 6.43
380000 34922.00 32368.29 7.31
400000 35389.81 32660.33 7.71
430000 36169.51 33087.04 8.52
450000 36793.26 33811.30 8.10
480000 37572.96 35251.30 6.18
500000 38040.78 36211.30 4.81
530000 38820.47 37651.30 3.01
550000 39444.23 38611.30 2.11

Figure 6.5: Graphical comparison of power optimization as given by Table 6.5

We further simulated the cluster environment for servers divided into 3 groups and

calculated the power reduction for different arrival rates. We assumed the cluster to contain

70 servers in each group. We also assumed the throughput relation in such cluster to be

throughput = 31.25ug1 + 53.05ug2 + 75.35ug3. We assumed the system to contain the servers

similar to our testbed with similar power relations. The following table 6.6 shows our result
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for this setting.

Table 6.6: Simulation of power optimization for a cluster containing 3 groups with 70 servers
each with throughput = 31.25ug1 + 53.05ug2 + 75.35ug3

Arrival Rate(KB/s) Default Power(W) Optimized Power(W) % power saved
350000 44635.75 44565.68 0.16
400000 45965.64 45249.07 1.56
450000 47029.56 45927.04 2.34
500000 48359.46 46589.29 3.66
550000 49423.37 47290.00 4.32
600000 50753.27 48166.50 5.10
650000 51817.18 50566.50 2.41
700000 53147.08 51979.82 2.10
750000 54210.99 52683.66 2.82
800000 55540.89 53371.53 3.91
850000 56604.80 54038.28 4.53
900000 57934.70 54712.32 5.56
950000 58998.61 55433.99 6.04
1000000 60062.53 57346.80 4.52
1050000 61392.43 59746.80 2.68
1100000 62456.34 62146.80 0.49

Figure 6.6: Graphical comparison of power optimization as given by Table 6.6
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6.2 Experimental Results

Table 6.7 shows the results of running the experiments in our testbed for different arrival

rates. From the table, we can observe that the maximum power savings is achieved for

λ = 28000KB/s and λ = 30000KB/s. For default case, we ran the experiment without using

any cgroup container and collected the data. For optimized case, we ran our experiments in

cgroup containers with cpu resource allocation as calculated from our optimization algorithms

and collected the data.

Table 6.7: Experimental Power savings for our testbed

Arrival Rate(KB/s) Default Power(W) Optimized Power(W) % power saved
13500 1750.73 1744.63 0.35
15000 1768.70 1760.07 0.49
20000 1830.45 1819.89 0.58
25000 1888.68 1868.58 1.06
28000 1920.75 1892.45 1.47
30000 1953.44 1922.06 1.61
35000 2005.24 1985.67 0.98
38000 2049.84 2032.37 0.85
40000 2073.63 2072.10 0.07

We present this data graphically in Figure 6.7 below.

Figure 6.7: Comparison of optimized power

during our experiments versus default power

consumption

Figure 6.8: Comparison of actual throughput

obtained in our experiments versus expected

throughput
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Figure 6.8 shows that the experimental throughput is almost same as the expected

throughput. It shows that our optimization process seeks to reduce total power consumption

while maintaining the expected throughput. The throughput is always withing ±1% of the

expected value. Our optimization process has very minimal effect on the throughput of the

cluster. The system consumes more power to produce higher throughput. So, we agree

that if a system does not have rigid throughput limitations and allows some degradation in

throughput, then the power saving can be more significant.

Comparing our experiments with our simulations, we find that the power consumption

value is higher during simulations than the experimental values as shown in Figure 6.9. The

optimized total power consumption obtained from the experiments is on average approxi-

mately 5% lower than the optimized total power consumption expected from the simulations.

Figure 6.9: Comparison of total power consumption in our experiment versus our simulation

This is because we set the value for utilization bound only, the server may be utilized less

than the bound. When calculating the default value, we consider that the server is utilized

at the same level while processing the whole workload. But in actual case, the server is not

utilized at the bound level all the time. We have Hadoop MapReduce jobs as our workload
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and the map tasks are more computation intensive while the reduce tasks are not. So when

a server is processing a reduce task, its cpu utilization will be lower than the allocated

value. Therefore, we observe the difference in actual value versus the expected value from

our simulation.

The comparison of the power saving percent in our simulated environment versus the

experimental result is shown in Figure 6.10 below. These profiles of the power consumption

improvement expressed in percent are somewhat similar.

Figure 6.10: Comparison of total power reduction percent in our simulation versus our

experiment
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Chapter 7

Conclusion

In this thesis, we investigated a power management policy in a Heterogeneous MapReduce

cluster. We developed an optimization algorithm based on the fact that the servers are

utilized less than their capacity most of the time. The essence of our algorithm was to utilize

the servers intelligently so that the total power consumption of the cluster was optimized.

We first group our servers into different groups based on their capacity and develop the power

model and throughput model of these groups. We then use these models in our proposed

optimization strategy. Our optimization policy works in two steps. The first step calculates

the usage requirement for the given load or arrival rate. In second step, we adopt a greedy

approach in distributing this resulting utilization to different servers in the group based on

their power efficiency. In our policy, we allocate higher usage to power efficient servers than

the inefficient ones.

We then examine the effectiveness of this policy as it is applied to our testbed and find

that the total power consumption has been reduced when it is applied. We have further

explored and studied the optimization by simulating it in different scenarios. We have found

that the algorithm works well when the system is more heterogeneous i.e. when the power

consumption and throughput profile of the servers are dissimilar from each other.
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Chapter 8

Future Work

In this work, our experiments show a small improvement in total power consumption of

the cluster due to its small size and less heterogeneity. When we simulated the power

optimization for large heterogeneous clusters to explore the potential of our algorithm, we

observed significant improvements. In the future, we can actually verify this by applying our

algorithm to a real heterogeneous cluster with a larger number of different servers. In our

experiments, we used MapReduce wordcount jobs as our workload which read from files and

count the words in that file and write the results to output files. Hence the nature of our

workload is not only cpu intensive but also I/O intensive. We can extend this to different

types of workloads in the future and analyze its effects. Another interesting work can be to

study the power optimization when our algorithm is applied in combination with the DVFS

method with data placement strategies. We studied the power consumption based on the

cpu usage and did not study the effects of other components like disks, memory, switches,

fans etc. To make our PM strategy more robust, the effect of power consumption by these

components could be included in the future.
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