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The Vegetation Outlook (VegOut): A New Method  
for Predicting Vegetation Seasonal Greenness

Tsegaye Tadesse,1 Brian D. Wardlow, Michael J. Hayes,  
and Mark D. Svoboda
National Drought Mitigation Center, School of Natural Resources, University of 
Nebraska-Lincoln, 811 Hardin Hall, 3310 Holdredge Street, P.O. Box 830988, 
Lincoln, Nebraska 68583-0988

Jesslyn F. Brown
United States Geological Survey, Earth Resources Observation and Science Center, 
47914 252nd Street, Sioux Falls, South Dakota

Abstract: The vegetation outlook (VegOut) is a geospatial tool for predicting gen-
eral vegetation condition patterns across large areas. VegOut predicts a standardized 
 seasonal greenness (SSG) measure, which represents a general indicator of relative 
vegetation health. VegOut predicts SSG values at multiple time steps (two to six 
weeks into the future) based on the analysis of “historical patterns” (i.e., patterns at 
each 1 km grid cell and time of the year) of satellite, climate, and oceanic data over 
an 18-year period (1989 to 2006). The model underlying VegOut capitalizes on his-
torical climate–vegetation interactions and ocean–climate teleconnections (such as 
El Niño and the Southern Oscillation, ENSO) expressed over the 18-year data record 
and also considers several environmental characteristics (e.g., land use/cover type 
and soils) that influence vegetation’s response to weather conditions to produce 1 
km maps that depict future general vegetation conditions. VegOut provides regional-
level vegetation monitoring capabilities with local-scale information (e.g., county 
to sub-county level) that can complement more traditional remote sensing–based 
approaches that monitor “current” vegetation conditions. In this paper, the VegOut 
approach is discussed and a case study over the central United States for selected 
periods of the 2008 growing season is presented to demonstrate the potential of this 
new tool for assessing and predicting vegetation conditions.

INTRODUCTION

A plant’s demand for water and thus general health is dependent on prevailing 
weather conditions, biological characteristics of the specific plant, its stage of growth, 
and the physical and biological properties of the soil (Wilhite, 2005). Agricultural 
drought, which is a situation in which the amount of soil moisture no longer meets 
the plants’ needs, can cripple the economy and impact many sectors of society. For 
example, the 1988 drought, focused on the central and eastern United States, resulted 
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in more than $40 billion in losses to agriculture and related industries, and the wide-
spread drought during the spring to early fall of 2002 that spanned large portions of 
30 states was estimated to have produced more than $10 billion in damages and losses 
(Lott and Ross, 2006). Because of the varied and potentially costly losses caused by 
drought events, better tools for monitoring and predicting general vegetation condi-
tions are needed to more effectively deal with this natural hazard. The capability to 
map and monitor vegetation conditions over large geographic areas is critical for a 
wide range of applications in addition to drought monitoring, such as crop and range-
land condition assessments, food security, and ecological studies. 

Satellite-based sensors such as the Advanced Very High Resolution Radiometer 
(AVHRR) and, more recently, the Moderate Resolution Imaging Spectroradiometer 
(MODIS) have been widely used for large-area monitoring of vegetation conditions 
(Tucker et al., 1985; Townshend et al., 1987; Reed et al., 1994; Myneni, et al., 1997; 
Jakubauskas et al., 2002; DeBeurs and Henebry, 2004). These imagers acquire near-
daily global observations of the Earth’s land surface, which provide continuous spatial 
spectral measures across the landscape. The analysis of vegetation index (VI) data 
calculated from the multispectral data collected by these instruments has been the 
standard for national- to global-scale vegetation mapping and monitoring for more 
than two decades.2 NDVI is calculated from the data collected in the visible red and 
near-infrared spectral regions, which are responsive to changes in chlorophyll content 
and internal leaf structure (i.e., spongy mesophyll layer), respectively. NDVI has been 
found to be well correlated with biophysical parameters such as leaf area index (LAI) 
and green biomass (Asrar et al., 1989; Baret and Guyot, 1991) and has formed the 
basis for monitoring large-area vegetation conditions (Jakubauskas et al., 2002; Reed 
et al., 1996) and major phenological events (Reed et al., 1994). In addition, other 
VIs have been developed to improve on the NDVI for vegetation monitoring. These 
include the enhanced vegetation index (EVI) (Huete et al., 2006), the wide dynamic 
range vegetation index (WDRVI) (Gitelson, 2004), the normalized difference water 
index (NDWI) (Gao, 1996; Gu et al., 2007), and the vegetation condition index (VCI) 
(Kogan, 1990). This body of research illustrates the major emphasis that has been 
placed on improving our capabilities to monitor “current” vegetation conditions over 
large areas using satellite-based remote sensing. 

The development of methods to “predict” vegetation conditions from satellite-
based observations and other ancillary information has been limited (Funk and Brown, 
2006; Ji and Peters, 2003). Ji and Peters (2003) developed a vegetation greenness fore-
casting model to predict future NDVI values for crops and grasslands in the U.S. Great 
Plains using 1 km AVHRR NDVI data and time-lagged precipitation and temperature 
information. Funk and Brown (2006) used AVHRR NDVI observations in combina-
tion with observed precipitation and relative humidity to project NDVI changes one 
to four months into the future for Africa. Considerable strides have been made by the 
climate community in the area of climate prediction (Kanamitsu et al., 2002; Reinbold 
et al., 2005; De Haan et al., 2007; Meinke et al., 2007), but the terrestrial commu-
nity has yet to follow suit in the area of predicting vegetation conditions. The ability 

2VIs are calculated from the mathematical transformation of two or more spectral bands, with the most 
commonly used index being the normalized difference vegetation index (NDVI) (Tucker et al., 1985; 
Townshend et al., 1987; Reed et al., 1994; Myneni et al., 1997; Jakubauskas et al., 2002; DeBeurs and 
Henebry, 2004).
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to  provide outlooks of general vegetation conditions across large geographic areas 
remains relatively unexplored and the development of such a capacity would provide 
valuable information for early warning systems (e.g., drought) and a wide range of 
planning activities. 

An integration of remotely sensed data with other relevant environmental vari-
ables that influence vegetation holds considerable potential for improving our capa-
bilities to predict future vegetation conditions, as demonstrated in the work of Ji and 
Peters (2003) and Funk and Brown (2006). Various high-quality environmental data 
sets (e.g., climate, ocean, and remote sensing observations) with increasing length of 
records (i.e., > 20 years) are now available to develop new predictive techniques. For 
example, a more than 20 years historical time series of 1 km AVHRR NDVI observa-
tions has been established over the United States. These satellite observations could 
be coupled with longer records (e.g., ranging from 50 to 100 years) of climate and 
oceanic data to forecast vegetation conditions. In addition, the availability of advanced 
statistical data mining techniques such as regression tree analysis has allowed diverse 
sets of environmental variables to be effectively integrated into new vegetation-related 
models such as the Vegetation Drought Response Index (VegDRI) (Brown et al., 2008), 
upon which similar predictive models could be developed.

In this paper, we present a new approach called the Vegetation Outlook (VegOut), 
which provides future outlooks of general vegetation conditions based on climate and 
ocean data, satellite-based observations of vegetation conditions, and other general 
environmental information such as land cover, soils, and elevation. The goal of this 
new approach is predicting the vegetation condition based on the time-lag relationship 
between satellite-observed vegetation conditions and oceanic and climatic observa-
tions. The predicted (dependent) variable was the standardized seasonal greenness 
(SSG), which is explained in the following section of the paper. Testing was limited to 
three shorter-outlook periods (two-, four-, and six-week predictions) for three differ-
ent periods of the growing season (i.e., early-, mid-, and late). The intent of this paper 
is to introduce the VegOut methodology and present initial results from a case study 
conducted for 2008 over a 15-state region centered on the Great Plains to demonstrate 
VegOut’s utility for predicting vegetation conditions across the growing season at a 
regional scale. 

MATERIALS AND METHODS

Study Area

The 15-state region of the central United States (Fig. 1) provides a diverse study 
area in terms of land cover types, land use practices, and climate across which to test 
the capability of the VegOut. Land cover varies from alpine forests along the Rocky 
Mountains in the west and the forested regions of northern Minnesota to the east–west 
transition of tallgrass to shortgrass prairie across the Plains states and the sparsely 
vegetated shrubland of southern Texas and New Mexico. In addition, many parts of the 
study area are intensively cultivated, including the corn- and soybean-dominated Corn 
Belt (central Nebraska eastward through Illinois), the Winter Wheat Belt (northern 
Texas, central Oklahoma, and south-central Kansas), and extensive tracts of irrigated 
and rain-fed cropland stretching the length of the Great Plains from North Dakota to 
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Texas. The study area also has a marked precipitation gradient, ranging from 255 from 
510 mm in the semiarid western locations to more than 1,020 mm in the east. Growing-
season length is also highly variable, ranging from more than 250 days (late February 
to late November) in southern Texas to ~125 days (mid-May to late  September) in the 
extreme northern part of the study area.

VegOut Model Inputs and Processes

Figure 2 shows the VegOut model inputs, processes, and final product generation, 
which are briefly described below.

Climate-based Drought Indicators. Climate is one of the most important fac-
tors influencing the growth and condition of vegetation (Braun et al., 2000; Propastin 
et al., 2006). Traditionally, climate-based drought indicators such as the Standard-
ized  Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI) have been 
used for drought monitoring (Hayes et al., 1999; Wilhite, 2000; Wells et al., 2004). 
In this study, the SPI is incorporated to represent meteorological “dryness” during 
the growing season. Because this study is primarily interested in the effect of pre-
cipitation deficits on the spatial patterns of vegetation health and vigor, the analysis 
has been restricted to a time period roughly aligned to the growing season. To gener-
ate climate grids, based on weather station observations (i.e., point data), the inverse 
distance weight (IDW) interpolation method was used. The interpolation shows that 
most climate-based drought monitoring approaches have a limited spatial precision 
at which drought patterns can be mapped because the indices are calculated from 

Fig. 1.  The 1402 weather stations used for VegOut model development over the 15-state 
study area of the central United States.
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 point-based meteorological measurements collected at weather station locations. In 
addition, weather stations are scarce in remote areas and not uniformly distributed. 
As a result, the maps of most climate-based drought indices depict broad-scale point-
based data using statistical-based spatial interpolation techniques, and the level of 
spatial detail in those patterns is highly dependent on the density and distribution of 
weather  stations. Therefore, climate-based drought indices can be enhanced through 
integration with remote sensing data to be useful for local-scale drought planning and 
monitoring activities. 

Satellite Vegetation Monitoring. An 18-year (1989–2006) time series of 
biweekly-composited 1 km AVHRR NDVI data (Eidenshink, 2006) was used to 
generate the SSG measure that is predicted by the VegOut model. This dataset was 
selected because it represents the longest complete time series of vegetation observa-
tions for the continental United States at this spatial resolution. In addition, the value 
of this dataset for acquiring vegetation information across the United States has been 
firmly established by a large body of research that has applied it to vegetation condi-
tion monitoring (Reed et al., 1996; Tieszen et al., 1997; Jakubauskas et al., 2002; 
Bayarjargala et al., 2006), land cover mapping (Loveland et al., 1995; Tieszen et al., 
1997; Jakubauskas et al., 2002), and phenology studies (Reed et al., 1994; Schwartz 
et al., 2002, 2006). 

Typically, for monitoring vegetation conditions, sequential NDVI values across 
the growing season are summarized to a metric such as seasonal greenness (SG) (also 
referred to as time-integrated NDVI), which can be considered a general proxy for 
vegetation performance (i.e., gross primary productivity [GPP]) (Reed et al., 1994; 
Brown et al., 2008). The SG represents the integrated (or accumulated) NDVI above a 
baseline “latent” NDVI value (representative of the non-vegetated background signal 
from soil and non-photosynthetic plant litter) from the start of the growing season 
(SOS) to a specified time during the year. High SG values reflect high green biomass 
conditions, whereas low SG values reflect lower biomass levels. For this study, SG 
values were calculated at the 1 km pixel level across the 15-state region for each 
biweekly period of the growing season in the 18-year time series using the following 
equation:

where P1, P2, P3 … Pn refer to the 14-day periods (i.e., bi-weeks); P1 is the time period 
for the historical median SOS, and Pn is the time period for the historical median end 
of the growing season (EOS). The NDVIb is the NDVI value at a base line as defined 
by the median SOS day. Readers are referred to Reed et al. (1994) and Brown et al. 
(2008) for a more detailed description of the SG calculation from bi-weekly AVHRR 
NDVI data.

(1)SG NDVI

P1 SOS=

Pn EOS=

NDVI NDVIb– NDVI NDVIb–

NDVI NDVIb– ,
Pn 1–

Pn

+

+

P2

P3
+

P1

P2
= =
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The pixel-level SG values were then converted to standardized seasonal green-
ness (SSG), which provided a measure of how the general vegetation conditions for 
a biweekly period in a specific year compare to historical average conditions for that 
same period in the growing season over the 18-year satellite data record. SSG values 
were calculated at two-week time steps during the growing season for each year using 
a standardization formula (Peters et al., 2002) that took the following form:

where SGi is the seasonal greenness at a particular period within a growing season 
for a specific year, SG is the 18-year historical mean seasonal greenness for the same 
period, and σ is the standard deviation of the historical record. The result was an 
18-year time series of 1 km SSG images (with values ranging from –4.0 to +4.0) that 
provide standardized (both temporally and spatially) historical vegetation condition 
information. The empirically based VegOut models are developed using the historical 
SSG values in two ways. First, the SSG for the “current” period (i.e., date the series 
of vegetation outlooks are predicted [e.g., July 28]) was used as independent variable 
to set the “initial” vegetation conditions from which the three projected outlooks will 
be calculated into the future. Secondly, the SSG values for each of the three preceding 
outlook periods (e.g., two-week outlook on August 11, four-week outlook on August 
25, and six-week outlook on September 8) for which predictions will be calculated 
were used as dependent variables to establish the historical patterns of vegetation con-
dition evolution over these outlook intervals in the models. Thus, the actual observed 
values of the SSG are used to “initialize” the prediction of future values of the SSG. 
Similar approaches that use current observations to establish initial conditions (e.g., 
temperature on day 0) from which conditions are forecast into the future (temperature 
+ 3 days) have been applied for numerical weather prediction (Neilley and Rose, 2005; 
Liu and Kalnay, 2008).

The other important satellite variable considered is the start of the season anomaly 
(SOSA) that represents the departure of the start of the growing season for a specific 
year from the historical average for a given space (i.e., grid or pixel). The SOSA is 
calculated at each pixel using the following equation: 

 SOSAi = SOSi – SOSmed ,  (3)

where SOSAi is the departure of the start of the growing season for year i in number 
of days, SOSi is the start of season (i.e., day of the year, DOY) for year 1, and SOSmed 
is the median start of season DOY from 1989 to 2006. The SOSA was included in the 
VegOut model to account for the different timings of emergence of natural and agri-
cultural vegetation that can influence the seasonal vegetation performance in a given 
season.

Oceanic Indices and Teleconnections. The oceans play a significant role in shap-
ing the complex nature of weather and climate, through interactions with the atmo-
sphere. Because of the positions of high and low pressure centers over various parts of 

(2)SSG
SGi SG–
----------------------,=
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the world, these interactions produce recognizable, repetitive, and alternative weather 
patterns (e.g., drought or excessive rainfall, and warm or cold temperatures) that affect 
vegetation conditions. These patterns can occur very far away from their oceanic 
 triggers (i.e., teleconnection) and are a natural part of climate (Hanson, 2008). For 
example, El Niño–Southern Oscillation (ENSO) events have been associated with var-
ious natural events related to vegetation (such as recurring wildland fires and changes 
in tree-ring patterns) and they have been found to have a significant relationship with 
the climate in many regions of the world (Panu and Sharma, 2002).

Coupled global ocean–atmospheric models have demonstrated reasonable skill 
in predicting the sea surface temperature (SST) in the eastern and central Pacific 
(Barett, 1998; Goddard and Hoerling, 2003), which makes oceanic indices useful in 
climate and vegetation outlooks. Oceanic indices have been widely used in weather 
and  climate forecasts because they collect quantitative data about current conditions 
that can be used to project how the complex relationships with climate and general 
vegetation conditions will evolve (Piechota and Dracup, 1996; Los et al., 2001). Thus, 
understanding such relationships improves drought and vegetation monitoring.

Atmospheric circulation patterns (high pressure and anticyclonic patterns) have 
been shown to exert influence on the occurrence of droughts (Stahl and Demuth, 1999). 
Studies have shown a direct link between the North American anomalous weather in 
the spring and early summer of drought years and SST anomalies that result from 
changes in storm tracks and moisture advection from the oceans to land (Trenberth 
and Guillemot, 1996; Stahl and Demuth, 1999). For example, Trenberth and Guillemot 
(1996) found that tropical Pacific SST changes and the La Niña event in 1988 had a 
significant role in establishing large-scale atmospheric circulation anomalies that were 
favorable for drought. These anomalies include the disruption in atmospheric heating 
patterns in the tropics by changing the location of the inter-tropical convergence zone 
(ITCZ), which could have initiated the circulation anomalies across North America 
responsible for the drought that year (Trenberth and Guillemot, 1996). Because veg-
etation monitoring is dependent on both precipitation and temperature, other studies 
(Smith et al., 1999; Trenberth and Caron, 2000; Larkin and Harrison, 2005a) indi-
cated substantial anomalies in U.S. seasonal temperature and precipitation, providing 
a foundation for U.S. seasonal forecasts when they are statistically significant and 
robustly associated with El Niño (Larkin and Harrison, 2005b). 

In predicting the vegetation condition, the overall assumption in this study is that 
each variable contributes to the complex nature of the vegetation growth. These vari-
ables alone may not be enough (separately) to explain the vegetation dynamics. Thus, 
the list of selected variables (though they are not an exhaustive list by themselves) to 
be integrated is considered to include the most important parameters for contributing 
to vegetation growth and predicting vegetation condition. 

Seven oceanic indices are integrated into the predictions to account for the tem-
poral and spatial relationships between ocean–atmosphere dynamics and climate–
vegetation interactions (i.e., teleconnection patterns) that have been observed over 
the central United States (Barnston et al., 2005; Tadesse et al., 2005b; Los et al., 
2001; Asner et al., 2000). These indices include the Atlantic Multi-decadal Oscillation 
Index (AMO), Madden-Julian Oscillation (MJO), Pacific Decadal Oscillation (PDO), 
Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Multivariate 
ENSO Index (MEI), and Pacific North American Index (PNA). Table 1 provides the 
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 references (sources) for these indices. For each index, a 1 km grid is created for each 
monthly value and used twice in building the model to match the biweekly values of 
climate and satellite data.

Biophysical Parameters. Temporal and spatial vegetation patterns and their 
 phenological dynamics are highly dependent on many environmental and biophysical 
factors in addition to climate. Most, if not all, climate-based global and regional pre-
diction models assume that vegetation conditions are exclusively dependent on climate 
controls as opposed to the influence of other non-climatic factors such as topography, 
land use/land cover (LULC) type, and soil characteristics. Researchers have indicated 
that a comprehensive approach that includes not only the climate, but also soil, water 
(above and below the ground) and other environmental factors is necessary to build an 
integrated drought monitoring system (Svoboda et al., 2004). In developing a drought 
monitoring tool for vegetation stress, Tadesse et al. (2005a) and Brown et al. (2008) 
included a number of biophysical variables (ecoregion, elevation, LULC type, and soil 
available water holding capacity) that influence general vegetation performance. The 
present study builds on this work by integrating the same set of environmental vari-
ables into the VegOut model to be analyzed in combination with climate-, oceanic-, 
and satellite-related variables for vegetation condition predictions. To integrate the 
biophysical variables with other data (e.g., climate and satellite data), the dominant (or 
majority) value within a 9 km2 window surrounding each weather station was calcu-
lated from the 1 km2 images for each biophysical variable and used for VegOut model 
development. These biophysical data are briefly explained below.

Digital Elevation Model (DEM). The DEM consists of a 1 km raster grid of regu-
larly spaced elevation values that have been primarily derived from the U.S.  Geological 
Survey’s (USGS) 30 m DEMs, along with higher resolution data where available. The 
DEM was included in the VegOut models to account for the impacts of elevation on 
vegetation across the diverse 15-state study area, which includes mountains, plains, 
and coastal areas.

National Land Cover Data (NLCD). A 1 km land cover map was generated from 
the USGS 30 m National Land Cover Database 2001 (NLCD, 2001) (Homer et al., 
2004) and incorporated into the VegOut model to reflect the different seasonal NDVI 
signals and climate-vegetation responses that are exhibited by different land cover 
types (e.g., cropland versus evergreen forest).The majority land cover class of the 30 
m NLCD map contained within each 1 km The AVHRR pixel footprint was assigned 
as thematic class to each pixel in a 1 km land cover map.

Soil Available Water Capacity (AWC). AWC was extracted from the STATSGO 
soils database (USDA, 1994) [Authors: USDA, 1994 is not included in the references 
list. Please supply the missing reference] for each STATSGO soil map unit over the 
study area and converted to a 1 km raster grid. The AWC variable was included in 
the VegOut model to represent the potential of the soil to hold moisture and make it 
available to plants, which exerts control over plant growth (Churkina et al., 1999) and 
influences the sensitivity and response of vegetation to drought.

Irrigated Agriculture (IrrAg). The representation of irrigation in VegOut is critical 
because rainfed vegetation has much greater sensitivity and response to drought than 
irrigated vegetation. Geospatial irrigation status information across the United States 
was modeled by Brown et al. (2009). This model incorporated 2002 satellite-derived 
vegetation index data at a 250 m2 resolution observed by MODIS (to identify the 
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annual peak of growing season productivity in a drought year), USDA county irriga-
tion statistics (i.e., number of irrigated acres), and land cover categories. The percent-
age of irrigated farmland was calculated using the fraction of the area of irrigated land 
in a 1 km pixel. The land cover information was used based on the 2001 NLCD that 
was described above (Homer et al., 2004). 

Ecoregions (ECO). A 1 km ecoregion grid was generated from the Omernik Level 
III ecoregion data (Omernik, 1987). The study area comprised 42 ecoregions that 
divide the regional landscape of 15 states into a series of geographic areas with similar 
ecosystems and environmental resources, which were identified using both abiotic 
(for example, climate, geology, hydrology, land use, and physiography) and biotic 
(for example, vegetation and wildlife) criteria (Omernik, 1995). Many environmental 
characteristics (for example, growing season length and plant species) exhibit consid-
erable variability across the 15-state study area, which can influence the sensitivity 
of vegetation to climate. The ECO variable provided a geographic framework to help 
account for the diverse combination of biotic and abiotic factors encountered across 
the study area, which can influence the vegetative response of a general land cover 
type (e.g., grassland) in markedly different ways in this region.

Weather Station Selection and Development of the Training Database

For VegOut model development, a training database was built to extract historical 
climate and satellite information as well as the biophysical parameters (considered 
static over the 18-year record) at 1,402 weather station locations across the 15-state 
study area (Fig. 1). The selection of these specific stations from a pool of 3,000+ total 
stations was accomplished in a two-step process that involved: (1) quality assurance 
(QA) screening of the station’s climate data record; and (2) removal of stations located 
in predominately urban areas in close proximity to large water bodies. At the initial 
QA screening stage, stations were eliminated if they were currently inactive, had a 
large proportion of missing observations (i.e., > 10% missing historical data), or had 
a historical record length that was too short (i.e., < 30 years of precipitation data and 
< 20 years of temperature data) to accurately calculate the SPI variable. The remain-
ing stations were then screened by land cover criteria to remove stations that were 
surrounded by predominately urban areas or water (i.e., > 50% of total area) within 
a 9-km2 area (i.e., 3 × 3 1 km pixel window centered on the station). The land cover 
screening was implemented because stations surrounded by these two land cover types 
often do not have a representative signal of natural vegetation conditions in the satel-
lite observations because of the non-vegetated nature of the cover type’s surface (i.e., 
water and densely built-up areas) or human activities such as municipal irrigation or 
lawns. As a result, the inclusion of such stations in the training data could result in 
signals observed from satellite that are representative of the surrounding vegetation, 
which could be under drought stress. 

The historical time series of biweekly SPI values for each of the 1,402 stations 
was then generated for an 18-year period (1989 to 2006). For each oceanic index, the 
same value for a given bi-week was assigned to all stations. In addition, for oceanic 
indices reported on a monthly time step, the same monthly value was assigned to all 
bi-weeks where the majority of the 14-day windows occurred in that specific month. 
All the remaining satellite and biophysical variables were in a gridded raster format, 
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which required a geographic summarization of each variable across a window of grid 
cells (or pixels) that surrounded each station’s location. A 3 × 3 window centered on 
the station’s location was implemented for this study, whereby the mean of the 9 grid 
cells’ values was calculated for continuous variables (e.g., average percentage of irri-
gated land or average soil water holding capacity) and the majority class for nominal 
or categorical variables (e.g., majority land cover type). This procedure was used to 
calculate an 18-year time series of biweekly SSG values to match the climate and 
oceanic variables. The SOSA metric was also summarized across a 9-cell window for 
each year, as it represents an annual measure. The station-based biophysical values 
were also calculated in the same fashion, but remained static over the 18-year data 
record.

VegOut Model Derivation Using Regression Tree Algorithm

For VegOut model derivation, an empirically based regression tree analysis 
technique was applied to the 18 years of historical data in the training data base for 
each of the targeted, seasonal bi-weeks being analyzed in this study. Regression tree 
approaches are increasingly being used for environmental modeling (De’ath and 
 Fabricius, 2000; Yang et al., 2003; Zhang et al., 2007; Brown et al., 2008; Wylie et 
al., 2008) given their ability to effectively analyze large data volumes, identify com-
plex relationships among variables, and handle non-parametric data distributions and 
a variety of data types (e.g., continuous, nominal, and ordinal). Regression tree tech-
niques have the ability to identify complex historical relationships between the suite 
of climate-, oceanic-, and satellite-based parameters and static biophysical variables 
that can be used to predict future vegetation conditions (i.e., SSG). The basic concept 
is that this statistically based approach will search for and identify similar patterns in 
the climate, oceanic, and satellite records to those of a specific prediction date to base 
the vegetation condition (or SSG) predictions. 

In this study, a commercial classification and regression tree (CART) algorithm 
called Cubist (Quinlan, 1993; Rulequest, 2009) was used to analyze the historical data 
in the training database and generate rule-based, piecewise linear regression VegOut 
models for each biweekly period. This CART algorithm performs a binary, recursive 
partitioning process that splits the initial set of training observations (root or parent 
node) into two child nodes that each contains a subset of more homogeneous training 
observations. This process is repeated, further subdividing the training data into pairs 
of child nodes until the partitioning process is terminated by user-defined criteria (e.g., 
minimum rule cover or percent of cases allowed to generate a rule) (Breiman et al., 
1984; Yang et al., 2003). The CART algorithm produces a series of rule-based models 
from this partitioning. Each rule set has a corresponding multivariate linear regres-
sion equation that can be used to predict the value of the SSG measure for this study. 
Regression tree models can account for nonlinear relationships between predictive 
and target variables through a series of regression equations associated with different 
rule sets. 

The VegOut models are composed of an unordered set of rules, with each rule 
having the syntax “if x conditions are met, then use the associated linear regression 
model.” The following provides an example of the rules generated by the Cubist algo-
rithm for VegOut:
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Example Rule 1:
if: 
 ECO in {Western Corn Belt Plains, Central Great Plains}
 LandCover in {Grassland, Pasture/Hay, Row Crops}
 SPI ≤ –1.2
 AWC ≤ 5.46
 AMO < 0.6
 PDO < –1.1
 MEI < –2.0
then:  
 VegOut = –1.5 + 0.6SSG + 1.48SPI – 0.14 AWC + 0.25AMO – 0.5MEI +  

 0.14PDO.

If the data associated with a specific case meet the conditional statement for the 
ecoregion (i.e., located in the Western Corn Belt Plains and/or Central Great Plains) 
and the threshold criteria for the five continuous variables (i.e., SPI, AWC, AMO, 
PDO, and MEI), and are represented by one of the three land cover classes (i.e., grass-
land, hay/pasture, and row crops) identified by the Cubist regression algorithm, then 
the above multivariate linear regression equation is used to calculate a VegOut value 
(i.e., future SSG value) for a specific outlook period interval. If two or more rules in 
the Cubist model apply to the case, then the predicted values from each regression 
equation will be averaged to arrive at the final, predicted VegOut value. 

To create a series of predicted maps, the VegOut rules for a given period (bi-week) 
model were applied to the gridded image (1 km raster) input data using MapCubist 
software developed at the USGS Center for Earth Resources Observation and Science 
(EROS). During the process of model implementation to the image data, the values of 
all the input variables (as listed in Table 1) for each pixel were considered to determine 
which rule(s) to select and then apply the corresponding linear regression equation(s) 
associated with the rule(s) to input data values in order to calculate the VegOut value 
for each pixel across the study area. 

Model Validation

The predictive accuracy (or skill) of the VegOut model was validated using sev-
eral different statistical measures: the mean absolute difference of a tree (MAD(T)), 
the relative error (RE), and Pearson’s product-moment correlation coefficient (R). 
MAD(T) is expressed as: 

where Oi is the function f xi , which represents the regression plane through the 
training set, and N is the number of samples used to establish the tree (Yang et al. 2003; 
Rulequest 2009). The RE is defined as: 

(4)MAD T 1
N
---- Oi f xi– ,
i 1=

n
=
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where R(µ) is the average error that would result from always predicting the mean 
value (ibid.). It is used to standardize the average error or mean absolute difference, 
MAD(T). For useful models, the relative error should be less than 1. In addition to 
the average error and relative error, Cubist also calculates Pearson’s product-moment 
correlation coefficient (R) between actual and predicted values (ibid.). Then the coef-
ficient of determination (R2) was calculated to measure the agreement between the 
cases’ actual values of the target attribute and those values predicted by the model. The 
evaluation of the models using the above statistical measures was done on the test data 
set (i.e., randomly selected 10% of the historical data over 18 years), which had not 
been seen in the 90% of the training data set used to train the prediction model. 

RESULTS AND DISCUSSION

VegOut Model Performance across the Growing Season

A summary of the VegOut models’ accuracy and error terms across 10 bi-weekly 
periods of the growing season is given in Table 2. The error terms (i.e., the MAD and 
RE values for each bi-week) shown in the table reveal that the MAD values range from 
0.06 to 0.25, 0.1 to 0.33, and 0.15 to 0.35, for the two-, four-, and six-week outlook 
models, respectively. The relative error term (RE) also showed values ranging from 
0.10 to 0.33, 0.14 to 0.49, and 0.21 to 0.51 for the two-, four-, and six-week outlook 
models, respectively. For the SSG values ranging between –4 and 4, these low MAD 
and RE values indicate higher accuracy of the predictive models. In addition, the coef-
ficient of determination (R2) values between the observed and predicted SSG values 
across the growing season ranged from 0.83 to 0.99, 0.72 to 0.98, and 0.71 to 0.94, for 
the two-, four-, and six-week outlooks, respectively. 

An assessment of the intra-annual predictive accuracy of individual two-, four-, 
and six-week VegOut models for each 14-day period across the growing season showed 
that the lowest predictive accuracy (i.e., higher MAD and RE values and lower R2) 
occurred in the early spring (late April and early May). Predictive accuracy improved 
and was relatively stable for the summer (peak growing season) and fall (senescence) 
periods (Table 2). The relatively lower predictive accuracy in the early spring may be 
due to low green biomass, resulting in greater fluctuation of the low SSG values in the 
early growing seasons and magnified by periods of unusually warm or cold tempera-
tures, which is highly variable between years and within individual growing seasons.

Longer Outlook Period (More than Eight Weeks) Testing

Longer outlook periods ranging from eight-week to 16-week SSG predictions 
were also preliminarily tested for period 12 (i.e., first half of June) to determine 
 VegOut’s performance over two- to four-month intervals. The early June period was 
selected because it allowed longer-duration SSG predictions to be made across the 
core of the growing season, with the testing terminating at the 16-week interval, which 
occurs in October when the majority of vegetation across the study is partially or fully 

, (5)RE T MAD T
R

----------------------=
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senesced. Figures 3A–3H present the scatterplots of the predicted vs. observed SSG 
values from this testing. As might be expected, the two-week outlook had the highest 
R2 value (0.97) and the least spread (i.e., lowest variability) between the observed and 
predicted values in the scatterplots. In general, the predictive accuracy of the shorter 
outlooks ranging between two and six weeks had relatively high R2 values (> 0.85), 
with the least spread from the 1:1 line presented in the scatterplots in Figure 3. As the 
outlook periods lengthened, the VegOut models’ performance decreased exponentially 
from an R2 value of 0.78 for the nine-week outlook to 0.70 for the 16-week outlook. 
Although this paper focuses on the shorter, two- to six-week outlooks, which have 
been shown to have relatively high accuracies, the longer periods extending two or 
more months exhibit some potential that warrants further investigation. 

Variable Contributions in the Outlooks

To understand the contribution of each individual variable in the rules, we have 
closely looked at the percentage of cases for which each input variable appeared in the 
conditional statement of the rules and in the regression model of applicable rules. Each 
“case” represents an observation (defined as a specific station/year combination for 
the bi-week being tested) in the historical database whose values for the various input 
variables meet the criteria of a specific conditional statement of a rule set. Table 3 
presents the percentage contribution of each independent variable used to generate the 
two-, four-, and six-week VegOut models for period 15 (July 14–28) of the growing 
season. Since all the models in the growing season showed similar patterns, we present 
this period (July 14–28) to demonstrate the process and the outcomes. For this spe-
cific period, 18 rules (23,940 training cases), 28 rules (23,383 training cases), and 36 
rules (23,021 training cases) were generated for the two-, four-, and six-week  VegOut 
models, respectively. These rules are all generated based on the 18-year historical data 
for this specific period. The number of rules comprising the VegOut models progres-
sively increased as the outlook period lengthened, illustrating the increasing complex-
ity required in the modeling for the longer range outlooks.

The conditional statement column (the “if …” term) in Table 3 shows the approxi-
mate percentage of cases for which the input variables appear in a condition of an 
applicable rule. For example, the ecoregion variable was used most frequently (i.e., 
ranging from 86% to 99%) in the models’ conditional statements for all three outlooks. 
In Table 3, the Regression Model column gives the percentage of cases for which 
the variables appear in the model of applicable rules. For example, the two satellite-
derived variables (SSG and SOSA) were used in the regression tree model rules all 
the time (100%), which indicates that the satellite-based vegetation observations are 
the main drivers of predicting future vegetation conditions. The climate variable (SPI) 
was used in 58–76% of the regression models’ conditional statements for the three out-
look periods tested. The contribution of the oceanic indicators was more highly vari-
able, ranging from 15% to 72%. The percentage of the use of these oceanic indicators 
differs in time (month to month) throughout the growing season. The values shown as 
<1% indicate that the variable was rarely or never used in that particular model. How-
ever, some variables (such as the NAO) in all three outlooks might not be used within 
the conditional statement of a regression tree but were used in the regression model 
calculation (Table 3). In general, Table 3 demonstrates that each variable typically had 
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a contribution of varying degrees in predicting the general vegetation conditions (i.e., 
SSG) at the two-, four-, and six-week intervals.

VegOut Maps

After regression tree rules were generated, 1 km VegOut maps were produced 
for the two-, four-, and six-week outlook intervals across the 2008 growing season. 
The 2008 growing season data were independent (unseen data) from the data used to 
develop the models, which were based on the 18 years of historical records between 
1989 and 2006. Even though VegOut maps are produced for each 14-day interval 
(or bi-weeks) across the growing season, only the map results for the mid-summer 
period (bi-week) 15 (i.e., July 14–28) are presented in this paper to demonstrate the 
VegOut map results. Figure 4 shows the predicted two-, four-, and six-week VegOut 
SSG maps (Figs. 4B, 4C, and 4D, respectively) and the SSG patterns observed from 
satellite for the corresponding dates (4E, 4F, and 4G, respectively). The SSG values 

Fig. 4. A. Observed seasonal greenness (SSG) for July 28, 2008. B–D. Two-, four-, and 
six-week outlooks; E–G. Observed SSG for August 11, August 25, and September 8, respec-
tively, that correspond to the two-, four-, and six-week outlooks, respectively. H–J. Change 
maps (the difference between the predicted and observed) for the two-, four-, and six-week 
outlooks, respectively.
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were classified into seven general vegetation condition classes based on the standard 
deviation (STDEV) of the SSG (Table 4). The first map (Fig. 4A) shows the satellite-
observed SSG on July 28, 2008, which was the date that the series of VegOut maps 
was produced. The observed SSG data from the AVHRR instrument on July 28 pro-
vided the initial vegetation conditions at the time of the two-, four-, and six-week SSG 
predictions. 

A visual comparison of the observed and predicted maps in Figure 4 shows good 
general agreement in their SSG patterns for the three outlook periods tested. Quanti-
tative difference maps (i.e., the difference of the predicted minus the observed SSG 
maps) for the two-, four-, and six-week outlooks are presented in Figures 4H, 4I, 
and 4J, respectively to further illustrate the areas exhibiting the largest differences. 
Differences were categorized into three classes based on a one standard deviation 
threshold (in units of the SSG): (1) underprediction—if the SSG difference is less 
than –1 STDEV; (2) similar—if the SSG difference falls within the –1 to +1 STDEV 
range; and (3) overprediction—if the SSG difference is greater than +1 STDEV. For 
example, the SSG patterns depicted in the two-week VegOut map for August 11 (Fig. 
4B) had a strong spatial agreement with the satellite-observed SSG patterns for the 
same period (Fig. 4E). The areal extent of overpredicted and underpredicted SSG val-
ues was minimal (Fig. 4H), with most of these differences limited to small, localized 
areas across the 15-state study area. The majority of differences occurred in southern 
New Mexico and southwest Texas, where SSG values tended to be underpredicted. 
The underprediction across these areas persisted in both the four- and six-week out-
looks maps. However, a visual comparison of the predicted and observed SSG patterns 
for the two-week outlook over this area did not reveal a noticeable difference in the 
level of greenness on the SSG scale. The discrepancy between the visually observed 
differences in the SSG maps and those depicted in the difference map for these areas 
is likely a function of their sparsely vegetated landscapes, which are primarily com-
posed of shrubs and sparse grasses. This discrepancy is due to the fact that the dynamic 
range of SSG values (i.e., range of values between the minimum and maximum SSG 
value range over the year) in sparsely vegetated locations is quite low and a minimal 
difference between the predicted and observed SSG values within this limited range 
will often exceed the 1 STDEV threshold used to flag major differences. As a result, 
the predicted and observed SSG values may be relatively similar for these locations. 

Table 4. SSG Values Classified into Seven General Vegetation Condition Classes 
Based on the Standard Deviation (STDEV) of the SSGa

SSG values (STDEV) Vegetation condition

–2.0 and less Extreme stress
–1.0 to -2.0 Severe stress
–0.5 to –1.0 Poor vegetation
–0.5 to + 0.5 Fair (near normal)
+0.5 to +1.0 Good vegetation
+1.0 to +2.0 Very good vegetation
+2 and greater Excellent vegetation
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Because of this performance, further study of VegOut is needed over sparsely veg-
etated locations.

In the six-week outlook map, large areas of both overpredicted and underpre-
dicted values were found in the northern Great Plains (North and South Dakota, as 
well as parts of Montana) and eastern Colorado (Figs. 4F and 4G). In most of these 
locations, with the exception of southwest North Dakota, the predicted SSG values 
for August 25 were much lower than those observed from the satellite-based AVHRR 
instrument. A review of precipitation maps3 for July and August 2008 revealed that 
above-average rainfall (>130% of normal) was received across both eastern  Colorado 
and eastern North and South Dakota over that time period. This above-average pre-
cipitation likely resulted in a stronger greenness signal (higher SSG value) being 
observed from satellite on September 8 than the predicted SSG values, which were 
based on a drier scenario in the model because less precipitation has been typically 
received during July and August over the 18-year period used for model development. 
Further research is needed to better understand the role of extreme weather patterns 
(excessive rainfall or drought) on the predictive errors present in the maps generated 
by the VegOut models. 

In general, the investigation of the spatio-temporal performance of VegOut across 
the growing season showed reasonably high predictive accuracy for the central United 
States, up to 6 weeks. In addition, the VegOut has finer spatial detail (1 km2 resolution) 
that may help improve drought monitoring tools such as the U.S. Drought Monitor 
(USDM). Thus, this new vegetation monitoring tool is expected to have great potential 
for different types of users and purposes. For example, it may be used to justify sub-
county declarations for the release of Conservation Reserve Program (CRP) lands for 
emergency grazing for parts of counties that might be severely impacted by drought or 
to gauge rangeland and haying conditions in neighboring states to determine locations 
to move cattle for grazing and purchase hay and other feed; it might also be used as an 
additional indicator of fire risk. Easier access to these products will allow for quicker 
assessments and decision-making at all levels. Feedback from users with specific 
needs (e.g., agricultural producers, university extension agents, and policy makers) is 
essential in improving the models so that the vegetation and prediction tools are truly 
useful to the sectors affected by drought. 

Future Study and Planned Improvement of the VegOut Model

Advances in prediction of the vegetation conditions at finer resolutions (e.g., 
local scales) will depend on improvements in model structure and initialization, 
data assimilation, and selection of effective parameters that characterize vegetation 
growth. Efficient database development and improved analysis tools including data 
mining techniques allow for effective integration of a diverse set of input variables 
and identification of complex relationships between climate/oceanic variables and 
vegetation condition (i.e., satellite-based standardized seasonal greenness) related to 
drought.

3Observed precipitation maps are available from High Plains Regional Climate Center, (http://www.hprcc 
.unl.edu/maps/current/). 
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More and better predictability studies are required to determine the regions, sea-
sons, lead times, and processes necessary for improved predictive skill. In this study, 
the VegOut model included ecosystem and LULC data that contributed to deriving 
rules that reflected their effects. However, refining the model at a more local level 
may provide additional predictive skills. Improved and finer resolution satellite 
 observations could help to fill this gap. For example, using MODIS data may improve 
spatial resolution, while using thermal data could help identify the patterns and influ-
ence of surface temperatures on vegetation. The development of a 250 m VegOut will 
be explored using 250 m MODIS data. A higher spatial resolution VegOut is expected 
to be more applicable to local-scale monitoring and decision making compared with 
the 1 km AVHRR. The limitation of using MODIS data at present is that the historical 
record is less than 10 years. Because of this, patterns and generated rules using short 
historical records may not be reliable for the model. However, work is in progress 
to “crosswalk” (transition) the MODIS data from AVHRR so that we may be able to 
use longer historical records. The initial research will rely on the shorter, nine-year 
MODIS historical record, which will be extended once the AVHRR–MODIS cross-
walk activity is completed. 

A new United States MODIS data delivery system called eMODIS has been 
 created by the USGS-EROS to provide real-time and historical surface reflectance and 
NDVI products that are composited in seven-day intervals over the continental United 
States (ftp://emodisftp.cr.usgs.gov/eMODIS/). This data delivery system helps in 
acquiring “enhanced,” “expedited,” and “expandable” MODIS data. This will be very 
important in developing near-real time weekly and finer spatial resolution  VegOut 
products in the future. Furthermore, incorporation of additional new variables such as 
remote sensing–based evapotranspiration (ET) and soil moisture (SM) products using 
MODIS may help improve the predictive accuracy of the VegOut. Testing the ET and 
SM variables to include in the VegOut model is expected to contribute to and comple-
ment the existing vegetation monitoring tools. 

To assess and predict vegetation conditions, it is essential to identify different 
characteristics of the environment that influence climate–vegetation interactions. 
Because of this, the LULC type, irrigation, soil available water capacity, elevation, and 
ecological setting of the area have all been considered in the VegOut model. Further-
more, the ocean–atmosphere–vegetation interaction provides essential information in 
predicting vegetation condition. Thus, oceanic indices based on Pacific and Atlantic 
Ocean observations indicate that teleconnections with surface observations have been 
considered and integrated in the VegOut model. These oceanic indices help to predict 
the complex climate and vegetation conditions if they are used with other climate, 
satellite, and environmental variables rather than as stand-alone predictors. However, 
better understanding of land–atmosphere interactions and studying the impact of 
  teleconnections at a local scale will most likely improve the modeling of antecedent 
conditions to climate and vegetation condition. In addition, model evaluation studies 
with enhanced ground observations are needed to improve models and to characterize 
and reduce uncertainties.

Other predictive techniques are being developed using different scenario-based 
(e.g., dry, normal, and wet) forecasts to provide vegetation outlooks. This method 
uses the same regression algorithm to identify the patterns and integrate several data 
inputs as described in this paper. The difference in this method will be using predicted 
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 precipitation scenarios (e.g., what happens if 50% [150%] precipitation is received 
during the following six-week period for dry [wet] scenarios) and producing maps 
that reflect these scenarios. This approach will provide users with choices of particular 
scenario vegetation outlook maps based on what precipitation amounts they might 
expect.

CONCLUSION

Large-area outlooks of future vegetation conditions are important for a wide range 
of applications that include agricultural crop estimates, rangeland condition assess-
ments, and drought monitoring. Such predictions are very challenging given the com-
plexity of climate–vegetation interactions and diversity of land use practices across 
large geographic areas. However, potential advancements in this area are becoming 
possible with the availability of longer historical records of remote sensing observa-
tions and high-quality environmental data sets coupled with recent advancements in 
computing technologies and statistical data mining techniques.

VegOut is a new hybrid geospatial vegetation condition indicator that predicts 
the vegetation seasonal greenness based on historical satellite, climate, oceanic, and 
biophysical observations. The maps are designed to deliver a timely product (e.g., 
disseminating the maps every two weeks via the Internet) using current technologi-
cal advances and algorithms. The VegOut maps are intended to provide the potential 
for national-level predicting capabilities with local-scale information (e.g., county to 
sub-county level) regarding the level of impacts of natural disasters such as drought 
stress on vegetation. In addition, VegOut capitalizes on historical climate–vegetation 
interactions and teleconnections between the ocean and climate (such as El Niño and 
the Southern Oscillation, ENSO) to generate these outlooks, while considering several 
static environmental characteristics (i.e., LULC type, irrigation status, soil charac-
teristics, and ecological setting) that can influence vegetation’s response to weather 
conditions.

The evaluation of the spatio-temporal performance of VegOut across the growing 
season showed reasonably high predictive accuracy across the 2008 growing season 
for the central United States and strong spatial agreement between the predicted and 
observed SSG patterns in the two-, four-, and six-week VegOut maps. The compari-
sons of the predicted and observed SSG patterns of the VegOut maps using indepen-
dent year data (i.e., the 2008 growing season) in this study showed that major differ-
ences (both underprediction and overprediction) occurred primarily at a local scale. 
In addition, pronounced differences of both underpredicted and overpredicted SSG 
values persisted over sparsely vegetated locations of the study area, such as southwest 
New Mexico, for the three outlook periods tested. The performance of VegOut over 
sparsely vegetated locations and during excessively wet and dry periods needs further 
study. Moreover, longer outlook periods ranging from two to six months should be 
further investigated. 
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