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Air plasma spray (APS) and plasma-spray-physical vapor deposition (PS-PVD) yttria-stabilized zirconia (YSZ)
thermal barrier coatings (TBC), ~80–100 μm thick, were produced on a commercial Ti2AlC MAX phase com-
pound. They were oxidized in interrupted furnace tests for 500 h each, at five successive temperatures from
1100°–1300 °C. The APS coating survived 2400 accumulated hours, failing catastrophically after 500 h at 1300
°C. Porosity, large cracks, sintering, and high monoclinic YSZ phase contents were seen as primary degradation
factors. The PS-PVD coating remained completely intact over 2500 total hours (65 cycles) including 500 h at
1300 °C, exhibiting only fine porosity and microcracking, with less monoclinic. These Ti2AlC systems achieved
aminimumα-Al2O3 scale thickness of 29 and 35 μm, respectively, as compared to ~6±2 μmon average at failure
for conventional bond coats on superalloys. Accordingly, times predicted from thermogravimetric analyses
(TGA) of oxidation kinetics project an improvement factor of ~25–50× for the time to achieve these scale thick-
nesses at a given temperature. Extreme oxidative TBC durability is achieved because the thermal expansion co-
efficient of Ti2AlC is only slightly different than those for α-Al2O3 and YSZ. The strain energy term driving scale
and TBC failure is therefore believed to be fundamentally diminished from the large compressive stress produced
by higher expansion superalloys.

Published by Elsevier B.V.
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1. Introduction

MAX phases (M=early transitionmetal, A=Al, Si, Ga, Ge, etc., X=
C, N) have been studied intensely because of their unique properties of
thermal stability, thermal shock resistance, and damage tolerance de-
rived from a special intercalated crystal structure [1]. Alumina-
formingMAX phases (Ti3AlC2, Ti2AlC, and Cr2AlC) are very oxidation re-
sistant while remaining stable to temperatures on the order of 1400 °C
[2,3,4,5,6,7,8]. A number of in-depth oxidation studies (as reviewed and
analyzed by Tallman et al. [2]) have established slow growing alumina
kinetics similar to oxidation resistant metallic FeCrAl-type heater alloys.
Due to grain growth in the scale, the kinetics follow a cubic rate law, ex-
cept for an initial transient due to rapid TiO2 growth on the order of just
5 min [2,7,9,10]. Furthermore, growth models produce grain boundary
diffusion rates in the scale in accord with those obtained for oxidation
resistant alumina-forming FeCrAl alloys [3,9,10,11].

Another beneficial oxidation attribute of the Ti2AlCMAXphase is the
relatively low coefficient of thermal expansion (αCTE) in comparison to
metallic alumina-formers [4]. Published at 8.2 × 10−6/°C, [8,12] it is a
much closer match to that of α-Al2O3 (9.3 × 10−6/°C), as compared to
most Ni–Al base alloys having 15–16 × 10−6/°C. Those metal systems
produce high compressive stresses in the scale upon cool down which
are believed to drive scale spallation. To that point, excellent scale ad-

herence and cyclic oxidation resistance have been reported for Ti2AlC
[3,4,6]. Furthermore, numerous studies have produced relatively thick
scales during high temperature oxidation of Ti2AlC, but none reports
any loss of scale upon cooling.

Thermal barrier coatings have been the subject of intense research
for many years due to their successful incorporation into turbine engine
components, primarilyfilm-cooled blades and vanes. Here classic exam-
ples would be APS (or EB-PVD) 7YSZ TBC on a NiCoCrAlY (or Ni(Pt)Al)
bond coat, for 2nd generation single crystal Ni-base superalloy airfoils.
The purpose of the bond coat is to prevent oxidation of the substrate
and provide a slowly oxidizing, stable interface to bond with the YSZ.
Failure mechanisms typically address oxidation of the bond coat as an
important factor, incorporating other cyclic instabilities such as interfa-
cial spallation, ratcheting, and rumpling of the bond coat surface. These
will not be addressed in detail here, but are in part related to interdiffu-
sion with the substrate, phase transformations, and grain boundary
ridges in the coating. While numerous studies have attempted process
improvements to address these issues, it can be said that TBC failure
generally occurs before the scale reaches ~10 μm, amounting to less
than ~1000 hot hours of cyclic oxidation at 1150 °C [15].

However more substantial improvements are realized for atypical
substrates, such as doped NiAl(Zr, Cr, Si, Hf) and FeCrAl(X) [16–19].
While these do not have themechanical properties of superalloys, they il-
lustrate significantly improved oxidative TBC lives produced by eliminat-
ing problematic interactions between substrates and bond coats.
However these metallic alumina-formers still maintain αCTE in the

Surface & Coatings Technology 285 (2016) 77–86

⁎ Corresponding author.
E-mail address: James.L.Smialek@nasa.gov (J.L. Smialek).

http://dx.doi.org/10.1016/j.surfcoat.2015.11.018
0257-8972/Published by Elsevier B.V.

Contents lists available at ScienceDirect

Surface & Coatings Technology

j ourna l homepage: www.e lsev ie r .com/ locate /sur fcoat

http://crossmark.crossref.org/dialog/?doi=10.1016/j.surfcoat.2015.11.018&domain=pdf
http://dx.doi.org/10.1016/j.surfcoat.2015.11.018
mailto:James.L.Smialek@nasa.gov
Journal logo
http://dx.doi.org/10.1016/j.surfcoat.2015.11.018
http://www.sciencedirect.com/science/journal/02578972
proyster2
Text Box
This document is a U.S. government work and is not subject to copyright in the United States.



range of 15–18 × 10−6/°C and produce severe compressive stresses on
the scale and TBC. The close αCTE match of Ti2AlC with α-Al2O3 and YSZ
is thus expected to decrease a primary cause of failure, albeit with sub-
stantial scale growth still occurring at the rate of most alumina-formers.

Thus the purpose of the present preliminary study is to demonstrate
the oxidative durability of YSZ thermal barrier coatings on Ti2AlC MAX
phase samples, having the advantage of thermal expansion matching,
scale adhesion, and no interactions with superalloy substrates. To this
end, APS and PS-PVD coatings were examined in interrupted furnace
tests, stepped from 1000 °C to 1300 °C. Another intent is to determine
the range of scale thickness that can be tolerated in the absence of the
other detrimental or diminishing factors mentioned above.

2. Experimental

Ti2AlC MAX phase ingots were obtained from Kanthal/Sandvik and
machined into ~2 × 15 × 20 mm coupons. These were polished through
600 grit emery and lightly grit blast with 200 mesh alumina. One
couponwas coatedwith about 100 μmof commercial Zircoa 8YSZpowder
using conventional air plasma spray (APS, Oerikon Metco) at the NASA
Glenn Research Center. The plasma torch was run at 40 kW using Ar/N2.
The standoff distance was ~100 mm and the samples were preheated
by passing the torch across the samples twice before starting deposition.

A second sample was coated with about 80 μm of commercial 8YSZ
powder using low pressure, plasma spray-physical vapor deposition
(PS-PVD, Sulzer-Oerlikon Metco) also at NASA Glenn Research Center.
PS-PVD is a unique processing method that combines conventional
thermal spray and vapor phase methods, enabling deposition of coat-
ings via the liquid phase or the vapor phase. The PS-PVD coatings proc-
essed for this study were deposited mostly via the vapor phase, which
resulted in a columnar-like microstructure similar to traditional EB-
PVD methods. Samples were coated normal to the torch at a standoff
distance of 1.68 m. The torch power was 94 kW, plasma gases were
40/80 slpm Ar/He, and the feedstock powder was Metco 6700 7YSZ.
Coatings were deposited at 150 Pa (1.13 Torr), for 16 min.

Sampleswere intermittently oxidized in a box furnace (Rapid Temp)
at progressively increasing temperatures in an attempt to determine a
maximum survivable temperature. (The first low temperature proof
exposure was only for 50 h at 1000 °C). Subsequently, the samples
were exposed for 500 h each at 1100°, 1150°, 1200°, 1250° and 1300
°C, successively. The time intervals for bench-top cooling in ambient
air and weighing followed a graduated sequence, at approximately: 1,
2, 5, 10, 15, 20, 50, 100, 200, 300, 400, and 500 h for each temperature.
(Consequently, the designation of test time at any one temperature
implies completion of all previous exposures at lower temperatures).
Optical and scanning electron microscopy (15 kV, carbon coated) was
used to characterize substrate, scale, and coating structure, damage
and spallation. Separate cross-sections were obtained after the 1200
°C and 1300 °C sequences were completed. XRD diffractometer scans
were used to identify substrate, scale, and coating phases after testing
was completed (Brüker). Some estimates of the monoclinic zirconia
phase content were made using a Rietveld refinement analysis with
Jade software. Coefficient of thermal expansion was measured on ~-
2 mm× 2mm× 20mm strips from 25 to 1300 °C, at 10 °C/min heating
in Ar using a Netsch 402C dilatometer.

3. Results

3.1. Mass change and coating durability

Fig. 1 indicates the oxidativemass gain for the APS TBC on the Ti2AlC
MAX phase substrate. (No degradation was observed after just 50 h of
proof testing at the initial low temperature, 1000 °C). Accordingly, sam-
ples were oxidized successively from 1100 °C–1300 °C for 500 h at each
temperature. Interrupted tests produced no visible damage, each suc-
cessively at 1100°, 1150°, 1200°, and 1250 °C. Only a regular increase

in mass gain occurred due to oxidation of the substrate. After 1 and
15 h at 1300 °C (1 and 5 cycles), some initial edge damage, a slight
mass change irregularity, and initial delamination (discussed later) was
observed. The majority of the coating remained intact until 400 h at
1300 °C, when more coating buckling occurred along with mass loss. At
500 h, the coating was only partially attached to the substrate after
cooling, then completely detached overnight under ambient room condi-
tions. The spalled coating remained intact as one large flake, more typical
of APS delamination failures, and did not spontaneously disintegrate into
fine particles. This final spallation event resulted in a net mass loss of
−11 mg/cm2 (YSZ) after sustaining a maximum mass gain of
~7.5 mg/cm2 (TGO) after 400 h at 1300 °C. The projected mass gain
would have been ~7.8 mg/cm2 if no coating spallation occurred. Assum-
ing primarily α-Al2O3 scales, the mass gains suggest scales 29 μm thick
at the earliest observation of edge damage and 42 μm after the entire
test. For comparison purposes, it can be said that the accumulated hot
time reached 2450 h before appreciable coating loss.

Similarly, Fig. 2 indicates the oxidativemass gain for the PS-PVD TBC
on the Ti2AlCMAX phase substrate. Again, no degradationwas observed
at the initial low temperature (1000 °C), and the same longer duration
test sequence was performed at successively increasing temperatures.
As with the APS coating, successive 500 h interrupted tests produced
no visible damage at 1100°, 1150°, 1200°, 1250 °C, and now at 1300 °C

Fig. 1. Oxidative mass gain of APS YSZ TBC on Ti2AlC MAX phase substrate for successive
exposures at 1000–1300 °C. (Corresponding scale thickness estimates indicated for each
500 h, interrupted test).

Fig. 2. Oxidative mass gain of PS-PVD YSZ TBC on Ti2AlC MAX phase substrate for succes-
sive exposures at 1000–1300 °C. (Corresponding scale thickness estimates indicated for
each 500 h, interrupted test).
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aswell. Initial testingmayhave produced slight coating loss at edge pro-
cessing defects, partially responsible for the lower overall mass curves.
There is some microstructural indication (below) that less TiO2 tran-
sient oxides formed, also resulting in lower mass gains. The majority
of the coating remained intact through the completion of the test after
500 h at 1300 °C. This final exposure resulted in a net mass gain of
~6.5 mg/cm2. Assuming primarily α-Al2O3 scales, the mass gains sug-
gest scales 35 μm thick after the entire test. For comparison purposes,
it can be said that the total accrued hot time durability was 2550 h
with no appreciable coating damage.

3.2. Coating appearance and microstructure

The appearance of the coatings after completion of the 1200 °C test
series is provided in Fig. 3. Very little change has occurred from the
very beginning of furnace testing. A slight edge delamination was
noted for the as-processed APS coating, and local TBC absences can be
seen for the PS-PVD coating. The latter also exhibited numerous small
‘spit’ defects on the major surface where improper hillock deposition
defects did not adhere initially or were partially removed during
cycling.

3.2.1. APS YSZ on Ti2AlC
The partial coating failure for the APS coating at 1300 °C can be seen

just before the cycle where substantial mass loss was measured, Fig. 4.
Edge delamination (a) and buckling (b) are readily apparent, but still
relatively localized to one corner of the sample where the initial pro-
cessing defect had been observed.

Although failure had initiated earlier, the APS sample test was con-
tinued until the 500 h test sequence was finished. The SEM/BSE images
in Fig. 5a and b are representative of themajor sample surface after total
delamination. The bright areas are a mixture of YSZ and YZTA-modified
interface phases (i.e., Y–Zr–Ti–Al oxide reaction phase discussed
below). The dark areas are primarily Al2O3. It is interesting to point
out that the grain sizes of all three scale, coating, and reaction product
oxides are on the order of 2–8 μm, albeit with considerable variation.
Smaller b1 μm grain boundary precipitates of Ti-rich oxides, noted on
the exposed Al2O3 grains, did not appear to be part of the YSZ topcoat.

The microstructure of an epoxy mounted and polished slice of an
APS sample sectioned after 500 h testing at 1200 °C is presented in

Fig. 6. The 100 μmYSZ coating (a) is seen to be essentially intact, though
replete with cracks and porosity. There is little evidence of initial strain
tolerant splat boundaries characteristic of APS coatings. An adherent
20 μm Al2O3 scale (b) is apparent at the YSZ–Ti2AlC interface. Higher
magnification (c) reveals regions where considerable amounts of TiO2

remained, presumably from the initial transient outer scales where
this oxide is known to predominate. Scale thicknesses were roughly
similar on the uncoated back side, here and in the subsequent 1300 °C
sections. Substantial amounts of YSZ–TiO2–Al2O3 reacted particles
exist at the interface in the vicinity of TiO2, as well as within YSZ itself.
The EDS spectra (d) were essentially the same as those obtained
in plan view (ref. Fig. 5). Intensities were converted to mole %,
using the EDS standardless correction program. This yielded 8.2Al–
14.4Ti–12.7Y–14.2Zr–50.6O (mole %), only roughly equivalent to
2Al2O3 · 3Y2O3 · 7ZrO2 · 7TiO2, with oxygen somewhat below that
needed for this stoichiometry (~64%).

Fig. 3.Macrophotos of intact APS and PS-PVDYSZ coatings on Ti2AlC substrates after 500 h oxidation at 1200 °C. (1550 total hours; ~45 cycles). Insets show processing edge defects before
testing, 7.5×.

Fig. 4. APS YSZ coating edge delamination (a) and surface buckling (b) after 300 h oxida-
tion at 1300 °C. (1850 total hours and ~56 cycles). Edge and plan views, 7.5×.
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Numerous interfacial pores and microcracks in the YSZ were appar-
ent. Note that the next cycle (1300 °C, 1 h) initiated someminor coating
failure, though full progression of failure required hundreds of hours
more. After failure, test completion at 500 h, and subsequent sectioning,
the scale can be seen to be ~37–40 μm in Fig. 7, becoming somewhat ir-
regular at higher temperatures. Some differences are then noted from
cross section measurements and those converted from mass gains, as
indicated on Figs. 1 and 2. The Ti-rich reaction zones did not thicken ap-
preciably. There is little YSZ topcoat left, on the order of perhaps 10 μm
in places, with another few μm of TiO2–YSZ reaction phases.

3.2.2. PS-PVD YSZ on Ti2AlC
The surface of the PS-PVD coating at the completion of the test is

shown in Fig. 8. While the majority of the coating remained intact,
scattered 1 mm bare regions (Fig. 8a) indicated initial process defects
that either began uncoated or were prone to local spallation. Linear
chains of valleys or hillocks also suggest some anomalous non-
uniformity. Fig. 8b exhibits the fine 20 μm nodular structure of the PS-
PVD coating, each composed of hundreds of finer 1–5 μm grains,
Fig. 8c. The ledge of the TBC adjacent to the defect is shown in Fig. 8d.
Here a network of intergranular and transgranular microcracks can be

Fig. 5.Mixed failure structure for APS YSZ coating on Ti2AlC substrate after 500 h at 1300 °C (SEM/BSE). (a) Overview showing bright YSZ features anddark oxidized substrate. (b) Exposed
Al2O3 scale and details of various YSZ and YZTA grains in the fractured TBC after failure.

Fig. 6.Cross-section of APS YSZ–Ti2AlC interface after 500 h testing at 1200 °C (SEM/BSE). a) Lowmagnification showing100 μmAPS coating; b) intermediatemagnification of (a) showing
well-bonded 20 μm Al2O3 scale on and Al2O3 particles in the MAX phase substrate; c) higher magnification of (b) showing interfacial porosity, residual surface TiO2 scale, reacted YSZ–
TiO2–Al2O3 particles at interface and within YSZ; and d) corresponding point EDS spectra of these particles with high Y, Zr, Ti, and Al peaks.
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seen traversing the ledge, sometimes arresting within a grain or at a
grain boundary. The defect regionswithout coating, Fig. 9, exhibited ex-
posed Al2O3 grains and Y, Zr, Ti, Al-rich oxide grains, similar to features
discussed for the APS coating. Also present were similar oxide grains
with just Zr and Ti primary cation components, in variable amounts.

The cross-section of the PS-PVD sample sectioned after 500 h testing
at 1200 °C is presented in Fig. 10. The 80 μmYSZ coating is seen to be in-
tact and relatively uncracked and devoid of splat boundaries. It is replete
with limited micro- or finer porosity, characteristic of these coatings.
The quasi-columnar structure, correlating with the nodules observed

in plan view (Fig. 8) is reflective of the dendritic or columnar growth
characteristic of EB-PVD coatings, and PS-PVD structures have been
discussed at length in this regard [20,21]. Again, an adherent 20 μm
Al2O3 scale is apparent at the YSZ–Ti2AlC interface, but TiO2 was not ob-
served in the fields examined. Some very fine (Y, Zr, Ti, Al, O) reacted
particles existed within the Al2O3 scale near the YSZ interface, but
could not be easily resolved in the YSZ itself. However, reacted particles
were clearly present in the defective areas (Fig. 9), similar to those seen
for the APS spalled surface, but to a lesser degree. The minimal amount
of interface damage and fine, entrained porosity allowed this sample to
survive the next two test series at 1250° and 1300 °C for the full 500 h,
with no apparent macroscopic damage.

The PS-PVD scale thickness after the 1200 °C series was ~20 μm and
the same as that on the APS sample. It may be likely that any difference
inweight change between the APS and PS-PVD sampleswas only due to
minor coating losses rather than substantive scale growth differences.

Fig. 7. Cross-section of APS YSZ–Ti2AlC interface after 500 h testing at 1300 °C (SEM/BSE).
Overview shows little YSZ coating remaining, but intact 37–40 μm Al2O3 scale.

Fig. 8. Overview of PS-PVD coating after 500 h at 1300 °C (SEM/BSE). (a) Intact nodular surface and defected bare areas; (b) nodular surface structure of dendritic column; (c) ~1–3 μm
grains on YSZ nodule mound; and (d) ~1–3 μm grains in YSZ vertical ledge adjacent to defect area.

Fig. 9. Exposed Ti2AlC substrate after testing PS-PVD coating for 500 h at 1300 °C. Al2O3

scale and included grains of YSZ, YZTA, and (Ti, Zr) oxides.
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The scale thickness after 500 h at 1300 °C can be seen to be ~32–37 μm
in the cross section of Fig. 11a, with little overall change from 1200 °C. A
fine distribution of lateral cracks in the YSZ is also apparent, Fig. 11b,
often terminating at the fine porosity features. This may reflect a more
strain tolerant coating than the APS structure.

3.2.3. XRD results
XRD analyses of the YSZ coatings identified t′ tetragonal as the pri-

mary coating phase in both systems. Rietveld analyses revealed
~12.1% monoclinic in the as-sprayed APS coating, changing little at
1100 °C. However the monoclinic increased substantially after higher
temperature exposures, finishing at a very high 62.1% (with 9.3%
cubic) after 500 h testing at 1300 °C. In comparison, the PS-PVD coating
had 1.6% monoclinic after 1100 °C, finishing at 27.8% at the end of 1300
°C, 500 h testing. The exposed failure surface of the APS sample also in-
dicated an Y2Ti2O7 phase, possibly related to the YZTA features identi-
fied by SEM/EDS (Figs. 5, 6, 8). At present, it believed that the Zr and
Al EDS intensities always associatedwith these particles do actually cor-
respond to this phase, although no information on a quaternary oxide

phase structure was found in the xrd database. These features were
often N5 μm and should not reflect background intensity from the sur-
rounding YSZ or Al2O3 chemistry. Analysis of the backside (uncoated)
surface yielded relative peak intensities of ~3% and 12% for TiO2 and
TiAl2O5 for the APS samples but only 0.4% and 2% for the PS-PVD sample.
This is consistent with the lowerweight gain of the latter, andmay have
resulted from beneficial pre-oxidation effects in the low pO2 of the PS-
PVD chamber (~100 Pa of Ar/He, or 0.001 bar). The primarily Al2O3

scales show moderate undulations and thickness variation, especially
for the APS coatings. There is little indication of a cyclic instability,
such as ratcheting or rumpling. The waviness may be related to the
grain structures and anisotropic diffusion along various Ti2AlC lathes.

4. Discussion

4.1. Comparison to furnace cycle tests for superalloys

The oxidation behavior and failure times of the stepped temperature
screening tests above provide some insights regarding potential

Fig. 10. Cross-section of PS-PVD YSZ-Ti2AlC interface after 500 h testing at 1200 °C (SEM/BSE). a) Low magnification showing 80 μm APS coating; b) intermediate magnification of
(a) showing well-bonded 20 μm Al2O3 scale on and Al2O3 particles in the MAX phase substrate, with coarse interface porosity; and c) higher magnification of (b) showing fine pores in
YSZ and reacted YSZ–TiO2–Al2O3 particles at the interface.

Fig. 11. Cross-section of PS-PVD YSZ–Ti2AlC interface after 500 h testing at 1300 °C (SEM/BSE). a) Overview showing intact YSZ coating and intact 32–37 μmAl2O3 scale; (b) higher mag-
nification of YSZ showing dense network of fine lateral microcracks.
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capabilities. For example, it is clear that this TBC oxidative durability
was at least on the order or hundreds of hours at 1200 °C, 1250 °C, or
1300 °C. This in itself should be enough to distinguish these systems
from conventional metallic systems that generally exhibit these lives
at 1150 °C [15]. However the total oxidative life on Ti2AlC was on the
order of 2500 h for these tests, achieving unusually thick thermally
grown scales before failure. In order to provide a more direct compari-
son to typical cyclic tests performed at one temperature, a detailed anal-
ysis is presented below. Subsequently, the rationale for this life
extension is discussed on the basis of matched coefficients of thermal
expansion, with proportionally reduced thermal stress and strain ener-
gy factors that control spallation.

4.1.1. Scale thickness at failure
The durability of TBC systems on metallic substrates has often been

related to the scale thickness that can be tolerated before failure occurs.
This may be a combination of stress concentrations that occur at asper-
ities, debonding at valleys in any ratcheting/rumpling distortion, and in-
creases in strain energy as the scale grows. An empirical value of 7 μm
has often beenmentioned as a ‘critical’ scale thickness, xc, for TBC failure
on superalloy substrates [22]. Fig. 12 presents the xc values mentioned
above for the APS and EB-PVD coatings on Ti2AlC (converted from over-
all weight gain as ~29 and 35 μm, respectively) in reference to those
previously compiled for EB-PVD coatings on bond coated superalloys
and bulk NiAl(Zr) [15]. The bond coats include typical Pt-modified
aluminides, Pt-only, and NiCoCrAlY overlay coatings and show an aver-
age xc ~ 6± 2 μm, essentially agreeingwith 7 μm. Coatings on the Ti2AlC
MAX phase survived above 1200 °C, with ~30 μm scale thicknesses,
i.e., ~5× that sustained for metal systems.

4.1.2. Comparative oxidative life of YSZ coatings on bulk Ti2AlC and typical
bond coats on superalloys

Here we compare oxidative life between the stepped temperature
tests of TBCs on Ti2AlC with those of conventional furnace cycle tests
of TBCs on superalloy systems. The procedure is to calculate the time
needed to achieve the appropriate scale thickness observed for a given
temperature on each system, which requires some attention to detail.
Isothermal TGA tests characterized this Ti2AlC over 1100–1300 °C [9]
and corrected for a measurable amount of TiO2 transient “knee” in
log–log plots, Table 1, now including new data obtained at 1000° and
1400 °C. It is seen that the kinetics are sub-parabolic, with m ranging
from 0.24–0.36, and near the reported cubic rate [2,3,9]. The cubic rate

constant, affected by grain growth [2,9,23,24,25], is then determined ac-
cording to:

ΔW
A

−
ΔWk

A

� �3

¼ kc t−tkð Þ

from t1/3 plots, shown in Table 1 and Fig. 13.
Similarly, isothermal TGA tests of a conventional Ni(Pt)Al coated

single crystal superalloy were determined over the 1000–1250 °C tem-
perature range [15], Fig. 14. The projected equivalent times to produce
themeasured scale thickness on Ti2AlC are shown in Fig. 15. They signif-
icantly exceed the times to achieve the 7 μmboundary corresponding to
the upper limit for coated superalloys. Indeed the lives of the MAX
phase TBC systems exceeds the superalloy coatings on the order 25–
50×. Alternatively, this advantage can be viewed as an increased tem-
perature capability of ~200 °C for the same scale thickness equivalent
lifetime. These improvements are considered to result from the close
CTEmatch between YSZ,α-Al2O3, and Ti2AlC as compared to NiAl coat-
ings or superalloy substrates. Other factors for improved life are the lack
of coating rumpling caused by CTE mismatch with superalloy sub-
strates. Finally, any instabilities triggered by diffusional losses to the
substrate and the rapid creation of Al-depleted phases are precluded
in the case of bulk Ti2AlC substrateswhich do not generally exhibit a de-
pletion zone.

These positive comparisons may need to be tempered somewhat to
account for the thinner TBC layers and lack of frequent 1-h cycling for
the present coatings. It can certainly be argued that more typical
250 μm APS and 125 μm YSZ coatings would exhibit reduced cyclic du-
rability than the 100 and 80 μm respective coatings studied here. How-
ever these effects are likely to produce less than a 2–5× differential in
life, whereas a potential improvement of 50× was indicated. Thicker
TBCs may actually experience less average stress than thinner ones
(see below). Although a more frequent cycle frequency (e.g., every
hour) would seem to decrease durability, no indication of scale
decohesion was ever observed. Rapid cycling (8000 cycles to 1350 °C)
had been shown to produce no damage to the 15 μm scale formed on
similarmaterial [14]. And in another study, scales survived 1000 1-h cy-
cles to 1200 °C [4]. Thus the more likely damage factor would accrue
from crack growth in the TBC. This mechanism presented itself primar-
ily in the APS coating after its strain tolerance and toughness had been
compromised by sintering or phase separations at 1250 °C and above.

4.1.3. Residual stress and strain energy factor
It is well-recognized that TBC and scale spallation in furnace cycling

tests (FCT) are influenced by high thermal expansion mismatch stress-
es. For example, the CTE of Rene′N5 is ~16.0 (×10−6/°C) as compared
~8.2 for Ti2AlC, 9.3 for Al2O3 and 11.3 for YSZ [12,26,27]. The CTE mea-
sured for Ti2AlC in the present study was 10.2 × 10−6/°C over the
700–1300 °C range. Thus, cooling from high temperature will produce
a high compressive biaxial stress in the plane of the scale. Such stress
in a three-layer system can be estimated froma closed form solution, as-
suming a semi-infinite slab geometry, a stress-free state at high temper-
ature and no sintering or plastic flow [28,29]. Using the nominal
material parameters, geometry, and temperature in Table 2, it is predict-
ed that the compressive stress in the Al2O3 scale would be ~−3700MPa
formetallic substrates. This is in the range of valuesmeasured by photo-
luminescence spectroscopy [22]. In contrast, for Ti2AlC substrates, the
stresses in the Al2O3 scale would be just −521 MPa (~1/7 that of the
metallic system). In addition, over the 1000–1300 °C heating tempera-
tures, the compressive stress in the Al2O3 scale is projected to increase
from −433 to −566 MPa. Indeed, very similar residual compressive
stresses of −360 to −510 MPa were measured by photoluminescence
for Al2O3 scales grown on a different Ti2AlC substrate at 1000 °C to
1400 °C for 25 h,with a slightly lowermeasured CTE (9.6× 10−6/°C) [4].

By comparison, the predicted stresses change very little over these
ranges in both the Ti2AlC substrate and YSZ top coat. The corresponding

Fig. 12. Minimum scale thickness achieved at failure for YSZ coated Ti2AlC MAX phase
compared to literature values (compiled in ref. [15]) for ~25 EB-PVD coatings on bond
coated superalloys and bulk NiAl(Zr). Average scale thickness at failure: 6.1 ± 1.8 μm,
with no temperature dependence indicated for any bond coat.
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stresses in the 100 μmYSZ coating would be ~−136 MPa for metal and
+54 MPa for Ti2AlC substrates, respectively. Increasing the YSZ thick-
ness to 500 μm on Ti2AlC substrates only slightly decreases the stress
in YSZ to +50 MPa.

Also, it has been proposed that a strain energy factor ultimately con-
trols failure of α-Al2O3 scales and TBCs that rely on them for interface
stability [22,30,31]. That is, once the compressive stored strain energy
exceeds the toughness of the scale-substrate interface, the scale is un-
stable and is energetically favored to debond. Strain energy varies ac-
cording to the factor x(ΔTΔαCTE,)2 (1-νAl2O3)2 E(Al2O3). (where x refers
to scale thickness, T temperature,αCTE coefficient of thermal expansion,
and E,ν(Al2O3) bulk modulus and Poisson's ratio) [31]. Thus it can be
shown from the parameters in Table 2 that the strain energy in the
Al2O3 scale formed on a superalloy system at 1150 °C, failing at a scale
thickness of 10 μm and strain energy of 175 J/m2, is projected to be
~12.5 times that for 35 μm scales that survived on the Ti2AlC MAX
phase at 1300 °C, with a strain energy of only 14 J/m2. This is consistent
with the greater FCT lives observed for TBCs on alumina-forming Ti2AlC
substrates.

If the ΔαCTE for a Ti2AlC substrate is 1/7 of that of a metal substrate,
the induced stresses will be ~1/7 as great. This suggests that less severe
failure mechanisms may apply compared to the compressive failure
that occurs on metal substrates. Furthermore, high tensile adhesive
strengths were measured by epoxied stubs for the α-Al2O3 scale-
Ti2AlC interfacial bond, N85MPa [32], suggesting even greater durabili-
ty. This corroborates the excellent scale adhesion observed in cyclic
tests. These factors both contribute to the excellent scale retention on
Ti2AlC during thermal cycling. While scale thickening will gradually in-
crease the strain energy in the scale upon cooling Ti2AlC, it is unclear
whether this will be accommodated by interfacial debonding, cracking
of an adherent scale, or minor deformation at the Ti2AlC interface.

Failure of the APS coating did not involve interfacial scale spallation
to any great extent. The mixed fracture surface appeared to be within
the TBC near the scale, within the outer layer of the scale, or exactly at

the TBC-scale interface. APS YSZ coatings are well known to sinter,
shrink, and increase ETBC and the interfacial shear stress. These may
have all been factors that led to failure. Additionally, the YZTA reaction
phasemay have altered interface compliance and contributed to failure,
though it was not omnipresent. The Ti-rich phases, originating from the
initial TiO2 transient layer, did not appear to thicken appreciably from
1200 °C through 1250° and 1300 °C testing (accruing an additional
1000 hot hours), but may still play a role in the final failure mechanism.

Finally, Rietveld analyses revealed a very high ~60%monoclinic con-
tent at the end of 1300 °C, 500 h testing, presumably formed on cool
down from an equilibrium, phase separated tetragonal. The volume
change associated with this transformation is generally believed to
weaken and damage the YSZ. Along with sintering shrinkage, this may
have played a role in crack growth and failure here, although the spalled
flake remained primarily intact as one piece. In comparison, the PS-PVD
coating had ~30% monoclinic after 1300 °C, 500 h testing and still sur-
vived. The cause of these differences inmonoclinicwas not investigated,
but may be related to different starting powder monoclinic content,
powder homogeneity, and process history during melting/vaporiza-
tion/deposition.

For the PS-PVD coating, a high density offine, dispersed porositywas
displayed within the TBC that apparently retained strain tolerance. Dis-
persed porosity is known to at least decrease E and thus stress in the
TBC. This is one mechanism by which PS-PVD coatings are expected to
be more durable and strain-tolerant [20,21]. The polished cross-
section displayed only minor amounts of interfacial porosity, minimal
cracking, and YZTA reaction phase. While fine cracks were sometimes
observed in this coating, they appeared to be much less detrimental
than for the APS coating. The alumina scales remained adherent even
when theAPS coating failure did occur after exposures at very high tem-
perature. Increased porosity within the scale, reactions within the TBC,

Table 1
Summary of isothermal oxidation parameters for Ti2AlC transient knee, log–log slope (m), and kcubic 100 h regression fits (°C, h, mg/cm2, mg/cm2/(h)1/3 corresponding units).

TGA test log log knee log log slope t1/3 fit

T (°C) Tk (°C) tk (h) ΔWk to (h) regr. logΔW0,log m r2 to (h) regr ΔW0,cubic

(mg/cm2)
kcubic r2

1000 856 0.038 0.146 1.0 −0.785 0.235 0.996 1 0.105 0.082 0.993
1100 839 0.028 0.168 0.1 −0.696 0.308 0.999 1 0.057 0.166 1.000
1200 1103 0.037 0.307 0.1 −0.481 0.318 1.000 1 0.017 0.307 1.000
1300 1167 0.058 0.382 0.1 −0.301 0.362 1.000 1 −0.130 0.596 1.000
1400 758 0.022 0.183 1.0 0.103 0.302 0.999 5 0.281 1.008 1.000

Fig. 13. Temperature dependence of cubic rate constant (kc) for isothermal oxidation of
Ti2AlC MAX phase. Activation energy from regression fitted line is 334 kJ/mole [9].

Fig. 14. Temperature dependence of parabolic rate constant (kp) for isothermal oxidation
of Pt-modified aluminide coating on 2nd generation single crystal superalloy [15]. (Dotted
lines indicate scatter boundaries). Activation energy from regression fitted line is 382 kJ/
mole.
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and changes in microstructure are likely to determine life at 1300 °C.
Nevertheless, both coatings exhibited remarkable oxidative lives in
this first demonstration on MAX phases in successive, intermittent fur-
nace tests.

Thus it is seen that low thermal stresses contribute to the compati-
bility of YSZ thermal barrier coatings on Ti2AlC MAX phase substrates,
especially in comparison to current metallic superalloy-based systems.
The MAX phase system can survive extremely high temperatures and
long times because the α-Al2O3 scales remain intact for the duration.
However this is not meant to imply that a TBC/MAX phase system can
be easily substituted for current metallic bond coats or substrates. CTE
compatibility, and interdiffusion with superalloys will likely be great
obstacles to simple substitution for Ni(Pt)Al bond coats with a Ti2AlC
bond coat. Deposition techniques do not abound for thick coatings
that may be needed to capitalize on the CTEmatching and stress reduc-
tion in the scale and YSZ. Finally, though interesting, the mechanical
properties cannot compete with superalloy substrates at temperatures
less than 1150 °C. It is suggested that low stress, high heat environments
provide the most realistic opportunities for a TBC/MAX phase compo-
nent. Indeed, component redesign tomitigate these problems andmax-
imize the advantages will most likely be required.

5. Summary and conclusions

This study presented preliminary trials of APS and PS-PVD YSZ TBC
coatings on a commercial Ti2AlC MAX phase compound. No special
preparations or process modifications were required, other than a
light grit blast. Furnace oxidation durability tests, run in 50 °C incre-
ments from 1100–1300 °C for 500 h each, did not visibly degrade the
coatings until 1300 °C. Here the APS coating began to pull away at a

corner after 15 h and exhibit buckling, failing catastrophically from
400–500 h. The failed sample exhibited a high monoclinic YSZ content
(and some cubic) due to destabilization of the as-sprayed metastable t
′ tetragonal phase. These TBC microstructures contained large pores
and long, wide cracks, with a prominent Y–Zr–Ti–Al oxide reaction
phase at the fracture surface. These features and sintering out the com-
pliant splat boundaries at 1200–1300 °C are put forth as theprimary fac-
tors leading to failure [33]. Subsequent work focused more on the
details of the failure mechanism, rather than life testing presented
here, appears warranted.

In contrast, the PS-PVD TBC coating remained completely intact
through the 1100–1300 °C testing. The degree of monoclinic YSZ was
about ½ that found in the APS coating. While some fine interfacial po-
rosity and reaction particles were observed, the primary YSZ layer
remained homogeneous, with no large cracks, and compliant with fine-
ly dispersed porosity. The fine and uniform microstructural features of
this coating and higher retained t′ phase contents are believed to con-
tribute to its superior performance.

No spalling of the alumina scale was observed for either coating for
the total test duration. These extended TBC oxidation lives allowed
atypically thick α-Al2O3 scales to be achieved on Ti2AlC under the TBC.
While conventional bond coats on superalloys have been shown to
achieve 6 ± 2 μm of scale on average before TBC failure, these Ti2AlC
systems achieved aminimumof 29 and 35 μm, respectively. Some initial
indication of oxidative durability is indicated by the ~2400–2500 h total
exposures endured. But a more precise indication of minimum oxida-
tive life was surmised from the times predicted (from TGA kinetics) to
achieve equivalent scale thicknesses. Here a relative improvement fac-
tor up to 50× in life (or 200 °C ΔT) can be projected. Specifically,
~10,000 h would be needed to achieve the projected survivable 35 μm
thick α-Al2O3 scale on Ti2AlC at 1200 °C. This is compared to about
200 h, on average, for TBC failure on Pt-aluminide coated superalloys.
Eventually, at very high temperatures, changes within the TBC would
likely dominate potential failure mechanisms, defining a finite time/
temperature use envelope.
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Fig. 15. Comparison of TBC lives on Ti2AlC with those onmetal substrates. Compiled EB-PVD lives for Pt-aluminide and Pt-only coatings on superalloys as a function of temperature [15].
Overall average behavior indicated by regression fit line (dash dot dot). TGA predicted time to grow 7 μm critical thickness ofα-Al2O3 onmetal bond coats (dashed curve). TGA predicted
time to grow 29 and 35 μm of α-Al2O3 on Ti2AlC indicated by square (APS) and diamond (PS-PVD) symbols, respectively.

Table 2
Material System Parameters for Thermal Stress Calculations (YSZ top coating, Al2O3 scale,
and Ti2AlC or Rene′N5 substrates).

Units YSZ Al2O3 Ti2AlC N5

E Young's GPa 48 400 278 220
a CTE 1E-6/K 11.7 9.3 10.2 16
n Poisson 0.1 0.23 0.185 0.33
x Thickness 100

μm
20 μm 2.08

mm
2.08
mm

T Temperature °C 1200 1200 1200 1200
s Stress MPa 54 −521 2 N.A.
s Stress MPa −136 −3714 N.A. 35
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